ArticlePDF Available

Homocysteine causes cerebrovascular leakage in mice

Authors:

Abstract and Figures

Elevated plasma homocysteine (Hcy) is associated with cerebrovascular disease and activates matrix metalloproteinases (MMPs), which lead to vascular remodeling that could disrupt the blood-brain barrier. To determine whether Hcy administration can increase brain microvascular leakage secondary to activation of MMPs, we examined pial venules by intravital video microscopy through a craniotomy in anesthetized mice. Bovine serum albumin labeled with fluorescein isothiocyanate (BSA-FITC) was injected into a carotid artery to measure extravenular leakage. Hcy (30 microM/total blood volume) was injected 10 min after FITC-BSA injection. Four groups of mice were examined: 1) wild type (WT) given vehicle; 2) WT given Hcy (WT + Hcy); 3) MMP-9 gene knockout given Hcy (MMP-9-/- + Hcy); and 4) MMP-9-/- with topical application of histamine (10(-4) M) (MMP-9-/- + histamine). In the WT + Hcy mice, leakage of FITC-BSA from pial venules was significantly (P < 0.05) greater than in the other groups. There was no significant leakage of pial microvessels in MMP-9-/- + Hcy mice. Increased cerebrovascular leakage in the MMP-9-/- + histamine group showed that microvascular permeability could still increase by a mechanism independent of MMP-9. Treatment of cultured mouse microvascular endothelial cells with 30 microM Hcy resulted in significantly greater F-actin formation than in control cells without Hcy. Treatment with a broad-range MMP inhibitor (GM-6001; 1 microM) ameliorated Hcy-induced F-actin formation. These data suggest that Hcy increases microvascular permeability, in part, through MMP-9 activation.
Content may be subject to copyright.
Homocysteine causes cerebrovascular leakage in mice
David Lominadze, Andrew M. Roberts, Neetu Tyagi, Karni S. Moshal, and Suresh C. Tyagi
Department of Physiology and Biophysics, Health Sciences Center, University of Louisville,
Louisville, Kentucky
Abstract
Elevated plasma homocysteine (Hcy) is associated with cerebrovascular disease and activates matrix
metalloproteinases (MMPs), which lead to vascular remodeling that could disrupt the blood-brain
barrier. To determine whether Hcy administration can increase brain microvascular leakage
secondary to activation of MMPs, we examined pial venules by intravital video microscopy through
a craniotomy in anesthetized mice. Bovine serum albumin labeled with fluorescein isothiocyanate
(BSA-FITC) was injected into a carotid artery to measure extravenular leakage. Hcy (30 μM/total
blood volume) was injected 10 min after FITC-BSA injection. Four groups of mice were examined:
1) wild type (WT) given vehicle; 2) WT given Hcy (WT + Hcy); 3) MMP-9 gene knockout given
Hcy (MMP-9/ + Hcy); and 4) MMP-9/ with topical application of histamine (104 M) (MMP-9
/ + histamine). In the WT + Hcy mice, leakage of FITC-BSA from pial venules was significantly
(P < 0.05) greater than in the other groups. There was no significant leakage of pial microvessels in
MMP-9/ + Hcy mice. Increased cerebrovascular leakage in the MMP-9/ + histamine group
showed that microvascular permeability could still increase by a mechanism independent of MMP-9.
Treatment of cultured mouse microvascular endothelial cells with 30 μM Hcy resulted in significantly
greater F-actin formation than in control cells without Hcy. Treatment with a broad-range MMP
inhibitor (GM-6001; 1 μM) ameliorated Hcy-induced F-actin formation. These data suggest that Hcy
increases microvascular permeability, in part, through MMP-9 activation.
Keywords
blood-brain barrier; F-actin; matrix metalloproteinases; matrix metalloproteinase-9; pial
microvessels
Homocysteine (Hcy) is a toxic, nonprotein sulfur-containing amino acid that is formed
exclusively upon demethylation of methionine. Hcy is nutritionally regulated and metabolized
through remethylation or trans-sulfuration pathways. Total plasma content of Hcy varies from
3 to 15 μM, and higher plasma levels are called hyperhomocysteinemia (HHcy). The ranges
of HHcy have been referred to as moderate (16 to 30 μM), intermediate (31 to 100 μM), or
severe (>100 μM) (12).
Recent data indicate that moderate HHcy is an independent risk factor for several
cardiovascular and cerebrovascular disorders, including atherosclerosis (12,13,44), vascular
thrombosis (38), diabetes (1), Alzheimer's and Parkinson's diseases (28,44), and stroke (39,
44,47). However, some studies point to a lesser role of Hcy in the development of
atherosclerosis in human coronary arteries (23). Other work (31) suggests that essential
hypertension may be associated with increased plasma Hcy levels and indicates that it is
unrelated to endothelial damage (assessed by the plasma von Willebrand factor) and clinical
Address for reprint requests and other correspondence: D. Lominadze, Dept of Physiology and Biophysics, Health Sciences Center,
A-1115, Univ. of Louisville, Louisville, KY 40292 (dglomi01@louisville.edu).
NIH Public Access
Author Manuscript
Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2010 February 10.
Published in final edited form as:
Am J Physiol Heart Circ Physiol. 2006 March ; 290(3): H1206. doi:10.1152/ajpheart.00376.2005.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
indexes or prognosis. Discrepancies in associating Hcy with vascular damage may be due to
variations in the criteria used to determine the role of Hcy in various cardiovascular and
cerebrovascular disorders and suggest a lack of systemic functional studies.
Many cerebrovascular disorders are accompanied by alterations in the blood-brain barrier that
result in microvascular leakage and edema formation. Therefore, the vascular endothelium has
a key role in these processes. We (20) and others (7) showed that enhanced formation of
filamentous actin (F-actin) in endothelial cells is associated with increased gap formation
between the cells that could result in microvascular leakage. In the present study, we
investigated the role of acute HHcy on cerebrovascular leakage. We tested the hypothesis that
high plasma Hcy levels can mediate macromolecular leakage in mouse brain pial microvessels
via activation of matrix metalloproteinases (MMPs) and increased formation of F-actin in
endothelial cells. The results of this study suggest that Hcy has a significant role in development
of microvascular leakage and that this process can be drastically ameliorated by inhibition of
MMPs.
Materials and Methods
In accordance of with National Institutes of Health Guidelines for animal research, all animal
procedures for these experiments were reviewed and approved by the Institutional Animal Care
and Use Committee of the University of Louisville.
Animals and microvascular observation of pial vascular bed
Male, wild-type (WT) C57BL/6J or MMP-9 gene-knockout (MMP-9/) mice (28–32 g) were
anesthetized with tribromoethanol (240 mg/kg ip), and a tracheal cannula was inserted to
maintain a patent airway. Body temperature was kept at 37 ± 1°C with a heating pad. Mean
arterial blood pressure (MABP) and pulse rate were continuously monitored through a
polyethylene catheter (PE-10) inserted into a carotid artery and connected to a transducer and
a blood pressure analyzer (Micro-Med, Louisville, KY).
Brain pial microcirculation was prepared for observations similarly to the methods described
by others (11,17,32). Briefly, the scalp and connective tissues were removed over the parietal
cranial bone above the left hemisphere. A craniotomy was done with a small trephine attached
to a high-speed microdrill (Fine Science Tool, Foster City, CA). During the drilling, the
cranium was continuously washed with room temperature physiological salt solution (PSS).
The dura was reflected with the bone disk using a microrongeur with extra-fine tips (Fine
Science Tool) to form a cranial window about 3 mm in diameter. From this time, the exposed
brain surface and pial circulation were bathed continuously by applying oxygenated artificial
cerebrospinal fluid (composition in mM: 132 NaCl, 2.95 KCl, 1.71 CaCl, 1.4 MgSO4, 24.6
NaHCO3, 3.71 glucose, and 6.7 urea) with pH 7.4 and temperature of 37°C. Others have found
that responses of pial vessels observed from an opened cranial window are generally
representative of the responses of the pial microcirculation (30,31).
Microvascular leakage observation
Hcy-induced microvascular leakage was observed according to a method described previously
(36). The animals were positioned on the stage of a Nikon MM-11 trinocular microscope so
that the exposed pial circulation could be observed by epi-illumination. After the surgical
preparation there was a 1-h equilibration period. Before each experiment, autofluorescence of
the observed area was recorded over a standard range of camera gains. Fluorescein
isothiocyanate (FITC, 300 μg/ml) (24) tagged to bovine serum albumin (BSA, Sigma
Chemicals, St. Louis, MO) was then injected intra-arterially (0.2 ml/100 g of body wt) and
allowed to circulate for about 10 min. The pial circulation was surveyed to ensure that there
Lominadze et al. Page 2
Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2010 February 10.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
was no spontaneous leakage in the observed area that would indicate compromised vascular
integrity.
Venules were identified by observing the topology of the pial circulation and blood flow
direction (with increasing diameters in the direction of blood flow). In each experiment, a
rectangular area of interest (AOI), about 2,000 μm2 in the interstitium adjacent to a venular
wall, was chosen for microvascular leakage assessment. There was no spontaneous leakage or
other visible vessels in the chosen area. Hcy (0.028 mg/100 g of body wt in 100 μl resulting
in a final blood concentration of 30 μM) or the same volume (100 μl) of the vehicle PSS was
injected via the carotid artery catheter. Interstitial fluorescence was recorded before injection
(baseline) and after 5 and 40 min of Hcy or vehicle injection in WT and MMP-9/ mice.
