Article

Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Poly (ADP-ribose) polymerase (PARP-1), ATM and DNA-dependent protein kinase (DNA-PK) are all involved in responding to DNA damage to activate pathways responsible for cellular survival. Here, we demonstrate that PARP-1−/− cells are sensitive to the ATM inhibitor KU55933 and conversely that AT cells are sensitive to the PARP inhibitor 4-amino-1,8-napthalamide. In addition, PARP-1−/− cells are shown to be sensitive to the DNA-PK inhibitor NU7026 and DNA-PKcs or Ku80 defective cells shown to be sensitive to PARP inhibitors. We believe PARP inhibition results in an increase in unresolved spontaneous DNA single-strand breaks (SSBs), which collapse replication forks and trigger homologous recombination repair (HRR). We show that ATM is activated following inhibition of PARP. Furthermore, PARP inhibitor-induced HRR is abolished in ATM, but not DNA-PK, inhibited cells. ATM and DNA-PK inhibition together give the same sensitivity to PARP inhibitors as ATM alone, indicating that ATM functions in the same pathways as DNA-PK for survival at collapsed forks, likely in non-homologous end joining (NHEJ). Altogether, we suggest that ATM is activated by PARP inhibitor-induced collapsed replication forks and may function upstream of HRR in the repair of certain types of double-strand breaks (DSBs).

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Cancers containing wild-type ATM can be sensitized to PARP inhibitors by ATM inhibitors. For example, the ATM inhibitor KU-55933 increases the sensitivity of Chinese hamster ovary cells (19), colon cancer cells (20), and mantle cell lymphoma cells (21) to PARP inhibitors. ...
... Conversely, cells became hypersensitive to ATMi after PARP1 was deleted ( Fig. 5D; Supplementary Fig. S8D). In agreement with studies in cell lines from other cancers (19)(20)(21), our studies showed that both HeLa and NPC cell lines could be killed by a combination of ATMi and PARPi ( Fig. 2; Supplementary Fig. S2). Significantly, isobologram analysis indicated that the cytotoxic effects of ATMi and PARPi were synergistic rather than simply additive (Figs. ...
Article
PARP inhibitors have emerged as effective chemotherapeutic agents for BRCA1/BRCA2-deficient cancers. Another DNA damage response protein ATM is also increasingly being recognized as a target for synthetic lethality with PARP inhibitors. As ATM functions in both cell cycle arrest and DNA repair after DNA damage, how cells respond to inhibition of ATM and PARP1 is yet to be defined precisely. We found that loss of ATM function, either in an ATM-deficient background or after treatment with ATM inhibitors (KU-60019 or AZD0156), results in spontaneous DNA damage and an increase in PARylation. When PARP1 is also deleted or inhibited with inhibitors (olaparib or veliparib), the massive increase in DNA damage activates the G2 DNA damage checkpoint kinase cascade involving ATR, CHK1/2, and WEE1. Our data indicated that the role of ATM in DNA repair is critical for the synergism with PARP inhibitors. Bypass of the G2 DNA damage checkpoint in the absence of ATM functions occurs only after a delay. The relative insensitivity of PARP1-deficient cells to PARP inhibitors suggested that other PARP isoforms played a relatively minor role in comparison to PARP1 in synergism with ATMi. As deletion of PARP1 also increased sensitivity to ATM inhibitors, trapping of PARP1 on DNA may not be the only mechanism involved in the synergism between PARP1 and ATM inhibition. Collectively, these studies provide a mechanistic foundation for therapies targeting ATM and PARP1.
... We further explored the potential of DDR inhibitors to enhance PARPi antitumor activity. The ataxia-telangiectasia mutated (ATM) kinase is activated in response to DNA DSBs, signals to cell cycle checkpoints and DNA repair pathways, and is reciprocally synthetic lethal with PARP [30]. As previously suggested, we hypothesized that ATM inhibition is a treatment option for PARPi-resistant BRCA1-deficient tumors that restore HRR through loss of TP53BP1 or REV7/MAD2L2 by enabling ATMdependent end resection [17,18]. ...
... A high RAD51 foci score may encourage the use of combination therapies with PARPi, such as those that inhibit HRR [29,36], or that enhance DNA damage [9,37,38]. Here, we propose that a subset of PARPi-resistant gBRCA tumors benefit from combined PARP plus ATM blockade [17,30,39]. Our study unveils coexistence of various mechanisms of PARPi resistance in each individual tumor, such as hypomorphic BRCA1 isoforms together with RAD51 amplification or 53BP1 [40] loss. ...
Article
Full-text available
Background: BRCA1 and BRCA2 (BRCA1/2)-deficient tumors display impaired homologous recombination repair (HRR) and enhanced sensitivity to DNA damaging agents or to poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi). Their efficacy in germline BRCA1/2 (gBRCA1/2)-mutated metastatic breast cancers has been recently confirmed in clinical trials. Numerous mechanisms of PARPi resistance have been described, whose clinical relevance in gBRCA-mutated breast cancer is unknown. This highlights the need to identify functional biomarkers to better predict PARPi sensitivity. Patients and methods: We investigated the in vivo mechanisms of PARPi resistance in gBRCA1 patient-derived tumor xenografts (PDXs) exhibiting differential response to PARPi. Analysis included exome sequencing and immunostaining of DNA damage response proteins to functionally evaluate HRR. Findings were validated in a retrospective sample set from gBRCA1/2-cancer patients treated with PARPi. Results: RAD51 nuclear foci, a surrogate marker of HRR functionality, were the only common feature in PDX and patient samples with primary or acquired PARPi resistance. Consistently, low RAD51 was associated with objective response to PARPi. Evaluation of the RAD51 biomarker in untreated tumors was feasible due to endogenous DNA damage. In PARPi-resistant gBRCA1 PDXs, genetic analysis found no in-frame secondary mutations, but BRCA1 hypomorphic proteins in 60% of the models, TP53BP1-loss in 20% and RAD51-amplification in one sample, none mutually exclusive. Conversely, one of three PARPi-resistant gBRCA2 tumors displayed BRCA2 restoration by exome sequencing. In PDXs, PARPi resistance could be reverted upon combination of a PARPi with an ataxia-telangiectasia mutated (ATM) inhibitor. Conclusion: Detection of RAD51 foci in gBRCA tumors correlates with PARPi resistance regardless of the underlying mechanism restoring HRR function. This is a promising biomarker to be used in the clinic to better select patients for PARPi therapy. Our study also supports the clinical development of PARPi combinations such as those with ATM inhibitors.
... We further explored the potential of DDR inhibitors to enhance PARPi antitumor activity. The ataxia-telangiectasia mutated (ATM) kinase is activated in response to DNA DSBs, signals to cell cycle checkpoints and DNA repair pathways, and is reciprocally synthetic lethal with PARP [30]. As previously suggested, we hypothesized that ATM inhibition is a treatment option for PARPi-resistant BRCA1-deficient tumors that restore HRR through loss of TP53BP1 or REV7/MAD2L2 by enabling ATMdependent end resection [17,18]. ...
... A high RAD51 foci score may encourage the use of combination therapies with PARPi, such as those that inhibit HRR [29,36], or that enhance DNA damage [9,37,38]. Here, we propose that a subset of PARPi-resistant gBRCA tumors benefit from combined PARP plus ATM blockade [17,30,39]. Our study unveils coexistence of various mechanisms of PARPi resistance in each individual tumor, such as hypomorphic BRCA1 isoforms together with RAD51 amplification or 53BP1 [40] loss. ...
Article
Full-text available
BRCA1 and BRCA2 (BRCA1/2)-deficient tumors display impaired homologous recombination repair (HRR) and enhanced sensitivity to DNA damaging agents or to poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi). Their efficacy in germline BRCA1/2 (gBRCA1/2)-mutated metastatic breast cancers has been recently confirmed in clinical trials. Numerous mechanisms of PARPi resistance have been described, whose clinical relevance in gBRCA-mutated breast cancer is unknown. This highlights the need to identify functional biomarkers to better predict PARPi sensitivity. We investigated the in vivo mechanisms of PARPi resistance in gBRCA1 patient-derived tumor xenografts (PDXs) exhibiting differential response to PARPi. Analysis included exome sequencing and immunostaining of DNA damage response proteins to functionally evaluate HRR. Findings were validated in a retrospective sample set from gBRCA1/2-cancer patients treated with PARPi. RAD51 nuclear foci, a surrogate marker of HRR functionality, was the only common feature in PDX and patient samples with primary or acquired PARPi resistance. Consistently, low RAD51 was associated with objective response to PARPi. Evaluation of the RAD51 biomarker in untreated tumors was feasible due to endogenous DNA damage. In PARPi-resistant gBRCA1 PDXs, genetic analysis found no in-frame secondary mutations, but BRCA1 hypomorphic proteins in 60% of the models, TP53BP1-loss in 20% and RAD51-amplification in one sample, none mutually exclusive. Conversely, one of three PARPi-resistant gBRCA2 tumors displayed BRCA2 restoration by exome sequencing. In PDXs, PARPi resistance could be reverted upon combination of a PARPi with an ATM inhibitor. Detection of RAD51 foci in gBRCA tumors correlates with PARPi resistance regardless of the underlying mechanism restoring HRR function. This is a promising biomarker to be used in the clinic to better select patients for PARPi therapy. Our study also supports the clinical development of PARPi combinations such as those with ATM inhibitors.
... Apart from its important role in NHEJ, PARP-1 also engages in other DNA repair mechanisms, such as base excision repair (BER), nucleotide excision repair (NER), DNA mismatch repair (MMR), and maintenance of replication fork stability [22][23][24], regulating cell death in the event of excessive damage. Several studies have indeed reported that an elevated level of PARP-1 expression was observed in UVM and was associated with a shorter overall survival time and disease-free survival time [6,8,25,26]. ...
Article
Full-text available
Background Uveal melanoma (UVM) is the most common primary intraocular tumor in adults, with a median survival of 4–5 months following metastasis. DNA damage response (DDR) upregulation in UVM, which could be linked to its frequent activation of the PI3K/AKT pathway, contributes to its treatment resistance. We have reported that embryonic stem cell microenvironments (ESCMe) can revert cancer cells to less aggressive states through downregulation of the PI3K signaling, showing promise in modulating the DDR of UVM. Methods Since nonhomologous end joining (NHEJ) is the main DNA repair mechanism in UVM, this study utilized gene expression analysis and survival prognosis analysis to investigate the role of NHEJ-related genes in UVM based on public databases. Xenograft mouse models were established to assess the therapeutic potential of ESC transplantation and exposure to ESC-conditioned medium (ESC-CM) on key DNA repair pathways in UVM. Quantitative PCR and immunohistochemistry were used to analyze NHEJ pathway-related gene expression in UVM and surrounding normal tissues. Apoptosis in UVM tissues was evaluated using the TUNEL assay. Results PRKDC, KU70, XRCC5, LIG4 and PARP1 showed significant correlations with UM progression. High expression of PRKDC and XRCC5 predicted poorer overall survival, while low PARP1 and XRCC6 expression predicted better disease-free survival in UVM patients. ESCMe treatment significantly inhibited the NHEJ pathway transcriptionally and translationally and promoted apoptosis in tumor tissues in mice bearing UVM. Furthermore, ESC transplantation enhanced DDR activities in surrounding normal cells, potentially mitigating the side effects of cancer therapy. Notably, direct cell-to-cell contact with ESCs was more effective than their secreted factors in regulating the NHEJ pathway. Conclusions Our results suggest that NHEJ-related genes might serve as prognostic markers and therapeutic targets in UVM. These findings support the therapeutic potential of ESC-based therapy in enhancing UVM sensitivity to radiochemotherapy and improving treatment outcomes while minimizing damage to healthy cells.
