Wei Zhou's research while affiliated with Ningxia Medical University and other places

What is this page?


This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.

It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.

If you're a ResearchGate member, you can follow this page to keep up with this author's work.

If you are this author, and you don't want us to display this page anymore, please let us know.

Publications (1)


Autophagy inhibition restores CD200 expression under IL-1β microenvironment in placental mesenchymal stem cells of fetal origin and improves its pulmonary fibrosis therapeutic potential
  • Article

November 2022

·

6 Reads

Molecular Immunology

Wei Zhou

·

Li Li

·

Jin Tao

·

[...]

·

Yongzhao Zhu

Background Mesenchymal stem cells (MSCs) are promising remedies for various inflammatory disease including pulmonary fibrosis (PF). However, the properties of MSCs in PF pathological microenvironment remain unclear. In this study, the efficacy of autophagy in placental mesenchymal stem cells of fetal origin (fPMSCs) in either IL-1β treatment or BLM induced pulmonary fibrosis mice model was examined. Methods The characteristic of fPMSCs was identified by morphological observation, flow cytometry and differentiation potential. In vitro experiments, fPMSCs were stimulated with IL-1β, to mimic inflammatory microenvironment of pulmonary fibrosis. The immunosuppressive properties and autophagic function in fPMSCs treated with IL-1β were evaluated by both macrophage cells THP-1 activation and the expression of CD200 situation, autophagy marker and MAPK signaling pathway. The in vivo anti-fibrotic activity of fPMSCs interfering autophagy was evaluated by using BLM induced pulmonary fibrosis mice model. Results fPMSCs belonged to CD73⁺CD90⁺CD105⁺/CD14⁻ CD34⁻CD45⁻HLA-DR⁻ cells, and capable differentiation to adipogenic, osteogenic and chondrogenic cells. In addition, immunoinhibitory activity of fPMSCs for macrophage was restrained by IL-1β treatment in CD200 dependent manner. Suppression of autophagy by sh-Atg5 lentivirus increased the expression of CD200 and ratio of CD200 positive fPMSCs, and enhanced fPMSCs immunosuppression for THP-1 activation. Mechanistically, IL-1β induced autophagy regulated by p38 signaling cascade. In vivo, autophagy inhibition induced by Atg5 knockdown in fPMSCs resulted in strengthening antifibrotic effects on PF mice model. Conclusions Collectively, autophagy derived from inflammatory microenvironment hampered the immunoinhibitory properties of MSCs. Based on this, adjustment of autophagy may be a valid approach to facilitate their immunomodulatory and anti-fibrotic efficacy.

Share