Microvascular leakage was measured in WT and MMP-9/ mice before and after PSS or Hcy
administration. In separate MMP-9/ and WT mice, we measured and compared the leakage
caused by topical application of histamine (104 M). This dose of histamine is known to cause
significant microvascular leakage (2,3,22,25,27,34,35,48,49). The diameters of the venules,
adjacent to the AOIs were measured at baseline and 40 min after Hcy, vehicle injection, or
topical application of histamine.
An epi-illumination system, consisting of a mercury arc lamp and a ploem system with
appropriate filters, was used to excite intravascular FITC. The AOI was exposed to blue light
(450–490 nm) for 10–15 s with a power density of 2 J/cm2. The microscope images were
acquired by a light-sensitive silicon-intensified tube camera (Hamamatsu C2400) and image
acquisition system (Marvel G450-eTV, Matrox Graphics). The camera output voltage was
standardized with a 50 ng/ml fluorescein diacetate standard (Estman Kodak, Rochester, NY)
for each experiment. The magnification of the system was determined by a stage micrometer,
and vessel diameters were measured directly on the video monitor by using a video caliper.
The separate groups of animals (3 WT mice treated with PSS, 3 WT mice treated with Hcy,
and 3 MMP-9/ mice treated with Hcy) were anesthetized with pentobarbital sodium (65 mg/
kg body wt ip). One milliliter of blood was collected from the vena cava of the anesthetized
WT and MMP-9/ mice as described earlier (18,21). Animals were then overdosed
(euthanized) with pentobarbital sodium (100 mg/kg body wt ip), and brain samples were
collected and frozen for subsequent MMP analyses. Blood was centrifuged at 4,000 g for 5
min. After centrifugation, the Hcy level was determined in plasma samples from WT and
MMP-9/ mice according to the method described earlier (46).
Determination of macromolecular leakage
A fluorescein diacetate standard curve was determined (25) to ensure the consistency of
fluorescence excitation/emission spectra of the FITC-BSA conjugate. Before the injection, the
emission intensity of the volume of FITC-BSA to be injected was measured and plotted as a
function of the fluorescein diacetate curve. It was the same in all the experiments. Before
injection of FITC-BSA, the autofluorescence intensity of the brain surface was measured and
later subtracted from the fluorescence intensity measured in the AOI adjacent to a vessel. This
analysis quantifies the increase in light intensity in the interstitium and provides an index of
macromolecular leakage into the area adjacent to a venule (24,25,36). The fluorescent image
was digitized by using image analysis software (Matrox Inspector, Matrox Electronics
Systems, Dorval, Canada). The digitized image is composed of pixels of varying gray levels
depending on the light intensity (gray levels range from 0 to 255, with zero representing a black
image and 255 representing a white image). The average pixel gray level in the AOI was
determined at each observation time. Neutral density filters were used in the light path before
the camera at high levels of emission intensity to ensure that detection was in the linear range
Lominadze et al. Page 3
Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2010 February 10.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
of the camera. Fluorescence intensity is represented by the recorded gray level multiplied by
the appropriate neutral density filter factor and presented as fluorescence intensity units (FIU).
Evaluation of enzymatic cleavage of FITC-BSA by MMP-9 (gelatinize B)
To confirm the absence of enzymatic cleavage of albumin by MMP-9, proMMP-9 (10 μM;
EMD Biosciences) was activated with L-(tosylamido-2-phenyl)-ethyl-chloromethyl ketone-
treated trypsin (10 nM) by incubation at 37°C for 45 min (42). The reaction was terminated by
heating at 100°C for 15 min. Two milliliters of FITC-BSA conjugate (30 μg/ml) were treated
with activated MMP-9 for 16 h. The enzymatic effect of active MMP-9 on albumin was
evaluated by comparing the SDS-PAGE fluorescence analysis of FITC-BSA conjugates treated
with activated MMP-9 with that of FITC-BSA treated with proMMP-9. Fluorescence of the
FITC-BSA was detected by exiting the bands at 495 nm and recording the fluorescence at 518
nm. Activity of MMP-9 in FITC-BSA samples was confirmed by gelatin zymography
performed on the same gels after fluorescence analyses. The experiment was done in duplicate.
Endothelial cell culture
Mouse cardiac microvascular endothelial cells (MEC) were obtained from WT mice by using
a modification of a method described elsewhere (15). Briefly, hearts from two mice were
removed aseptically, rinsed in Hanks' balanced salt solution (HBSS; GIBCO) to remove excess
blood, and minced into 2-mm square pieces. The heart pieces were digested in 10 ml of
collagenase type B (0.2%, Boehringer-Mannheim Biochemicals) for 25 min at 37°C with
occasional agitation. Further digestion was done with 1 ml of 0.25% trypsin/EDTA (GIBCO)
for 5 to 10 min at 37°C. The cellular digest was filtered through sterile 40-μm nylon mesh and
then centrifuged at 120 g for 5 min. After the supernatant was removed, the cell pellet was
washed twice in DMEM containing 20% fetal bovine serum. MECs were resuspended in
growth media consisting of DMEM, 20% fetal bovine serum, 2 mM L-glutamine, 2 mM sodium
pyruvate, 20 U/ml heparin, 20 mM HEPES, and antibiotics (100 μg/ml streptomycin and 100
UI/ml penicillin) (19). The MECs were then plated on eight-well chambered coverglass plates
(Fisher) that were coated with bovine fibronectin. After 2 h, the attached cells were washed
with DMEM. Cultures were maintained in a humidified atmosphere of 5% CO2 at 37°C until
they formed a complete monolayer on the coverglass surface.
Endothelial cell cytoskeletal F-actin formation assay
Primary cultured MECs from mice were grown for 3 days in two, chambered coverglass plates
that each had eight wells (Fisher). Before experimentation, the cells were washed with HBSS
to remove the medium. The cells were divided into four groups (two wells in each group). Cells
in each group were treated for 40 min at 37°C with either 3, 30, or 30 μM Hcy in the presence
of 0.1, 1, 10, or 100 μM GM-6001 (EMD Biosciences), which is a potent broad-spectrum
hydroxamic acid inhibitor of MMPs. In a separate group of cells, 30 μM Hcy in the presence
of a negative control (inactive form) for the MMP inhibitor GM-6001 (0.1, 1, 10, or 100 μM)
was added. MMP inhibitor (GM-6001) or its negative control was added to the wells 5 min
before the addition of 30 μM Hcy. In the control group, the cells were kept in PSS for 40 min.
Another two groups of cells (two wells in each group) were treated with 1 or 100 μM of
GM-6001 or its negative control (1 or 100 μM) without Hcy treatment. The well contents were
then aspirated, and the cells were incubated with BODIPY-Phalloidin (10 U, Molecular Probes)
and lysopalmitoylphosphatidylcholine (100 μg/ml) dissolved in 3.7% formaldehyde for 30 min
at 4°C in the dark (20). After incubation, the cells were washed three times with HBSS, and
digital images of the formed intercellular F-actin were recorded by an Olympus FV1000
confocal microscope (with ×60 objective). A HeNe-G laser (543 nm) was used to excite the
dye, and the readings were obtained above 560 nm of the emission wavelength. The images
were compared according to the following criteria: 1) presence of nonactin staining areas (gaps
Lominadze et al. Page 4
Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2010 February 10.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
between the adjacent cells), 2) formation of individual stress fibers, 3) increased peripheral
banding F-actin, and 4) presence of actin foci (21).
Hcy-induced formation of F-actin fibers and total fluorescence intensity were assessed for each
well by analyzing three random fields with image analysis software (Image-Pro Plus, Media
Cybernetics). The data (expressed as FIU) were obtained in duplicate (two wells per
experimental group) and averaged for each experimental group described above.
Gelatin zymography
Activity of MMP-2 and MMP-9 was measured in brain cortical tissue homogenates and in
FITC-BSA solution treated with active MMP-9. Zymography was performed on 1% gelatin
SDS-PAGE. The lytic activity was scanned and normalized to total protein of samples loaded
into each lane of the gel as described previously (45). Data are presented as light intensity units
(LIU).
Data analysis
Data are expressed as means ± SE. To compare the groups before and after treatment, one-way
repeated measures ANOVA was used. Differences in means were compared by the Tukey test
and considered statistically significant if P < 0.05.
Results
Macromolecular leakage from pial venules
During baseline before injection of Hcy or vehicle (PSS), MABP and pulse rate were similar
in WT (88 ± 3 mmHg, 385 ± 15 beats/min; n = 5) and MMP-9/ (85 ± 3 mmHg, 381 ± 13
beats/min; n = 4) mice. Forty minutes after Hcy injection, MABP and pulse rate did not change
significantly in these WT (79 ± 6 mmHg, 415 ± 26 beats/min) and MMP-9/ (77 ± 5 mmHg,
418 ± 22 beats/min) mice. In separate WT (n = 5) and MMP-9/ (n = 3) mice, baseline MABP
and pulse rate (84 ± 5 mmHg, 397 ± 15 beats/min in WT, and 86 ± 6 mmHg, 381 ± 16 beats/
min) also did not change significantly after injection of PSS (86 ± 4 mmHg, 380 ± 12 beats/
min in WT; 83 ± 4 mmHg, 376 ± 11 beats/min in MMP-9/). In a different group of MMP-9
/ mice (n = 4), 40 min after topical application of histamine, MABP and pulse rate were
similar to baseline (81 ± 5 vs. 84 ± 3 mmHg and 393 ± 11 vs. 387 ± 9 beats/min). Similarly,
in WT mice (n = 4), topical application of histamine did not cause changes in MABP (89 ± 4
vs. 86 ± 5 mmHg at baseline) or pulse rate (382 ± 10 vs. 393 ± 11 beats/min at baseline).