... patients, who harbor at least one mutation in HRD-associated genes besides BRCA1/2, are susceptible for PARP inhibition needs to be determined. Furthermore, several HR associated genes (ATM, ATR, NBN, RAD51, RAD53, CHEK1, CHEK2, FANC genes, CDK12, FAM175A and BARD1) have been identified to contribute to synthetic lethality in combination with PARG or PARP inhibitors in vitro [39][40][41][42]. Thus, genes that were frequently mutated in this cohort were evaluated in the following regarding their significance in HR and therapeutic relevance. ...
Article
Full-text available
Deleterious mutations in the BRCA1 and BRCA2 genes have significant therapeutic relevance in clinical settings regarding personalized therapy approaches. BRCA1 and BRCA2 play a pivotal role in homologous recombination (HR) and thus are sensitive for PARP inhibitors (PARPi). Beyond the narrow scope of evaluating only the BRCA mutation status, PARPi can be beneficial for HR deficient (HRD) patients, who harbor mutations in other HR-associated genes. In the present retrospective study, a novel targeted HRD gene panel was validated and implemented for use with FFPE tissue. Samples of patients with ovarian, breast, pancreatic and prostate cancer were included. Variants were robustly detected with various DNA input amounts and the use of test samples showed complete concordance between previously known mutations and HRD panel results. From all the 90 samples included in this cohort, TP53 was the most frequently altered gene (73%). Deleterious BRCA1/2 mutations were found in 20 (22%) of all samples. New pathogenic or likely pathogenic mutations in additional HR-associated genes were identified in 22 (24%) patients. Taken together, the present study proves the feasibility of a new HRD gene panel with reliable panel performance and offers the possibility to easily screen for resistance mutations acquired over treatment time. Mutations in HR-associated genes, besides BRCA1/2, might represent promising potential targets for synthetic lethality approaches. Thus, a substantial number of patients may benefit from expanding the scope of therapeutic agents like PARPi.
... Since ATM is a DDR gene and functions through the phosphorylation of HRR-associated genes, namely ATR , RAD51, FANCD2, RPA2, and BRCA1/2 among others [39][40][41][42][43], we investigated the expression of various HRRassociated genes and γH2AX in ATM-KO NGP and ATM haploinsufficient CHP-134 cells. We observed that the protein levels of FANCD2, RAD51, and ATR, which promote alternative end-joining, DNA damage repair, and cancer cell survival [44,45], were downregulated. ...
Article
Full-text available
Background: Genomic alterations, including loss of function in chromosome band 11q22-23, are frequently observed in neuroblastoma, which is the most common extracranial childhood tumour. In neuroblastoma, ATM, a DNA damage response-associated gene located on 11q22-23, has been linked to tumorigenicity. Genetic changes in ATM are heterozygous in most tumours. However, it is unclear how ATM is associated with tumorigenesis and cancer aggressiveness. Methods: To elucidate its molecular mechanism of action, we established ATM-inactivated NGP and CHP-134 neuroblastoma cell lines using CRISPR/Cas9 genome editing. The knock out cells were rigorously characterized by analyzing proliferation, colony forming abilities and responses to PARP inhibitor (Olaparib). Western blot analyses were performed to detect different protein expression related to DNA repair pathway. ShRNA lentiviral vectors were used to knockdown ATM expression in SK-N-AS and SK-N-SH neuroblastoma cell lines. ATM knock out cells were stably transfected with FANCD2 expression plasmid to over-expressed the FANCD2. Moreover, knock out cells were treated with proteasome inhibitor MG132 to determine the protein stability of FANCD2. FANCD2, RAD51 and γH2AX protein expressions were determined by Immunofluorescence microscopy. Results: Haploinsufficient ATM resulted in increased proliferation (p < 0.01) and cell survival following PARP inhibitor (olaparib) treatment. However, complete ATM knockout decreased proliferation (p < 0.01) and promoted cell susceptibility to olaparib (p < 0.01). Complete loss of ATM suppressed the expression of DNA repair-associated molecules FANCD2 and RAD51 and induced DNA damage in neuroblastoma cells. A marked downregulation of FANCD2 expression was also observed in shRNA-mediated ATM-knockdown neuroblastoma cells. Inhibitor experiments demonstrated that the degradation of FANCD2 was regulated at the protein level through the ubiquitin-proteasome pathway. Reintroduction of FANCD2 expression is sufficient to reverse decreased proliferation mediated by ATM depletion. Conclusions: Our study revealed the molecular mechanism underlying ATM heterozygosity in neuroblastomas and elucidated that ATM inactivation enhances the susceptibility of neuroblastoma cells to olaparib treatment. These findings might be useful in the treatment of high-risk NB patients showing ATM zygosity and aggressive cancer progression in future.
... This promotes transcription and increases accessibility of DNA repair enzymes (Beneke 2012). Few studies have supported the hypothesis that recruitment of PARP1 to the DSB site also helps to target activated ATM to the DSB site that might directly or indirectly regulate the formation of γ-H2AX (Bryant 2006, McCabe 2006. Inhibition of PARP1 activity during early phase of radiation exposure induces delay in the ATM-dependent phosphorylation of γ-H2AX (Haince 2007). ...
... However, in our current studies, KU-55933 and KU-60019 had little or no effect on the Norm-HI-GFP-Sum in response to TA/Sh1, either in the initial screen at 1 M (data not shown) or the follow-up screen at any of the concentrations tested ( Figure 5). These results are consistent with other studies that even the highest concentration used in our current screens, 1 M, is not sufficient to generate a response with either KU-55933 (112) or KU-60019 (113,114). ...
Article
Full-text available
Chromosome instability (CIN) is an early step in carcinogenesis that promotes tumor cell progression and resistance to therapy. Using plasmids integrated adjacent to telomeres, we have previously demonstrated that the sensitivity of subtelomeric regions to DNA double-strand breaks (DSBs) contributes to telomere loss and CIN in cancer. A high-throughput screen was created to identify compounds that affect telomere loss due to subtelomeric DSBs introduced by I-SceI endonuclease, as detected by cells expressing green fluorescent protein (GFP). A screen of a library of 1832 biologically-active compounds identified a variety of compounds that increase or decrease the number of GFP-positive cells following activation of I-SceI. A curated screen done in triplicate at various concentrations found that inhibition of classical nonhomologous end joining (C-NHEJ) increased DSB-induced telomere loss, demonstrating that C-NHEJ is functional in subtelomeric regions. Compounds that decreased DSB-induced telomere loss included inhibitors of mTOR, p38 and tankyrase, consistent with our earlier hypothesis that the sensitivity of subtelomeric regions to DSBs is a result of inappropriate resection during repair. Although this assay was also designed to identify compounds that selectively target cells experiencing telomere loss and/or chromosome instability, no compounds of this type were identified in the current screen.
... The elevated amounts of DSBs are correlated with enhanced cytotoxicity under these conditions. Bryant and Helleday suggested PARP suppression alters endogenous SSB repair, resulting in collapsed DNA replication forks [37]. This study provides some evidence that DSBs are important in temozolomidedependent cytotoxicity in MM cells. ...
Article
Full-text available
Purpose: Poly(ADP-ribose) polymerase 1 (PARP1) is necessary for single-strand break (SSB) repair by sensing DNA breaks and facilitating DNA repair through poly ADP-ribosylation of several DNA-binding and repair proteins. Inhibition of PARP1 results in collapsed DNA replication fork and double-strand breaks (DSBs). Accumulation of DSBs goes beyond the capacity of DNA repair response, ultimately resulting in cell death. This work is aimed at assessing the synergistic effects of the DNA-damaging agent temozolomide (TMZ) and the PARP inhibitor niraparib (Nira) in human multiple myeloma (MM) cells. Materials and methods: MM RPMI8226 and NCI-H929 cells were administered TMZ and/or Nira for 48 hours. CCK-8 was utilized for cell viability assessment. Cell proliferation and apoptosis were detected flow-cytometrically. Immunofluorescence was performed for detecting γH2A.X expression. Soft-agar colony formation assay was applied to evaluate the antiproliferative effect. The amounts of related proteins were obtained by immunoblot. The combination index was calculated with the CompuSyn software. A human plasmacytoma xenograft model was established to assess the anti-MM effects in vivo. The anti-MM activities of TMZ and/or Nira were evaluated by H&E staining, IHC, and the TUNEL assay. Results: The results demonstrated that cotreatment with TMZ and Nira promoted DNA damage, cell cycle arrest, and apoptotic death in cultured cells but also reduced MM xenograft growth in nude mice, yielding highly synergistic effects. Immunoblot revealed that TMZ and Nira cotreatment markedly increased the expression of p-ATM, p-CHK2, RAD51, and γH2A.X, indicating the suppression of DNA damage response (DDR) and elevated DSB accumulation. Conclusion: Inhibition of PARP1 sensitizes genotoxic agents and represents an important therapeutic approach for MM. These findings provide preliminary evidence for combining PARP1 inhibitors with TMZ for MM treatment.
... Although this combination therapy can prolong survival, the prognosis is still poor due to several factors including chemoresistance. Multiple mechanisms appear to be involved in the development of drug resistance in GBM including overexpression of drug efflux transporter pumps such as p-glycoprotein, the presence of a GSC population, a relevant activity of DNA repair mechanisms and dysregulated apotosis processes such as MGMT, the MMR pathway, the base excision repair (BER) pathway and the TP53 pathway (Walker et al., 1992;Bobola et al., 1996;Qian and Brent, 1997;Jaeckle et al., 1998;Chen et al., 1999;Esteller et al., 2000;Middlemas et al., 2000;Paz et al., 2004;Hegi et al., 2005;Helleday et al., 2005;Bryant and Helleday, 2006;Zawlik et al., 2009;van Nifterik et al., 2010;Malmstrom et al., 2012;Reifenberger et al., 2012;Armstrong et al., 2013;Brennan et al., 2013;Wiestler et al., 2013;Wick et al., 2014Wick et al., , 2018Peng et al., 2016;Sun et al., 2018;Gupta et al., 2018;Christmann and Kaina, 2019;Hafner et al., 2019;Mantovani et al., 2019). Tumor/TME interactions also contribute to the development of drug resistance in GBM tumor cells (Hanahan and Weinberg, 2011;Ab and Jn, 2012;Rodriguez-Hernandez et al., 2014;Munoz et al., 2015). ...
