Merle Stein's research while affiliated with Heinrich-Heine-Universität Düsseldorf and other places

What is this page?


This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.

It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.

If you're a ResearchGate member, you can follow this page to keep up with this author's work.

If you are this author, and you don't want us to display this page anymore, please let us know.

Publications (2)


PREDIG: Web application to model and predict the enzymatic saccharification of plant cell wall
  • Article

September 2023

·

12 Reads

Computational and Structural Biotechnology Journal

·

Torben Glass

·

Merle Stein

·

[...]

·

Enzymatic digestion of lignocellulosic plant biomass is a key step in bio-refinery approaches for the production of biofuels and other valuable chemicals. However, the recalcitrance of this material in conjunction with its variability and heterogeneity strongly hampers the economic viability and profitability of biofuel production. To complement both academic and industrial experimental research in the field, we designed an advanced web application that encapsulates our in-house developed complex biophysical model of enzymatic plant cell wall degradation. PREDIG (https://predig.cs.hhu.de/) is a user-friendly, free, and fully open-source web application that allows the user to perform in silico experiments. Specifically, it uses a Gillespie algorithm to run stochastic simulations of the enzymatic saccharification of a lignocellulose microfibril, at the mesoscale, in three dimensions. Such simulations can for instance be used to test the action of distinct enzyme cocktails on the substrate. Additionally, PREDIG can fit the model parameters to uploaded experimental time-course data, thereby returning values that are intrinsically difficult to measure experimentally. This gives the user the possibility to learn which factors quantitatively explain the recalcitrance to saccharification of their specific biomass material.

Share

PREDIG: web application to model and predict the enzymatic saccharification of plant cell wall
  • Preprint
  • File available

July 2023

·

154 Reads

Enzymatic digestion of lignocellulosic plant biomass is a key step in bio-refinery approaches for the production of biofuels and other valuable chemicals. However, the recalcitrance of this material in conjunction with its variability and heterogeneity strongly hampers the economic viability and profitability of biofuel production. To complement both academic and industrial experimental research in the field, we designed an advanced web application that encapsulates our in-house developed complex biophysical model of enzy-matic plant cell wall degradation. PREDIG (https://predig.cs.hhu.de/) is a user-friendly, free, and fully open-source web application that allows the user to perform in silico experiments. Specifically, it uses a Gillespie algorithm to run stochastic simulations of the enzymatic saccharification of a lignocellulose microfibril, at the mesoscale, in three dimensions. Such simulations can for instance be used to test the action of distinct enzyme cocktails on the substrate. Additionally, PREDIG can fit the model parameters to uploaded experimental time-course data, thereby returning values that are intrinsically difficult to measure experimentally. This gives the user the possibility to learn which factors quantitatively explain the recalcitrance to saccharification of their specific biomass material.

Download