Ojas Singh's scientific contributions

What is this page?


This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.

It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.

If you're a ResearchGate member, you can follow this page to keep up with this author's work.

If you are this author, and you don't want us to display this page anymore, please let us know.

Publications (1)


Computer Aided Drug Designing Approach for Prospective Human Metastatic Cancer
  • Article

July 2023

·

27 Reads

·

1 Citation

·

Nehal Balhara

·

Ojas Singh

It is well known that finding new drugs is a difficult, expensive, time-consuming, and expensive project. According to a study, the typical time and cost for developing a new medicine through the conventional drug development pipeline is 12 years and 2.7 billion dollars. The pharmaceutical industry is grappling with the difficult and pressing challenge of how to find new drugs faster and at lower research costs.Insilico,The field of computer-aided drug discovery (CADD) has shown significant promise as an advanced technology for secure, cost-effective, and efficient drug design. In recent times, there has been remarkable progress in computational tools for drug discovery, particularly in the development of anticancer therapies. This progress has had a significant impact on the design of anticancer drugs and has provided valuable insights into the field of cancer treatment. To carry out molecular docking, we utilized AutoDock software and prepared the target protein by loading and converting its PDB file format into a macromolecule. Additionally, the ligand structures underwent energy minimization (EM) and were selected alongside the target proteins in AutoDock. To ensure coverage of the binding site residues, a suitable grid box with appropriate dimensions was chosen

Share