Chapter
Full-text available
Gliomas are one of the most lethal types of cancers accounting for ∼80% of all central nervous system (CNS) primary malignancies. Among gliomas, glioblastomas (GBM) are the most aggressive, characterized by a median patient survival of fewer than 15 months. Recent molecular characterization studies uncovered the genetic signatures and methylation status of gliomas and correlate these with clinical prognosis. The most relevant molecular characteristics for the new glioma classification are IDH mutation, chromosome 1p/19q deletion, histone mutations, and other genetic parameters such as ATRX loss, TP53, and TERT mutations, as well as DNA methylation levels. Similar to other solid tumors, glioma progression is impacted by the complex interactions between the tumor cells and immune cells within the tumor microenvironment. The immune system’s response to cancer can impact the glioma’s survival, proliferation, and invasiveness. Salient characteristics of gliomas include enhanced vascularization, stimulation of a hypoxic tumor microenvironment, increased oxidative stress, and an immune suppressive milieu. These processes promote the neuro-inflammatory tumor microenvironment which can lead to the loss of blood-brain barrier (BBB) integrity. The consequences of a compromised BBB are deleteriously exposing the brain to potentially harmful concentrations of substances from the peripheral circulation, adversely affecting neuronal signaling, and abnormal immune cell infiltration; all of which can lead to disruption of brain homeostasis. In this review, we first describe the unique features of inflammation in CNS tumors. We then discuss the mechanisms of tumor-initiating neuro-inflammatory microenvironment and its impact on tumor invasion and progression. Finally, we also discuss potential pharmacological interventions that can be used to target neuroinflammation in gliomas.
... Several upstream target genes and signaling pathways have been shown to influence autophagy-mediated chemoresistance, in addition to directly influencing ATG as indicated above, including DNA-dependent protein kinase catalytic subunit (DNA-PKcs), high mobility group box 1 (HMGB1), high-mobility group nucleosome-binding domain 5 (HMGN5), heat shock protein 90AA1 (HSP90AA1), insulin growth factor 2 (IGF2), and N-myc downstream regulated gene 1 (NDRG1) [533][534][535][536][537]. The induction of autophagy by oxidative stress is thought to contribute to the long-term survival of breast cancer cells by regulating DNA repair via ataxia telangiectasia mutated (ATM), DNA-PKcs, and poly (ADP-ribose) polymerase (PARP)-1 [538,539]. HMGB1 has become a new target for chemotherapy because of its autophagy regulation in response to oxidative stress [540,541]. HMGB1 is a prototypical damage-associated molecular pattern (DAMP) molecule that is released by induced autophagy and enhances treatment resistance in ovarian cancer, colorectal cancer, and lung cancer [470,542]. ...
Article
Full-text available
Simple Summary Chemotherapy resistance is a common occurrence during cancer treatment that cancer researchers are attempting to understand and overcome. Mitochondria are a crucial intracellular signaling core that are becoming important determinants of numerous aspects of cancer genesis and progression, such as metabolic reprogramming, metastatic capability, and chemotherapeutic resistance. Mitophagy, or selective autophagy of mitochondria, can influence both the efficacy of tumor chemotherapy and the degree of drug resistance. Regardless of the fact that mitochondria are well-known for coordinating ATP synthesis from cellular respiration in cellular bioenergetics, little is known its mitophagy regulation in chemoresistance. Recent advancements in mitochondrial research, mitophagy regulatory mechanisms, and their implications for our understanding of chemotherapy resistance are discussed in this review. Abstract Cancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. One of the well-known mechanisms of chemotherapy resistance is the change in the mitochondrial death pathways which occur when cells are under stressful situations, such as chemotherapy. Mitophagy, or mitochondrial selective autophagy, is critical for cell quality control because it can efficiently break down, remove, and recycle defective or damaged mitochondria. As cancer cells use mitophagy to rapidly sweep away damaged mitochondria in order to mediate their own drug resistance, it influences the efficacy of tumor chemotherapy as well as the degree of drug resistance. Yet despite the importance of mitochondria and mitophagy in chemotherapy resistance, little is known about the precise mechanisms involved. As a consequence, identifying potential therapeutic targets by analyzing the signal pathways that govern mitophagy has become a vital research goal. In this paper, we review recent advances in mitochondrial research, mitophagy control mechanisms, and their implications for our understanding of chemotherapy resistance.
... This promotes transcription and increases accessibility of DNA repair enzymes (Beneke 2012). Few studies have supported the hypothesis that recruitment of PARP1 to the DSB site also helps to target activated ATM to the DSB site that might directly or indirectly regulate the formation of γ-H2AX (Bryant 2006;McCabe 2006). Inhibition of PARP1 activity during early phase of radiation exposure induces delay in the ATM-dependent phosphorylation of γ-H2AX (Haince 2007). ...
Chapter
Occupational, accidental, diagnostic, or therapeutic exposure to ionizing radiation (IR) in today’s world is inevitable. Radiation, a known mutagen, can also impart transgenerational effects and lead to life-threatening diseases like cancer, cardiovascular, diabetes, or neurological disorders. Recently, epigenetic effects of radiation exposure are being elaborately studied worldwide. DNA methylation and histone modifications (acetylation, methylation, phosphorylation, and sumoylation)-led chromatin remodeling and subsequent alterations in gene expression pattern are being studied more explicitly in various pathophysiological or stress conditions. Epidrugs can modulate the epigenetic aberrations caused due to radiation or other stress exposure. In this chapter, alteration in epigenome due to radiation exposure and the diseases conditions associated will be discussed along with their possible modification by epidrugs to improve life conditions for postradiotherapy patients.
... Based on the observation that ATM gene alteration resulted in increased sensitivity of cells to PARP inhibition, ATM gene mutation was included as a predictive biomarker for PARPi response in the FDA breakthrough therapy designation. 135,136 It has to be addressed that the ideal predicting factor for PARPi response would be recombination deficiency, which does not exist in practice. ...
Article
Full-text available
Over the last decades, the growing understanding on DNA damage response (DDR) pathways has broadened the therapeutic landscape in oncology. It is becoming increasingly clear that the genomic instability of cells resulted from deficient DNA damage response contributes to the occurrence of cancer. One the other hand, these defects could also be exploited as a therapeutic opportunity, which is preferentially more deleterious in tumor cells than in normal cells. An expanding repertoire of DDR-targeting agents has rapidly expanded to inhibitors of multiple members involved in DDR pathways, including PARP, ATM, ATR, CHK1, WEE1, and DNA-PK. In this review, we sought to summarize the complex network of DNA repair machinery in cancer cells and discuss the underlying mechanism for the application of DDR inhibitors in cancer. With the past preclinical evidence and ongoing clinical trials, we also provide an overview of the history and current landscape of DDR inhibitors in cancer treatment, with special focus on the combination of DDR-targeted therapies with other cancer treatment strategies.
... Upon PARP inhibition, cells accumulate unrepaired spontaneous SSBs, which are converted to DSBs during DNA replication owing to collapsed replication forks. PARP-inhibited cells rely on functional HR to repair these replication-associated DSBs in order to prevent the accumulation of unrepaired lethal DSBs [17][18][19]. Inhibition of PARP activity was shown to be highly cytotoxic to cancer cells with dysfunctional HR due to BRCA1/2 deficiencies [20,21]. Therefore, many PARP inhibitors have been developed and FDA-approved as anti-tumour molecules for various cancers, such as ovarian cancer, with either somatic or germline BRCA1/ 2 mutations [22,23]. ...
Article
Full-text available
Monopolar spindle-one binder (MOBs) proteins are evolutionarily conserved and contribute to various cellular signalling pathways. Recently, we reported that hMOB2 functions in preventing the accumulation of endogenous DNA damage and a subsequent p53/p21-dependent G1/S cell cycle arrest in untransformed cells. However, the question of how hMOB2 protects cells from endogenous DNA damage accumulation remained enigmatic. Here, we uncover hMOB2 as a regulator of double-strand break (DSB) repair by homologous recombination (HR). hMOB2 supports the phosphorylation and accumulation of the RAD51 recombinase on resected single-strand DNA (ssDNA) overhangs. Physiologically, hMOB2 expression supports cancer cell survival in response to DSB-inducing anti-cancer compounds. Specifically, loss of hMOB2 renders ovarian and other cancer cells more vulnerable to FDA-approved PARP inhibitors. Reduced MOB2 expression correlates with increased overall survival in patients suffering from ovarian carcinoma. Taken together, our findings suggest that hMOB2 expression may serve as a candidate stratification biomarker of patients for HR-deficiency targeted cancer therapies, such as PARP inhibitor treatments.
... The tested DDR kinase inhibitors hardly exerted any synergistic effect on olaparib treatment in SUM149PT, a BRCA1-mutated triple-negative breast cancer cell line. Inhibition of PARP activates ATM and homologous recombination-mediated repair of DNA damage (43). ATMdeficient lymphoma cell lines have been reported to be more sensitive to PARP inhibitors than proficient cell lines (27) and depletion of ATM in MCF-7 and ZR-75-1 cell lines resulted in sensitivity to PARP inhibition (32). ...
Article
The poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib has been reported as having preferential anti-proliferative effects on breast cancer 1 (BRCA1)-deficient breast and ovarian cancer cells and was recently approved by the US Food and Drug Administration (FDA) for advanced, BRCA1-mutated ovarian cancer. Herein, we show that BEZ235, a protein kinase inhibitor, enhanced the tumor cell-killing effect of olaparib in BRCA1-mutated breast cancer cells in vitro. BEZ235 reduced olaparib-induced phosphorylation of p53 binding protein 1 (53BP1) and 53BP1 foci formation, as well as phosphorylation of AKT (S473). Long-term colony-formation assay revealed more strong synergistic effects of this combination in SUM149PT and MDA-MB-468 breast cancer cell lines. BEZ235 treatment combined with olaparib may be a candidate for effective therapeutic treatment of BRCA1-mutated breast cancer.
... Considering the evidence that p53 mutations at diagnosis are rare, but abnormalities of the p53/MDM2/p14ARF pathway are common in relapsed neuroblastomas [58][59][60], DDR deficiency along with p53-related pathway abnormalities may contribute to the pathogenesis of unfavorable neuroblastomas, as they do in other tumors. Notably, disruption of ATM activity causes increased sensitivity to poly-ADP ribose polymerase (PARP) [61][62][63], and the effect was further enhanced in the presence of p53 deficiency [64]. These observations were related to the idea of synthetic lethal interactions, which were first demonstrated in breast and ovarian cancers harboring mutated BRCA1/2 that were extremely sensitive to PARP inhibitors [65,66]. ...
Article
Full-text available
Unrestrained proliferation is a common feature of malignant neoplasms. Targeting the cell cycle is a therapeutic strategy to prevent unlimited cell division. Recently developed rationales for these selective inhibitors can be subdivided into two categories with antithetical functionality. One applies a “brake” to the cell cycle to halt cell proliferation, such as with inhibitors of cell cycle kinases. The other “accelerates” the cell cycle to initiate replication/mitotic catastrophe, such as with inhibitors of cell cycle checkpoint kinases. The fate of cell cycle progression or arrest is tightly regulated by the presence of tolerable or excessive DNA damage, respectively. This suggests that there is compatibility between inhibitors of DNA repair kinases, such as PARP inhibitors, and inhibitors of cell cycle checkpoint kinases. In the present review, we explore alterations to the cell cycle that are concomitant with altered DNA damage repair machinery in unfavorable neuroblastomas, with respect to their unique genomic and molecular features. We highlight the vulnerabilities of these alterations that are attributable to the features of each. Based on the assessment, we offer possible therapeutic approaches for personalized medicine, which are seemingly antithetical, but both are promising strategies for targeting the altered cell cycle in unfavorable neuroblastomas.