Macromolecular leakage significantly increased in WT mice after Hcy administration (Fig. 1).
Leakage was noticeable 5 min after Hcy injection and became greater after 40 min (Fig. 1).
Injection of PSS did not cause leakage in WT mice over the same time course (Fig. 1). During
these observations, in the WT mice, baseline venular diameters (36 ± 5 μm) were not different
40 min after Hcy injection (40 ± 6 μm). In a separate group of WT mice, baseline venular
diameters (34 ± 3 μm) were also not different 40 min after PSS administration (32 ± 5 μm).
When Hcy was injected into MMP-9/ mice (n = 4), it did not cause venular leakage (Fig.
1). Similarly, injection of PSS in MMP-9/ mice did not cause leakage (110 ± 7 FIU at
baseline, 118 ± 4 FIU after 5 min, and 124 ± 6 FIU after 40 min). Venular diameters were the
same before and 40 min after injection of Hcy (30 ± 2 vs. 33 ± 4 μm). Injection of PSS in
MMP-9/ mice also did not change venular diameters (32 ± 4 vs. 32 ± 5 μm).
In the MMP-9/ mice group (n = 4) treated with topical application of histamine, venular
leakage was significantly increased (112 ± 4 FIU at baseline to 127 ± 3 FIU after 5 min, and
to 145 ± 5 FIU after 40 min). In WT mice (n = 4) topical application of histamine increased
Lominadze et al. Page 5
Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2010 February 10.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
fluorescence intensity by a similar extent (106 ± 8 FIU at baseline to 112 ± 6 FIU after 5 min,
and to 141 ± 7 FIU after 40 min). Venular diameters in MMP-9/ mice were similar before
and 40 min after histamine application (34 ± 4 vs. 37 ± 5 μm). In WT mice, venular diameters
increased significantly from 33 ± 7 μm (baseline) to 40 ± 6 μm after histamine application.
Effect of MMP-9 on stability of FITC-BSA conjugate
There was no detectable cleavage of albumin by activated MMP-9 (Fig. 2A). The presence of
active MMP-9 in our FITC-BSA samples was confirmed by gelatin zymography (Fig. 2B).
Effect of Hcy on formation of MMP-2 and MMP-9
Activities of MMP-2 and MMP-9 were significantly increased in brain tissue samples collected
from the separate group of WT mice after 40 min of Hcy injection compared with samples
collected from a group of untreated mice (Fig. 3). As expected, formation of MMP-9 was not
noticeable in brain tissue samples from MMP-9 gene knockout mice, and there were no
significant changes in formation of MMP-2 (Fig. 3A). Furthermore, activities of MMP-2 and
MMP-9 were not altered in brain tissue samples from WT mice after injection of PSS (69 ± 4
and 82 ± 6 LIU, respectively; n = 3) compared with the MMP-2 and MMP-9 activities in
samples from untreated mice (65 ± 4 and 84 ± 3 LIU, respectively; n = 3).
The level of plasma Hcy in WT and MMP-9/ mice
Plasma levels of Hcy in WT (3.2 ± 0.2 μM; n = 3) and MMP-9/ (4.8 ±1.2 μM; n = 3) mice
were in the normal range (12).
Endothelial cell F-actin formation
Alterations in formation of endothelial F-actin were assessed in mouse MECs by the binding
of the BODIPY-phalloidin to actin in control (PSS-treated), Hcy-treated, and Hcy-treated in
the presence of the MMPs blocker (GM-6001) groups. Figure 4A is a representative
fluorescence photomicrograph, showing the effects of either PSS, 30 μM Hcy, or 30 μM Hcy
+ GM-6001 (1 μM) on F-actin distribution. Analysis of the fluorescent intensity showed
significantly greater F-actin staining in the 30 μM Hcy-treated endothelial cells than in cells
under unstimulated control conditions (Fig. 4B). The presence of 1 μM GM-6001 significantly
decreased F-actin staining (90.3 ± 5.0 FIU; n = 4); however, it was still greater than in the
control group (Fig. 4). Higher concentrations of GM-6001 (10 and 100 μM) completely blocked
the F-actin formation caused by 30 μM Hcy (64 ± 7 FIU and 60.3 ± 2.8 FIU, respectively; n =
4 in both groups). However, a lower dose of GM-6001 (0.1 μM) failed to block the Hcy-induced
F-actin formation (119.2 ± 6.4 FIU; n = 4). There were no differences in fluorescence intensities
between cells treated with 30 μM Hcy (127.3 ± 4.3 FIU; n = 4) and cells treated with 30 μM
Hcy in the presence of the negative control for 0.1,1,10, and 100 μM GM-6001 (125.8 ± 3.8
FIU, 121.2 ± 3.8 FIU, 118.6 ± 7.9 FIU, 134.8 ± 3.1 FIU, respectively; n = 4 for all groups).
These results show dose-dependent effect of GM-6001. They also show that the optimal
concentration of GM-6001 for inhibition of MMP-9 activity in our study was 1 μM.
F-actin staining in the control (55.3 ±4.1 FIU; n = 4) and 3 μM Hcy-treated groups (59.8 ± 5.2
FIU; n = 4) was similar. No difference in fluorescence intensity was found between the control
cells and the cells treated with GM-6001 (1 and 100 μM) alone (53.1 ± 8.6 FIU; n = 4 and 52.5
± 4.8 FIU; n = 3, respectively) or with the same concentrations of their negative controls (59.4
± 3.8 FIU; n = 4 and 59.3 ± 5.9 FIU; n = 3, respectively). The 30 μM Hcy-treated group also
showed decreased cell size and increased space between the cells (Fig. 4A), possibly the result
of endothelial cell contraction and formation of gaps in the tight junction of the cells.
Lominadze et al. Page 6
Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2010 February 10.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Discussion
HHcy is an established risk factor for atherosclerosis and thrombotic diseases. Endothelial cell
dysfunction and injury is one of the important factors associated with increased blood Hcy
levels. In the present study, we examined the acute effect of a moderate dose of Hcy on
cerebrovascular permeability in mice. An increase of blood Hcy concentration to about 30
μM did not cause significant alterations of MABP in mice during the observation period (40
min). Venular diameters did not change during the experiments, but the rapid increase of Hcy
content to 30 μM as a result of intra-arteriolar injection, resulted in noticeable macromolecular
venular leakage starting shortly after the Hcy administration. Macromolecular leakage from
pial venules was significantly increased 40 min after Hcy injection. However, the increased
content of Hcy had no notable effect on macromolecular leakage of pial venules in mice lacking
the MMP-9 gene and suggest that the destructive effect of Hcy can be abrogated in the absence
of MMP-9. These results suggest that increased plasma level of Hcy may have a significant
effect on venular wall integrity resulting in alteration of vascular endothelium leading to
macromolecular leakage. However, other mechanisms may also be involved. It has also been
shown that γ-aminobutyric acid (GABA) (14,37) and N-methyl-D-aspartate (NMDA) (4,5)
receptors have a role in increasing blood-brain barrier permeability. Because Hcy
competitively inhibits GABA receptors (9) and activates NMDA receptors (8), it is likely that
changes in their functional activity induced by Hcy may result in increased microvascular
permeability, in conjunction with activation of MMP-9, seen in the present study.
Although Hcy did not cause significant leakage in MMP-9/ mice, leakage could still occur
in response to histamine. Furthermore, histamine induced similar cerebrovascular leakage in
MMP-9/ and WT mice. This finding suggests that the decreased leakage in response to Hcy
is not likely due to a nonspecific effect. Although histamine caused the same amount of leakage
in WT and MMP-9/ mice, there was a slightly greater increase in venular diameters in WT
mice. Others have reported the vasodilatory effect of topical application of histamine on
venules (25). Separate studies are needed to determine whether the effect of histamine on
diameter results from a different mechanism than its effect on leakage.
St-Pierre et al. (43) showed that MMP-9 almost completely dissociates FITC-gelatin, but not
FITC-casein conjugate from microspheres, in 16 h. Formation of active MMP-9 as a result of
increased Hcy could cause cleavage of albumin in circulating blood, leading to leakage of
FITC-BSA breakdown products thought microvascular endothelial gaps. The presence of
nonbound FITC in FITC-BSA solution could result in leakage of the dye through the lipid
portion of the endothelial cell membrane (10), even if the integrity of the endothelial cell layer
is not compromised (contrary to the presented data). Our in vitro experiments (Fig. 2) confirm
that activated MMP-9 did not cleave albumin even after 16 h, and no free FITC was present
in our samples. Thus our results suggest that increased Hcy alters the blood-brain barrier so
that large molecules such as albumin may leak through the formed endothelial gaps. The
significant increase in MMP-9 activity at 40 min and lesser increase of MMP-2 activity as a
result of elevation of blood Hcy in WT mice support a role for MMPs in the microvascular
leakage. The lack of increase in MMP-2 activity and absence of MMP-9 activity in response
to Hcy treatment in MMP-9/ mice and the fact that both MMP-2 and particularly MMP-9
are activated in WT mice, suggest the genotype purity of MMP-9/ mice used in the present
study.
