Article

Role of L-type Ca 2+ channels in neural stem/progenitor cell differentiation

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Ca(2+) influx through voltage-gated Ca(2+) channels, especially the L-type (Ca(v)1), activates downstream signaling to the nucleus that affects gene expression and, consequently, cell fate. We hypothesized that these Ca(2+) signals may also influence the neuronal differentiation of neural stem/progenitor cells (NSCs) derived from the brain cortex of postnatal mice. We first studied Ca(2+) transients induced by membrane depolarization in Fluo 4-AM-loaded NSCs using confocal microscopy. Undifferentiated cells (nestin(+)) exhibited no detectable Ca(2+) signals whereas, during 12 days of fetal bovine serum-induced differentiation, neurons (beta-III-tubulin(+)/MAP2(+)) displayed time-dependent increases in intracellular Ca(2+) transients, with DeltaF/F ratios ranging from 0.4 on day 3 to 3.3 on day 12. Patch-clamp experiments revealed similar correlation between NSC differentiation and macroscopic Ba(2+) current density. These currents were markedly reduced (-77%) by Ca(v)1 channel blockade with 5 microm nifedipine. To determine the influence of Ca(v)1-mediated Ca(2+) influx on NSC differentiation, cells were cultured in differentiative medium with either nifedipine (5 microm) or the L-channel activator Bay K 8644 (10 microm). The latter treatment significantly increased the percentage of beta-III-tubulin(+)/MAP2(+) cells whereas nifedipine produced opposite effects. Pretreatment with nifedipine also inhibited the functional maturation of neurons, which responded to membrane depolarization with weak Ca(2+) signals. Conversely, Bay K 8644 pretreatment significantly enhanced the percentage of responsive cells and the amplitudes of Ca(2+) transients. These data suggest that NSC differentiation is strongly correlated with the expression of voltage-gated Ca(2+) channels, especially the Ca(v)1, and that Ca(2+) influx through these channels plays a key role in promoting neuronal differentiation.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Ca v 1.2 and Ca v 1.3 (encoded by the Cacna1c and Cacna1d genes, respectively) are the predominant subunits of the L-type Ca v channels in the brain and are expressed in neural progenitor cells (NPCs) (Louhivuori et al., 2013). Treatment with Ca v 1 blockers inhibits functional maturation of neurons (D'Ascenzo et al., 2006) and reduces dendritic outgrowth and synapse formation in murine NPC cultures (Lepski et al., 2013). ...
... Augmented Intracellular Calcium Responses via Ltype Ca v Channels in Mouse FMRP-Deficient NPCs Depolarization with high extracellular potassium ([K + ] e ) results in augmented intracellular calcium ([Ca 2+ ] i ) responses in differentiating NPCs generated from Fmr1 KO mice compared with wild-type (WT) controls (Achuta et al., 2014). Differentiating NPCs express functional Ca v channels that mediate Ca 2+ influx in response to membrane depolarization (D'Ascenzo et al., 2006). We studied the contribution of L-type Ca v channels to the increased Ca 2+ entry to mouse cortical progenitors lacking FMRP by investigating the effects of nifedipine (a blocker of L-type Ca v channels) on [Ca 2+ ] i responses in Fmr1 KO neurospheres. ...
... Both high-voltage activated (HVA) and low-voltage activated (LVA) Ca 2+ channels are shown to be expressed in NPCs (D'Ascenzo et al., 2006;Lepski et al., 2013;Louhivuori et al., 2013). The mRNA expression of the pore-forming a1 subunits of all Ca v channels was low in both human and mouse neurospheres at day 1 of differentiation. ...
... Ca v 1.2 and Ca v 1.3 (encoded by the Cacna1c and Cacna1d genes, respectively) are the predominant subunits of the L-type Ca v channels in the brain and are expressed in neural progenitor cells (NPCs) (Louhivuori et al., 2013). Treatment with Ca v 1 blockers inhibits functional maturation of neurons (D'Ascenzo et al., 2006) and reduces dendritic outgrowth and synapse formation in murine NPC cultures (Lepski et al., 2013). ...
... Augmented Intracellular Calcium Responses via Ltype Ca v Channels in Mouse FMRP-Deficient NPCs Depolarization with high extracellular potassium ([K + ] e ) results in augmented intracellular calcium ([Ca 2+ ] i ) responses in differentiating NPCs generated from Fmr1 KO mice compared with wild-type (WT) controls (Achuta et al., 2014). Differentiating NPCs express functional Ca v channels that mediate Ca 2+ influx in response to membrane depolarization (D'Ascenzo et al., 2006). We studied the contribution of L-type Ca v channels to the increased Ca 2+ entry to mouse cortical progenitors lacking FMRP by investigating the effects of nifedipine (a blocker of L-type Ca v channels) on [Ca 2+ ] i responses in Fmr1 KO neurospheres. ...
... Both high-voltage activated (HVA) and low-voltage activated (LVA) Ca 2+ channels are shown to be expressed in NPCs (D'Ascenzo et al., 2006;Lepski et al., 2013;Louhivuori et al., 2013). The mRNA expression of the pore-forming a1 subunits of all Ca v channels was low in both human and mouse neurospheres at day 1 of differentiation. ...
Article
Full-text available
The absence of FMR1 protein (FMRP) causes fragile X syndrome (FXS) and disturbed FMRP function is implicated in several forms of human psychopathology. We show that intracellular calcium responses to depolarization are augmented in neural progenitors derived from human induced pluripotent stem cells and mouse brain with FXS. Increased calcium influx via nifedipine-sensitive voltage-gated calcium (Cav) channels contributes to the exaggerated responses to depolarization and type 1 metabotropic glutamate receptor activation. The ratio of L-type/T-type Cav channel expression is increased in FXS progenitors and correlates with enhanced progenitor differentiation to glutamate-responsive cells. Genetic reduction of brain-derived neurotrophic factor in FXS mouse progenitors diminishes the expression of Cav channels and activity-dependent responses, which are associated with increased phosphorylation of the phospholipase C-γ1 site within TrkB receptors and changes of differentiating progenitor subpopulations. Our results show developmental effects of increased calcium influx via L-type Cav channels in FXS neural progenitors.
... ZD7288 is the most commonly used pharmacological I h inhibitor that can show concentration-dependent off-target effects on T-type calcium channels or voltage-gated sodium channels (43)(44)(45). While voltage-gated calcium currents can be detected in neural stem and progenitor cells, only L-type calcium channels have hitherto been identified, which are not known to be blocked by ZD7288 (46)(47)(48). Furthermore, voltage-gated sodium channels are primarily associated with the differentiation, but not proliferation, of neural progenitor cells (47)(48)(49)(50)(51)(52)(53)(54). Therefore, both the dominant-negative transgenic strategy and the pharmacological block of I h are likely to have affected the same HCN current-dependent mechanism. ...
... While voltage-gated calcium currents can be detected in neural stem and progenitor cells, only L-type calcium channels have hitherto been identified, which are not known to be blocked by ZD7288 (46)(47)(48). Furthermore, voltage-gated sodium channels are primarily associated with the differentiation, but not proliferation, of neural progenitor cells (47)(48)(49)(50)(51)(52)(53)(54). Therefore, both the dominant-negative transgenic strategy and the pharmacological block of I h are likely to have affected the same HCN current-dependent mechanism. ...
Article
Significance Impaired cell cycle regulation of neural stem and progenitor cells can affect cortical development and cause microcephaly. During cell cycle progression, the cellular membrane potential changes through ion channel activity and tends to be more depolarized in proliferating cells. Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, which mediate a depolarizing current in neurons and cardiac cells, are linked to neurodevelopmental diseases and also contribute to the control of cell cycle progression and proliferation of neuronal precursor cells. In this study, HCN channel deficiency during embryonic brain development resulted in marked microcephaly of mice with impaired HCN channel function in dorsal forebrain progenitors. The findings suggest that HCN channel subunits are part of a general mechanism influencing cortical development in mammals.
... The arrangement of hydrophilic 9781138735309_C003.indd 74 17/08/18 10: 45 PM heads and hydrophobic tails of the lipid bilayer can halt polar solutes (e.g., amino acids, nucleic acids, carbohydrates, proteins, and ions) from diffusing across the membrane, but generally allows for the passive diffusion of hydrophobic molecules. This enables the cell to control the movement of these substances via pores and gates (all composed mainly of proteins) for the ion transport-rendering a selective permeability. ...
... Again, we see that ionic flux constitutes a novel category of differentiation signals. Regarding Ca 2+ fluxes, D'Ascenzo et al. (74) could demonstrate that neural stem/progenitor cells differentiation is strongly correlated with the expression of voltage-gated Ca 2+ channels, especially the Ca(v)1, and that Ca 2+ influx through these channels plays a key role in promoting neuronal differentiation. Finally, membrane potential, IK(DR) and I(KCa) channels change with cell cycle progression in rat bone marrow-derived mesenchymal stem cells (75). ...
... The role of ion channels in neurogenesis and stem cell development has been quite extensively studied. Evidence has been provided for a role of Ca V 3.1 voltage-gated L-type Ca 2+ channels in the differentiation of neural stem/progenitor cells [9] and of Kv3.1 K + channels in the proliferation and neuronal differentiation of adult neural precursor cells [43]. Expression of Kv7.4 channels was recently reported in neurons derived from embryonic stem cells [28], and a potential role of Kv7.2/ 7.3 channels in differentiation, synaptogenesis and synaptic function of mouse hippocampal and embryonic stem cellderived neurons has been indicated [44]. ...
... Mechanistically, the key effect of developmental or imposed upregulation of the Kv7 channels was to bring the resting membrane potential within the optimal range for Na + channel activation where activation and inactivation parameters overlap (and hence favour spontaneous action potential firing), without any change in the amplitude or kinetic parameters of None = no significant voltage excursions from baseline; Attempting single = voltage excursions which do not overshoot 0 mV; Single = one excursion only, but which overshoots 0 mV; Attempting train = several excursions, but only one which overshoots 0 mV; Train = several excursions, with more than one which overshoots 0 mV the Na + current or action potential themselves. However, further effects on the developmental process itself might well result from, for example, increased Ca 2+ entry through coactivated voltage-gated Ca 2+ channels [9,29] or an increased gradient for Ca 2+ influx via other mechanisms. Further, K + channels are known to be involved in the proliferation of non-excitable cells such as T lymphocytes [10] and a variety of tumour cells [16], through mechanisms that are not yet [17]. ...
Article
Full-text available
Kv7 channels determine the resting membrane potential of neurons and regulate their excitability. Even though dysfunction of Kv7 channels has been linked to several debilitating childhood neuronal disorders, the ontogeny of the constituent genes, which encode Kv7 channels (KNCQ), and expression of their subunits have been largely unexplored. Here, we show that developmentally regulated expression of specific KCNQ mRNA and Kv7 channel subunits in mouse and human striatum is crucial to the functional maturation of mouse striatal neurons and human-induced pluripotent stem cell-derived neurons. This demonstrates their pivotal role in normal development and maturation, the knowledge of which can now be harnessed to synchronise and accelerate neuronal differentiation of stem cell-derived neurons, enhancing their utility for disease modelling and drug discovery.
... However, it is largely unknown what cellular and molecular mechanism could link the survival of adult newborn neurons with learning and memory processes. It has been shown that activity-dependent regulation of neurogenesis might be related with LTCCs [30][31][32][33]. Recently, reduction of survival of adult newborn neurons in adult hippocampus was observed in Ca v 1.3 KO mice and forebrain-specific Ca v 1.2 cKO mice [20,34]. ...
... Endogenous expression of Ca v 1.3 during development of newborn neuron overlaps with the period of survival of newborn cells Ca v 1.3 is expressed in hippocampus [1,10,70]. LTCC blockers have reduced the survival and differentiation of late stage newborn neurons in vitro and in vivo [30,31,33,71]. Recent Ca v 1.3 KO mouse studies showed the reduction of survival of newborn neurons in adult hippocampus [20,34]. ...
Article
Full-text available
Cav1.3 has been suggested to mediate hippocampal neurogenesis of adult mice and contribute to hippocampal-dependent learning and memory processes. However, the mechanism of Cav1.3 contribution in these processes is unclear. Here, roles of Cav1.3 of mouse dorsal hippocampus during newborn cell development were examined. We find that knockout (KO) of Cav1.3 resulted in the reduction of survival of newborn neurons at 28 days old after mitosis. The retroviral eGFP expression showed that both dendritic complexity and the number and length of mossy fiber bouton (MFB) filopodia of newborn neurons at 14 days old were significantly reduced in KO mice. Both contextual fear conditioning (CFC) and object-location recognition tasks were impaired in recent (1 day) memory test while passive avoidance task was impaired only in remote ( 20 days) memory in KO mice. Results using adeno-associated virus (AAV)-mediated Cav1.3 knock-down (KD) or retrovirus-mediated KD in dorsal hippocampal DG area showed that the recent memory of CFC was impaired in both KD mice but the remote memory was impaired only in AAV KD mice, suggesting that Cav1.3 of mature neurons play important roles in both recent and remote CFC memory while Cav1.3 in newborn neurons is selectively involved in the recent CFC memory process. Meanwhile, AAV KD of Cav1.3 in ventral hippocampal area has no effect on the recent CFC memory. In conclusion, the results suggest that Cav1.3 in newborn neurons of dorsal hippocampus is involved in the survival of newborn neurons while mediating developments of dendritic and axonal processes of newborn cells and plays a role in the memory process differentially depending on the stage of maturation and the type of learning task. © 2017 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
... Chloride channel expression and function have not been assessed in this study. However, in regard to other studies, we believe that Chloride currents play a key role in RMP maintenance in hESCs not K þ currents [20,21]. ...
... It may reflect the fact of multiple gene involvement in construction of an individual channel protein [15]. There are evidences of a correlation between Ca 2þ signaling trough L-type Ca 2þ channels and neural stem cells differentiation in adult mouse central nervous system [20] as well. The Ca 2þ influx from L-type Ca 2þ channel induces gene activation, enhance neurogenesis and differentiation [21]. ...