... Furthermore, for patients with HRD, PARPi used in the populations of ERCC1 or BRCA deficient cancers, might potentiate their therapeutic effects by regulating the signal pathway related to antitumor immunity [39,40]. ATM (ataxia telangiectasia mutated) promoted survival by decreasing sensitivity to PARP inhibition AGING and playing a role upstream of homologous recombination repair in the repair of certain types of double-strand breaks [41]. PARP inhibitors had a significant killing effect on many cancers with ATM deficient [42][43][44][45]. ...
Article
Full-text available
Objective: To evaluate the efficacy of poly ADP ribose polymerase (PARP) inhibitors (PARPis) in breast and ovarian cancer with BRCA (BReast CAncer susceptibility gene) mutation (BRCAm). Methods: We conducted a meta-analysis of randomized controlled, phase II or III trials by searching of electronic databases from inception to September 1, 2020. The efficacy of PARPis measured by hazard ratios (HRs) and 95% confidence intervals (95% CIs) for progression free survival (PFS) and overall survival (OS) of patients. Results: By addition of PARPis to conventional therapy, breast or ovarian cancer patients carrying BRCAm significantly benefited PFS (breast cancer: HR 0.64, 95% CI=0.55-0.75, P<0.001; ovarian cancer: HR 0.33, 95% CI=0.27-0.42, P<0.001), but OS of patients did not increase significantly in these two cancer types (breast cancer: HR 0.87, 95% CI=0.76-1.01, P=0.065; ovarian cancer: HR 0.78, 95% CI=0.61-1.01, P=0.058). For ovarian cancer patients carrying BRCAm, the use of therapy with PARPis yielded longer PFS at the stage of newly diagnosed than the stage of recurrence (22.5 months vs 9.6 months). Conclusion: PARPis were beneficial to all with BRCAm, but they were "most" beneficial to the ovarian cancer subset when administered early after diagnosis, rather than after recurrence.
... However, the importance of PARP1 to these pathways is not completely clear (8,20). PARP1 inhibition triggers the activation of ataxia-telangiectasia-mutated kinase (ATM) (21) and is also implicated in the alternative or back up pathway for the NHEJ, which involves key factors of SSBR such as XRCC1, DNA ligase 3, and FEN1, as well as DSB repair proteins (8,11). ...
Article
Full-text available
Selective trapping of human topoisomerase 1 (Top1) on the DNA (Top1 cleavage complexes; Top1cc) by specific Top1-poisons triggers DNA breaks and cell death. Poly(ADP-ribose) polymerase 1 (PARP1) is an early nick sensor for trapped Top1cc. New mechanistic insights have been developed in recent years to rationalize the importance of PARP1 beyond the repair of Top1-induced DNA breaks. This review summarizes the progress in the molecular mechanisms of trapped Top1cc-induced DNA damage, PARP1 activation at DNA damage sites, PAR-dependent regulation of Top1 nuclear dynamics, and PARP1-associated molecular network for Top1cc repair. Finally, we have discussed the rationale behind the synergy between the combination of Top1 poison and PARP inhibitors in cancer chemotherapies, which is independent of the ‘PARP trapping’ phenomenon.
... Thus, it engages in such DNA repair mechanisms as base excision repair (BER), nucleotide excision repair (NER), DNA mismatch repair (MMR), and maintenance of replication fork stability [11]. It also participates in non-homologous end-joining and homologous recombination-pathways that ensure the repair of DNA double-strand breaks [12,13]. At moderate levels of DNA damage, PARP-1 activation results in cleavage of PARP-1 by caspases into two fragments, which is a hallmark of apoptosis and might modulate the apoptotic process [14]. ...
Article
Full-text available
Background: Uveal melanoma is the most common primary intraocular malignancy in adults. In advanced cases, the prognosis is very poor. Thus far, no effective methods of pharmacotherapy of this cancer have been found. The aim of the study was to evaluate the expression of PARP-1, the best-known member of the family of poly(ADP-ribose) polymerases, in uveal melanoma and its associations with clinicopathological parameters, overall survival, and disease-free survival. Methods: The study included 91 patients who underwent enucleation due to uveal melanoma. PARP-1 expression was assessed by immunohistochemistry. Results: High PARP-1 expression was associated with more frequent chromosome 3 loss, higher histopathological grade, bigger tumor size, and absence of intrascleral extension. High PARP-1 expression was associated with shorter overall survival time and disease-free survival time. Conclusions: The above findings indicate that high expression of PARP-1 can be considered as an unfavorable prognostic factor in uveal melanoma.
... BTC patients with mutations in the DNA repair pathways are candidates for targeted therapy, such as specific DNA repair inhibitors or immune checkpoint inhibitors. ATM is required to repair DNA after PARP inhibition (17,18). In a phase II study of paclitaxel with or without olaparib for advanced gastric cancer, subjects in the ATM-low subgroup had improved OS (19). ...
Article
Background/aim: Biliary tract cancer (BTC) has a poor prognosis due to its highly invasive and metastatic potential. Ataxia-telangiectasia mutated (ATM) is a key regulator of DNA damage response and an emerging therapeutic target; however, the association between the expression of ATM and the prognosis in advanced BTC is unknown. We aimed to identify the relationship between ATM expression, clinicopathological characteristics, and survival outcomes in patients with advanced BTC. Patients and methods: We analyzed 113 patients with advanced BTC who received first-line gemcitabine and platinum. Results: The tumor location was intrahepatic cholangiocarcinoma (IH-CCC) in 43 patients, extrahepatic cholangiocarcinoma (EH-CCC) in 49, and gallbladder (GB) cancer in 21 patients. Fifty-four patients (47.8%) exhibited loss of ATM protein expression. The overall response rate (ORR) of ATM loss and intact ATM was 13.3% and 19.6%, respectively. In a subgroup analysis, EH-CCC patients with ATM loss tended to have improved PFS after platinum-based chemotherapy compared to those with intact ATM (7.9 vs. 6.2 months, respectively; p=0.050). Conclusion: We demonstrated that ATM loss could be a prognostic marker after platinum-based chemotherapy in patients with advanced EH-CCC.
... It has become clear that any form of HR deficiency in tumors that phenocopies BRCA1/2 mutations, often referred to as BRCAness, may sensitize cells to PARP inhibitors (62). Indeed mutations in DNA damage response genes such as ATM, PRKDC, ATR, RPA1, DSS1, NBN, RAD51, RAD54, CHEK1, CHEK2, FANC genes, ERCC1, POLB, FEN1, and CDK12 have shown synthetic lethality in combination with PARP inhibitors (63)(64)(65)(66)(67). ...
Article
Full-text available
Introduction Intrahepatic cholangiocarcinoma (ICC) is a rare hepatobiliary cancer characterized by a poor prognosis and a limited response to conventional therapies. Currently chemotherapy is the only therapeutic option for patients with Stage IV ICC. Due to the poor response rate, there is an urgent need to identify novel molecular targets to develop novel effective therapies. Precision oncology tests utilizing targeted next-generation sequencing (NGS) platforms have rapidly entered into clinical practice. Profiling the genome and transcriptome of cancer to identify potentially targetable oncogenic pathways may guide the clinical care of the patient. Case presentation We present a 56-year-old male patient affected with metastatic ICC, whose cancer underwent several precision oncology tests by different NGS platforms. A novel BAP1 mutation (splice site c.581-17_585del22) and a RAD21 amplification were identified by a commercial available platform on a metastatic lesion. No germline BAP1 mutations were identified. Several lines of evidences indicate that PARP inhibitor administration might be an effective treatment in presence of BAP1 and/or RAD21 alterations since both BAP1 and RAD21 are involved in the DNA repair pathway, BAP1 interacts with BRCA1 and BRCA1-mediated DNA repair pathway alterations enhance the sensitivity to PARP inhibitor administration. In this case, after failing conventional therapies, patient was treated with PARP inhibitor olaparib. The patient had a partial response according to RECIST criteria with an overall survival of 37.2 months from the time of diagnosis of his ICC. Following 11.0 months on olaparib treatment, sustained stable disease control is ongoing. The patient is still being treated with olaparib and no significant toxicity has been reported. Conclusion These findings have clinical relevance since we have shown PARP inhibitor as a potential treatment for ICC patients harboring BAP1 deletion and RAD21 amplification. We have also highlighted the utility of NGS platforms to identify targetable mutations within a cancer.
... Although this combination therapy can prolong survival, the prognosis is still poor due to several factors including chemoresistance. Multiple mechanisms appear to be involved in the development of drug resistance in GBM including overexpression of drug efflux transporter pumps such as p-glycoprotein, the presence of a GSC population, a relevant activity of DNA repair mechanisms and dysregulated apotosis processes such as MGMT, the MMR pathway, the base excision repair (BER) pathway and the TP53 pathway (Walker et al., 1992;Bobola et al., 1996;Qian and Brent, 1997;Jaeckle et al., 1998;Chen et al., 1999;Esteller et al., 2000;Middlemas et al., 2000;Paz et al., 2004;Hegi et al., 2005;Helleday et al., 2005;Bryant and Helleday, 2006;Zawlik et al., 2009;van Nifterik et al., 2010;Malmstrom et al., 2012;Reifenberger et al., 2012;Armstrong et al., 2013;Brennan et al., 2013;Wiestler et al., 2013;Wick et al., 2014Wick et al., , 2018Erasimus et al., 2016;Peng et al., 2016;Sun et al., 2018;Gupta et al., 2018;Zhang et al., 2018;Christmann and Kaina, 2019;Hafner et al., 2019;Mantovani et al., 2019). Tumor/TME interactions also contribute to the development of drug resistance in GBM tumor cells (Hanahan and Weinberg, 2011;Ab and Jn, 2012;Rodriguez-Hernandez et al., 2014;Munoz et al., 2015). ...
Article
Full-text available
Glioblastoma (GBM) is the most frequent and aggressive primary central nervous system tumor. Surgery followed by radiotherapy and chemotherapy with alkylating agents constitutes standard first-line treatment of GBM. Complete resection of the GBM tumors is generally not possible given its high invasive features. Although this combination therapy can prolong survival, the prognosis is still poor due to several factors including chemoresistance. In recent years, a comprehensive characterization of the GBM-associated molecular signature has been performed. This has allowed the possibility to introduce a more personalized therapeutic approach for GBM, in which novel targeted therapies, including those employing tyrosine kinase inhibitors (TKIs), could be employed. The GBM tumor microenvironment (TME) exerts a key role in GBM tumor progression, in particular by providing an immunosuppressive state with low numbers of tumor-infiltrating lymphocytes (TILs) and other immune effector cell types that contributes to tumor proliferation and growth. The use of immune checkpoint inhibitors (ICIs) has been successfully introduced in numerous advanced cancers as well as promising results have been shown for the use of these antibodies in untreated brain metastases from melanoma and from non-small cell lung carcinoma (NSCLC). Consequently, the use of PD-1/PD-L1 inhibitors has also been proposed in several clinical trials for the treatment of GBM. In the present review, we will outline the main GBM molecular and TME aspects providing also the grounds for novel targeted therapies and immunotherapies using ICIs for GBM.