We (20) and others (6) found that increased formation of F-actin leads to gap formation in the
endothelial cell layer. Gap formation is suggested as one of the reasons for macromolecular
vascular leakage in response to inflammatory stimuli (7,20). Increased expression of MMP-9
in endothelial cells has been implicated during the development of cerebral stroke, which has
been significantly reduced after selective inhibition of MMP-9 (29). A significant role of MMPs
Lominadze et al. Page 7
Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2010 February 10.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
in formation of F-actin has also been demonstrated by others (6,33). These data suggest that
formation of MMPs may result in enhanced formation of endothelial F-actin leading to
macromolecular leakage.
Treatment of MECs with 30 μM of Hcy resulted in significantly greater formation of F-actin.
This finding suggests that increased macromolecular leakage of pial venules in the present
study may be directly related to Hcy-induced F-actin polymerization and the resultant increase
in endothelial cell gap formation. Our data show that F-actin formation in MECs in response
to Hcy treatment was significantly decreased in the presence of an MMPs blocker GM-6001
(1 μM), but it was still greater than in the control group. These results show a role of MMP in
Hcy-induced formation of F-actin and a resultant formation of endothelial gaps. These results
suggest that Hcy may act like other inflammatory agents (e.g., histamine, thrombin) and cause
F-actin polymerization through an MMP-involved pathway, leading to gap formation in the
endothelial layer and increased macromolecular leakage of pial venules in mice. Thus an
increased Hcy content in endothelial cells primes the contractile mechanism associated with
F-actin polymerization. Previously, we reported that HHcy leads to vascular remodeling by
effects on vascular elastin (26) and collagen (40,41), where the role of GABA and NMDA
receptors were suggested (44). The results of the present study indicate that an elevated blood
Hcy may first target the endothelial cell lining and then cause changes in the subendothelial
matrix. They also point to an existence of some other mechanism (possibly GABA and/or
NMDA receptor mediated) that may be involved in Hcy-induced endothelial gap formation.
Our study compared Hcy effects in age-matched mice that underwent similar surgical
preparations. Vascular permeability was assessed by comparing fluorescence intensity values
measured in a similar size AOI in the interstitum next to a venule before and after treatment.
Because each animal served as its own control, small differences in baseline permeability are
unlikely to account for the changes in permeability in response to the agonists (34). In MMP-9
/ and WT mice, histamine induced similar microvascular leakage compared with baseline
values. However, it was significantly less than that induced by Hcy in WT mice (Fig. 1). Our
data show that cerebral vessels of MMP-9/ mice have the ability to leak in response to an
inflammatory agent, and that this leakage occurs independently of an MMP-9-involved
mechanism. Study of mechanisms of the histamine-induced leakage and vascular responses
are beyond the scope of the present investigation. A limitation of this study is that the ability
of histamine to cross an intact arachnoid is controversial and could be related to damage the
meninges when the dura was removed. For example, Sarker et al. (34), who removed the
arachnoid with the dura in juvenile rats, clearly showed that topical application of histamine
at doses 50 μM reduced cerebrovascular permeability. However, in other studies, topical
application of 104 M histamine (the dose used in our study) increased cerebrovascular
permeability in rats (2,3,22,27,48), cats (35), and mice (49).
In conclusion, our study shows for the first time that an acute increase in blood Hcy content to
the moderate level of 30 μM results in macromolecular leakage of pial venules in mice. We
demonstrated that this detrimental effect of Hcy occurs through a pathway that involves
MMP-9 formation, which in turn causes formation of F-actin in endothelial cells. Increased
polymerization of actin filaments leads to gap formation between adjacent endothelial cells.
Increased formation of F-actin in endothelial cells and macromolecular leakage of pial venules
were both inhibited by blocking MMPs. Thus the present study suggests yet another destructive
role of Hcy and a possible pathway of its effect on venular permeability changes in brain pial
circulation.
Lominadze et al. Page 8
Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2010 February 10.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Acknowledgments
Grants: This study was supported in part by the American Heart Association National Grant 0235317N to D.
Lominadze, by the National Heart, Lung, and Blood Institute Grants HL-71010 and HL-74185 to S. C. Tyagi, and the
American Lung Association, Kentucky Affiliate to A. M. Roberts.
References
1. Audelin MC, Genest J Jr. Homocysteine and cardiovascular disease in diabetes mellitus.
Atherosclerosis 2001;159:497–511. [PubMed: 11730832]
2. Butt AM. Effect of inflammatory agents on electrical resistance across the blood-brain barrier in pial
microvessels of anaesthetized rats. Brain Res 1995;696:145–150. [PubMed: 8574662]
3. Butt AM, Jones HC. Effect of histamine and antagonists on electrical resistance across the blood-brain
barrier in rat brain-surface microvessels. Brain Res 1992;569:100–105. [PubMed: 1611469]
4. Chi OZ, Chang Q, Weiss HR. Effects of topical N-methyl-d-aspartate on blood-brain barrier
permeability in the cerebral cortex of normotensive and hypertensive rats. Neurol Res 1997;19:539–
544. [PubMed: 9329033]
5. Du C, Hu R, Hsu CY, Choi DW. Dextrorphan reduces infarct volume, vascular injury, and brain edema
after ischemic brain injury. J Neurotrauma 1996;13:215–222. [PubMed: 8860202]
6. Ehringer WD, Wang OL, Haq A, Miller FN. Bradykinin and alpha-thrombin increase human umbilical
vein endothelial macromolecular permeability by different mechanisms. Inflammation 2000;24:175–
193. [PubMed: 10718118]
7. Ehringer WD, Yamany S, Steier K, Farag A, Roisen FJ, Dozier A, Miller FN. Quantitative image
analysis of F-actin in endothelial cells. Microcirculation 1999;6:291–303. [PubMed: 10654280]
8. Folbergrova J. NMDA and not non-NMDA receptor antagonists are protective against seizures induced
by homocysteine in neonatal rats. Exp Neurol 1994;130:344–350. [PubMed: 7867764]
9. Griffiths R, Williams DC, O'Neill C, Dewhurst IC, Ekuwem CE, Sinclair CD. Synergistic inhibition
of muscimol binding to calf-brain synaptic membrances in the presense of l-homocysteine and
pyridoxal 5-phosphate. Eur J Biochem 1983;137:467–478. [PubMed: 6319125]
10. Grimes PA, Stone RA, Laties AM, Li W. Carboxyfluorescein. A probe of the blood-ocular barriers
with lower membrane permeability than fluorescein. Arch Ophthalmol 1982;100:635–639.
[PubMed: 7073583]
11. Hudetz AG, Feher G, Weigle CGM, Knuese DE, Kampine JP. Video microscopy of cerebrocortical
capillary flow: response to hypotension and intracranial hypertension. Am J Physiol Heart Circ
Physiol 1995;268:H2202–H2210.
12. Ji C, Kaplowitz N. Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury.
World J Gastroenterol 2004;10:1699–1708. [PubMed: 15188490]
13. Lawrence de Koning AB, Werstuck GH, Zhou J, Austin RC. Hyperhomocysteinemia and its role in
the development of atherosclerosis. Clin Biochem 2003;36:431–441. [PubMed: 12951169]
14. Lee WS, Limmroth V, Ayata C, Cutrer FM, Waeber C, Yu X, Moskowitz MA. Peripheral GABA-A
receptor-mediated effects of sodium valproate on dural plasma protein extravasation to substance P
and trigeminal stimulation. Br J Pharmacol 1995;116:1661–1667. [PubMed: 8564234]
15. Lincoln DW II, Larsen AM, Phillips PG, Bove K. Isolation of murine aortic endothelial cells in culture
and the effects of sex steroids on their growth. In Vitro Cell Devel Biol Anim 2003;39:140–145.
[PubMed: 14505433]
16. Lip GY, Edmunds E, Martin SC, Jones AF, Blann AD, Beevers DG. A pilot study of homocyst(e)ine
levels in essential hypertension: relationship to von Willebrand factor, an index of endothelial
damage. Am J Hypertens 2001;14:627–631. [PubMed: 11465645]
17. Liu Y, Rusch NJ, Lombard JH. Loss of endothelium and receptor-mediated dilation in pial arterioles
of rats fed a short-term high salt diet. Hypertension 1999;33:686–688. [PubMed: 10024328]
18. Lominadze D, Dean WL. Involvement of fibrinogen specific binding in erythrocyte aggregation.
FEBS Lett 2002;517:41–44. [PubMed: 12062406]
Lominadze et al. Page 9
Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2010 February 10.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
19. Lominadze D, Saari JT, Miller FN, Catalfamo JL, Persival SS, Schuschke DA. In vitro platelet
adhesion to endothelial cells at low shear rates during copper deficiency in rats. J Trace Ele Exper
Med 1999;12:25–36.