Article
Objective: For human embryonic stem cells (hESCs) to differentiate into neurons, enormous changes has to occur leading to trigger action potential and neurotransmitter release. We attempt to determine the changes in expression of voltage gated channels (VGCs) and their electrophysiological properties during neural differentiation. Materials and methods: The relative expressions of α-subunit of voltage gated potassium, sodium and calcium channels were characterized by qRT-PCR technique. Patch clamp recording was performed to characterize the electrophysiological properties of hESCs during their differentiation into neuron-like cells. Results: Relative expression of α-subunit of channels changed significantly. 4-AP and TEA sensitive outward currents were observed in all stages, although TEA sensitive currents were recorded once in rosette structure. Nifedipine and QX314 sensitive inward currents were recorded only in neuron-like cells. Conclusion: K(+) currents were recorded in hESCs and rosette structure cells. Inward currents, sensitive to Nifedipine and QX314, were recorded in neuron-like cells.
... In fact, it has been observed that, depending on the EMFs' "dose" and wavelength, the effects can shift from cytotoxicity to cytoprotection [21][22][23]. As recently reported [24], the electromagnetic waves are able to modulate the cytoskeleton function and to promote the neuronal differentiation of the bone marrow mesenchymal stem cells; in particular, EMFs promote the neuronal differentiation in vitro and the hippocampal neurogenesis in vivo by upregulating the Cav-1 channel activity [25][26][27][28], β-III-tubulin, MAP2 [29], and the brain-derived neurotrophic factor [30]. ...
... PEMFs could be used to restore the cognitive performance, for instance, in clinical trials on AD. Recently, the electromagnetic waves have been demonstrated to modulate the functions of the cytoskeleton and to promote the neuronal differentiation and the neurogenesis in the hippocampus in vivo through the upregulation of the Cav-1 channel, β-III-tubulin, MAP2, and the brain-derived neurotrophic factor (BDNF) [29]. The latter is widely expressed in the brain and contributes to a variety of neuronal processes affecting the neurodevelopment, the survival, and the maintenance of the homeostasis of the nervous system in elderly [27]. ...
Article
Full-text available
The aim of the present study was to investigate on the effects of a low-frequency pulsed electromagnetic field (LF-PEMF) in an experimental cell model of Alzheimer’s disease (AD) to assess new therapies that counteract neurodegeneration. In recent scientific literature, it is documented that the deep brain stimulation via electromagnetic fields (EMFs) modulates the neurophysiological activity of the pathological circuits and produces clinical benefits in AD patients. EMFs are applied for tissue regeneration because of their ability to stimulate cell proliferation and immune functions via the HSP70 protein family. However, the effects of EMFs are still controversial and further investigations are required. Our results demonstrate the ability of our LF-PEMF to modulate gene expression in cell functions that are dysregulated in AD (i.e., BACE1) and that these effects can be modulated with different treatment conditions. Of relevance, we will focus on miRNAs regulating the pathways involved in brain degenerative disorders.
... It is well documented that the extrusion of intracellular chloride mediated by GABA binding to the GABA A R leads to membrane depolarization with the subsequent activation of different voltage-sensitive channels [28,29], including L-type calcium channels [30][31][32]. A Ca 2+ influx via L-type channels activates calcium-dependent signaling cascades, including kinases and nuclear factors that control gene expression and cell fate. ...
Article
Full-text available
The intricate process of neuronal differentiation integrates multiple signals to induce transcriptional, morphological, and electrophysiological changes that reshape the properties of neural precursor cells during their maturation and migration process. An increasing number of neurotransmitters and biomolecules have been identified as molecular signals that trigger and guide this process. In this sense, taurine, a sulfur-containing, non-essential amino acid widely expressed in the mammal brain, modulates the neuronal differentiation process. In this study, we describe the effect of taurine acting via the ionotropic GABAA receptor and the metabotropic GABAB receptor on the neuronal differentiation and electrophysiological properties of precursor cells derived from the subventricular zone of the mouse brain. Taurine stimulates the number of neurites and favors the dendritic complexity of the neural precursor cells, accompanied by changes in the somatic input resistance and the strength of inward and outward membranal currents. At the pharmacological level, the blockade of GABAA receptors inhibits these effects, whereas the stimulation of GABAB receptors has no positive effects on the taurine-mediated differentiation process. Strikingly, the blockade of the GABAB receptor with CGP533737 stimulates neurite outgrowth, dendritic complexity, and membranal current kinetics of neural precursor cells. The effects of taurine on the differentiation process involve Ca²⁺ mobilization and the activation of intracellular signaling cascades since chelation of intracellular calcium with BAPTA-AM, and inhibition of the CaMKII, ERK1/2, and Src kinase inhibits the neurite outgrowth of neural precursor cells of the subventricular zone.
... After incubation of the bioprinted scaffolds in the differentiation medium for 7 days, an increased intracellular Ca 2+ level with a mean fluorescence intensity (MFI) of 112.2 ± 6.8 was observed for the NSCs in the 3D GPP-TA scaffold, significantly higher than that of the NSCs in the 3D GP scaffold (MFI: 95.5 ± 11.8, Fig. 3F-G). The alteration of the intracellular Ca 2+ level implicated a superior electrical activity for the encapsulated NSCs in the 3D GPP-TA scaffolds, closely related to the cellular membrane depolarization and voltage-gated ion channel activation, which plays an important role in early neuronal development during NSC differentiation [50,51]. The above results presented an enhanced physical contact for the encapsulated neural cells with longer neurites and higher electrical activity in the bioprinted GPP-TA composite scaffold, in comparison with the cells in the 3D GP scaffold, that may provide more sufficient signal communication between neural cells to the benefit of regulating in vivo performance of the transplanted NSCs and establishing efficient neuronal relay during nerve tissue repair [49]. ...
Article
The emergence of three-dimensional (3D) bioprinting technology has attracted ever-increasing attention in engineered tissue fabrication for stem cell-based tissue repair. However, the in vivo performance of transplanted stem cells in the tissue engineering scaffolds is still a major concern for regenerative medicine researches. Especially for neural stem cell (NSC) transplantation, the uncontrollable differentiation of the NSCs in host often leads to a poor therapeutic effect in nerve tissue repair, such as spinal cord injury (SCI) repair. To address this issue, we have fabricated a conductive composite hydrogel (CCH) scaffold loading with NSCs by 3D bioprinting, for delivering the NSCs to injured spinal cord and repairing the propriospinal nerve circuit. In our strategy, a novel conductive polymer (PEDOT:CSMA,TA) was synthesized and introduced into a photocrosslinkable gelatin/polyethylene glycol physical-gel matrix, thereby forming a composite bioink with well shear-thinning and self-healing properties. The composite bioink we prepared was then printed into the NSC-laden CCH scaffold with high shape fidelity and similar physicochemical properties to native spinal cord tissues. The NSCs encapsulated in the bioprinted CCH scaffold extended their neurites to form superior physical contact with the neighboring cells as well as the electroconductive matrix, and maintained a predominant in vivo neuronal differentiation, accompanying with few astrocytic production in the lesion area after transplantation into the SCI sites. As a result, the removal of glial scar tissues and the regeneration of well-developed nerve fibres sequentially happened, which not only facilitated nerve tissue development, but also accelerated locomotor function recovery in the SCI rats. By exploring the application of conductive biomaterials in stem cell-based SCI therapy, this work represents a feasible, new approach to precisely construct tissue engineering scaffolds for stem cell-based therapy in traumatic SCI and other nervous system diseases.
... Indeed, developing neurons express L-type calcium channels and calcium influxes aid neuronal differentiation (D'Ascenzo et al., 2006). One potential role of L-type calcium ion channels is to ensure the integration of newly differentiated neurons into established neural circuits. ...
Article
Full-text available
Neural stem cell (NSC) transplantation is an emerging and promising approach to combat neurodegenerative diseases. While NSCs can differentiate into neural cell types, many therapeutic effects are mediated by paracrine, “drug-like” mechanisms. Neurodegenerative diseases are predominantly a burden of the elderly who commonly suffer from comorbidities and thus are subject to pharmacotherapies. There is substantial knowledge about drug-drug interactions but almost nothing is known about a potential impact of pharmacotherapy on NSCs. Such knowledge is decisive for designing tailored treatment programs for individual patients. Previous studies revealed preliminary evidence that the anti-depressants fluoxetine and imipramine may affect NSC viability and proliferation. Here, we derive a hypothesis on how commonly applied drugs, statins and antihypertensives, may affect NSC viability, proliferation, and differentiation. We conducted a systematic review and meta-analysis looking at potential effects of commonly prescribed antihypertensive and antihyperlipidemic medication on NSC function. PubMed and Web of Science databases were searched on according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Publications were assessed against a priori established selection criteria for relevancy. A meta-analysis was then performed on data extracted from publications eligible for full text review to estimate drug effects on NSC functions. Our systematic review identified 1,017 potential studies, 55 of which were eligible for full text review. Out of those, 21 were included in the qualitative synthesis. The meta-analysis was performed on 13 publications; the remainder were excluded as they met exclusion criteria or lacked sufficient data to perform a meta-analysis. The meta-analysis revealed that alpha-2 adrenoceptor agonists, an anti-hypertensive drug class [p < 0.05, 95% confidence intervals (CI) = –1.54; –0.35], and various statins [p < 0.05, 95% CI = –3.17; –0.0694] had an inhibiting effect on NSC proliferation. Moreover, we present preliminary evidence that L-type calcium channel blockers and statins, particularly lovastatin, may reduce NSC viability. Although the data available in the literature is limited, there are clear indications for an impact of commonly applied drugs, in particular statins, on NSC function. Considering the modes of action of the respective drugs, we reveal plausible mechanisms by which this impact may be mediated, creating a testable hypothesis, and providing insights into how future confirmative research on this topic may be conducted.
... 12,66 In the first few days of postnatal life, the cortical development continues as neurons are gradually attaining their postmitotic state 50 and hippocampal neurogenesis continues into adulthood. 51 These models can be used to study the dysregulation of the cell cycle, which is critically dependent on depolarization states mediated by GABA and glutamate, 67 ionic balance, 68 and calcium regulation, 69 which are all affected by seizures. The suppression of RNA and synaptic protein synthesis in these models 70,71 may be linked to circuit modifications and later cognitive deficits. ...
Article
Full-text available
Evidence showing that the immature brain is vulnerable to seizure‐induced damage has been accumulating for decades. Clinical data have always suggested that some early‐life seizures are associated with negative sequelae, but clinical observations are frequently obscured by multiple uncontrolled contributing factors and can rarely establish causality. Determining with certainty that seizures, per se, can cause neuronal death and can irreversibly disrupt critical developmental processes, required the development of suitable model systems. Several experimental seizure models clearly show that the immature brain can sustain neuronal injury as a result of uncontrolled seizure activity and that even in the absence of observable neuronal death, the developing brain is selectively vulnerable to interruptions of required growth programs. Severe early‐life seizures inhibit DNA, RNA, and protein synthesis, and they can reduce the accumulation of myelin and synaptic markers in the developing nervous system, leading to functional delays in development. Depending on the seizure pathway involved, and the developmental period under study, classic neurodegeneration, excitotoxicity, and apoptosis can result in permanent damage to critical neural networks in the temporal lobe and in many other brain regions. This conclusion is further supported by recent clinical studies showing that prolonged febrile status epilepticus can lead to hippocampal injury, which evolves into hippocampal atrophy and hippocampal sclerosis. A growing body of experimental data demonstrates that the metabolic compromise and cellular loss produced by seizures during critical phases of brain development negatively affect later hippocampal physiology including learning and memory functions in maturity.
... Moreover, Epac2 mediates PACAP-induced differentiation of neural progenitor cells (NPCs) into astrocytes along with an increase in intracellular Ca 2+ levels, which also activated the signaling pathway for astrocytogenesis in Epac2-knockout (KO) mice (Seo and Lee, 2016). NSC differentiation is closely related to the expression of VGCC, especially Caveolin 1 (Cav1) through regulating Ca 2+ influx (D'Ascenzo et al., 2006). Moreover, exposure in extremely low-frequency electromagnetic fields (ELFEF) promotes the differentiation of NSCs by upregulating the expression and function of Cav1 (Piacentini et al., 2008c). ...
Article
Full-text available
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by the production and deposition of β-amyloid protein (Aβ) and hyperphosphorylated tau, leading to the formation of β-amyloid plaques (APs) and neurofibrillary tangles (NFTs). Although calcium ions (Ca ²⁺ ) promote the formation of APs and NFTs, no systematic review of the mechanisms by which Ca ²⁺ affects the development and progression of AD has been published. Therefore, the current review aimed to fill the gaps between elevated Ca ²⁺ levels and the pathogenesis of AD. Specifically, we mainly focus on the molecular mechanisms by which Ca ²⁺ affects the neuronal networks of neuroinflammation, neuronal injury, neurogenesis, neurotoxicity, neuroprotection, and autophagy. Furthermore, the roles of Ca ²⁺ transporters located in the cell membrane, endoplasmic reticulum (ER), mitochondria and lysosome in mediating the effects of Ca ²⁺ on activating neuronal networks that ultimately contribute to the development and progression of AD are discussed. Finally, the drug candidates derived from herbs used as food or seasoning in Chinese daily life are summarized to provide a theoretical basis for improving the clinical treatment of AD.
... α2δ1 subunit participated in the formulation of T-type and L-type voltage gated calcium channel (VGCC). It was reported that T-type VGCC was involved in the biological procedure of cell cycle progression and stemness maintenance [13], while L-type VGCC was associated with stem cell differentiation [14,15]. Intracellular calcium played an essential role in stem cells' self-renewing, proliferation, and differentiation [14,16]. ...