... Therefore, further research is warranted to fully understand whether the genomic and proteomic profiles of HCT116 cells [32] are significant in this enhanced therapeutic response to paclitaxel and olaparib combined treatment. In addition, since paclitaxel can also cause DNA single-strand breaks (SSBs) [39][40][41], deficient SSB repair due to PARP inhibition may induce the accumulation of paclitaxel-induced SSBs which are eventually converted to disastrous DNA double-strand breaks (DSBs) during DNA replication [42]. Inefficient homologous recombination DSB repair mechanism owing to a possible BRCA2 mutation in HCT116 cells [32] may also explain why the paclitaxel-olaparib treatment induces more DNA damage and less clonogenic survival of HCT116 cells. ...
... As previously mentioned, experimental evidence indicates that PARP inhibitors can also have a therapeutic role in lymphomas (Table 1). Several data have shown that cells in which the ATM gene is altered by genetic modification, siRNA interference or chemical inhibition display an increased sensitivity to PARP inhibition [164][165][166][167]. PARP inhibitors showed preferential in vitro and in vivo activity in MCL or CLL cells with ATM deficiency [83,164,168,169]. ...
Article
Full-text available
The DNA damage response (DDR) is a well-coordinated cellular network activated by DNA damage. The unravelling of the key players in DDR, their specific inactivation in different tumor types and the synthesis of specific chemical inhibitors of DDR represent a new hot topic in cancer therapy. In this article, we will review the importance of DDR in lymphoma development and how this can be exploited therapeutically. Specifically, we will focus on CHK1, WEE1, ATR, DNA-PK and PARP inhibitors, for which preclinical data as single agents or in combination has been accumulating, fostering their clinical development. The few available clinical data on these inhibitors will also be discussed.
... Alan and D'Andrea (2010) delineated that tumors with BRCA1/2 mutations depend to a large degree on the Base Excision Repair (BER), and the enzyme Poly-ADP ribose polymerase 1 (PARP1) is critical for BER process. Thus, tumors defectives in homologous recombination genes (such as FA-BRCA genes) are also hypersensitive to PARP inhibitors (Bryant and Helleday, 2006;Fong et al., 2009), expanding the utility of this class of drugs to non BRCA1-mutated patients (Edwards et al., 2008). Gao et al. (2013) observed that BRCA1 upregulation is associated with DNA repair-mediated resistance to cisplatin, and that BRCA1 downregulation confers resistance to taxanes, such as docetaxel and paclitaxel. ...
... Indeed, siRNA depletion of other proteins involved in the Nicholas R. Jette and Suraj Radhamani contributed equally. cellular response to DSBs, including Ataxia Telangiectasia Mutated (ATM), also sensitized cancer cells to PARP inhibition (McCabe et al. 2006;Bryant and Helleday 2006). ...
Article
Full-text available
The Ataxia Telangiectasia Mutated (ATM) protein kinase is mutated in several human cancers, presenting potential opportunities for targeted cancer therapy. We previously reported that the poly-ADP-ribose polymerase (PARP) inhibitor olaparib induces transient G2 arrest but not cell death in ATM-deficient lung cancer cells, while the combination of olaparib with the ATM- and Rad3-related (ATR) inhibitor VE-821 induced cell death. Here, we show that combination of olaparib plus the clinically relevant ATR inhibitor AZD6738 also induces cell death in ATM-deficient lung, prostate and pancreatic cancer cells with little effect on their ATM-proficient counterparts. Together, our data suggest that lung, prostate and pancreatic patients whose tumours exhibit loss or inactivation of ATM may benefit from combination of a PARP inhibitor plus an ATR inhibitor.
... BRCA1 and 2 play important roles in the detection and repair of DNA double strand breaks (DSBs) through the Homologous Recombination (HR) repair pathway 13 , leading to the idea that cells with deficiency in DSB repair pathways may be sensitive to PARP inhibitors. Indeed, siRNA depletion of other proteins involved in the cellular response to DSBs, including Ataxia Telangiectasia Mutated (ATM), also sensitized cancer cells to PARP inhibition 14,15 . ...
Preprint
Full-text available
Background The ataxia telangiectasia mutated (ATM) protein kinase is mutated in several human cancers, presenting potential opportunities for targeted cancer therapy. We previously reported that the poly-ADP ribose polymerase (PARP) inhibitor olaparib induced transient G2 arrest but not cell death in ATM-deficient A549 lung cancer cells, while the combination of olaparib with the ATM-, Rad3-related (ATR) inhibitor VE-821 induced cell death. Here, we show that the clinically relevant ATR inhibitor, AZD6738, sensitizes ATM-deficient A549 lung, prostate and pancreatic cancer cells to olaparib. Methods ATM was depleted from A549 lung cancer cells, PC-3 prostate cancer cells and Panc 10.05 pancreatic cancer cells, and the effects of olaparib alone and in combination with AZD6738 were determined. Results The combination of olaparib plus AZD6738 induced cell death in ATM-deficient lung, prostate and pancreatic cancer cells with little effect on their ATM-proficient counterparts. Conclusions Lung, prostate and pancreatic patients whose tumours exhibit loss or inactivation of ATM may benefit from combination of a PARP inhibitor plus an ATR inhibitor.
... Simultaneously, PARP1/2 seems to inhibit the NHEJ pathway by inactivating DNA-PKcs and the activity of ATM's checkpoint. Although PARP's overall contribution to the canonical NHEJ pathway is still uncertain, collectively, PARP's actions can affect which DSB repair pathway is selected (Brenner et al. 2011;Bryant and Helleday 2006). Step (1) illustrates the non-DNA bound state of PARP1. ...
Thesis
Full-text available
DNA double-stranded breaks (DSBs) are the most toxic types of DNA lesions. Cells have several strategies to repair such lesions that can be grouped into end-protection and end-resection coupled mechanisms. To study the DNA DSB choices in-vitro, we developed and employed Color-Assay-Tracing-Repair (CAT-R) as a dual-fluorescence reporter taking advantage of the highly efficient CRISPR/Cas9 system to induce DSBs. We can distinguish point-mutations (InDels) from large-deletions/insertions in-vitro and quantify simultaneously the rates of NHEJ vs end-resection based DNA repair. We combined this system with high-throughput flow cytometry and studied the DNA DSB repair choices. On the one hand, we evaluated the efficiency and potency of 26 different pharmacological compounds, that are currently in clinical/preclinical studies targeting ATM, DNA-PK, ATR, and PARP, and we identify key differences in the way these compounds engage to DNA DSB repair choice. On the other hand, in order to find new players that can regulate the choice between end-protection and end-resection we performed a custom designed CRISPR/Cas9 arrayed genetic screen with CAT-R and evaluated the functions of 420 individual DNA repair components. For this, we developed a highly efficient transfection platform for arrayed CRISPR/Cas9 screens based on solid phase transfection with synthetic gRNA:tracrRNA complexes. In addition to known components of DNA DSBs we uncovered novel molecules that can tip the balance of the DNA DSB repair choice either towards end-protection or end-resection. In summary, CAT-R can be used to assess the functions of DNA DSB repair components in genetic/chemical screens in a variety of mammalian cells.
... Since this first example of synthetic lethality between genetic defects and PARP inhibitors, it has become clear that oxidative stress and genomic instability, manifested not just through mutations in DNA repair proteins but also replication stress, sensitize cells to PARP and PARG inhibitors (Bryant et al. 2005;Farmer et al. 2005;McCabe et al. 2006;Bunting et al. 2010;Ashworth 2012, 2017;McLellan et al. 2012;Murai et al. 2012;Dréan et al. 2016;Gravells et al. 2017;Zimmermann et al. 2018;Chen and Yu 2019;Giovannini et al. 2019;Pillay et al. 2019). In addition to BRCA1/2, mutations in DNA damage response genes such as ATM, PRKDC, ATR, RPA1, DSS1, NBN, RAD51, RAD54, CHEK1, CHEK2, FANC genes, ERCC1, POLB, FEN1, and CDK12 have shown synthetic lethality in combination with PARP inhibitors (Bryant and Helleday 2006;McCabe et al. 2006;Murai et al. 2012;Postel-Vinay et al. 2013;Bajrami et al. 2014). Synthetic lethality between mutations in HR-related genes and PARP inhibition was confirmed by CRISPR screens, which enable high-throughput investigation of synthetic lethal interactions . ...
Article
Full-text available
Oxidative and replication stress underlie genomic instability of cancer cells. Amplifying genomic instability through radiotherapy and chemotherapy has been a powerful but nonselective means of killing cancer cells. Precision medicine has revolutionized cancer therapy by putting forth the concept of selective targeting of cancer cells. Poly(ADP-ribose) polymerase (PARP) inhibitors represent a successful example of precision medicine as the first drugs targeting DNA damage response to have entered the clinic. PARP inhibitors act through synthetic lethality with mutations in DNA repair genes and were approved for the treatment of BRCA mutated ovarian and breast cancer. PARP inhibitors destabilize replication forks through PARP DNA entrapment and induce cell death through replication stress-induced mitotic catastrophe. Inhibitors of poly(ADP-ribose) glycohydrolase (PARG) exploit and exacerbate replication deficiencies of cancer cells and may complement PARP inhibitors in targeting a broad range of cancer types with different sources of genomic instability. Here I provide an overview of the molecular mechanisms and cellular consequences of PARP and PARG inhibition. I highlight clinical performance of four PARP inhibitors used in cancer therapy (olaparib, rucaparib, niraparib, and talazoparib) and discuss the predictive biomarkers of inhibitor sensitivity, mechanisms of resistance as well as the means of overcoming them through combination therapy.
... PARPis are a new class of oncology drugs that are transforming the management of EOC (4). PARPis exert anti-cancer properties by trapping PARP on DNA at the sites of single-strand breaks, which leads to DNA repair defects and the generation of DNA DSBs that require homologous recombination (HR) mediated by BRCA1, BRCA2 and other proteins (such as ATM, ATR, RAD51, CHK1 and FANCA) (5)(6)(7). Therefore, BRCA1/2 mutant or HR-deficient cells are exceptionally sensitive to PARP inhibition (7)(8)(9), and the combination of two genetic deficiencies (e.g., BRCA1/2 and PARP) leads to synthetic lethality in cancer cells. Based on the promising clinical efficacy and the manageable toxicity profile of PARPis in patients with advanced EOC (10-13), three PARPis (olaparib, rucaparib and niraparib) were approved by the U.S. Food and Drug Administration, either as a monotherapy (olaparib and rucaparib) for women with heavily pretreated germline BRCA-mutated (gBRCAm) EOC or as a maintenance therapy (olaparib, rucaparib and niraparib) for women with platinum-sensitive recurrent EOC regardless of BRCA or HR-deficiency (HRD) status. ...