20. Lominadze D, Saari JT, Persival SS, Schuschke DA. Proinflammatory effects of copper deficiency
on neutrophils and lung endothelial cells. Immunol Cell Biol 2004;82:231–238. [PubMed: 15186252]
21. Lominadze D, Schuschke DA, Joshua IG, Dean WL. Increased ability of erythrocytes to aggregate
in spontaneously hypertensive rats. Clin Exp Hypertens 2002;24:397–406. [PubMed: 12109779]
22. Mayhan WG. Role of nitric oxide in histamine-induced increases in permeability of the blood-brain
barrier. Brain Res 1996;743:70–76. [PubMed: 9017232]
23. Mehrabi MR, Huber K, Serbecic N, Wild T, Wojta J, Tamaddon F, Morgan A, Ullrich R, Dietmar
Glogar H. Elevated homocysteine serum level is associated with low enrichment of homocysteine in
coronary arteries of patients with coronary artery disease. Thromb Res 2002;107:189–196. [PubMed:
12479877]
24. Miller FN, Joshua IG, Anderson GL. Quantitation of vasodilator-induced macromolecular leakage
by in vivo fluorescent microscopy. Microvasc Res 1982;24:56–67. [PubMed: 7121312]
25. Miller FN, Joshua IG, Fleming JT, Parekh N. Histamine-induced protein leakage in hypertensive rats:
inhibition by verapamil. Am J Physiol Heart Circ Physiol 1986;250:H284–H290.
26. Mujumdar VS, Aru GM, Tyagi SC. Induction of oxidative stress by homocyst(e)ine impairs
endothelial function. J Cell Biochem 2001;82:491–500. [PubMed: 11500925]
27. Olesen SP. Leakiness of rat brain microvessels to fluorescent probes following craniotomy. Acta
Physiol Scand 1987;130:63–68. [PubMed: 3109211]
28. Polidori MC, Marvardi M, Cherubini A, Senin U, Mecocci P. Heart disease and vascular risk factors
in the cognitively impaired elderly: implications for Alzheimer's dementia. Aging 2001;13:231–239.
[PubMed: 11442305]
29. Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC. Matrix metalloproteinase expression
increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct
size. Stroke 1998;29:1020–1030. [PubMed: 9596253]
30. Rosenblum WI. Contractile response of pial arterioles to norepinephrine. Arch Neurol 1974;31:197–
199. [PubMed: 4851170]
31. Rosenblum WI, El-Sabban F. Influence of shear rate on platelet aggregation in cerebral microvessels.
Microvasc Res 1982;23:311–315. [PubMed: 7099021]
32. Rosenblum WI, Zweifach BW. Cerebral Microcirculation in the mouse brain. Arch Neurol
1963;9:414–423. [PubMed: 14060087]
33. Saito S, Yamaji N, Yasunaga K, Saito T, Matsumoto S, Katoh M, Kobayashi S, Masuho Y. The
fibronectin extra domain A activates matrix metalloproteinase gene expression by an interleukin-1-
dependent mechanism. J Biol Chem 1999;274:30756–30763. [PubMed: 10521465]
34. Sarker MH, Easton AS, Fraser PA. Regulation of cerebral microvascular permeability by histamine
in the anaesthetized rat. J Physiol 1998;507:909–918. [PubMed: 9508849]
35. Schilling L, Wahl M. Opening of the blood-brain barrier during cortical superfusion with histamine.
Brain Res 1994;653:289–296. [PubMed: 7982064]
36. Schuschke DA, Miller FN, Lominadze DG, Feldhoff RC. l-arginine restores cholesterol-attenuated
microvascular responses in the rat cremaster. Int J Microcirc Clin Exp 1994;14:204–211. [PubMed:
7852028]
37. Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U, Friedman A. Lasting blood-
brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci
2004;24:7829–7836. [PubMed: 15356194]
38. Selhub J, D'Angelo A. Hyperhomocysteinemia and thrombosis: acquired conditions. Thromb
Haemost 1997;78:527–531. [PubMed: 9198209]
39. Selhub J, Jacques PF, Bostom AG, D'Agostino RB, Wilson PW, Belanger AJ, O'Leary DH, Wolf PA,
Schaefer EJ, Rosenberg IH. Association between plasma homocysteine concentrations and
extracranial carotid-artery stenosis. N Engl J Med 1995;332:286–291. [PubMed: 7816063]
40. Shastry S, Moning L, Tyagi N, Steed M, Tyagi SC. GABA receptors and nitric oxide ameliorate
constrictive collagen remodeling in hyperhomocysteinemia. J Cell Physiol 2005;205:422–427.
[PubMed: 15895389]
Lominadze et al. Page 10
Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2010 February 10.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
41. Shastry S, Tyagi N, Moshal KS, Lominadze D, Hayden MR, Tyagi SC. GABA receptors ameliorate
Hcy-mediated integrin-shedding and constrictive collagen remodeling in microvascular endothelial
cells. Cell Biochem Biophys. In press.
42. Sorsa T, Salo T, Koivunen E, Tyynelä J, Konttinen YT, Bergmann U, Tuuttila A, Niemi E, Teronen
O, Heikkilä P, Tschesche H, Leinonen J, Osman S, Stenman UH. Activation of type IV
procollagenases by human tumor-associated trypsin-2. J Biol Chem 1997;272:21067–21074.
[PubMed: 9261109]
43. St-Pierre Y, Desrosiers M, Tremblay P, Esteve PO, Opdenakker G. Flow cytometric analysis of
gelatinase B (MMP-9) activity using immobilized fluorescent substrate on microspheres. Cytometry
1996;25:374–380. [PubMed: 8946145]
44. Tyagi SC, Lominadze D, Roberts AM. Homocysteine in microvascular endothelial cell barrier
permeability. Cell Biochem Biophys 2005;43:1–8.
45. Tyagi SC, Matsubara L, Weber KT. Direct extraction and estimation of collagenase(s) activity by
zymography in microquantities of rat myocardium and uterus. Clin Biochem 1993;26:191–198.
[PubMed: 8330388]
46. Tyagi SC, Smiley LM, Mujumdar VS, Clonts B, Parker JL. Reduction-oxidation (Redox) and vascular
tissue level of homocyst(e)ine in human coronary atherosclerotic lesions and role in extracellular
matrix remodeling and vascular tone. Mol Cell Biochem 1998;181:107–116. [PubMed: 9562247]
47. Van Beynum IM, Smeitink JA, den Heijer M, te Poele Pothoff MT, Blom HJ. Hyperhomocysteinemia:
a risk factor for ischemic stroke in children. Circulation 1999;99:2070–2072. [PubMed: 10217643]
48. Wahl M, Unterberg A, Baethmann A, Schilling L. Mediators of blood-brain barrier dysfunction and
formation of vasogenic brain edema. J Cereb Blood Flow Metab 1988;8:621–634. [PubMed:
2843554]
49. Yong T, Bebo BF Jr, Sapatino BV, Welsh CJ, Orr EL, Linthicum DS. Histamine-induced
microvascular leakage in pial venules: differences between the SJL/J and BALB/c inbred strains of
mice. J Neurotrauma 1994;11:161–171. [PubMed: 7932796]
Lominadze et al. Page 11
Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2010 February 10.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Fig. 1.
Homocysteine (Hcy)-induced macromolecular leakage of pial venules. A: examples of images
recorded before (baseline) and 5 and 40 min after injection of either PSS (top row) or Hcy
(final blood concentration 30 μM) in wild-type (WT; top rows) and matrix metalloproteinase
(MMP)-9 gene knockout mice (bottom row). Microvascular leakage was assessed by
measuring fluorescence intensity in the rectangular area of interest (AOI) shown on images.
White arrows indicate flow direction in veins. B: summary of changes in fluorescence intensity
after injection of PSS or Hcy measured in the AOI. Values are means ± SE. *P < 0.05 vs.
control at the same time.
Lominadze et al. Page 12
Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2010 February 10.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Fig. 2.
Effect of activated MMP-9 on FITC-BSA. Lane 1 contains fluorescein isothiocyanate-bovine
serum albumin (FITC-BSA) treated with pro-MMP-9. Lane 2 contains FITC-BSA treated with
activated MMP-9. A: SDS-PAGE analysis of samples by fluorescence. Absence of
fluorescence below BSA band in lane 2 (67 kDa) confirms absence of FITC-BSA cleavage by
activated MMP-9. B: presence of activated MMP-9 in FITC-BSA sample (same gel, lane 2)
was confirmed by zymography.
Lominadze et al. Page 13
Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2010 February 10.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Fig. 3.
Hcy-induced formation of MMP-9 and MMP-2 in brain tissue samples. A: MMP-9 and MMP-2
activity in WT and MMP-9 gene knockout (MMP-9/) mice shown by zymography. B:
increases in activity of MMP-9 and MMP-2 after Hcy treatment in WT mice compared with
control as quantified by density of the bands. Values are means ± SE. *P < 0.05 vs. control.
n = 3 for all groups.
Lominadze et al. Page 14
Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2010 February 10.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
Fig. 4.
Hcy-induced formation of F-actin in mouse endothelial cells. A: examples of images recorded
after treatment with PSS (control), 30 μM Hcy, or 30 μM Hcy in the presence of MMP blocker
GM-6001 (1 μM). White arrows indicate gap formation in the initially confluent endothelial
cell monolayer. B: increase in formation of F-actin after Hcy treatment and its inhibition by
GM-6001. Values are means ± SE. *P < 0.05 vs. control; †P < 0.05 vs. Hcy treated. n = 4 for
all groups.
Lominadze et al. Page 15
Am J Physiol Heart Circ Physiol. Author manuscript; available in PMC 2010 February 10.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
... Tyagi et al. [73] studied the impact of Hcy on the homocysteinylation of cytochrome c following I/R damage and discovered that THC reduced the homocysteinylation of cytochrome c by lowering oxidative stress, which leads to MMP-9 activation [76]. MMP-2 and MMP-9 develop early in HHcy and are related to cardiovascular and neurovascular diseases [77][78][79]. Thus, MMP-9 is involved in the pathological proteolytic breakdown of the BBB, and its enhanced activation is linked to brain dysfunction caused by I/R damage [79,80]. ...