Article
Full-text available
Voltage-dependent calcium channel subunit alpha-2/delta-1 (α2δ1) has been identified as a marker of cancer stem cells in multiple malignant tumor types. However, α2δ1’s role in the prognosis of hypopharyngeal squamous cell carcinoma (HSCC) was not reported. In our study, ten pairs of HSCC and peritumoral normal tissues were used for immunohistochemistry assessment. And α2δ1 expression levels of 34 more HSCC samples were also evaluated, represented by the integral optic density using Image-Pro Plus. Clinicopathological associations and prognostic value of α2δ1 were analyzed. As a result, α2δ1 expression was frequently increased in HSCC tissues. Although the correlation between patients’ clinicopathological characteristics and their α2δ1 expression levels was not significant, α2δ1 expression was significantly correlated with unfavorable overall survival (OS) (P = 0.018) and progression-free survival (PFS) (P = 0.023). Univariate and multivariate cox regression analyses suggested α2δ1’s prognostic role for both OS and PFS (P = 0.013 and 0.011, respectively). This study specifically demonstrated that α2δ1 regularly increased in HSCC compared with peritumoral tissues, and α2δ1 could act as a promising prognostic marker in HSCC patients.
... Eventually, the abnormal Ca 2+ uptake leads to loss of mitochondrial membrane potential, mitochondrial swelling, and the mitochondrial hyperpermeability transition (Ding et al., 2017). This process aggravates apoptosis of hippocampal NSCs, leading to hippocampal neurogenesis retardation (D'Ascenzo et al., 2006;Ambrosio et al., 1999;Yoon et al., 2003). Our present data showed that the administration of MK-801 decreased the NMDAR1 expression, inhibited NSC proliferation and differentiation, and kindled the apoptosis of hippocampal NSCs. ...
Article
Schizophrenia is a common and serious mental illness characterized by severe impairments in thinking, emotions, and behaviors. Usually, the cognitive deficits of schizophrenia are closely associated with abnormal neurogenesis due to the hypofunction of certain neural receptors such as N-methyl-D-aspartate receptors (NMDARs), which mediates neurotransmission. However, little is known about the involvement of NMDAR1 in regulating hippocampal neurogenesis in schizophrenia. In the current study, we present evidence suggesting that NMDAR1 regulates hippocampal neurogenesis as lentivirus-mediated shRNA silencing NMDAR1 gene or blocking with MK-801 results in abnormal neurogenesis consistently found in schizophrenia. The important finding was clearly demonstrated by the multiparametric assessments, including morphology, immunofluorescence, western blotting, and flow cytometry. Simultaneously, our results indicated that knockdown and blockade of NMDAR1 significantly attenuated the proliferation of hippocampal neural stem cells (hNSCs) and decreased the differentiation to neurons. More importantly, the blockade of NMDAR1 with MK-801 aggravated the apoptosis of hNSCs. Thus, it is likely that NMDAR1 functions as a new target for the treatment of schizophrenia. Our present study may provide a novel insight for further investigation of the pathogenesis of schizophrenia. © 2021 Centro Regional de Invest. Cientif. y Tecn.. All rights reserved.
... Interestingly, inhibition of BKCa or hEag1 channels reduced the adipogenic and osteogenic differentiation of these cells [16]. In addition, inhibition of L-type Ca 2+ channels reduced the differentiation of neural progenitor cells derived from the mouse cerebral cortex [17]. Another study showed that human c-kit + CSCs exhibit spontaneous calcium oscillatory activity, which plays a key role in the regulation of cell proliferation [18]. ...
Article
Full-text available
Background Human cardiac stem cells expressing the W8B2 marker (W8B2 ⁺ CSCs) were recently identified and proposed as a new model of multipotent CSCs capable of differentiating into smooth muscle cells, endothelial cells and immature myocytes. Nevertheless, no characterization of ion channel or calcium activity during the differentiation of these stem cells has been reported. Methods The objectives of this study were thus to analyze (using the TaqMan Low-Density Array technique) the gene profile of W8B2 ⁺ CSCs pertaining to the regulation of ion channels, transporters and other players involved in the calcium homeostasis of these cells. We also analyzed spontaneous calcium activity (via the GCaMP calcium probe) during the in vitro differentiation of W8B2 ⁺ CSCs into cardiac myocytes. Results Our results show an entirely different electrophysiological genomic profile between W8B2 ⁺ CSCs before and after differentiation. Some specific nodal genes, such as Tbx3, HCN, ICaT, L, KV, and NCX, are overexpressed after this differentiation. In addition, we reveal spontaneous calcium activity or a calcium clock whose kinetics change during the differentiation process. A pharmacological study carried out on differentiated W8B2 ⁺ CSCs showed that the NCX exchanger and IP3 stores play a fundamental role in the generation of these calcium oscillations. Conclusions Taken together, the present results provide important information on ion channel expression and intrinsic calcium dynamics during the differentiation process of stem cells expressing the W8B2 marker.
... Moreover, isradipine treatment notably increased S100β expression, augmenting differentiation of the cells into astrocytes (Fig. 2d). Accordingly, D'Ascenzo et al. [51] showed that L-type VGCC inhibition decreased neuronal differentiation but did not investigate glial differentiation. ...
Article
Full-text available
Calcium, the most versatile second messenger, regulates essential biology including crucial cellular events in embryogenesis. We investigated impacts of calcium channels and purinoceptors on neuronal differentiation of normal mouse embryonic stem cells (ESCs), with outcomes being compared to those of in vitro models of Huntington’s disease (HD). Intracellular calcium oscillations tracked via real-time fluorescence and luminescence microscopy revealed a significant correlation between calcium transient activity and rhythmic proneuronal transcription factor expression in ESCs stably expressing ASCL-1 or neurogenin-2 promoters fused to luciferase reporter genes. We uncovered that pharmacological manipulation of L-type voltage-gated calcium channels (VGCCs) and purinoceptors induced a two-step process of neuronal differentiation. Specifically, L-type calcium channel-mediated augmentation of spike-like calcium oscillations first promoted stable expression of ASCL-1 in differentiating ESCs, which following P2Y2 purinoceptor activation matured into GABAergic neurons. By contrast, there was neither spike-like calcium oscillations nor responsive P2Y2 receptors in HD-modeling stem cells in vitro. The data shed new light on mechanisms underlying neurogenesis of inhibitory neurons. Moreover, our approach may be tailored to identify pathogenic triggers of other developmental neurological disorders for devising targeted therapies.
... Ca 2+ ions are usually present at a higher concentration, 10,000-fold or more, on the outside of the cell than the inside and are introduced into the cell by various mechanisms [20][21][22][23]. The opening and closing of Ca 2+ ion channels are primarily regulated by differences in membrane potential [24][25][26][27][28] and different types of Ca 2+ ion channels (ligand gated, voltage gated) have been described in literature extensively [29][30][31]. ...
Article
Full-text available
Developing synthetic biological devices to allow the noninvasive control of cell fate and function, in vivo can potentially revolutionize the field of regenerative medicine. To address this unmet need, we designed an artificial biological “switch” that consists of two parts: (1) the electromagnetic perceptive gene (EPG) and (2) magnetic particles. Our group has recently cloned the EPG from the Kryptopterus bicirrhis (glass catfish). The EPG gene encodes a putative membrane-associated protein that responds to electromagnetic fields (EMFs). This gene’s primary mechanism of action is to raise the intracellular calcium levels or change in flux through EMF stimulation. Here, we developed a system for the remote regulation of [Ca2+]i (i.e., intracellular calcium ion concentration) using streptavidin-coated ferromagnetic particles (FMPs) under a magnetic field. The results demonstrated that the EPG-FMPs can be used as a molecular calcium switch to express target proteins. This technology has the potential for controlled gene expression, drug delivery, and drug developments.
... Ca 2+ ions are usually present at a higher concentration, 10,000-fold or more, on the outside of the cell than the inside and are introduced into the cell by various mechanisms [20][21][22][23]. The opening and closing of Ca 2+ ion channels are primarily regulated by differences in membrane potential [24][25][26][27][28] and different types of Ca 2+ ion channels (ligand gated, voltage gated) have been described in literature extensively [29][30][31]. ...
... In line with the positive effect reported when using glial cells in the differentiation of hiPSCs into neurons, a recent report evidenced that astrocyte conditioned medium (ACM) improves the functional maturation rate of neurons by hyperpolarizing the RMP and increasing their spontaneous activity (Kemp et al., 2016). A possible mechanism operating when using ACM involves the modulation of calcium currents (D'Ascenzo et al., 2006;Lepski et al., 2013;Kang et al., 2017). In particular, the pharmacological blockage of calcium channels reveals that L-type, N-type and R-type calcium channels contribute to enhance the differentiation rate when using ACM. ...
Article
Full-text available
The development of the brain is shaped by a myriad of factors among which neurotransmitters play remarkable roles before and during the formation and maturation of synaptic circuits. Cellular processes such as neurogenesis, morphological development, synaptogenesis and maturation of synapses are temporary and spatially regulated by the local or distal influence of neurotransmitters in the developing cortex. Thus, research on this area has contributed to the understanding of fundamental mechanisms of brain development and to shed light on the etiology of various human neurodevelopmental disorders such as autism and Rett syndrome (RTT), among others. Recently, the field of neuroscience has been shaken by an explosive advance of experimental approaches linked to the use of induced pluripotent stem cells and reprogrammed neurons. This new technology has allowed researchers for the first time to model in the lab the unique events that take place during early human brain development and to explore the mechanisms that cause synaptopathies. In this context, the role of neurotransmitters during early stages of cortex development is beginning to be re-evaluated and a revision of the state of the art has become necessary in a time when new protocols are being worked out to differentiate stem cells into functional neurons. New perspectives on reconsidering the function of neurotransmitters include opportunities for methodological advances, a better understanding of the origin of mental disorders and the potential for development of new treatments.
... e GO analysis involved in "Biological process", the negative component is colored in blue. f GO analysis involved in "Molecular function" 1 3 channels (Deisseroth et al. 2004;D'Ascenzo et al. 2006;Teh et al. 2014) or by the knockout of Cav1.3 gene (Marschallinger et al. 2015;Kim et al. 2017). As the c-fos transcription is downstream of the CREB phosphorylation, our observation that OS induced c-fos mRNA in differentiating SFO-NSC culture would be attributed to the intracellular Ca 2+ mobilization directly through the OS-dependent depolarization and/or indirectly through transmitters (e.g., glutamic acid) and subsequent network activation. ...
Article
Full-text available
Optogenetic stimulation of neural stem cells (NSCs) enables their activity-dependent photo-modulation. This provides a spatio-temporal tool for studying activity-dependent neurogenesis and for regulating the differentiation of the transplanted NSCs. Currently, this is mainly driven by viral transfection of channelrhodopsin-2 (ChR2) gene, which requires high irradiance and complex in vivo/vitro stimulation systems. Additionally, despite the extensive application of optogenetics in neuroscience, the transcriptome-level changes induced by optogenetic stimulation of NSCs have not been elucidated yet. Here, we made transformed NSCs (SFO-NSCs) stably expressing one of the step-function opsin (SFO)-variants of chimeric channelrhodopsins, ChRFR(C167A), which is more sensitive to blue light than native ChR2, via a non-viral transfection system using piggyBac transposon. We set up a simple low-irradiance optical stimulation (OS)-incubation system that induced c-fos mRNA expression, which is activity-dependent, in differentiating SFO-NSCs. More neuron-like SFO-NCSs, which had more elongated axons, were differentiated with daily OS than control cells without OS. This was accompanied by positive/negative changes in the transcriptome involved in axonal remodeling, synaptic plasticity, and microenvironment modulation with the up-regulation of several genes involved in the Ca²⁺-related functions. Our approach could be applied for stem cell transplantation studies in tissue with two strengths: lower carcinogenicity and less irradiance needed for tissue penetration.
... However, this balance is disrupted under pathological conditions. It has previously been reported that in the tumor cells, intracellular Ca 2+ levels may be disrupted, thus affecting the intracellular Ca 2+ balance, which leads to excessive activation of associated signals that encode alterations in intracellular Ca 2+ (including source, amplitude and frequency) (35,36). This induces a subsequent upregulation in oncogene expression, which promotes the development of tumors (32). ...
Article
Cancer stem cells (CSCs) are immortal cells in tumor tissues that have been proposed as the driving force of tumorigenesis and tumor invasion. Previously, ion channels were revealed to contribute to cancer cell proliferation, migration and apoptosis. Recent studies have demonstrated that ion channels are present in various CSCs; however, the functions of ion channels and their mechanisms in CSCs remain unknown. The present review aimed to focus on the roles of ion channels in the regulation of CSC behavior and the CSC-like properties of cancer cells. Evaluation of the relationship between ion channels and CSCs is critically important for understanding malignancy.
... To rule out the possibility of obtaining a misleading result due to non-specific effects, we confirmed responsespecificity by using various T-type calcium channel blockers, as well as an L-type calcium channel blocker (Nifedipine). The T-type calcium channel blockers used were: mibefradil (broad T-type calcium channel blocker and weak L-type calcium channel blocker) (Martin et al., 2000), NNC55-0396 (CaV3.1 and CaV3.2 blockers) (Huang et al., 2004;Taylor et al., 2008), ML218 (CaV3.2 and CaV3.3) (Xiang et al., 2011), nickel chloride (more specific to CaV3.2 at lower concentrations) (Lee et al., 1999;Rossier, 2016), and nifedipine (L-type calcium channel) (D'Ascenzo et al., 2006) (Fig. 2A). The MTT assay was performed 24 h after drug application (Fig. 2B-2H). ...
Article
Full-text available
T-type calcium channels are low voltage-activated calcium channels that evoke small and transient calcium currents. Recently, T-type calcium channels have been implicated in neurodevelopmental disorders such as autism spectrum disorder and neural tube defects. However, their function during embryonic development is largely unknown. Here, we investigated the function and expression of T-type calcium channels in embryonic neural progenitor cells (NPCs). First, we compared the expression of T-type calcium channel subtypes (CaV3.1, 3.2, and 3.3) in NPCs and differentiated neural cells (neurons and astrocytes). We detected all subtypes in neurons but not in astrocytes. In NPCs, CaV3.1 was the dominant subtype, whereas CaV3.2 was weakly expressed, and CaV3.3 was not detected. Next, we determined CaV3.1 expression levels in the cortex during early brain development. Expression levels of CaV3.1 in the embryonic period were transiently decreased during the perinatal period and increased at postnatal day 11. We then pharmacologically blocked T-type calcium channels to determine the effects in neuronal cells. The blockade of T-type calcium channels reduced cell viability, and induced apoptotic cell death in NPCs but not in differentiated astrocytes. Furthermore, blocking T-type calcium channels rapidly reduced AKT-phosphorylation (Ser473) and GSK3β-phosphorylation (Ser9). Our results suggest that T-type calcium channels play essential roles in maintaining NPC viability, and T-type calcium channel blockers are toxic to embryonic neural cells, and may potentially be responsible for neurodevelopmental disorders.