Article
Full-text available
The promise of poly(ADP-ribose) polymerase inhibitors (PARPis) in the management of epithelial ovarian cancer (EOC) is hampered by the limited clinical activity against BRCA wild-type or homologous recombination-proficient EOC. In order to decrease the resistance and increase the efficacy of PARPis, combination treatments of pharmacological ascorbate and PARPis in preclinical BRCA wild-type EOC models were investigated. The cytotoxicity of pharmacological ascorbate, olaparib and veliparib in a panel of BRCA1/2 wild-type EOC cell lines were measured using MTT assays. Poly(ADP-ribose) levels were quantified using chemiluminescent ELISA. The expression of proteins involved in DNA damage and DNA double-strand breaks (DSBs) repair pathways were assessed by western blotting. The in vivo efficacy of pharmacological ascorbate, olaparib and their combination was evaluated in an intraperitoneal xenograft mouse model of BRCA1/2 wild-type EOC. Pharmacological ascorbate induced H2O2-dependent cytotoxicity in BRCA1/2 wild-type EOC cells. SHIN3 and OVCAR5 cells were resistant to olaparib and veliparib treatment; however, the combination of ascorbate with olaparib or veliparib significantly enhanced cell death. Pharmacological ascorbate enhanced the effects olaparib or veliparib by downregulating the expression of BRCA1, BRCA2 and RAD51. Consequently, the combination of pharmacological ascorbate and olaparib potently enhanced DNA DSBs and significantly decreased tumor burden, ascites volume and the number of tumor cells in ascites in mice bearing BRCA1/2 wild-type ovarian cancer xenografts. The combination of pharmacological ascorbate and PARPis may be a promising therapeutic approach worth clinical investigation in patients with BRCA wild-type or PARPi-resistant EOC.
... Secondly, as cells employ HR proteins in response to compromised replication forks following PARP inhibition [36,37], we tested responses of PML knockout cells to the FDA-approved PARP inhibitor olaparib at concentrations of 0.1, 1 and 10 μM (Fig. 6b). Analogously to the effects of DNA-PK inhibition, the otherwise unchallenged, proliferating PML knockout cells were also more sensitive to such 7-day (a) Proliferating BJ cells were irradiated with 10 Gy and left to recover for 24 h and 6 d. ...
Article
The bulk of DNA damage caused by ionizing radiation (IR) is generally repaired within hours, yet a subset of DNA lesions may persist even for long periods of time. Such persisting IR-induced foci (pIRIF) co-associate with PML nuclear bodies (PML-NBs) and are among the characteristics of cellular senescence. Here we addressed some fundamental questions concerning the nature and determinants of this co-association, the role of PML-NBs at such sites, and the reason for the persistence of DNA damage in human primary cells. We show that the persistent DNA lesions are devoid of homologous recombination (HR) proteins BRCA1 and Rad51. Our super-resolution microscopy-based analysis showed that PML-NBs are juxtaposed to and partially overlap with the pIRIFs. Notably, depletion of 53BP1 resulted in decreased intersection between PML-NBs and pIRIFs implicating the RNF168-53BP1 pathway in their interaction. To test whether the formation and persistence of IRIFs is PML-dependent and to investigate the role of PML in the context of DNA repair and senescence, we genetically deleted PML in human hTERT-RPE-1 cells. Unexpectedly, upon high-dose IR treatment, cells displayed similar DNA damage signalling, repair dynamics and kinetics of cellular senescence regardless of the presence or absence of PML. In contrast, the PML knock-out cells showed increased sensitivity to low doses of IR and DNA-damaging agents mitomycin C, cisplatin and camptothecin that all cause DNA lesions requiring repair by HR. These results, along with enhanced sensitivity of the PML knock-out cells to DNA-PK and PARP inhibitors implicate PML as a factor contributing to HR-mediated DNA repair.
... Ataxia telangiectasia mutated (ATM) protein is a well-established kinase that is activated upon occurrence of DNA DSBs [46]. In addition, it has been shown that ATM protein activation and γH2AX foci formation, indicative of DSBs, increase upon PARP inhibition [47][48][49]. The results showed a significant increase in the phosphorylation of ATM (Ser1981), indicating its activation, in combination treatments of crizotinib and PARP inhibitors. ...
Article
Full-text available
High-grade serous ovarian cancer (HGSOC) is the predominant and most lethal histological type of epithelial ovarian cancer. During the last few years, several new treatment options with PARP inhibitors have emerged. The FDA has approved the PARP inhibitor olaparib (Lynparza™) as maintenance treatment after first-line platinum-containing chemotherapy and olaparib, niraparib (Zejula™) and rucaparib (Rubraca™) are approved as maintenance therapies in the recurrent, platinum-sensitive setting; nevertheless, development of resistance limits their efficacy. In this study, new combinatorial treatment strategies targeting key signaling pathways were explored to enhance the activity of PARP inhibitors in HGSOC. Carboplatin, olaparib, niraparib, the PI3K inhibitor LY294002 and the c-Met inhibitor crizotinib were used for this investigation. PARP inhibitors and carboplatin alone and in combination caused accumulation of DNA double-strand breaks and G2/M cell cycle arrest. In contrast, crizotinib alone or in combination with PARP inhibitors induced accumulation of cells in sub-G1. Crizotinib together with either of the PARP inhibitors was more strongly synergistic than combinations with a PARP inhibitor and carboplatin or the PI3K inhibitor. Sequential combination of crizotinib and a PARP inhibitor resulted in activation of ATM/CHK2 and inhibition of c-Met pathways, contributing to a decrease in RAD51 levels and induction of caspase-3 dependent apoptotic cell death and suggesting that the combination of crizotinib with a PARP inhibitor may be considered and further explored as a new therapeutic strategy in HGSOC.
... Initial studies showed that HR deficiency due to BRCAm predicts response to PARPi [28][29][30]. Preclinical evidence suggests that tumors with mutations in other DDR genes, such as ATM, and HR regulators are also sensitive to PARPi [81][82][83]. Several potential predictive markers of sensitivity have been suggested in preclinical setting, including phosphatases and several kinases regulating DNA damage response and cell cycle [84,85]. In prostate cancer, high response rates have been reported in tumors carrying either germline or somatic mutations in DDR genes [60,61]. ...
Article
Full-text available
Prostate cancer is globally the second most commonly diagnosed cancer type in men.Recent studies suggest that mutations in DNA repair genes are associated with aggressive forms ofprostate cancer and castration resistance. Prostate cancer with DNA repair defects may bevulnerable to therapeutic targeting by Poly(ADP‐ribose) polymerase (PARP) inhibitors. PARPenzymes modify target proteins with ADP‐ribose in a process called PARylation and are inparticular involved in single strand break repair. The rationale behind the clinical trials that led tothe current use of PARP inhibitors to treat cancer was to target the dependence of BRCA‐mutantcancer cells on the PARP‐associated repair pathway due to deficiency in homologousrecombination. However, recent studies have proposed therapeutic potential for PARP inhibitorsin tumors with a variety of vulnerabilities generating dependence on PARP beyond the syntheticlethal targeting of BRCA1/BRCA2 mutated tumors, suggesting a wider potential than initiallythought. Importantly, PARP‐associated DNA repair pathways are also closely connected toandrogen receptor (AR) signaling, which is a key regulator of tumor growth and a centraltherapeutic target in prostate cancer. In this review, we provide an extensive overview of publishedand ongoing trials exploring PARP inhibitors in treatment of prostate cancer and discuss theunderlying biology. Several clinical trials are currently studying PARP inhibitor mono‐andcombination therapies in the treatment of prostate cancer. Integration of drugs targeting DNArepair pathways in prostate cancer treatment modalities allows developing of more personalizedcare taking also into account the genetic makeup of individual tumors.
... A key mechanism for stimulating DNA repair during inflammation is through oxidation of ATM. When the ATM dimer is activated at DNA DSBs, ATM is monomerized [204] and promotes DNA repair via HR [205], p53 [206], and checkpoint activation [207][208][209]. However, oxidation of the ATM dimer (e.g., by ROS) allows it to promote DNA repair and/or apoptosis via p53 and CHK2 pathways, independent of the presence DNA DSBs [210,211]. ...
Article
The relationships between inflammation and cancer are varied and complex. An important connection linking inflammation to cancer development is DNA damage. During inflammation reactive oxygen and nitrogen species (RONS) are created to combat pathogens and to stimulate tissue repair and regeneration, but these chemicals can also damage DNA, which in turn can promote mutations that initiate and promote cancer. DNA repair pathways are essential for preventing DNA damage from causing mutations and cytotoxicity, but RONS can interfere with repair mechanisms, reducing their efficacy. Further, cellular responses to DNA damage, such as damage signaling and cytotoxicity, can promote inflammation, creating a positive feedback loop. Despite coordination of DNA repair and oxidative stress responses, there are nevertheless examples whereby inflammation has been shown to promote mutagenesis, tissue damage, and ultimately carcinogenesis. Here, we discuss the DNA damage-mediated associations between inflammation, mutagenesis and cancer.
... PARPi encourages RAD51 foci formation [90], suggesting that an HRmediated DNA repair is upregulated by PARPi [91]. Additionally, it has been shown that PARPi induces synthetic lethality among cells with mutated genes involved in homologous recombination (HR) [92], such as BRCA1/2, RAD51, ATM, ATR, CHK1, CHK2, XRCC2, XRCC3, NBS1, RAD50, and MRE11 [93,94]. Furthermore, PARPi induces hypersensitivity not only in the above-mentioned genes with mutations but also shown in epigenetic silencing of BRCA1 [95]. ...
Article
Introduction: The association between deleterious BRCA1 mutations and increased risk of breast, ovarian, fallopian tube, pancreatic, prostate and stomach cancers is well-defined. Areas covered: Defects in the repair of DNA damage will result in a single strand or double strand break and genomic instability. In turn, mutations will occur, significantly increasing the risk of cancer. This review focuses on BRCA1 and the evolving precision therapies associated with BRCA1-associated tumors. Emerging evidences suggest that targeting different pathways of DNA damage repair is a promising new approach. Expert opinion: Although the role of PARP inhibitors in BRCA1 mutated breast or ovarian cancer is well-established, their potential role in tumors with either somatic mutations or homologous recombination repair deficiency is yet to be fully defined. Ongoing clinical trials will hopefully address this critical clinical issue. Inhibitors of ATR and ATM are also currently entering into early phase clinical trials. In addition, whether combinatorial approaches targeting multiple DNA repair pathways would be a viable approach is also an area of investigation. DNA repair targeting has true potential to transform personalized therapy in cancer.
... The ATM-CHK2 pathway is activated by DSBs, regulates the G1 and G2 checkpoints, and targets many genes including TP53, BRCA1, MDC1, and 53BP1 (Smith et al. 2010). ATM-deficient cells are also hypersensitive to PARPis (Bryant & Helleday 2006, Schmitt et al. 2017, and ATM or CHK1/2 inhibitors show synergistic effects with PARPis (Brill et al. 2017, Stewart et al. 2017. Multiple ATM, ATR, CHK1, and CHK2 inhibitors are under development from several pharmaceutical companies and are in advanced-phase clinical trials (Lee et al. 2018). ...
Article
Full-text available
Poly(ADP-ribose) polymerase inhibitors (PARPis) have recently been approved for the treatment of ovarian and breast cancers with BRCA mutations, as well as for maintenance therapies regardless of BRCA mutation for ovarian and primary peritoneal cancers that previously responded to platinum-based chemotherapy. The rationale of these indications is derived from the facts that cancer cells with BRCA mutations are defective in homologous recombination (HR), which confers synthetic lethality with PARPis, and that some of the sensitivity-determining factors for PARPis are shared with platinums. Although BRCA1 and BRCA2 are central for HR, more players within and beyond HR are emerging as response determinants to PARPis. Furthermore, there are similarities as well as differences in the DNA lesion and repair pathways induced by PARPis, platinums, and camptothecin topoisomerase 1 (TOP1) inhibitors. Here we review the sensitivity-determining factors for PARPis and the rationale for using of PARPis as single agents and in combination therapy for cancers. Expected final online publication date for the Annual Review of Cancer Biology Volume 3 is March 4, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
... Lastly, ATM deficient cells and tissues show increased levels of ROS and oxidative stress, and loss of ATM function is synthetically lethal with PARP inhibitor treatment 8,27 . We found that ATM status was particularly important for olaparib-mediated radiosensitization in a setting where ROS were already increased due to p53 loss (Fig. 6). ...