... Molecules 2023, 28, x FOR PEER REVIEW 7 of 18 discovered that THC reduced the homocysteinylation of cytochrome c by lowering oxidative stress, which leads to MMP-9 activation [76]. MMP-2 and MMP-9 develop early in HHcy and are related to cardiovascular and neurovascular diseases [77][78][79]. Thus, MMP-9 is involved in the pathological proteolytic breakdown of the BBB, and its enhanced activation is linked to brain dysfunction caused by I/R damage [79,80]. ...
Article
Full-text available
Tetrahydrocurcumin (THC) is a metabolite of curcumin (CUR). It shares many of CUR’s beneficial biological activities in addition to being more water-soluble, chemically stable, and bioavailable compared to CUR. However, its mechanisms of action have not been fully elucidated. This paper addresses the preventive role of THC on various brain dysfunctions as well as its effects on brain redox processes, traumatic brain injury, ischemia-reperfusion injury, Alzheimer’s disease, and Parkinson’s disease in various animal or cell culture models. In addition to its strong antioxidant properties, the effects of THC on the reduction of amyloid β aggregates are also well documented. The therapeutic potential of THC to treat patterns of mitochondrial brain dysmorphic dysfunction is also addressed and thoroughly reviewed, as is evidence from experimental studies about the mechanism of mitochondrial failure during cerebral ischemia/reperfusion injury. THC treatment also results in a dose-dependent decrease in ERK-mediated phosphorylation of GRASP65, which prevents further compartmentalization of the Golgi apparatus. The PI3K/AKT signaling pathway is possibly the most involved mechanism in the anti-apoptotic effect of THC. Overall, studies in various animal models of different brain disorders suggest that THC can be used as a dietary supplement to protect against traumatic brain injury and even improve brain function in Alzheimer’s and Parkinson’s diseases. We suggest further preclinical studies be conducted to demonstrate the brain-protective, anti-amyloid, and anti-Parkinson effects of THC. Application of the methods used in the currently reviewed studies would be useful and should help define doses and methods of THC administration in different disease conditions.
... It has been reported that plasma Hcy is associated with increased oxidative stress and antioxidant enzyme activity (Aykin-Burns et al. 2009;Liu et al. 2013). The amino-acid Hcy has also been suggested to be a pro-oxidant with elevated levels linked to the oxidative stress seen in Alzheimer's and other diseases (Lominadze et al. 2006;Sen et al. 2009;Cankurtaran et al. 2013). Catalase inhibits Hcy which in turn prevents H 2 O 2 breakdown in the human neuroblastoma cell line, thus playing a role in the pathology of neurodegenerative diseases (Milton 2008). ...
... It is known that during neuropathological conditions like Alzheimer's and Parkinson's diseases, the level of homocysteine rises which are associated with functional aberrations of proteins, the formation of neurofibrils tangles, or protein's aggregation (Kardaras and Kardara 1995;Lominadze et al. 2006;Milton 2008;Zhuo et al. 2010). In many cases, it was observed that as more and more Hcy is accumulated in the blood plasma or neuronal cells, there is a rise in the concentration of HTL (Jakubowski 1997;Pervin et al. 1998). ...
Article
Full-text available
The gating of the Voltage-Dependent Anion Channel (VDAC) is linked to oxidative stress through increased generation of mitochondrial ROS with increasing mitochondrial membrane potential (ΔΨm). It has been already reported that H2O2 increases the single-channel conductance of VDAC on a bilayer lipid membrane. On the other hand, homocysteine (Hcy) has been reported to induce mitochondria-mediated cell death. It is argued that the thiol-form of homocysteine, HTL could be the plausible molecule responsible for the alteration in the function of proteins, such as VDAC. It is hypothesized that HTL interacts with VDAC that causes functional abnormalities. An investigation was undertaken to study the interaction of HTL with VDAC under H2O2 induced oxidative stress through biophysical and electrophysiological methods. Fluorescence spectroscopic studies indicate that HTL interacts with VDAC, but under induced oxidative stress the effect is prevented partially. Similarly, bilayer electrophysiology studies suggest that HTL shows a reduction in VDAC single-channel conductance, but the effects are partially prevented under an oxidative environment. Gly172 and His181 are predicted through bioinformatics tools to be the most plausible binding residues of HTL in Rat VDAC. The binding of HTL and H2O2 with VDAC appears to be cooperative as per our analysis of experimental data in the light of the Hill-Langmuir equation. The binding energies are estimated to be − 4.7 kcal mol⁻¹ and − 2.8 kcal mol⁻¹, respectively. The present in vitro studies suggest that when mitochondrial VDAC is under oxidative stress, the effects of amino acid metabolites like HTL are suppressed. Graphic Abstract
... Accumulation of Hcy in organisms can occur as a consequence of endogenous factors, such as abnormalities of genes encoding the synthesis of enzymes involved in Hcy metabolism, but also exogenous factors such as deficiency of vitamins B6, vitamin B12, folate and/or diet rich in methionine [3]. Depending on the level of Hcy in 2 of 16 serum, hyperhomocysteinemia (HHcy) can be defined as mild (15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30) µmol/L), moderate (30-100 µmol/L) and severe (>100 µmol/L) [4]. ...
... The effects of homocysteine on the heart muscle are considered to be indirect and caused by induction of atherothrombotic lesions in coronary circulation [14], followed by the reduction of myocardial perfusion. Likewise, atherosclerotic changes in peripheral arterial blood vessels caused by endothelial dysfunction with impaired vasodilatory response (and following vasoconstrictory predomination) and vascular remodeling, can lead to the development of systemic hypertension [15][16][17][18]. Hcy levels show positive correlation with vasoconstrictors like endotelin-1 and thromboxane [19]. ...
Article
Full-text available
The aim of this study was to investigate the effect of the application of homocysteine as well as its effect under the condition of aerobic physical activity on the activities of matrix metalloproteinases (MMP), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) in cardiac tissue and on hepato-renal biochemical parameters in sera of rats. Male Wistar albino rats were divided into four groups (n = 10, per group): C: 0.9% NaCl 0.2 mL/day subcutaneous injection (s.c.); H: homocysteine 0.45 µmol/g b.w./day s.c.; CPA saline (0.9% NaCl 0.2 mL/day s.c.) and a program of physical activity on a treadmill; and HPA homocysteine (0.45 µmol/g b.w./day s.c.) and a program of physical activity on a treadmill. Subcutaneous injection of substances was applied 2 times a day at intervals of 8 h during the first two weeks of experimental protocol. Hcy level in serum was significantly higher in the HPA group compared to the CPA group (p < 0.05). Levels of glucose, proteins, albumin, and hepatorenal biomarkers were higher in active groups compared with the sedentary group. It was demonstrated that the increased activities of LDH (mainly caused by higher activity of isoform LDH2) and mMDH were found under the condition of homocysteine-treated rats plus aerobic physical activity. Independent application of homocysteine did not lead to these changes. Physical activity leads to activation of MMP-2 isoform and to increased activity of MMP-9 isoform in both homocysteine-treated and control rats.
... Homocysteine also contributes to the breakdown of the extracellular matrix which affects BBB integrity [196]. An increase in brain microvascular permeability was also observed in mice with hyperhomocysteinemia via the activation of matrix metalloproteinases, which lead to vascular remodeling and BBB disruption [197]. ...
Article
Full-text available
Glutamate, the main excitatory neurotransmitter in the central nervous system, is implicated in both the initiation of migraine as well as central sensitization, which increases the frequency of migraine attacks. Excessive levels of glutamate can lead to excitotoxicity in the nervous system which can disrupt normal neurotransmission and contribute to neuronal injury or death. Glutamate-mediated excitotoxicity also leads to neuroinflammation, oxidative stress, blood-brain barrier permeability, and cerebral vasodilation, all of which are associated with migraine pathophysiology. Experimental evidence has shown the protective effects of several nutrients against excitotoxicity. The current review focuses on the mechanisms behind glutamate’s involvement in migraines as well as a discussion on how specific nutrients are able to work towards restoring glutamate homeostasis. Understanding glutamate’s role in migraine is of vital importance for understanding why migraine is commonly comorbid with widespread pain conditions and for informing future research directions.
... It is pertinent here to note that homocysteinemia has the distinction (as opposed to other markers) of being modifiable through the appropriate administration of vitamins of the B group -B 12 and folate [7,8]. In addition, it has been postulated that the neuromodulatory effects of raised serum homocysteine act through the altered expression of matrix metalloproteinases [MMPs] especially MMPs 2 and 9 [9,10]. ...