... Furthermore, similar results were observed in in vivo studies. Piacentini et al. demonstrated that ELFEF applied to cortical NSCs could enhance the quantity and function of voltage-gated Ca 2+ channels, resulting in an increase in the concentration of intracellular Ca 2+ , and Ca 2+ -mediated signaling generated by Cav1 channels plays an important role in several fundamental cellular functions including the proliferation and differentiation of NSCs [73][74][75][76]. The potential mechanisms by which Ca 2+ signaling regulates the transcription of numerous genes include bHLH transcriptional factors and the activation of CREB [77][78][79][80]. ...
Article
Full-text available
Localized magnetic fields (MFs) could easily penetrate the scalp, skull, and meninges, thus inducing an electrical current in both the central and peripheral nervous systems, which is primarily used in transcranial magnetic stimulation (TMS) for inducing specific effects on different regions or cells that play roles in various brain activities. Studies of repetitive transcranial magnetic stimulation (rTMS) have led to novel attractive therapeutic approaches. Neural stem cells (NSCs) in adult human brain are able to self-renew and possess multidifferential ability to maintain homeostasis and repair damage after acute central nervous system. In the present review, we summarized the electrical activity of NSCs and the fundamental mechanism of electromagnetic fields and their effects on regulating NSC proliferation, differentiation, migration, and maturation. Although it was authorized for the rTMS use in resistant depression patients by US FDA, there are still unveiling mechanism and limitations for rTMS in clinical applications of acute central nervous system injury, especially on NSC regulation as a rehabilitation strategy. More in-depth studies should be performed to provide detailed parameters and mechanisms of rTMS in further studies, making it a powerful tool to treat people who are surviving with acute central nervous system injuries.
... 44 while some of the available studies suggest that the mechanism of organization and breakdown of different cytoskeleton elements depends on altered phosphorylation/dephosphorylation state of proteins in the exposed cells. 13,22 The specific ion conduction properties of microfilaments combined with their proposed role in Ca (2+) signaling make microvilli the most likely cellular site for the interaction with external electric and magnetic fields. 31 The mechanism suggested to explain these effects is based on the diamagnetic anisotropic properties of membrane phospholipids. ...
Article
Full-text available
This investigation is performed to evaluate the impact of static magnetic field on the Cell growth alignment, and differentiation potential in Human Mesenchymal Stem cells derived from human newborn cords. In vitro-cultured mesenchymal stem cells derived from human newborn cords were exposed to SMF up to 24 mT and compared with the control (unexposed) cultures. Viability was assessed via Trypan Blue staining and MTT assay. Cell cycle progression was studied after flow cytometry data analysis. Sox-2, Nanong, and Oct-4 Primers used for RT-PCR experiment. Morphological studies showed that the exposed cells were significantly aligned in parallel bundles in a correlation with the magnetic field lines. Viability measurements showed a significant reduction in cell viability which was noted after exposure to static magnetic field and initiated 36 h after the end of exposure time. Flow cytometric data analysis confirmed a decrease in G1 phase cell population within the treated and cultured groups compared with the corresponding control samples. However, the induced changes were recovered in the cell cultures after the post-exposure culture recovery time which may be attributed to the cellular repair mechanisms. Furthermore, the proliferation rate and Oct-4 gene expression were reduced due to the 18 mT static magnetic field exposure. The significant proliferation rate decrease accompanied by the Sox-2, Nanong, and Oct-4 gene expression decline, suggested the differentiation inducing effects of SMF exposure. Exposure to Static Magnetic fields up to 24 mT affects mesenchymal stem cell alignment and proliferation rate as well as mRNA expression of Sox-2, Nanong, and Oct-4 genes, therefore can be considered as a new differentiation inducer in addition to the other stimulators.
Preprint
Full-text available
The intricate process of neuronal differentiation integrates multiple signals to induce transcriptional, morphological, and electrophysiological changes that reshape the properties of neural precursor cells during their maturation and migration process. An increasing number of neurotransmitters and biomolecules have been identified that serve as molecular signals that trigger and guide this process. In this sense, taurine, a sulfur-containing, non-essential amino acid widely expressed in the mammal brain, modulates the neuronal differentiation process. In this study, we describe the effect of taurine acting via the ionotropic GABA A receptor and the metabotropic GABA B receptor on the neuronal differentiation and electrophysiological properties of precursor cells derived from the subventricular zone of the mouse brain. Taurine stimulates the number of neurites and favors the dendritic complexity of the neural precursor cells, accompanied by changes in the somatic input resistance and the strength of inward and outward membranal currents. At the pharmacological level, the blockade of GABA A receptors inhibits these effects, whereas the stimulation of GABA B receptors has no positive effects on the taurine-mediated differentiation process. Strikingly, the blockade of the GABA B receptor with CGP533737 stimulates neurite outgrowth, dendritic complexity, and membranal current kinetics of neural precursor cells. The effects of taurine on the differentiation process involve Ca ²⁺ mobilization and the activation of intracellular signaling cascades since chelation of intracellular calcium with BAPTA-AM, and inhibition of the CaMKII, ERK1/2, and Src kinase inhibits the neurite outgrowth of neural precursor cells of the subventricular zone.
Article
The neurobiology of autism is complex, but emerging research points to potential abnormalities and alterations in neurogenesis. The aim of the present review is to describe the advances in the understanding of the role of selected neurotrophins, neuropeptides, and other compounds secreted by neuronal cells in the processes of postnatal neurogenesis in conjunction with autism. We characterize the fundamental mechanisms of neuronal cell proliferation, generation of major neuronal cell types with special emphasis on neurogenic niches - the subventricular zone and hippocampal areas. We also discuss changes in intracellular calcium levels and calcium-dependent transcription factors in the context of the regulation of neurogenesis and cell fate determination. To sum up, this review provides specific insight into the known association between alterations in the function of the entire spectrum of molecules involved in neurogenesis and the etiology of autism pathogenesis.
Preprint
Full-text available
The development of the cerebral cortex relies on the controlled division of neural stem and progenitor cells. The requirement for precise spatiotemporal control of proliferation and cell fate places a high demand on the cell division machinery, and defective cell division can cause microcephaly and other brain malformations. Cell-extrinsic and intrinsic factors govern the capacity of cortical progenitors to produce large numbers of neurons and glia within a short developmental time window. In particular, ion channels shape the intrinsic biophysical properties of precursor cells and neurons and control their membrane potential throughout the cell cycle. We found that hyperpolarization-activated cyclic nucleotide-gated cation (HCN)-channel subunits are expressed in mouse, rat, and human neural progenitors. Loss of HCN-channel function in rat neural stem cells impaired their proliferation by affecting the cell-cycle progression, causing G1 accumulation and dysregulation of genes associated with human microcephaly. Transgene-mediated, dominant-negative loss of HCN-channel function in the embryonic mouse telencephalon resulted in pronounced microcephaly. Together, our findings suggest a novel role for HCN-channel subunits as a part of a general mechanism influencing cortical development in mammals. Significance Statement Impaired cell cycle regulation of neural stem and progenitor cells can affect cortical development and cause microcephaly. During cell cycle progression, the cellular membrane potential changes through the activity of ion channels and tends to be more depolarized in proliferating cells. HCN channels, which mediate a depolarizing current in neurons and cardiac cells, are linked to neurodevelopmental diseases, also contribute to the control of cell-cycle progression and proliferation of neuronal precursor cells. In this study, HCN-channel deficiency during embryonic and fetal brain development resulted in marked microcephaly of mice designed to be deficient in HCN-channel function in dorsal forebrain progenitors. The findings suggest that HCN-channel subunits are part of a general mechanism influencing cortical development in mammals.
Article
In the myoblasts differentiation process of C2C12 cells, it is imperative to research the expression and synthesis of the myogenic regulatory factors in extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) exposure. In the present study, using a cell cultivation method of C2C12 cells, the subcultured cells were divided into control and ELF-PEMF treated: A (0[Formula: see text]mT), B (0.5[Formula: see text]mT), C (1.0[Formula: see text]mT) and D (1.5[Formula: see text]mT) groups for five consecutive days training. Furthermore, cells were analyzed using immunochemical staining to detect the cell phenotypic changes, and RT-PCR and Western blot were used to test the expression levels of the myogenic regulatory factor D (MyoD) and the myogenic regulatory factor 5 (Myf5) genes and proteins synthesis in the process of myblasts differentiation. The results indicated that compared with the control group, different intensities of extremely low-frequency pulse electromagnetic fields could induce myoblast nuclear fusion, amplify MyoD and Mfy5 expression, and particularly the 1.5[Formula: see text]mT group at the 5th day exhibited the highest expression of these genes. Our study can pave a way for the development of a non-invasive and effective clinical prevention and treatment strategy in serious disorders like skeletal muscle atrophy.
Article
Full-text available
Neural stem cell (NSC)‐based therapy holds great promise for the treatment of neurodegenerative diseases. Presently, however, it is hindered by poor functional neuronal differentiation. Electrical stimulation is considered one of the most effective ways to promote neuronal differentiation of NSCs. In addition to surgically implanted electrodes, traditional electrical stimulation includes wires connected to the external power supply, and an additional surgery is required to remove the electrodes or wires following stimulation, which may cause secondary injuries and infections. Herein, a novel method is reported for generation of wireless electrical signals on an Au nanostrip array by leveraging the effect of electromagnetic induction under a rotating magnetic field. The intensity of the generated electrical signals depends on the rotation speed and magnetic field strength. The Au nanostrip array‐mediated electric stimulation promotes NSC differentiation into mature neurons within 5 days, at the mRNA, protein, and function levels. The rate of differentiation is faster by at least 5 days than that in cells without treatment. The Au nanostrip array‐based wireless device also accelerates neuronal differentiation of NSCs in vivo. The novel method to accelerate the neuronal differentiation of NSCs has the advantages of wireless, timely, localized and precise controllability, and noninvasive power supplementation.
Article
Neurotoxicity potential of compounds by inhibition of ion channels and efflux transporters has been studied traditionally using two-dimensionally (2D) cultured cell lines such as CHO and HEK-293 overexpressing the protein of interest. However, these approaches are time consuming and do not recapitulate the activity of ion channels and efflux transporters indigenously expressed in neural stem cells (NSCs) in vivo. To overcome these issues, we established ion channel and transporter assays on a 384-pillar plate with three-dimensionally (3D) cultured ReNcell VM and demonstrated high-throughput measurement of ion channel and transporter activity. RNA sequencing analysis identified major ion channels and efflux transporters expressed in ReNcell VM, followed by validating 3D ReNcell-based ion channel and transporter assays with model compounds. Major ion channel activities were measured by specifically inhibiting potassium channels Kv 7.2 with XE-991 and Kv 4.3 with fluoxetine, and a calcium channel with 2-APB. Activities of major efflux transporters, MDR1, MRP1, and BCRP, were assessed using their respective blockers, verapamil, probenecid, and novobiocin. From this study, we demonstrated that 3D-cultured ReNcell VM on the 384-pillar plate could be a good alternative to rapidly identify environmental chemicals and therapeutic compounds for their role in modulating the activity of ion channels and efflux transporters, potentially leading to neurotoxicity.
Article
Adult neurogenesis is a phenomenon in which neural stem cells differentiate and mature to generate new neurons in the adult brain. In mammals, the sites where adult neurogenesis occurs are limited to the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular zone. In the hippocampus, newly generated neurons migrate into the granule cell layer (GCL) and are integrated into neural circuits. Previous studies have revealed that CRMP4, a member of the CRMP family, is expressed in immature neurons in the hippocampal SGZ of the adult brain. However, the role of CRMP4 in adult neurogenesis is unknown. To study the role of CRMP4 in hippocampal adult neurogenesis, we compared adult neurogenesis between wild type and CRMP4-/- mice. In CRMP4-/- mice, the number of doublecortin (DCX)-positive cells was comparable to that in wild-type mice, and some DCX-positive cells were ectopically located in the granule cell layer, suggesting that CRMP4 is involved in the migration of adult neurogenesis. In addition, the number of calretinin-positive new neurons in the SGZ was significantly increased, whereas the number of EdU/NeuN-double positive neurons was decreased in CRMP4-/- mice, suggesting that CRMP4 plays an important role in neuronal maturation. Because CRMP4 is expressed in immature neurons, its expression may regulate the migration from the SGZ to the GCL during neuronal maturation in hippocampal adult neurogenesis.
Article
Full-text available
In the postnatal brain, neurogenesis occurs only within a few regions, such as the hippocampal sub-granular zone (SGZ). Postnatal neurogenesis is tightly regulated by factors that balance stem cell renewal with differentiation, and it gives rise to neurons that participate in learning and memory formation (Anacker and Hen, 2017; Bond et al., 2015; Toda et al., 2019). The Kv1.1 channel, a voltage-gated potassium channel, was previously shown to suppress postnatal neurogenesis in the SGZ in a cell-autonomous manner. In this study, we clarified the physiological and molecular mechanisms underlying Kv1.1-dependent postnatal neurogenesis. First, we discovered that the membrane potential of neural progenitor cells is highly dynamic during development. We further established a multinomial logistic regression model for cell type classification based on the biophysical characteristics and corresponding cell markers. We found that loss of Kv1.1 channel activity causes significant depolarization of type 2b neural progenitor cells. This depolarization is associated with increased tropomyosin receptor kinase B (TrkB) signaling and proliferation of neural progenitor cells; suppressing TrkB signaling reduces the extent of postnatal neurogenesis. Thus, our study defines the role of the Kv1.1 potassium channel in regulating the proliferation of postnatal neural progenitor cells in the mouse hippocampus.