Article
Full-text available
Biomarkers and mechanisms of poly (ADP-ribose) polymerase (PARP) inhibitor-mediated cytotoxicity in tumor cells lacking a BRCA-mutant or BRCA-like phenotype are poorly defined. We sought to explore the utility of PARP-1 inhibitor (PARPi) treatment with/without ionizing radiation in muscle-invasive bladder cancer (MIBC), which has poor therapeutic outcomes. We assessed the DNA damaging and cytotoxic effects of the PARPi olaparib in nine bladder cancer cell lines. Olaparib radiosensitized all cell lines with dose enhancement factors from 1.22 to 2.27. Radiosensitization was correlated with the induction of potentially lethal DNA double-strand breaks (DSB) but not with RAD51 foci formation. The ability of olaparib to radiosensitize MIBC cells was linked to the extent of cell kill achieved with the drug alone. Unexpectedly, increased levels of reactive oxygen species (ROS) resulting from PARPi treatment were the cause of DSB throughout the cell cycle in vitro and in vivo. ROS originated from mitochondria and were required for the radiosensitizing effects of olaparib. Consistent with the role of TP53 in ROS regulation, loss of p53 function enhanced radiosensitization by olaparib in non-isogenic and isogenic cell line models and was associated with increased PARP-1 expression in bladder cancer cell lines and tumors. Impairment of ATM in addition to p53 loss resulted in an even more pronounced radiosensitization. In conclusion, ROS suppression by PARP-1 in MIBC is a potential therapeutic target either for PARPi combined with radiation or drug alone treatment. The TP53 and ATM genes, commonly mutated in MIBC and other cancers, are candidate biomarkers of PARPi-mediated radiosensitization.
... Accumulated evidence suggests more DNArepair proteins can predict PAPR inhibitor response in different types of cancer in preclinical studies ( Table 3). For instance, several well-known HR repair proteins, p53, ATM and 53BP1, have been shown to predict PARP inhibitor response in breast, lung and gastric cancers [66][67][68][69]. Lower transcript levels of MER11A, NBS1, TDG and XPA genes in DNArepair pathways are associated with higher sensitivity to olaparib response in breast cancer cell lines [70] and the loss of MER11 protein expression predicts sensitivity to PARP inhibitor, talazoparib (BMN673), in endometrial cancer cells [71]. ...
Article
Full-text available
Personalized or precision medicine is an emerging treatment approach tailored to individuals or certain groups of patients based on their unique characteristics. These types of therapies guided by biomarkers tend to be more effective than traditional approaches, especially in cancer.The inhibitor against poly (ADP-ribose) polymerase (PARP), olaparib (Lynparza, AstraZeneca), which was approved by the US Food and Drug Administration (FDA) in 2014, demonstrated efficacy specifically for ovarian cancer patients harboring mutations in BRCA genes, which encode proteins in DNA double-strand break repairs. However, the response to PARP inhibitors has been less encouraging in other cancer types that also carry defects in the BRCA genes. Thus, furthering our understanding of the underlying mechanism of PARP inhibitors and resistance is critical to improve their efficacy. In this review, we summarize the results of preclinical studies and the clinical application of PARP inhibitors, and discuss the future direction of PARP inhibitors as a potential marker-guided personalized medicine for cancer treatment. © The Author(s) 2017. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. All rights reserved.
... Based on this mechanism, PARP inhibitor, olaparib, has been evaluated in clinical trials [53,54]. Currently, two independent reports have shown that ATM-null cells exhibit selective sensitivity to olaparib treatment [55,56]. Remarkably, concurrent PARP inhibition also potentiates the cytotoxic effects of ionization radiation and This article is protected by copyright. ...
Article
Full-text available
Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein-Barr virus (EBV) infection. In NPC, miR-BARTs, the EBV-encoded miRNAs derived from BamH1-A rightward transcripts are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV-encoded miRNAs in a panel of NPC patient-derived xenografts and an EBV-positive NPC cell line by small RNA sequencing. Among the 40 miR-BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV-miRNAs, BART5-5p, BART7-3p, BART9-3p and BART14-3p could negatively regulate the expression of a key DNA double-strand break (DSB) repair gene, Ataxia-Telangiectasia-Mutant (ATM), by binding to multiple sites on its 3'-UTR. Notably, the expression of these four miR-BARTs represented more than 10% of all EBV-encoded miRNAs in tumor cells while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, down-regulation of ATM was also observed in primary NPC tissues in both qRT-PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5-5p, BART7-3p, BART9-3p and BART14-3p were demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR-BARTs in EBV-positive NPC cells, we further demonstrated the novel function of miR-BARTs in inhibiting Zta-induced lytic reactivation. These findings imply that the four viral miRNAs work co-operatively to modulate ATM activity in response to DNA damage and to maintain viral latency, contributing to the tumorigenesis of NPC.
Article
The clinical success of PARP1/2 inhibitors (PARPi) prompts the expansion of their applicability beyond homologous recombination deficiency. Here, we demonstrate that the loss of the accessory subunits of DNA polymerase epsilon, POLE3 and POLE4, sensitizes cells to PARPi. We show that the sensitivity of POLE4 knockouts is not due to compromised response to DNA damage or homologous recombination deficiency. Instead, POLE4 loss affects replication speed leading to the accumulation of single-stranded DNA gaps behind replication forks upon PARPi treatment, due to impaired post-replicative repair. POLE4 knockouts elicit elevated replication stress signaling involving ATR and DNA-PK. We find POLE4 to act parallel to BRCA1 in inducing sensitivity to PARPi and counteracts acquired resistance associated with restoration of homologous recombination. Altogether, our findings establish POLE4 as a promising target to improve PARPi driven therapies and hamper acquired PARPi resistance.
Article
Full-text available
Tumor biomarkers, the substances which are produced by tumors or the body’s responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Article
Full-text available
PARPi, in combination with ionizing radiation, has demonstrated the ability to enhance cellular radiosensitivity in different tumors. The rationale is that the exposure to radiation leads to both physical and biochemical damage to DNA, prompting cells to initiate three primary mechanisms for DNA repair. Two double-stranded DNA breaks (DSB) repair pathways: (1) non-homologous end-joining (NHEJ) and (2) homologous recombination (HR); and (3) a single-stranded DNA break (SSB) repair pathway (base excision repair, BER). In this scenario, PARPi can serve as radiosensitizers by leveraging the BER pathway. This mechanism heightens the likelihood of replication forks collapsing, consequently leading to the formation of persistent DSBs. Together, the combination of PARPi and radiotherapy is a potent oncological strategy. This combination has proven its efficacy in different tumors. However, in prostate cancer, there are only preclinical studies to support it and, recently, an ongoing clinical trial. The objective of this paper is to perform a review of the current evidence regarding the use of PARPi and radiotherapy (RT) in PCa and to give future insight on this topic.
Article
Human and simian immunodeficiency viruses (HIVs and SIVs, respectively) encode several small proteins (Vif, Vpr, Nef, Vpu, and Vpx) that are called accessory because they are not generally required for viral replication in cell culture. However, they play complex and important roles for viral immune evasion and spread in vivo. Here, we discuss the diverse functions and the relevance of the viral protein U (Vpu) that is expressed from a bicistronic RNA during the late stage of the viral replication cycle and found only in HIV-1 and closely related SIVs. It is well established that Vpu counteracts the restriction factor tetherin, mediates degradation of the primary viral CD4 receptors, and inhibits activation of the transcription factor nuclear factor kappa B. Recent studies identified additional activities and provided new insights into the sophisticated mechanisms by which Vpu enhances and prolongs the release of fully infectious viral particles. In addition, it has been shown that Vpu prevents superinfection not only by degrading CD4 but also by modulating DNA repair mechanisms to promote degradation of nuclear viral complementary DNA in cells that are already productively infected. Expected final online publication date for the Annual Review of Virology, Volume 10 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Article
Full-text available
Recent advances in understanding the tumor’s biology in line with a constantly growing number of innovative technologies have prompted characterization of patients’ individual malignancies and may display a prerequisite to treat cancer at its patient individual tumor vulnerability. In recent decades, radiation- induced signaling and tumor promoting local events for radiation sensitization were explored in detail, resulting the development of novel molecular targets. A multitude of pharmacological, genetic, and immunological principles, including small molecule- and antibody-based targeted strategies, have been developed that are suitable for combined concepts with radiation (RT) or chemoradiation therapy (CRT). Despite a plethora of promising experimental and preclinical findings, however, so far, only a very limited number of clinical trials have demonstrated a better outcome and/or patient benefit when RT or CRT are combined with targeted agents. The current review aims to summarize recent progress in molecular therapies targeting oncogenic drivers, DNA damage and cell cycle response, apoptosis signaling pathways, cell adhesion molecules, hypoxia, and the tumor microenvironment to impact therapy refractoriness and to boost radiation response. In addition, we will discuss recent advances in nanotechnology, e.g., RNA technologies and protein-degrading proteolysis-targeting chimeras (PROTACs) that may open new and innovative ways to benefit from molecular-targeted therapy approaches with improved efficacy.
Article
Cells have evolved a complex network of biochemical pathways, collectively known as the DNA damage response (DDR), to prevent detrimental mutations from being passed on to their progeny. The DDR coordinates DNA repair with cell-cycle checkpoint activation and other global cellular responses. Genes encoding DDR factors are frequently mutated in cancer, causing genomic instability, an intrinsic feature of many tumours that underlies their ability to grow, metastasize and respond to treatments that inflict DNA damage (such as radiotherapy). One instance where we have greater insight into how genetic DDR abrogation impacts on therapy responses is in tumours with mutated BRCA1 or BRCA2. Due to compromised homologous recombination DNA repair, these tumours rely on alternative repair mechanisms and are susceptible to chemical inhibitors of poly(ADP-ribose) polymerase (PARP), which specifically kill homologous recombination-deficient cancer cells, and have become a paradigm for targeted cancer therapy. It is now clear that many other synthetic-lethal relationships exist between DDR genes. Crucially, some of these interactions could be exploited in the clinic to target tumours that become resistant to PARP inhibition. In this Review, we discuss state-of-the-art strategies for DDR inactivation using small-molecule inhibitors and highlight those compounds currently being evaluated in the clinic. Genes encoding DNA damage response factors are frequently mutated in cancer, causing genomic instability and presenting opportunities for therapeutic intervention. This Review discusses state-of-the-art strategies for DNA damage response inactivation using small-molecule inhibitors.
Chapter
Breast cancer is one of the most common cancer types worldwide, and is a leading cause of cancer related deaths in women. In this book, medical experts review our current understanding of the molecular biology and characteristics of breast cancer. The topics covered in this book provide comprehensive knowledge of mechanisms underlying breast carcinogenesis, and are intended for a wide audience including scientists, teachers, and students. 11 chapters present information about several topics on breast cancer, including the role of cell growth and proliferation pathways, androgen and cytokine signaling, germline mutations in breast cancer susceptibility genes, and molecular factors causing invasive and metastatic breast cancer. In addition, the editors discuss the recent advancements in multi-omics data analysis based on inter-and intra-tumor molecular profiles. The reference highlights how the knowledge and understanding of the biological behavior of breast neoplasms have facilitated ongoing investigations into dietary polyphenolic compounds with antioxidant properties, making them function as cancer chemopreventive agents. Along with this, the current development of treatment strategies such as targeted molecular therapy, and radiation therapy is brought to the fore to update readers.