Article
Full-text available
Cognitive impairment is a progressive disorder that affects the ageing population. With the increase in the mean age of our population, it is becoming a public health problem. Homocysteinemia has been implicated in cognitive impairment. Whilst it is modulated by vitamins B12 and folate, it acts through MMPs 2 and 9. To assesses the relationship of cognitive impairment with homocysteine, B12, folate and MMPs 2 and 9, so as to detect cases of mild cognitive impairment which are potentially reversible, blood samples were drawn from 73 enrolled subjects, with and without cognitive impairment on basis of Montreal cognitive assessment (MoCA) score < 25 or ≥ 25, respectively. Homocysteine, B12, folate and MMPs2 and 9 were estimated. Correlation between MoCA score and these parameters was elucidated. After adjusting for age and gender, homocysteine was the only significant independent predictor of MoCA score. Cut-off of homocysteine for prediction of MoCA < 25 was derived at 13.5 µmol/L(PPV = 59.6%; NPV = 79.2%). The equation derived for calculation of MoCA score from homocysteine is: MoCA score = 32.893 + [(− 0.223)(homocysteine in μmol/L)]. Homocysteine > 13.5 μmol/L predicts low MoCA (< 25) with 84.8% sensitivity and 50% specificity. Hence, patients with an Hcy > 13.5 μmol/L should be administered B12 and folate to reduce homocysteine, a modifiable risk factor of cognitive decline. Also, a novel equation for calculating MoCA score from homocysteine has been derived. Using this derived equation to calculate MoCA score, it may be possible to identify asymptomatic subjects with early cognitive impairment.
... Also, serum homocysteine levels have been shown to bear a signi cant negative correlation with serum levels of vitamin B 12 as well as folate [5]. In addition, it has been postulated that the neuromodulatory effects of raised serum homocysteine act through the altered expression of matrix metalloproteinases [MMPs] especially MMPs 2 and 9 [7,8]. This study evaluates the role of homocysteine and these nutrient biomarkers in cognitive impairment (CI) as de ned by Montreal Cognitive Assessment (MoCA) score in North Indian urban population [9]. ...
Preprint
Full-text available
Background: Cognitive impairment is a progressive disorder that affects the aging population. With the increase in the mean age of our population, it is becoming a public health problem. Homocysteinemia has been implicated in cognitive impairment. While it is modulated by vitamins B12 and folate, it acts through MMPs 2 and 9. Objectives: To assesses the relationship of cognitive impairment with homocysteine, B12, folate, and MMPs 2 and 9, with the intention of detecting cases of mild cognitive impairment which are potentially reversible. Materials and Methods: Blood samples were drawn from 73 enrolled subjects, with and without cognitive impairment on basis of Montreal cognitive assessment (MoCA) score <25 or >25, respectively. Homocysteine, B12, folate, and MMPs2 and 9 were estimated. Correlation between MoCA score and these parameters was elucidated. Results: After adjusting for age and sex, homocysteine was the only significant independent predictor of MoCA score. Cut off of homocysteine for prediction of MoCA <25 was derived at 13.5 µmol/L (PPV=59.6%; NPV=79.2%; Sensitivity=84.8%; Specificity=50%). The equation derived for calculation of MoCA score from homocysteine is: MoCA score = 32.893 + [(-0.223)(homocysteine in mmol/L)] Conclusions: Homocysteine >13.5mmol/L predicts low MoCA (<25) with 84.8% sensitivity and 50% specificity. So patients with a Hcy >13.5mmol/L should be carefully evaluated for the presence/progression of dementia and administered vitamins of the B group as a measure towards amelioration of the modifiable risk factor of cognitive decline, i.e. homocysteinemia.
... Our and others' work reported that HHcy causes disruption of the blood barrier function in both the brain [4][5][6][7] and retina [8][9][10][11][12][13][14]. The blood-brain barrier (BBB) separates the brain from the circulatory system and is made of tightly packed endothelial cells that line the cerebral vessels, separating blood stream components from the neuronal brain tissue [15]. ...
Article
Full-text available
Hyperhomocysteinemia (HHcy) is remarkably common among the aging population. The relation between HHcy and the development of neurodegenerative diseases, such as Alzheimer’s disease (AD) and eye diseases, and age-related macular degeneration (AMD) and diabetic retinopathy (DR) in elderly people, has been established. Disruption of the blood barrier function of the brain and retina is one of the most important underlying mechanisms associated with HHcy-induced neurodegenerative and retinal disorders. Impairment of the barrier function triggers inflammatory events that worsen disease pathology. Studies have shown that AD patients also suffer from visual impairments. As an extension of the central nervous system, the retina has been suggested as a prominent site of AD pathology. This review highlights inflammation as a possible underlying mechanism of HHcy-induced barrier dysfunction and neurovascular injury in aging diseases accompanied by HHcy, focusing on AD.
... Hcy is an amino acid involved in the metabolism of methionine and folate cycle. The permeability of cerebrovascular endothelial cells is increased with MMP-9 (matrix metalloproteinase-9) activated by Hcy, accompanied with blood-brain barrier (BBB) destruction [29]. It has been found that Hcy may further activate MMP-9 through extracellular signal-regulated kinase (ERK) pathway and inhibition of γ-aminobutyric acid (GABA) receptor in endothelial cells [30]. ...
Article
Full-text available
Objective: We aimed to investigate the risk factors associated with hemorrhage and clarify the relation of homocysteine (Hcy) with brain arteriovenous malformations (bAVMs). Method: We retrospectively reviewed bAVM patients from Beijing Tiantan Hospital between January 2019 and December 2019. Clinical and laboratory variables were analyzed in enrolled patients with bAVMs. Potential predictors associated with hemorrhage were evaluated by logistic regression analysis. Results: A total of 143 bAVM patients were identified in the study, including 69 unruptured and 74 ruptured cases. Patients with hemorrhage were less likely to have hyperhomocysteinemia (P = 0.023). Logistic regression analysis showed that increased maximum diameter of bAVM lesions (odds ratio (OR) 0.634, 95% confidence intervals (CI) 0.479-0.839; P = 0.001) and serum Hcy level (OR 0.956, 95% CI 0.920-0.993; P = 0.021) were associated with lower risk of hemorrhage in bAVMs. Conclusion: The present study provided evidence regarding the association between serum Hcy and hemorrhage in patients with bAVMs. Higher Hcy level was correlated with a lower risk of rupture. Detection of factors for subsequent hemorrhage is necessary to develop therapeutic strategies for bAVMs preferably.
Article
This study explored the potential effects of mild hyperhomocysteinemia (HHcy) on the blood–brain barrier (BBB) and neuroinflammation. Seven-week-old male wild-type C57BL/6 mice were fed normal mouse chow (the control group) or a methionine-enriched diet (the HHcy group) for 14 weeks. Mice in the HHcy group exhibited a slight increase in serum Hcy levels (13.56 ± 0.61 μmol/L). Activation of the ERK signaling pathway, up-regulation of matrix metalloproteinase-9 (MMP-9), and degradation of tight junction proteins (occludin and claudin-5) were observed in both the cerebral cortex and hippocampus of mice with mild HHcy. However, microglia were not activated and the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were not changed in either the cerebral cortex or hippocampus of mice with mild HHcy. Moreover, the signaling activity of STAT3 also did not differ significantly between the two groups. These findings demonstrate that the BBB is highly vulnerable to homocysteine insult. Even a slight increase in serum homocysteine levels up-regulates MMP-9 expression and disrupts the BBB integrity. Meanwhile, microglia activation or the STAT3 pathway might not contribute to the effects of mild HHcy on the brain.
Article
Several reports indicate that agents which can be topically applied to the vessels on the cerebral surface, and which have marked vasoconstrictive properties in other vascular beds, produce only minimal effects on the cerebral vessels.1-3 For example, the response of the cerebrovascular bed to catechol amines is so poor as to provide a totally inadequate representation of vascular reactivity. Cerebral arteries are capable of much greater alterations of diameter as shown by their responses to respiratory gases.4-6 The problem of studying cerebroarterial reactivity is made even more difficult when small vessels are examined, since their size precludes reliable estimation of the small changes in diameter which may follow stimulation with epinephrine or levarterenol (norepinephrine). Moreover, several authors report only variable or inconsistent effects of catechols on the smaller pial arteries or arterioles.2,3 There is little doubt that it is important to study further the reactivity of these
Article
• We have examined the permeability of the blood-ocular barriers to carboxyfluorescein, a dye similar in spectral properties but more polar than fluorescein. Octanol-buffer partition ratios of carboxyfluorescein, measured as an indication of lipid solubility, were approximately 1,000 times lower than those of fluorescein at pH values between 6.40 and 8.03. The partition ratios of both dyes show pronounced pH dependence. We also evaluated intraocular dye distribution by fluorescence microscopy after intravenous (IV) injection in rats. Carboxyfluorescein does not penetrate ciliary or iris epithelial cells, whereas fluorescein prominently stains these cells. Quantitative measurement of fluorescence intensity demonstrates that carboxyfluorescein does not enter the retina even when high doses are administered. Fluorescein, in contrast, can be detected throughout the retina with fluorescence intensity levels proportional to the IV dose administered. The relative inability of carboxyfluorescein to penetrate the blood-ocular barriers is not caused by greater binding to plasma proteins, since the plasma concentration of free carboxyfluorescein is greater than that of fluorescein. We conclude that carboxyfluorescein has potential experimental and clinical use as a probe of the blood-ocular barriers. Because of its low membrane permeability, it may yield a better definition of the nature of barrier abnormalities than is now possible with fluorescein.