Article
Inducing neural stem cells to differentiate and replace degenerated functional neurons represents the most promising approach for neural degenerative diseases including Parkinson's disease, Alzheimer's disease, etc. While diverse strategies have been proposed in recent years, most of these are hindered due to uncontrollable cell fate and device invasiveness. Here, we report a minimally invasive micromotor platform with biodegradable helical Spirulina plantensis (S. platensis) as the framework and superparamagnetic Fe3O4 nanoparticles/piezoelectric BaTiO3 nanoparticles as the built-in function units. With a low-strength rotational magnetic field, this integrated micromotor system can perform precise navigation in biofluid and achieve single-neural stem cell targeting. Remarkably, by tuning ultrasound intensity, thus the local electrical output by the motor, directed differentiation of the neural stem cell into astrocytes, functional neurons (dopamine neurons, cholinergic neurons), and oligodendrocytes, can be achieved. This micromotor platform can serve as a highly controllable wireless tool for bioelectronics and neuronal regenerative therapy.
Chapter
This chapter describes the current progress of basic research, and potential therapeutic applications primarily focused on the optical manipulation of muscle cells and neural stem cells using microbial rhodopsin as a light-sensitive molecule. Since the contractions of skeletal, cardiac, and smooth muscle cells are mainly regulated through their membrane potential, several studies have been demonstrated to up- or downregulate the muscle contraction directly or indirectly using optogenetic actuators or silencers with defined stimulation patterns and intensities. Light-dependent oscillation of membrane potential also facilitates the maturation of myocytes with the development of T tubules and sarcomere structures, tandem arrays of minimum contractile units consists of contractile proteins and cytoskeletal proteins. Optogenetics has been applied to various stem cells and multipotent/pluripotent cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to generate light-sensitive neurons and to facilitate neuroscience. The chronic optical stimulation of the channelrhodopsin-expressing neural stem cells facilitates their neural differentiation. There are potential therapeutic applications of optogenetics in cardiac pacemaking, muscle regeneration/maintenance, locomotion recovery for the treatment of muscle paralysis due to motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Optogenetics would also facilitate maturation, network integration of grafted neurons, and improve the microenvironment around them when applied to stem cells.
Research
The use of direct current electric stimulation (DCS) is an effective strategy to treat disease and enhance body functionality. Thus, treatment with DCS is an attractive biomedical alternative, but the molecular underpinnings remain mostly unknown. The lack of experimental models to dissect the effects of DCS from molecular to organismal levels is an important caveat. Here, we introduce the planarian flatworm Schmidtea mediterranea as a tractable organism for in vivo studies of DCS. We developed an experimental method that facilitates the application of direct current electrical stimulation to the whole planarian body (pDCS).
Article
We previously reported that Herpes simplex virus type-1 (HSV-1) infection of cultured neurons triggered intracellular accumulation of amyloid-β protein (Aβ) markedly impinging on neuronal functions. Here, we demonstrated that HSV-1 affects in vitro and in vivo adult hippocampal neurogenesis by reducing neural stem/progenitor cell (NSC) proliferation and their neuronal differentiation via intracellular Aβ accumulation. Specifically, cultured NSCs were more permissive for HSV-1 replication than mature neurons and, once infected, they exhibited reduced proliferation (assessed by 5'-bromo-deoxyuridine incorporation, Ki67 immunoreactivity, and Sox2 mRNA expression) and impaired neuronal differentiation in favor of glial phenotype (evaluated by immunoreactivity for the neuronal marker MAP2, the glial marker glial fibrillary astrocyte protein, and the expression of the proneuronal genes Mash1 and NeuroD1). Similarly, impaired adult neurogenesis was observed in the subgranular zone of hippocampal dentate gyrus of an in vivo model of recurrent HSV-1 infections, that we recently set up and characterized, with respect to mock-infected mice. The effects of HSV-1 on neurogenesis did not depend on cell death and were due to Aβ accumulation in infected NSCs. Indeed, they were: (a) reverted, in vitro, by the presence of either β/γ-secretase inhibitors preventing Aβ production or the specific 4G8 antibody counteracting the action of intracellular Aβ; (b) not detectable, in vivo, in HSV-1-infected amyloid precursor protein knockout mice, unable to produce and accumulate Aβ. Given the critical role played by adult neurogenesis in hippocampal-dependent memory and learning, our results suggest that multiple virus reactivations in the brain may contribute to Alzheimer's disease phenotype by also targeting NSCs. Stem Cells 2019.
Article
Cancer stem cells (CSC's) have emerged as a key area of investigation due to associations with cancer development and treatment resistance, related to their ability to remain quiescent, self-renew and terminally differentiate. Targeting CSC's in addition to the tumour bulk could ensure complete removal of the cancer, lessening the risk of relapse and improving patient survival. Understanding the mechanisms supporting the functions of CSC's is essential to highlight targets for the development of therapeutic strategies. Changes in intracellular calcium through calcium channel activity is fundamental for integral cellular processes such as proliferation, migration, differentiation and survival in a range of cell types, under both normal and pathological conditions. Here in we highlight how calcium channels represent a key mechanism involved in CSC function. It is clear that expression and or function of a number of channels involved in calcium entry and intracellular store release are altered in CSC's. Correlating with aberrant proliferation, self-renewal and differentiation, which in turn promoted cancer progression and treatment resistance. Research outlined has demonstrated that targeting altered calcium channels in CSC populations can reduce their stem properties and induce terminal differentiation, sensitising them to existing cancer treatments. Overall this highlights calcium channels as emerging novel targets for CSC therapies.
Article
Full-text available
The purpose of the present study was to investigate effects of N-methyl-D-aspartate (NMDA) on proliferation and apoptosis of hippocampal neural stem cells (NSCs) treated with dizocilpine (MK-801). Cultures of hippocampal NSCs were randomly divided into four groups consisting of an untreated control, cells treated with MK-801, NMDA and a combination of MK801 and NMDA (M+N). Proliferative and apoptotic responses for each of the experimental groups were determined by MTS and flow cytometry. The results revealed that MK-801 and NMDA exerted significant effects on hippocampal NSCs proliferation. Cell survival rates decreased in MK-801, NMDA and M+N treated groups compared with the control group. Cells survival rates in NMDA and M+N treated groups increased compared with the MK-801 treated group. MK-801 and NMDA were demonstrated to significantly affect apoptosis in hippocampal NSCs. Total and early stages of apoptosis in MK-801 and NMDA groups significantly increased compared with the control group. Total and early apoptosis of NSCs in the M+N group significantly decreased compared with MK-801 and NMDA groups. Late apoptosis of NSCs in MK-801 and NMDA groups significantly decreased compared with the control group. Late apoptosis of NSCs in the M+N group significantly increased compared with MK-801 and NMDA groups. The present study revealed that MK-801 inhibited proliferation and increased apoptosis in hippocampal NSCs. NMDA may reduce the neurotoxicity induced by MK-801, which may be associated with its activity towards NMDA receptors and may describe a novel therapeutic target for the treatment of schizophrenia.
Article
Electrical excitability by membrane depolarization is crucial for survival and maturation of newborn cells in the dentate gyrus of the hippocampus. However, traditional technology for membrane depolarization lacks temporal and spatial precision. Optogenetics can be used to activate channelrhodopsin-2 (ChR2), allowing cationic current to depolarize genetically targeted cells. In this study, we used ChR2-EGFP driven by doublecortin (DCX) to promote survival and maturation of newborn cells in the dentate gyrus after traumatic brain injury (TBI). C57BL/6 mice underwent lateral fluid percussion TBI. TBI mice were transfected with a lentivirus carrying the DCX-ChR2-EGFP gene. We observed that not only immature neurons but also type-2b intermediate progenitor (IPs) and neuroblasts expressed DCX-EGFP, indicating that DCX-expressing newborn cells could provide a long time window for electrical activity regulation. Quantitative results showed that the number of EGFP-expressing cells began to rise at 3 days after TBI and peaked at 9 days after TBI. By optical depolarization of DCX-EGFP-expressing cells between 3 and 12 days, we observed significantly improved cognitive deficits after TBI with enhanced survival and maturation of newborn cells in the dentate gyrus. We also investigated the role of optical depolarization in neural stem cells transfected with a lentivirus carrying the ChR2-DCX-EGFP gene in vitro. By administrating verapamil to block L-type calcium channels, we verified that the up-regulation of MAP2, NeuN, Neurog2, NeuroD1 and GluR2 in newborn cells was mediated by ChR2-elicted depolarization. By using β-catenin inhibitor Dkk1, we demonstrated that optical depolarization of DCX-EGFP-expressing cells facilitated survival and maturation probably through the Wnt/β-catenin signaling cascade.
Article
The purpose of this research was to explore the behavior of aquaporins (AQPs) in an in vitro model of Parkinson's disease that is a recurrent neurodegenerative disorder caused by the gradual, progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Because of postmortem studies have provided evidences for oxidative damage and alteration of water flow and energy metabolism, we carried out an investigation about AQP4 and 9, demonstrated in the brain to maintain water and energy homeostasis. As an appropriate in vitro cell model, we used SH-SY5Y cultures and induced their differentiation into a mature dopaminergic neuron phenotype with retinoic acid (RA) alone or in association with phorbol-12-myristate-13-acetate (MPA). The association RA plus MPA provided the most complete and mature neuron phenotype, as demonstrated by high levels of β-Tubulin III, MAP-2, and tyrosine hydroxylase. After validation of cell differentiation, the neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and H2O2 were applied to reproduce a Parkinson's-like stress. The results confirmed RA/MPA differentiated SH-SY5Y as a useful in vitro system for studying neurotoxicity and for using in a MPTP and H2O2-induced Parkinson's disease cell model. Moreover, the data demonstrated that neuronal differentiation, neurotoxicity, neuroinflammation, and oxidative stress are strongly correlated with dynamic changes of AQP4 and 9 transcription and transduction. New in vitro and in vivo experiments are needed to confirm these innovative outcomes.
Article
In the central nervous system, CaV1.2 and CaV1.3 constitute the main L-type voltage-gated calcium channels (LTCCs) coupling membrane depolarization to gene transcription. We have previously demonstrated that inducible disruption of Cav1.2 in type-1 astrocyte-like stem cells of the adult dentate gyrus (DG) impairs hippocampal neurogenesis in a cell-autonomous fashion. To address the role of Cav1.3 channels (encoded by the Cacna1d gene), we here generated TgGLAST-CreERT2/Cacna1dfl/fl/RCE:loxP mice which facilitate inducible deletion of Cacna1d in tandem with induction of EGFP expression in type-1 cells, allowing tracking of recombined cells and their descendants. Neurosphere cultures derived from FACS sorted Cacna1d-deficient (Cacna1d-/-/EGFP) hippocampal neural precursor cells (NPCs) exhibited a significant decrease in proliferative activity. Further, under differentiation conditions, Cacna1d deficiency conferred an increase in astrogenesis at the expense of neurogenesis. In like manner, type-1 cells lacking Cacna1d showed reduced proliferation in the dentate gyrus (DG) in vivo. Moreover, Cacna1d deficiency resulted in a significant decrease in the number of newly born cells adopting a neuronal fate. Finally, massive excitation induced by repeated electroconvulsive seizures (ECS) rescued the proliferation defect of Cacna1d-/-/EGFP type-1 cells. Together, the effects of Cacna1d gene deletion closely recapitulate our earlier findings on the role of Cav1.2 channels expressed by type-1 cells. Similar to Cav1.2 channels, Cav1.3 channels on type-1 cells boost type-1 cell proliferation and promote subsequent neuronal fate choice. This article is protected by copyright. All rights reserved.
Article
Electrically conductive hyaluronic acid (HA) hydrogels incorporated with single-walled carbon nanotubes (CNTs) and/or polypyrrole (PPy) were developed to promote differentiation of human neural stem/progenitor cells (hNSPCs). The CNT and PPy nanocomposites, which do not easily disperse in aqueous phases, dispersed well and were efficiently incorporated into catechol-functionalized HA (HA-CA) hydrogels by the oxidative catechol chemistry used for hydrogel crosslinking. The prepared electroconductive HA hydrogels provided dynamic, electrically conductive three-dimensional (3D) extracellular matrix environments that were biocompatible with hNSPCs. The HA-CA hydrogels containing CNT and/or PPy significantly promoted neuronal differentiation of human fetal neural stem cells (hfNSCs) and human induced pluripotent stem cell-derived neural progenitor cells (hiPSC-NPCs) with improved electrophysiological functionality when compared to differentiation of these cells in a bare HA-CA hydrogel without electroconductive motifs. Calcium channel expression was upregulated, depolarization was activated, and intracellular calcium influx was increased in hNSPCs that were differentiated in 3D electroconductive HA-CA hydrogels; these data suggest a potential mechanism for stem cell neurogenesis. Overall, our bio-inspired, electroconductive HA hydrogels provide a promising cell-culture platform and tissue-engineering scaffold to improve neuronal regeneration.
Article
Thyroid hormones play a crucial role in midbrain dopaminergic (DA) neuron development. However, the underlying molecular mechanisms remain largely unknown. In this study, we revealed that thyroid hormone treatment evokes significant calcium entry through canonical transient receptor potential (TRPC) channels in ventral midbrain neural stem cells and this calcium signaling is essential for thyroid hormone-dependent DA neuronal differentiation. We also found that TRPC1 is the dominant TRPC channels expressed in ventral midbrain neural stem cells which responses to thyroid hormone. In addition, thyroid hormone increases TRPC1 expression through its receptor alpha 1 during DA neuron differentiation, and, importantly, produces calcium signals by activating TRPC1 channels. In vivo and in vitro gene silencing experiments indicate that TRPC1-mediated calcium signaling is required for thyroid hormone-dependent DA neuronal differentiation. Finally, we confirmed that the activation of OTX2, a determinant of DA neuron development and the expression of which is induced by thyroid hormone, is dependent on TRPC1-mediated calcium signaling. These data revealed the molecular mechanisms of how thyroid hormone regulates DA neuron development from ventral midbrain neural stem cells, particularly endowing a novel physiological relevance to TRPC1 channels.
