Qiang Guo's research while affiliated with Peking University Shenzhen Hospital and other places

What is this page?


This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.

It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.

If you're a ResearchGate member, you can follow this page to keep up with this author's work.

If you are this author, and you don't want us to display this page anymore, please let us know.

Publications (1)


The Ansa Peduncularis in the Human Brain: a Tractography and Fiber Dissection Study
  • Article

June 2020

·

184 Reads

·

11 Citations

Brain Research

·

Eduardo Carvalhal Ribas

·

Penghu Wei

·

[...]

·

Qiang Guo

Introduction The ansa peduncularis is a composite of white matter fiber bundles closely packed together that sweeps around the cerebral peduncle. The exact components of the ansa peduncularis and their anatomical trajectories are still not established firmly in the literature. Objective The aim of this study was to examine the topographical anatomy of the ansa peduncularis and its subcomponents using the fiber dissection and tractography techniques. Methods Ten formalin-fixed brains were prepared according to Klingler’s method and dissected by the fiber dissection technique from the lateral, medial and inferior surfaces. The ansa peduncularis was also traced using high definition fiber tracking (HDFT) from the MRI data of twenty healthy adults and a 1021-subject template from the Human Connectome Project. Results The ventral amygdalofugal pathway system includes white matter fiber bundles with a topographically close relation as they sweep around the cerebral peduncle and contribute to form the ansa peduncularis: amygdaloseptal fibers connect the amygdala and anterior temporal cortex to the septal region and amygdalohypothalamic fibers project from the amygdala to the hypothalamus. Additionally, from the amygdala and anterior temporal cortex, amygdalothalamic fibers project to the medial thalamic region. The ansa lenticularis, which connects the globus pallidus to the thalamus, was not shown in our study. Conclusion The study demonstrated the trajectory of the ansa peduncularis and its subcomponents, based on fiber dissection and tractography, improving our understanding of human brain anatomical connectivity.

Share