Article
1. l ‐Homocysteine and pyridoxal 5′‐phosphate (Pxy P ) inhibited [ ³ H]muscimol binding to freeze‐thawed, Triton‐treated calf brain membranes (containing high‐affinity muscimol‐binding sites: K d 9.5 ± 0.6nM, B max 5.2 ± 0.2 pmol/mg protein). The homocysteine–pyridoxal‐5′‐phosphate (Hcy‐Pxy P ) thiazine complex had no effect. 2. l ‐Homocysteine was found to be a partially competitive inhibitor, thus demonstrating an allosteric inhibition with K i value of 1.96 mM for free receptor and K i of 13 mM for receptor‐muscimol complex. 3. Pxy P was shown to be a two‐site pure competitive inhibitor of [ ³ H]muscimol binding with cooperativity of Pxy P binding such that K i values for Pxy P of 20 mM and 2.1 mM were found. 4. l ‐Homocysteine and Pxy P when added simultaneously to binding assays, caused a greater degree of inhibition than that observed at the same total specific concentration of either inhibitor alone. This synergistic inhibitory effect was shown to be due to a homocysteine‐induced increase in the affinity of Pxy P ‐binding sites. 5. Three alternative models are suggested to explain the observed synergistic effects whereby it is proposed that Pxy P and [ ³ H]muscimol binding is mutually exclusive, while l ‐homocysteine with Pxy P and l ‐homocysteine with muscimol, exhibit non‐exclusivity. 6. Non‐linear regression analysis of binding data was undertaken in order to substantiate conclusions drawn from graphical procedures and in an attempt to ascertain which mathematical model best fitted the experimental data describing the synergistic inhibitory effects of l ‐homocysteine and Pxy P . 7. This synergistic inhibitory effect of Pxy P and l ‐homocysteine on the post‐synaptic γ‐aminobutyric acid receptor may provide a basis for explanation of the mechanism of homocysteine‐induced seizures.
Article
Dietary copper restriction impairs thrombogenesis and hemostasis in rat microcirculation. In this study, the role of wall shear rate in platelet-to-endothelial cell adhesion in vitro was studied during copper deficiency. Platelets were obtained from male, weanling Sprague-Dawley rats fed purified diets, which were either copper-adequate (CuA, 6.3 μg Cu/g) or copper-deficient (CuD, 0.3 μg Cu/g), for 4 weeks. Platelets were through a parallel plate flow chamber containing cultured rat endothelial cells which were either normal or treated with the copper chelator tetraethylenepentamine (TEPA). Since platelet von Willebrand factor (vWF) concentration is decreased in CuD rats, we determined the platelet adhesion when CuD platelets were incubated in purified vWF (0.2 units/ml). Adhesion to normal endothelial cells was significantly lower for CuD platelets vs. CuA platelets at low (70 s−1; 21.5 ± 4.0% vs. 37.0 ± 2.7%) and relatively high (200 s−1; 9.3 ± 1.7% vs. 19.5 ± 1.1%) wall shear rates. Adhesion of CuD platelets to normal endothelial cells incubated in vWF was not different from adhesion of CuA platelets. Adhesion to TEPA-treated endothelial cells was lower than adhesion to normal endothelial cells for both CuA and CuD platelets (30.6 ± 1.5% vs. 37 ± 2.7%). Although increasing the shear rate (from 70 s-1 to 200 s-1) decreased adhesion of both CuA and CuD platelets, the ratio between groups remained similar. These results demonstrate that adhesion of CuD platelets to normal endothelial cells is less than that of CuA platelets under flow conditions typical for venules. Further, altered shear rate does not account for the depressed in vitro platelet adhesion. Thus, alteration of platelet and endothelial cell properties by copper deficiency may be of greater importance than the effect of flow conditions on endothelial cells in delaying thrombosis.
Article
The effect of histamine on blood-brain barrier permeability was investigated using in situ measurement of transendothelial electrical resistance in brain-surface microvessels of anaesthetized rats. Mean resistance of vessels superfused with artificial cerebrospinal fluid was 1500 omega.cm2, indicating a tight barrier with low ion permeability. The addition of 10(-4) M histamine resulted in a 75% decrease in resistance, in both arterial and venous vessels, indicating a marked increase in barrier permeability. To determine the nature of the response to histamine, rats were given presurgical intraperitoneal injections of promethazine (H1 receptor antagonist), cimetidine (H2 receptor antagonist) or indomethacin (cyclo-oxygenase inhibitor), singularly and in combinations. Cimetidine completely blocked the histamine-mediated increase in barrier permeability whereas promethazine only had a small effect and indomethacin was ineffective. In addition, cimetidine treatment resulted in a 100% increase in basal resistance in both arterial and venous vessels, suggesting endogenous histamine was acting to increase blood-brain barrier permeability. It is concluded that histamine causes an increase in blood-brain barrier permeability which is mediated via endothelial H2 receptors, and that the electrical resistance in cimetidine-treated rats most closely represents the true permeability of the blood-brain barrier.
Article
BBB, blood-brain barrier; 5-HT, 5-hy-droxytryptamine; FITC, fluorescein isothiocyanate; MW, molecular weight.
Article
Hypertension has been associated with an enhanced transport of macromolecules from the vasculature to the interstitium. The first objective of this study was to determine if, under control conditions, there is an enhanced leakage of macromolecules from the cremaster vasculature of the hypertensive rat. The second objective was to determine if the response to a mediator of macromolecular leakage (histamine) was altered in the renovascular hypertensive rat. A third objective was to determine if a calcium entry blocker, verapamil, could inhibit histamine-induced leakage and, if so, was the sensitivity to verapamil different in the renovascular hypertensive rat. Rats were anesthetized with pentobarbital, and the cremaster preparation was used for in vivo television microscopy studies. Fluorescein isothiocyanate was tagged to rat serum albumin (FITC-RSA), and the leakage of this albumin from the vasculature to the interstitium was quantitated by the use of fluorescent microscopy techniques. There was no difference during control conditions in macromolecular leakage between the normotensive and hypertensive rats. However, histamine induced a greater leakage in the renovascular hypertensive rat than in the normotensive controls. In addition, verapamil, in the presence of normal calcium levels, inhibited the histamine-induced leakage in the hypertensive rats but not in the normotensive controls. These data suggest that enhanced macromolecular leakage during hypertension may be due to an increased sensitivity to mediators of protein leakage. These agents may produce protein leakage by enhancing entry of extracellular calcium into endothelial cells.
Article
The effects of craniotomy and/or histamine treatment upon brain microvascular permeability was studied in Wistar rats. Extravasation of circulating Na-fluorescein (MW 376) and of FITC-albumin (MW 69,000) was observed through a cranial window using intravital fluorescence microscopy. Simple exposure of the pial microvessels induced formation of discrete spots of fluorescent material around venules, but not around arterioles or capillaries. The average number of leaky spots to Na-fluorescein and to FITC-albumin was 4.3 and 1.8 per 10 mm2, respectively, 35 min after exposure. Pretreatment of the rats with either indomethacin (a cyclo-oxygenase inhibitor) or promethazine (a histamine H1-receptor blocker) did not reduce the number of leaky sites, whereas pretreatment with a combination of the two drugs had a significant protective effect. Administration of histamine (10(-4) M) to the exposed brain surface for 5 min increased the number of leaky sites to Na-fluorescein and FITC-albumin 3.2 and 3.6 times, respectively. It is concluded that exposure of the brain surface induces release of histamine and cyclo-oxygenase metabolites, and that these inflammatory mediators elicit formation of leaky sites in brain venules.
Article
Contractile responses were produced by local application of levarterenol (norepinephrine) to the pial vessels of the mouse. The response was blocked by locally applied phentolamine mesylate. These data support the findings of workers who demonstrated that levarterenol diminishes cerebral blood volume in this species. The results are also in agreement with data from other species, which indicates that high doses of levarterenol are required to constrict pial arterioles. In the present study effective doses were in excess of 1μ/ml. These doses are probably higher than those present in blood or cerebrospinal fluid, either in normal or disease states. However, the local concentration of norepinephrine released by adrenergic nerves at the vessel wall remains unknown, as does the interaction of locally administered levarterenol with possible potentiating factors that are present in pathologic conditions.
Article
L-Homocysteine and pyridoxal 5'-phosphate (PxyP) inhibited [3H]muscimol binding to freeze-thawed, Triton-treated calf brain membranes (containing high-affinity muscimol-binding sites: Kd 9.5 +/- 0.6 nM, Bmax 5.2 +/- 0.2 pmol/mg protein). The homocysteine--pyridoxal-5'-phosphate (Hcy-PxyP) thiazine complex had no effect. L-Homocysteine was found to be a partially competitive inhibitor, thus demonstrating an allosteric inhibition with Ki value of 1.96 mM for free receptor and Ki of 13 mM for receptor-muscimol complex. PxyP was shown to be a two-site pure competitive inhibitor of [3H]muscimol binding with cooperativity of PxyP binding such that Ki values for PxyP of 20 mM and 2.1 mM were found. L-Homocysteine and PxyP when added simultaneously to binding assays, caused a greater degree of inhibition than that observed at the same total specific concentration of either inhibitor alone. This synergistic inhibitory effect was shown to be due to a homocysteine-induced increase in the affinity of PxyP-binding sites. Three alternative models are suggested to explain the observed synergistic effects whereby it is proposed that PxyP and [3H]muscimol binding is mutually exclusive, while L-homocysteine with PxyP and L-homocysteine with muscimol, exhibit non-exclusivity. Non-linear regression analysis of binding data was undertaken in order to substantiate conclusions drawn from graphical procedures and in an attempt to ascertain which mathematical model best fitted the experimental data describing the synergistic inhibitory effects of L-homocysteine and PxyP. This synergistic inhibitory effect of PxyP and L-homocysteine on the post-synaptic gamma-aminobutyric acid receptor may provide a basis for explanation of the mechanism of homocysteine-induced seizures.