Article
In brain glycogen, formed from glucose, is degraded (glycogenolysis) in astrocytes but not in neurons. Although most of the degradation follows the same pathway as glucose, its breakdown product, L-lactate, is released from astrocytes in larger amounts than glucose when glycogenolysis is activated by noradrenaline. However, this is not the case when glycogenolysis is activated by high K⁺ concentrations – possibly because noradrenaline in contrast to high K⁺ stimulates glycogenolysis by an increase not only in free cytosolic Ca²⁺ concentration ([Ca²⁺]i) but also in cyclic AMP (c-AMP), which may increase the expression of the monocarboxylate transporter through which it is released. Several transmitters activate glycogenolysis in astrocytes and do so at different time points after training. This stimulation is essential for memory consolidation because glycogenolysis is necessary for uptake of K⁺ and stimulates formation of glutamate from glucose, and therefore is needed both for removal of increased extracellular K⁺ following neuronal excitation (which initially occurs into astrocytes) and for formation of transmitter glutamate and GABA. In addition the released L-lactate has effects on neurons which are essential for learning and for learning-related long-term potentiation (LTP), induction of the neuronal gene Arc/Arg3.1 and activation of gene cascades which are mediated by CREB and cofilin. Inhibition of glycogenolysis blocks learning and all related molecular events, but all changes can be reversed by injection of L-lactate. The effect of extracellular L-lactate is due to both astrocyte-mediated signaling which activates noradrenergic activity on all brain cells and to a minor uptake, possibly into dendritic spines.
Article
Full-text available
Calcium signaling controls many key processes in neurons, including gene expression, axon guidance, and synaptic plasticity. In contrast to calcium influx through voltage- or neurotransmitter-gated channels, regulatory pathways that control store-operated calcium entry (SOCE) in neurons are poorly understood. Here, we report a transcriptional control of Stim1 (stromal interaction molecule 1) gene, which is a major sensor of endoplasmic reticulum (ER) calcium levels and a regulator of SOCE. By using a genome-wide chromatin immunoprecipitation and sequencing approach in mice, we find that NEUROD2, a neurogenic transcription factor, binds to an intronic element within the Stim1 gene. We show that NEUROD2 limits Stim1 expression in cortical neurons and consequently fine-tunes the SOCE response upon depletion of ER calcium. Our findings reveal a novel mechanism that regulates neuronal calcium homeostasis during cortical development.
Article
Full-text available
It has been established that the adult mouse forebrain contains multipotential (neuronal/glial) progenitor cells that can be induced to proliferate in vitro when epidermal growth factor is provided. These cells are found within the subventricular zone of the lateral ventricles, together with other progenitor cell populations, whose requirements for proliferation remain undefined. Using basic fibroblast growth factor (bFGF), we have isolated multipotential progenitors from adult mouse striatum. These progenitors proliferate and can differentiate into cells displaying the antigenic properties of astrocytes, oligodendrocytes, and neurons. The neuron-like cells possess neuronal features, exhibit neuronal electrophysiological properties, and are immunoreactive for GABA, substance P, choline acetyl-transferase, and glutamate. Clonal analysis confirmed the multipotency of these bFGF-dependent cells. Most significantly, subcloning experiments demonstrated that they were capable of self-renewal, which led to a progressive increase in population size over serial passaging. These results demonstrate that bFGF is mitogenic for multipotential cells from adult mammalian forebrain that possess stem cell properties.
Article
Full-text available
The mitogenic actions of epidermal growth factor (EGF) were examined in low-density, dissociated cultures of embryonic day 14 mouse striatal primordia, under serum-free defined conditions. EGF induced the proliferation of single progenitor cells that began to divide between 5 and 7 d in vitro, and after 13 d in vitro had formed a cluster of undifferentiated cells that expressed nestin, an intermediate filament present in neuroepithelial stem cells. In the continued presence of EGF, cells migrated from the proliferating core and differentiated into neurons and astrocytes. The actions of EGF were mimicked by the homolog transforming growth factor alpha (TGF alpha), but not by NGF, basic fibroblast growth factor, platelet-derived growth factor, or TGF beta. In EGF-generated cultures, cells with neuronal morphology contained immunoreactivity for GABA, substance P, and methionine-enkephalin, three neurotransmitters of the adult striatum. Amplification of embryonic day 14 striatal mRNA by using reverse transcription/PCR revealed mRNAs for EGF, TGF alpha, and the EGF receptor. These findings suggest that EGF and/or TGF alpha may act on a multipotent progenitor cell in the striatum to generate both neurons and astrocytes.
Article
Full-text available
Neurogenesis in the mammalian central nervous system is believed to end in the period just after birth; in the mouse striatum no new neurons are produced after the first few days after birth. In this study, cells isolated from the striatum of the adult mouse brain were induced to proliferate in vitro by epidermal growth factor. The proliferating cells initially expressed nestin, an intermediate filament found in neuroepithelial stem cells, and subsequently developed the morphology and antigenic properties of neurons and astrocytes. Newly generated cells with neuronal morphology were immunoreactive for gamma-aminobutyric acid and substance P, two neurotransmitters of the adult striatum in vivo. Thus, cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.
Article
Full-text available
1. The extracellular patch clamp method, which first allowed the detection of single channel currents in biological membranes, has been further refined to enable higher current resolution, direct membrane patch potential control, and physical isolation of membrane patches. 2. A description of a convenient method for the fabrication of patch recording pipettes is given together with procedures followed to achieve giga-seals i.e. pipette-membrane seals with resistances of 10(9) - 10(11) omega. 3. The basic patch clamp recording circuit, and designs for improved frequency response are described along with the present limitations in recording the currents from single channels. 4. Procedures for preparation and recording from three representative cell types are given. Some properties of single acetylcholine-activated channels in muscle membrane are described to illustrate the improved current and time resolution achieved with giga-seals. 5. A description is given of the various ways that patches of membrane can be physically isolated from cells. This isolation enables the recording of single channel currents with well-defined solutions on both sides of the membrane. Two types of isolated cell-free patch configurations can be formed: an inside-out patch with its cytoplasmic membrane face exposed to the bath solution, and an outside-out patch with its extracellular membrane face exposed to the bath solution. 6. The application of the method for the recording of ionic currents and internal dialysis of small cells is considered. Single channel resolution can be achieved when recording from whole cells, if the cell diameter is small (less than 20 micrometer). 7. The wide range of cell types amenable to giga-seal formation is discussed.
Article
Full-text available
The dentate gyrus of the hippocampus is one of the few areas of the adult brain that undergoes neurogenesis. In the present study, cells capable of proliferation and neurogenesis were isolated and cultured from the adult rat hippocampus. In defined medium containing basic fibroblast growth factor (FGF-2), cells can survive, proliferate, and express neuronal and glial markers. Cells have been maintained in culture for 1 year through multiple passages. These cultured adult cells were labeled in vitro with bromodeoxyuridine and adenovirus expressing beta-galactosidase and were transplanted to the adult rat hippocampus. Surviving cells were evident through 3 months postimplantation with no evidence of tumor formation. Within 2 months postgrafting, labeled cells were found in the dentate gyrus, where they differentiated into neurons only in the intact region of the granule cell layer. Our results indicate that FGF-2 responsive progenitors can be isolated from the adult hippocampus and that these cells retain the capacity to generate mature neurons when grafted into the adult rat brain.
Article
Full-text available
It has been established that the adult mouse forebrain contains multipotential (neuronal/glial) progenitor cells that can be induced to proliferate in vitro when epidermal growth factor is provided. These cells are found within the subventricular zone of the lateral ventricles, together with other progenitor cell populations, whose requirements for proliferation remain undefined. Using basic fibroblast growth factor (bFGF), we have isolated multipotential progenitors from adult mouse striatum. These progenitors proliferate and can differentiate into cells displaying the antigenic properties of astrocytes, oligodendrocytes, and neurons. The neuron-like cells possess neuronal features, exhibit neuronal electrophysiological properties, and are immunoreactive for GABA, substance P, choline acetyl-transferase, and glutamate. Clonal analysis confirmed the multipotency of these bFGF-dependent cells. Most significantly, subcloning experiments demonstrated that they were capable of self-renewal, which led to a progressive increase in population size over serial passaging. These results demonstrate that bFGF is mitogenic for multipotential cells from adult mammalian forebrain that possess stem cell properties.
Article
Full-text available
Most of the whole-cell calcium current of frog sympathetic neurons is an N-type current, blocked by omega-conotoxin GVIA (omegaCGVIA). Thus, these cells should be an excellent system to study the properties of single N-type channels. However, a channel that is active near -10 mV in isotonic Ba2+, originally identified as "N-type," corresponds more closely to a omegaCGVIA-resistant component of the whole-cell current observed in 100 mM Ba2+. That conclusion would imply that the true single-channel correlate of the macroscopic N-current remains to be identified in frog sympathetic neurons. I report here recordings from cell-attached patches of a calcium channel that activates in the appropriate voltage range (>0 mV, in isotonic Ba2+) and is blocked by omegaCGVIA. This channel has a slope conductance of 20 pS (range, 17-25 pS) and a single-channel current of -1.3 pA at 0 mV. Other channels active in the same voltage range (24 pS, -1.3 pA at 0 mV) were identified as L-type channels because they exhibited long openings after repolarization in the presence of 1 microM Bay K 8644 and were resistant to omegaCGVIA. A third channel type (13-19 pS) was distinguished by current amplitude (-0.6 pA at 0 mV) and strong inactivation at -40 mV. The similarity in slope conductance among these channels demonstrates that distinguishing them requires the consideration of additional properties. The omegaCGVIA-sensitive channel can be identified as an N-type calcium channel.
Article
Full-text available
Ca2+ is an important signal-transduction molecule that plays a role in many intracellular signaling pathways. Recent advances have indicated that in neurons, Ca2+-controlled signaling mechanisms cooperate in order to discriminate amongst incoming cellular inputs. Ca2+-dependent transcriptional events can thereby be made selectively responsive to bursts of synaptic activity of specific intensity or duration.
Article
Full-text available
One of the most versatile and universal signalling agents in the human body is the calcium ion, Ca2+. How does this simple ion act during cell birth, life and death, and how does it regulate so many different cellular processes?
Article
Full-text available
L-type calcium channels regulate a diverse array of cellular functions within excitable cells. Of the four molecularly defined subclasses of L-type Ca channels, two are expressed ubiquitously in the mammalian nervous system (Ca(V)1.2alpha(1) and Ca(V)1.3alpha(1)). Despite diversity at the molecular level, neuronal L-type channels are generally assumed to be functionally and pharmacologically similar, i.e., high-voltage activated and highly sensitive to dihydropyridines. We now show that Ca(V)1.3alpha(1) L-type channels activate at membrane potentials approximately 25 mV more hyperpolarized, compared with Ca(V)1.2alpha(1). This unusually negative activation threshold for Ca(V)1.3alpha(1) channels is independent of the specific auxiliary subunits coexpressed, of alternative splicing in domains I-II, IVS3-IVS4, and the C terminus, and of the expression system. The use of high concentrations of extracellular divalent cations has possibly obscured the unique voltage-dependent properties of Ca(V)1.3alpha(1) in certain previous studies. We also demonstrate that Ca(V)1.3alpha(1) channels are pharmacologically distinct from Ca(V)1.2alpha(1). The IC(50) for nimodipine block of Ca(V)1.3alpha(1) L-type calcium channel currents is 2.7 +/- 0.3 microm, a value 20-fold higher than the concentration required to block Ca(V)1.2alpha(1). The relatively low sensitivity of the Ca(V)1.3alpha(1) subunit to inhibition by dihydropyridine is unaffected by alternative splicing in the IVS3-IVS4 linker. Our results suggest that functional and pharmacological criteria used commonly to distinguish among different Ca currents greatly underestimate the biological importance of L-type channels in cells expressing Ca(v)1.3alpha(1).
Article
Full-text available
Plasticity is a remarkable feature of the brain, allowing neuronal structure and function to accommodate to patterns of electrical activity. One component of these long-term changes is the activity-driven induction of new gene expression, which is required for both the long-lasting long-term potentiation of synaptic transmission associated with learning and memory, and the activity dependent survival events that help to shape and wire the brain during development. We have characterized molecular mechanisms by which neuronal membrane depolarization and subsequent calcium influx into the cytoplasm lead to the induction of new gene transcription. We have identified three points within this cascade of events where the specificity of genes induced by different types of stimuli can be regulated. By using the induction of the gene that encodes brain-derived neurotrophic factor (BDNF) as a model, we have found that the ability of a calcium influx to induce transcription of this gene is regulated by the route of calcium entry into the cell, by the pattern of phosphorylation induced on the transcription factor cAMP-response element (CRE) binding protein (CREB), and by the complement of active transcription factors recruited to the BDNF promoter. These results refine and expand the working model of activity-induced gene induction in the brain, and help to explain how different types of neuronal stimuli can activate distinct transcriptional responses.
Article
Full-text available
Neural stem cells are present both in the developing nervous system and in the adult nervous system of all mammals, including humans. Little is known, however, about the extent to which stem cells in adults can give rise to new neurons. We used immunocytochemistry, electron microscopy, fluorescence microscopy (FM imaging) and electrophysiology to demonstrate that progeny of adult rat neural stem cells, when co-cultured with primary neurons and astrocytes from neonatal hippocampus, develop into electrically active neurons and integrate into neuronal networks with functional synaptic transmission. We also found that functional neurogenesis from adult stem cells is possible in co-culture with astrocytes from neonatal and adult hippocampus. These studies show that neural stem cells derived from adult tissues, like those derived from embryonic tissues, retain the potential to differentiate into functional neurons with essential properties of mature CNS neurons.
