Anthie Yiakouvaki's research while affiliated with Newcastle University and other places

What is this page?


This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.

It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.

If you're a ResearchGate member, you can follow this page to keep up with this author's work.

If you are this author, and you don't want us to display this page anymore, please let us know.

Publications (1)


Fig. 1. Scatter plots (with best-fitting regression lines) showing investment in the public-goods game as a function of facial width-to-height ratio. Results are shown separately for participants in the (a) between-groupscompetition and (b) within-group-competition conditions. 
Novel Poly(ADP-ribose) Polymerase-1 Inhibitor, AG14361, Restores Sensitivity to Temozolomide in Mismatch Repair-Deficient Cells
  • Article
  • Full-text available

March 2004

·

59 Reads

·

165 Citations

Clinical Cancer Research

·

Lan-Zhen Wang

·

Anthie Yiakouvaki

·

[...]

·

David R Newell

Mismatch repair (MMR) deficiency confers resistance to temozolomide, a clinically active DNA-methylating agent. The purpose of the current study was to investigate the reversal mechanism of temozolomide resistance by the potent novel poly(ADP-ribose) polymerase (PARP)-1 inhibitor, AG14361, in MMR-proficient and -deficient cells. The effects of AG14361, in comparison with the methylguanine DNA methyltransferase inhibitor, benzylguanine, on temozolomide-induced growth inhibition were investigated in matched pairs of MMR-proficient (HCT-Ch3, A2780, and CP70-ch3) and -deficient (HCT116, CP70, and CP70-ch2) cells. AG14361 enhanced temozolomide activity in all MMR-proficient cells (1.5-3.3-fold) but was more effective in MMR-deficient cells (3.7-5.2-fold potentiation), overcoming temozolomide resistance. In contrast, benzylguanine only increased the efficacy of temozolomide in MMR-proficient cells but was ineffective in MMR-deficient cells. The differential effect of AG14361 in MMR-deficient cells was not attributable to differences in PARP-1 activity or differences in its inhibition by AG14361, nor was it attributable to differences in DNA strand breaks induced by temozolomide plus AG14361. MMR-deficient cells are resistant to cisplatin, but AG14361 did not sensitize any cells to cisplatin. PARP-1 inhibitors potentiate topotecan-induced growth inhibition, but AG14361 did not potentiate topotecan in MMR-deficient cells more than in MMR-proficient cells. MMR defects are relatively common in sporadic tumors and cancer syndromes. PARP-1 inhibition represents a novel way of selectively targeting such tumors. The underlying mechanism is probably a shift of the cytotoxic locus of temozolomide to N(7)-methylguanine and N(3)-methyladenine, which are repaired by the base excision repair pathway in which PARP-1 actively participates.

Download
Share

Citations (1)


... Another combination that can be done concurrently with veliparib is temozolomide (TMZ). In this case, veliparib can enhance the reduced efficacy of TMZ due to the mechanism of TMZ not responding well to cells with DNA repair damage [43]. ...

Reference:

The role of germline BRCA1 & BRCA2 mutations in familial pancreatic cancer: A systematic review and meta-analysis
Novel Poly(ADP-ribose) Polymerase-1 Inhibitor, AG14361, Restores Sensitivity to Temozolomide in Mismatch Repair-Deficient Cells

Clinical Cancer Research