Article
Full-text available
Although data from our laboratory and others suggest that nitric oxide (NO) exerts an overall inhibitory action on high-voltage-activated Ca2+ channels, conflicting observations have been reported regarding its effects on N-type channels. We performed whole-cell and cell-attached patch-clamp recordings in IMR32 cells to clarify the functional role of NO in the modulation of N channels of human neuronal cells. During depolarizing steps to +10 mV from V(h) = -90 mV, the NO donor, sodium nitroprusside (SNP; 200 microm), reduced macroscopic N currents by 34% (p < 0.01). The magnitude of inhibition was similar at all voltages tested (range, -40 to +50 mV). No significant inhibition was observed when SNP was applied together with the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide potassium salt (300 microm), or after cell treatment with the guanylate cyclase inhibitor, 1H-[1,2,4] oxadiazole [4,3-a] quinoxalin-1-one (10 microm). 8-bromoguanosine-cGMP (8-Br-cGMP) (400 microm) mimicked the effects of SNP, reducing Ba2+ currents by 37% (p < 0.001). Cell treatment with the protein kinase G (PKG) inhibitor KT5823 (1 microm) or guanosine 3',5'-cyclic monophosphorothioate, 8-(4-chloro-phenylthio)-Rp-isomer, triethylammonium salt (20 microm) virtually abolished the effects of 8-Br-cGMP. At the single-channel level, 8-Br-cGMP reduced the channel open probability by 59% and increased both the mean shut time and the null sweep probability, but it had no significant effects on channel conductance, mean open time, or latency of first openings. These data suggest that NO inhibits N-channel gating through cGMP and PKG. The consequent decrease in Ca2+ influx through these channels may affect different neuronal functions, including neurotransmitter release.
Article
Full-text available
L-type calcium channels couple membrane depolarization in neurons to numerous processes including gene expression, synaptic efficacy, and cell survival. To establish the contribution of L-type calcium channels to various signaling cascades, investigators have relied on their unique pharmacological sensitivity to dihydropyridines. The traditional view of dihydropyridine-sensitive L-type calcium channels is that they are high-voltage-activating and have slow activation kinetics. These properties limit the involvement of L-type calcium channels to neuronal functions triggered by strong and sustained depolarizations. This review highlights literature, both long-standing and recent, that points to significant functional diversity among L-type calcium channels expressed in neurons and other excitable cells. Past literature contains several reports of low-voltage-activated neuronal L-type calcium channels that parallel the unique properties of recently cloned CaV1.3 L-type channels. The fast kinetics and low activation thresholds of CaV1.3 channels stand in stark contrast to criteria currently used to describe L-type calcium channels. A more accurate view of neuronal L-type calcium channels encompasses a broad range of activation thresholds and recognizes their potential contribution to signaling cascades triggered by subthreshold depolarizations.
Article
Full-text available
After brief periods of heightened stimulation, calcium entry through L-type calcium channels leads to activation of the transcription factor cAMP response element-binding protein (CREB) and CRE-dependent transcription. Many of the details surrounding the mechanism by which L-type calcium channels are privileged in signaling to CREB, to the exclusion of other calcium entry pathways, has remained unclear. We hypothesized that the PDZ interaction sequence contained within the last four amino acids of the calcium channel alpha1C (Ca(V)1.2) subunit [Val-Ser-Asn-Leu (VSNL)] is critical for L-type calcium channels (LTCs) to interact with the signaling machinery that triggers activity-dependent gene expression. To disrupt this interaction, hippocampal CA3-CA1 pyramidal neurons were transfected with DNA encoding for enhanced green fluorescent protein tethered to VSNL (EGFP-VSNL). EGFP-VSNL significantly attenuated L-type calcium channel-induced CREB phosphorylation and CRE-dependent transcription, although somatic calcium concentrations after stimulation remained unchanged. The effect of EGFP-VSNL was specific to the actions of L-type calcium channels, because CREB signaling after NMDA receptor stimulation remained intact. The importance of the PDZ interaction sequence was verified using dihydropyridine (DHP)-insensitive alpha1C subunits. Neurons transfected with alpha1C lacking the terminal five amino acids (DHP-LTCnoPDZ) exhibited attenuated CREB responses in comparison with cells expressing the full-length subunit (DHP-LTC). Collectively, these data suggest that localized calcium responses, regulated by interactions with PDZ domain proteins, are necessary for L-type calcium channels to effectively activate CREB and CRE-mediated gene expression.
Article
During mammalian development, electrical activity promotes the calcium-dependent survival of neurons that have made appropriate synaptic connections. However, the mechanisms by which calcium mediates neuronal survival during development are not well characterized. A transcription-dependent mechanism was identified by which calcium influx into neurons promoted cell survival. The transcription factor MEF2 was selectively expressed in newly generated postmitotic neurons and was required for the survival of these neurons. Calcium influx into cerebellar granule neurons led to activation of p38 mitogen-activated protein kinase-dependent phosphorylation and activation of MEF2. Once activated, MEF2 regulated neuronal survival by stimulating MEF2-dependent gene transcription. These findings demonstrate that MEF2 is a calcium-regulated transcription factor and define a function for MEF2 during nervous system development that is distinct from previously well-characterized functions of MEF2 during muscle differentiation.
Article
Intracellular calcium concentration ([Ca2+]i) was measured by use of the fluorescence microscopy with a calcium sensitive dye(FURA-2) in isolated muscle cells of a cricket oval duct. These cells spontaneously contracted in the incubating chamber. Intracellular calcium dynamics was evaluated for the fluorescence images simultaneously represented as cell contraction. It is found that the cell shortening during contraction correlated with the [Ca2+]i rise especially in a tip area of the cell. From this result we confirmed that the calcium inflow at the cell tip firstly induced the sequence of the muscle contraction.
Article
There are remarkable changes of calcium binding proteins and voltage dependent Ca2+ channel subtypes during in vitro differentiation of embryonic stem cell derived neurons. To observe these maturation dependent changes neurones were studied using combined immunohistochemical, patch clamp and videomicroscopic time lapse techniques. Embryonic stem cell derived neuronal maturation proceeds from apolar to bi- and multipolar neurones, expressing all Ca2+ channel subtypes. There is, however, a clear shift in channel contribution to whole cell current from apolar neurones with mainly N- and L-type channel contribution in favour of P/Q- and R-type participation in bi- and multipolar cells. Expression of the calcium binding protein parvalbumin could be detected in bipolar, while calretinin and calbindin was preferentially found in multipolar neurones. Our data provides new insights into fundamental neurodevelopmental mechanisms related to Ca2+ homeostasis, and clarifies contradictory reports on the development of Ca2+ channel expression using primary cultures of neurones already committed to certain brain compartments.
Article
1. The extracellular patch clamp method, which first allowed the detection of single channel currents in biological membranes, has been further refined to enable higher current resolution, direct membrane patch potential control, and physical isolation of membrane patches. 2. A description of a convenient method for the fabrication of patch recording pipettes is given together with procedures followed to achieve giga-seals i.e. pipette-membrane seals with resistances of 10(9) - 10(11) omega. 3. The basic patch clamp recording circuit, and designs for improved frequency response are described along with the present limitations in recording the currents from single channels. 4. Procedures for preparation and recording from three representative cell types are given. Some properties of single acetylcholine-activated channels in muscle membrane are described to illustrate the improved current and time resolution achieved with giga-seals. 5. A description is given of the various ways that patches of membrane can be physically isolated from cells. This isolation enables the recording of single channel currents with well-defined solutions on both sides of the membrane. Two types of isolated cell-free patch configurations can be formed: an inside-out patch with its cytoplasmic membrane face exposed to the bath solution, and an outside-out patch with its extracellular membrane face exposed to the bath solution. 6. The application of the method for the recording of ionic currents and internal dialysis of small cells is considered. Single channel resolution can be achieved when recording from whole cells, if the cell diameter is small (less than 20 micrometer). 7. The wide range of cell types amenable to giga-seal formation is discussed.
Article
Cells of neuronal morphology, expressing the 150- and 200-kDa neurofilament proteins, were generated in vitro from populations of neural cells dissociated from adult (greater than 60-day-old) mouse brain. Most of these neurons arose from dividing precursors, as demonstrated by the incorporation of [3H]thymidine during the culture period and autoradiography. Neuronal production was optimal under the conditions in which precursors were initially stimulated with basic fibroblast growth factor and then exposed to medium conditioned by an astrocytic cell line, Ast-1, in serum-free medium. Few, if any, neurons arose in control cultures or in cultures kept in serum and fibroblast growth factor. These results suggest that neuronal precursors exist in the adult mammalian brain, but they require discrete epigenetic signals for their proliferation and differentiation.
Article
Multipotential CNS stem cells receive and implement instructions governing differentiation to diverse neuronal and glial fates. Exploration of the mechanisms generating the many cell types of the brain depends crucially on markers identifying the stem cell state. We describe a gene whose expression distinguishes the stem cells from the more differentiated cells in the neural tube. This gene was named nestin because it is specifically expressed in neuroepithelial stem cells. The predicted amino acid sequence of the nestin gene product shows that nestin defines a distinct sixth class of intermediate filament protein. These observations extend a model in which transitions in intermediate filament gene expression reflect major steps in the pathway of neural differentiation.
Article
The neuronal response to trauma of the brain and spinal cord was examined by staining sections of injured central nervous system (CNS) with a monoclonal antibody (TuJ1) that recognizes class III beta-tubulin exclusively. Because class III beta-tubulin is expressed by neurons and not by glia, this monoclonal antibody stains neuronal cell bodies, dendrites, axons and axonal terminations darkly with a pale staining background. Thus, the TuJ1 antibody is extremely useful, revealing the fine details of axons and their terminations, as well as significant injury-related alterations in the composition of the somatic cytoskeleton.
Article
Two antisera to glial fibrillary acidic protein from human brain and an antiserum to a 49 k dalton glial filament protein from human brain detected a cross-reacting antigen in the Schwann cells of the olfactory and vomeronasal nerves. The antigen was demonstrated at light- and electron-microscope levels. It was found throughout the cytoplasm and in association with cytoplasmic filaments of olfactory nerve Schwann cells in intact tissue and in Schwann cells grown in vitro. This observation, together with observations on the ultrastructure of olfactory nerve Schwann cells, relates them to central astroglia and to glial cells of the myenteric plexus, rather than to Schwann cells of other peripheral nerves. The unusual properties of olfactory nerve Schwann cells are of interest in relation to the regenerative abilities of the olfactory nerves.
Article
Calcium influx via action potentials in differentiating nerve and muscle is regulated principally by the expression of potassium currents. Transient elevations of intracellular calcium in spontaneously active cells are necessary for normal neuronal development. The mechanisms that connect calcium elevations to long term developmental change are likely to be utilized in the mature nervous system.
Article
Growth medium and substrate regulate the proliferation and differentiation of neural progenitor cells in vitro and the expression of cell type-specific histochemical markers. An important question is whether neural progenitor cells exhibit voltage- and ligand-gated currents, features characteristic of neurons, and whether these currents are regulated differentially by growth conditions. Another issue of interest is whether passaged progenitor cells, after expansion with basic fibroblast growth factor (FGF-2), exhibit the same degree of plasticity as their primary counterparts, or whether they are more committed to a particular phenotype. In primary cultures of embryonic rat hippocampal progenitor cells, growth in proliferative conditions (FGF-2) was associated with low levels of sodium, calcium, N-methyl-D-aspartate (NMDA), and kainate currents compared with other growth conditions. After multiple passages in the continued presence of FGF-2, sodium, calcium, and NMDA, responses declined further; interestingly, kainate and gamma-aminobutyric acid (GABA) responses remained substantial. Moreover, the expression of functional channels and receptors in primary cultures of progenitor cells is up-regulated strongly by growth factors such as BDNF, and NT-3, whereas sodium and calcium currents in passaged cultures respond to such growth conditions to a lesser extent. Kainate and GABA responses were present to a significant extent in passaged cultures, independent of growth condition. We conclude that environmental cues regulate different channels and receptors in distinct ways in neural progenitor cells.
Article
One general signalling mechanism used to transfer the information delivered by agonists into appropriate intracellular compartments involves the rapid redistribution of ionised calcium throughout the cell, which results in transient elevations of the cytosolic free Ca2+ concentration. Various physiological stimuli increase [Ca2+]i transiently and, thereby, induce cellular responses. However, under pathological conditions, changes of [Ca2+]i are generally more pronounced and sustained. Marked elevations of [Ca2+]i activate hydrolytic enzymes, lead to exaggerated energy expenditure, impair energy production, initiate cytoskeletal degradation, and ultimately result in cell death. Such Ca(2+)-induced cytotoxicity may play a major role in several diseases, including neuropathological conditions such as chronic neurodegenerative diseases and acute neuronal losses (e.g. in stroke).
Article
To a certain extent, all cellular, physiological, and pathological phenomena that occur in cells are accompanied by ionic changes. The development of techniques allowing the measurement of such ion activities has contributed substantially to our understanding of normal and abnormal cellular function. Digital video microscopy, confocal laser scanning microscopy, and more recently multiphoton microscopy have allowed the precise spatial analysis of intracellular ion activity at the subcellular level in addition to measurement of its concentration. It is well known that Ca2+ regulates numerous physiological cellular phenomena as a second messenger as well as triggering pathological events such as cell injury and death. A number of methods have been developed to measure intracellular Ca2+. In this review, we summarize the advantages and pitfalls of a variety of Ca2+ indicators used in both optical and nonoptical techniques employed for measuring intracellular Ca2+ concentration.
Article
During mammalian development, electrical activity promotes the calcium-dependent survival of neurons that have made appropriate synaptic connections. However, the mechanisms by which calcium mediates neuronal survival during development are not well characterized. A transcription-dependent mechanism was identified by which calcium influx into neurons promoted cell survival. The transcription factor MEF2 was selectively expressed in newly generated postmitotic neurons and was required for the survival of these neurons. Calcium influx into cerebellar granule neurons led to activation of p38 mitogen-activated protein kinase-dependent phosphorylation and activation of MEF2. Once activated, MEF2 regulated neuronal survival by stimulating MEF2-dependent gene transcription. These findings demonstrate that MEF2 is a calcium-regulated transcription factor and define a function for MEF2 during nervous system development that is distinct from previously well-characterized functions of MEF2 during muscle differentiation.
Article
Neural stem cells exist not only in the developing mammalian nervous system but also in the adult nervous system of all mammalian organisms, including humans. Neural stem cells can also be derived from more primitive embryonic stem cells. The location of the adult stem cells and the brain regions to which their progeny migrate in order to differentiate remain unresolved, although the number of viable locations is limited in the adult. The mechanisms that regulate endogenous stem cells are poorly understood. Potential uses of stem cells in repair include transplantation to repair missing cells and the activation of endogenous cells to provide “self-repair.” Before the full potential of neural stem cells can be realized, we need to learn what controls their proliferation, as well as the various pathways of differentiation available to their daughter cells.
Article
Increases in the intracellular concentration of calcium ([Ca2+]i) activate various signaling pathways that lead to the expression of genes that are essential for dendritic development, neuronal survival, and synaptic plasticity. The mode of Ca2+ entry into a neuron plays a key role in determining which signaling pathways are activated and thus specifies the cellular response to Ca2+. Ca2+ influx through L-type voltage-activated channels (LTCs) is particularly effective at activating transcription factors such as CREB and MEF-2. We developed a functional knock-in technique to investigate the features of LTCs that specifically couple them to the signaling pathways that regulate gene expression. We found that an isoleucine-glutamine (“IQ”) motif in the carboxyl terminus of the LTC that binds Ca2+-calmodulin (CaM) is critical for conveying the Ca2+ signal to the nucleus. Ca2+-CaM binding to the LTC was necessary for activation of the Ras/mitogen-activated protein kinase (MAPK) pathway, which conveys local Ca2+ signals from the mouth of the LTC to the nucleus. CaM functions as a local Ca2+ sensor at the mouth of the LTC that activates the MAPK pathway and leads to the stimulation of genes that are essential for neuronal survival and plasticity.
Article
Nitric oxide (NO) regulates the release of catecholamines from the adrenal medulla but the molecular targets of its action are not yet well identified. Here we show that the NO donor sodium nitroprusside (SNP, 200 microM) causes a marked depression of the single Ca(V)1 L-channel activity in cell-attached patches of bovine chromaffin cells. SNP action was complete within 3-5 min of cell superfusion. In multichannel patches the open probability (NP(o)) decreased by approximately 60 % between 0 and +20 mV. Averaged currents over a number of traces were proportionally reduced and showed no drastic changes to their time course. In single-channel patches the open probability (P(o)) at +10 mV decreased by the same amount as that of multichannel patches (approximately 61 %). Such a reduction was mainly associated with an increased probability of null sweeps and a prolongation of mean shut times, while first latency, mean open time and single-channel conductance were not significantly affected. Addition of the NO scavenger carboxy-PTIO or cell treatment with the guanylate cyclase inhibitor ODQ prevented the SNP-induced inhibition. 8-Bromo-cyclicGMP (8-Br-cGMP; 400 microM) mimicked the action of the NO donor and the protein kinase G blocker KT-5823 prevented this effect. The depressive action of SNP was preserved after blocking the cAMP-dependent up-regulatory pathway with the protein kinase A inhibitor H89. Similarly, the inhibitory action of 8-Br-cGMP proceeded regardless of the elevation of cAMP levels, suggesting that cGMP/PKG and cAMP/PKA act independently on L-channel gating. The inhibitory action of 8-Br-cGMP was also independent of the G protein-induced inhibition of L-channels mediated by purinergic and opiodergic autoreceptors. Since Ca(2+) channels contribute critically to both the local production of NO and catecholamine release, the NO/PKG-mediated inhibition of neuroendocrine L-channels described here may represent an important autocrine signalling mechanism for controlling the rate of neurotransmitter release from adrenal glands.
Article
Alternative splicing is a critical mechanism used extensively in the mammalian nervous system to increase the level of diversity that can be achieved by a set of genes. This review focuses on recent studies of voltage-gated calcium (Ca) channel Ca(v)alpha1 subunit splice isoforms in neurons. Voltage-gated Ca channels couple changes in neuronal activity to rapid changes in intracellular Ca levels that in turn regulate an astounding range of cellular processes. Only ten genes have been identified that encode Ca(v)alpha1 subunits, an insufficient number to account for the level of functional diversity among voltage-gated Ca channels. The consequences of regulated alternative splicing among the genes that comprise voltage-gated Ca channels permits specialization of channel function, optimizing Ca signaling in different regions of the brain and in different cellular compartments. Although the full extent of alternative splicing is not yet known for any of the major subtypes of voltage-gated Ca channels, it is already clear that it adds a rich layer of structural and functional diversity".
Article
Ca(2+) entry through the NMDA subtype of glutamate receptors has the power to determine whether neurons survive or die. Too much NMDA receptor activity is harmful to neurons - but so is too little. Is it a case of too much or too little Ca(2+) influx causing cell death or do other factors, such as receptor location or receptor-associated proteins, play a role? Understanding the mechanisms behind this dichotomous signalling is an important area of molecular neuroscience with direct clinical implications.
Article
Depolarization promotes neuronal survival through moderate increases in Ca(2+) influx, but the effects of survival-promoting depolarization (vs conventional trophic support) on neuronal signaling are poorly characterized. We found that chronic, survival-promoting depolarization, but not conventional trophic support, selectively decreased the somatic Ca(2+) current density in hippocampal and cerebellar granule neurons. Depolarization rearing depressed multiple classes of high-voltage activated Ca(2+) current. Consistent with the idea that these changes also affected synaptic Ca(2+) channels, chronic depolarization presynaptically depressed hippocampal neurotransmission. Six days of depolarization rearing completely abolished glutamate transmission but altered GABA transmission in a manner consistent with the alterations of Ca(2+) current. The continued survival of depolarization-reared neurons was extremely sensitive to the re-establishment of basal culture conditions and was correlated with the effects on intracellular Ca(2+) concentration. Thus, compared with cells reared on conventional trophic factors, depolarization evokes homeostatic changes in Ca(2+) influx and signaling that render neurons vulnerable to cell death on activity reduction.
Article
Previous studies have reported the presence of neuronal progenitors in the subventricular zone (SVZ) and rostral migratory stream (RMS) of the postnatal mammalian brain. Although many studies have examined the survival and migration of progenitors after transplantation and the factors influencing their proliferation or differentiation, no information is available on the electrophysiological properties of these progenitors in a near-intact environment. Thus we performed whole cell and cell-attached patch-clamp recordings of progenitors in brain slices containing either the SVZ or the RMS from postnatal day 15 to day 25 mice. Both regions displayed strong immunoreactivity for nestin and neuron-specific class III beta-tubulin, and recorded cells displayed a morphology typical of the neuronal progenitors known to migrate throughout the SVZ and RMS to the olfactory bulb. Recorded progenitors had depolarized zero-current resting potentials (mean more depolarized than -28 mV), very high input resistances (about 4 GOmega), and lacked action potentials. Using the reversal potential of K+ currents through a cell-attached patch a mean resting potential of -59 mV was estimated. Recorded progenitors displayed Ca2+-dependent K+ currents and TEA-sensitive-delayed rectifying K+ (KDR) currents, but lacked inward K+ currents and transient outward K+ currents. KDR currents displayed classical kinetics and were also sensitive to 4-aminopyridine and alpha-dendrotoxin, a blocker of Kv1 channels. Na+ currents were found in about 60% of the SVZ neuronal progenitors. No developmental changes were observed in the passive membrane properties and current profile of neuronal progenitors. Together these data suggest that SVZ neuronal progenitors display passive membrane properties and an ionic signature distinct from that of cultured SVZ neuronal progenitors and mature neurons.
Article
Signaling from synapse to nucleus is vital for activity-dependent control of neuronal gene expression and represents a sophisticated form of neural computation. The nature of specific signal initiators, nuclear translocators and effectors has become increasingly clear, and supports the idea that the nucleus is able to make sense of a surprising amount of fast synaptic information through intricate biochemical mechanisms. Information transfer to the nucleus can be conveyed by physical translocation of messengers at various stages within the multiple signal transduction cascades that are set in motion by a Ca(2+) rise near the surface membrane. The key role of synapse-to-nucleus signaling in circadian rhythms, long-term memory, and neuronal survival sheds light on the logical underpinning of these signaling mechanisms.
Article
Insulin-like growth factor-1 (IGF-1) promotes the survival of cerebellar granule neurons by enhancing calcium influx through L-type calcium channels, whereas NMDA receptor-mediated calcium influx can lead to excitotoxic death. Here we demonstrate that L and NMDA receptor channel activities differentially regulate the transcription factor C/EBPbeta to control neuronal survival. Specifically, we show that L channel-dependent calcium influx results in increased CaMKIV activity, which acts to decrease nuclear C/EBPbeta levels. Conversely, NMDA receptor-mediated influx rapidly elevates nuclear C/EBPbeta and induces excitotoxic death via activation of the calcium-dependent phosphatase, calcineurin. Moderate levels of AMPA receptor activity stimulate L channels to improve survival, whereas higher levels stimulate NMDA receptors and reduce neuronal survival, suggesting differential synaptic effects. Finally, N-type calcium channel activity reduces survival, potentially by increasing glutamate release. Together, these results show that the L-type calcium channel-dependent survival and NMDA receptor death pathways converge to regulate nuclear C/EBPbeta levels, which appears to be pivotal in these mechanisms.
Article
We have characterized several potential stem cell markers and defined the membrane properties of rat fetal (E10.5) neural stem cells (NSC) by immunocytochemistry, electrophysiology and microarray analysis. Immunocytochemical analysis demonstrates specificity of expression of Sox1, ABCG2/Bcrp1, and shows that nucleostemin labels both progenitor and stem cell populations. NSCs, like hematopoietic stem cells, express high levels of aldehyde dehydrogenase (ALDH) as assessed by Aldefluor labeling. Microarray analysis of 96 transporters and channels showed that Glucose transporter 1 (Glut1/Slc2a1) expression is unique to fetal NSCs or other differentiated cells. Electrophysiological examination showed that fetal NSCs respond to acetylcholine and its agonists, such as nicotine and muscarine. NSCs express low levels of tetrodotoxin (TTX) sensitive and insensitive sodium channels and calcium channels while expressing at least three kinds of potassium channels. We find that gap junction communication is mediated by connexin (Cx)43 and Cx45, and is essential for NSC survival and proliferation. Overall, our results show that fetal NSCs exhibit a unique signature that can be used to determine their location and assess their ability to respond to their environment.
Article
Possible correlation between the effects of electromagnetic fields (EFs) on voltage-gated Ca(2+) channels, cell proliferation and apoptosis was investigated in neural and neuroendocrine cells. Exposure to 50 Hz EFs significantly enhanced proliferation in human neuroblastoma IMR32 (+40%) and rat pituitary GH3 cells (+38%). In IMR32 cells EF stimulation also inhibited puromycin- and H(2)O(2)-induced apoptosis (-22 and -33%, respectively). EF effects on proliferation and apoptosis were counteracted by Ca(2+) channel blockade. In whole-cell patch-clamp experiments 24-72 h exposure to EFs increased macroscopic Ba(2+)-current density in both GH3 (+67%) and IMR32 cells (+40%). Single-channel recordings showed that gating of L and N channels was instead unaffected, thus suggesting that the observed enhancement of current density was due to increased number of voltage-gated Ca(2+) channels. Western blot analysis of plasma membrane-enriched microsomal fractions of GH3 and IMR32 cells confirmed enhanced expression of Ca(2+) channel subunit alpha(1) following exposure to EFs. These data provide the first direct evidence that EFs enhance the expression of voltage-gated Ca(2+) channels on plasma membrane of the exposed cells. The consequent increase in Ca(2+) influx is likely responsible for the EF-induced modulation of neuronal cell proliferation and apoptosis.
Article
Embryonic mouse neural stem cells (NSCs) were isolated from E14 mice, multiplied in medium containing epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) and plated in laminin-coated wells in basic serum-free neurobasal medium. After 7 days in vitro, approximately 20% of the embryonic mouse NSCs developed into morphologically and biochemically fully maturated neurons, with extensive dendrites and multiple synaptic contacts. However, even after 22 days of culture, none of these neurons developed voltage-dependent sodium-channels characteristic for a functional neuron. Apparently, the morphological differentiation and the electrophysiological maturation of an embryonic mouse NSC into a neuron are independently regulated.
Article
A wide variety of in vivo manipulations influence neurogenesis in the adult hippocampus. It is not known, however, if adult neural stem/progenitor cells (NPCs) can intrinsically sense excitatory neural activity and thereby implement a direct coupling between excitation and neurogenesis. Moreover, the theoretical significance of activity-dependent neurogenesis in hippocampal-type memory processing networks has not been explored. Here we demonstrate that excitatory stimuli act directly on adult hippocampal NPCs to favor neuron production. The excitation is sensed via Ca(v)1.2/1.3 (L-type) Ca(2+) channels and NMDA receptors on the proliferating precursors. Excitation through this pathway acts to inhibit expression of the glial fate genes Hes1 and Id2 and increase expression of NeuroD, a positive regulator of neuronal differentiation. These activity-sensing properties of the adult NPCs, when applied as an "excitation-neurogenesis coupling rule" within a Hebbian neural network, predict significant advantages for both the temporary storage and the clearance of memories.
Article
Understanding the cellular mechanisms that characterize the functional changes of the aged brain is an ongoing and formidable challenge for the neuroscience community. Evidence now links changes in Ca(2+) influx and homeostasis with perturbations induced by the aging process in the function of the main intracellular organelles involved in Ca(2+) regulation: the endoplasmic reticulum and mitochondria. New perspectives are also offered by recent gene microarray studies, illustrating the multifactorial nature of the aging process.
Signaling from synapse to nucleus: the logic behind the mechanisms
  • Deisseroth
Regulation of voltage- and ligand-gated currents in rat hippocampal progenitor cells in vitro
  • Sah