Article
The efficiency of homologous recombination (HR) in the repair of DNA double-strand breaks (DSBs) is closely associated with genome stability and tumor response to chemotherapy. While many factors have been functionally characterized in HR, such as TOPBP1, their precise regulation remains unclear. Here, we report that TOPBP1 interacts with the RNA-binding protein HTATSF1 in a cell-cycle- and phosphorylation-dependent manner. Mechanistically, CK2 phosphorylates HTATSF1 to facilitate binding to TOPBP1, which promotes S-phase-specific TOPBP1 recruitment to damaged chromatin and subsequent RPA/RAD51-dependent HR, genome integrity, and cancer-cell viability. The localization of HTATSF1-TOPBP1 to DSBs is potentially independent of the transcription-coupled RNA-binding and processing capacity of HTATSF1 but rather relies on the recognition of poly(ADP-ribosyl)ated RPA by HTATSF1, which can be blunted with PARP inhibitors. Together, our study provides a mechanistic insight into TOPBP1 loading at HR-prone DSB sites via HTATSF1 and reveals how RPA-RAD51 exchange is tuned by a PARylation-phosphorylation cascade.
Article
Full-text available
Background: Ovarian cancer is the sixth most common cancer in women world-wide. Epithelial ovarian cancer (EOC) is the most common; three-quarters of women present when disease has spread outside the pelvis (stage III or IV). Treatment consists of a combination of surgery and platinum-based chemotherapy. Although initial responses to chemotherapy are good, most women with advanced disease will relapse. PARP (poly (ADP-ribose) polymerase) inhibitors (PARPi), are a type of anticancer treatment that works by preventing cancer cells from repairing DNA damage, especially in those with breast cancer susceptibility gene (BRCA) variants. PARPi offer a different mechanism of anticancer treatment from conventional chemotherapy. Objectives: To determine the benefits and risks of poly (ADP-ribose) polymerase) inhibitors (PARPi) for the treatment of epithelial ovarian cancer (EOC). Search methods: We identified randomised controlled trials (RCTs) by searching the Cochrane Central Register of Controlled Trials (Central 2020, Issue 10), Cochrane Gynaecological Cancer Group Trial Register, MEDLINE (1990 to October 2020), Embase (1990 to October 2020), ongoing trials on www.controlled-trials.com/rct, www.clinicaltrials.gov, www.cancer.gov/clinicaltrials, the National Research Register (NRR), FDA database and pharmaceutical industry biomedical literature. Selection criteria: We included trials that randomised women with EOC to PARPi with no treatment, or PARPi versus conventional chemotherapy, or PARPi together with conventional chemotherapy versus conventional chemotherapy alone. Data collection and analysis: We used standard Cochrane methodology. Two review authors independently assessed whether studies met the inclusion criteria. We contacted investigators for additional data. Outcomes included overall survival (OS), objective response rate (ORR), quality of life (QoL) and rate of adverse events. Main results: We included 15 studies (6109 participants); four (3070 participants) with newly-diagnosed, advanced EOC and 11 (3039 participants) with recurrent EOC. The studies varied in types of comparisons and evaluated PARPi. Eight studies were judged as at low risk of bias in most of the domains. Quality of life data were generally poorly reported. Below we present six key comparisons. The majority of participants had BRCA mutations, either in their tumour (sBRCAmut) and/or germline (gBRCAmut), or homologous recombination deficiencies (HRD) in their tumours. Newly diagnosed EOC Overall, four studies evaluated the effect of PARPi in newly-diagnosed, advanced EOC. Two compared PARPi with chemotherapy and chemotherapy alone. OS data were not reported. The combination of PARPi with chemotherapy may have little to no difference in progression-free survival (PFS) (two studies, 1564 participants; hazard ratio (HR) 0.82, 95% confidence interval (CI 0).49 to 1.38; very low-certainty evidence)(no evidence of disease progression at 12 months' 63% with PARPi versus 69% for placebo). PARPi with chemotherapy likely increases any severe adverse event (SevAE) (grade 3 or higher) slightly (45%) compared with chemotherapy alone (51%) (two studies, 1549 participants, risk ratio (RR) 1.13, 95% CI 1.07 to 1.20; high-certainty evidence). PARPi combined with chemotherapy compared with chemotherapy alone likely results in little to no difference in the QoL (one study; 744 participants, MD 1.56 95% CI -0.42 to 3.54; moderate-certainty evidence). Two studies compared PARPi monotherapy with placebo as maintenance after first-line chemotherapy in newly diagnosed EOC. PARPi probably results in little to no difference in OS (two studies, 1124 participants; HR 0.81, 95%CI 0.59 to 1.13; moderate-certainty evidence) (alive at 12 months 68% with PARPi versus 62% for placebo). However, PARPi may increase PFS (two studies, 1124 participants; HR 0.42, 95% CI 0.19 to 0.92; low-certainty evidence) (no evidence of disease progression at 12 months' 55% with PARPi versus 24% for placebo). There may be an increase in the risk of experiencing any SevAE (grade 3 or higher) with PARPi (54%) compared with placebo (19%)(two studies, 1118 participants, RR 2.87, 95% CI 1.65 to 4.99; very low-certainty evidence), but the evidence is very uncertain. There is probably a slight reduction in QoL with PARPi, although this may not be clinically significant (one study, 362 participants; MD -3.00, 95%CI -4.48 to -1.52; moderate-certainty evidence). Recurrent, platinum-sensitive EOC Overall, 10 studies evaluated the effect of PARPi in recurrent platinum-sensitive EOC. Three studies compared PARPi monotherapy with chemotherapy alone. PARPi may result in little to no difference in OS (two studies, 331 participants; HR 0.95, 95%CI 0.62 to 1.47; low-certainty evidence) (percentage alive at 36 months 18% with PARPi versus 17% for placebo). Evidence is very uncertain about the effect of PARPi on PFS (three studies, 739 participants; HR 0.88, 95%CI 0.56 to 1.38; very low-certainty evidence)(no evidence of disease progression at 12 months 26% with PARPi versus 22% for placebo). There may be little to no difference in rates of any SevAE (grade 3 or higher) with PARPi (50%) than chemotherapy alone (47%) (one study, 254 participants; RR 1.06, 95%CI 0.80 to 1.39; low-certainty evidence). Four studies compared PARPi monotherapy as maintenance with placebo. PARPi may result in little to no difference in OS (two studies, 560 participants; HR 0.88, 95%CI 0.65 to 1.20; moderate-certainty evidence)(percentage alive at 36 months 21% with PARPi versus 17% for placebo). However, evidence suggests that PARPi as maintenance therapy results in a large PFS (four studies, 1677 participants; HR 0.34, 95% CI 0.28 to 0.42; high-certainty evidence)(no evidence of disease progression at 12 months 37% with PARPi versus 5.5% for placebo). PARPi maintenance therapy may result in a large increase in any SevAE (51%) (grade 3 or higher) than placebo (19%)(four studies, 1665 participants, RR 2.62, 95%CI 1.85 to 3.72; low-certainty evidence). PARPi compared with chemotherapy may result in little or no change in QoL (one study, 229 participants, MD 1.20, 95%CI -1.75 to 4.16; low-certainty evidence). Recurrent, platinum-resistant EOC Two studies compared PARPi with chemotherapy. The certainty of evidence in both studies was graded as very low. Overall, there was minimal information on the QoL and adverse events. Authors' conclusions: PARPi maintenance treatment after chemotherapy may improve PFS in women with newly-diagnosed and recurrent platinum-sensitive EOC; there may be little to no effect on OS, although OS data are immature. Overall, this is likely at the expense of an increase in SevAE. It is disappointing that data on quality of life outcomes are relatively sparse. More research is needed to determine whether PARPi have a role to play in platinum-resistant disease.
Article
Endometrial cancer is one of the three most common malignant tumors in the female reproductive system. Advanced and recurrent endometrial cancers have poor prognoses and lack effective treatments. Poly(ADP-ribose) polymerase (PARP) inhibitors have been applied to many different types of tumors, and they can selectively kill tumor cells that are defective in homologous recombination repair. Endometrial cancer is characterized by mutations in homologous recombination repair genes; accordingly, PARP inhibitors have achieved positive results in off-label treatments of endometrial cancer cases. Clinical trials of PARP inhibitors as monotherapies and within combination therapies for endometrial cancer are ongoing. For this review, we searched PubMed with "endometrial cancer" and "PARP inhibitor" as keywords, and we used "olaparib", "rucaparib", "niraparib" and "talazoparib" as search terms in clinicaltrials.gov for ongoing trials. The literature search ended in October 2020, and only English-language publications were selected. Multiple studies confirm that PARP inhibitors play an important role in killing tumor cells with defects in homologous recombination repair. Its combination with immune checkpoint inhibitors, PI3K/AKT/mTOR pathway inhibitors, cell cycle checkpoint inhibitors, and other drugs can improve the treatment of endometrial cancer.
Article
Full-text available
Four poly(ADP-ribose) polymerase (PADPRP) inhibitors [3-aminobenzamide, benzamide, 3,4-dihydro-5-methoxyisoquinolin-1(2H)-one (PD 128763) and 8-hydroxy-2-methylquinazolin-4(3H)-one (NU1025)] were compared with respect to their effects on a number of biological end points. The following parameters were assessed: their ability to inhibit the enzyme in permeabilised L1210 cells; their ability to potentiate the cytotoxicity of temozolomide (including the cytotoxicity of the compounds per se); their ability to increase net levels of temozolomide-induced DNA strand breaks and inhibit temozolomide-induced NAD depletion. PD 128763 and NU1025 were equipotent as PADPRP inhibitors, and 40- and 50-fold more potent than benzamide and 3-aminobenzamide respectively. All the compounds acted in a concentration-dependent manner to potentiate the cytotoxicity and increase DNA strand break levels in cells treated with temozolomide. There was an excellent correlation between the potency of the compounds as PADPRP inhibitors and their effects on cell survival and DNA repair. Temozolomide treatment caused a decrease in cellular NAD levels, and this was abolished by the PADPRP inhibitors. In conclusion, the new generation of PADPRP inhibitors are at least 50-fold more effective than 3-aminobenzamide as chemopotentiators, and can be used at micromolar rather than millimolar concentrations in intact cells.
Article
Full-text available
The DNA repair proteins XRCC1 and DNA ligase III are physically associated in human cells and directly interact in vitro and in vivo. Here, we demonstrate that XRCC1 is additionally associated with DNA polymerase-β in human cells and that these polypeptides also directly interact. We also present data suggesting that poly (ADP-ribose) polymerase can interact with XRCC1. Finally, we demonstrate that DNA ligase III shares with poly (ADP-ribose) polymerase the novel function of a molecular DNA nick-sensor, and that the DNA ligase can inhibit activity of the latter polypeptide in vitro. Taken together, these data suggest that the activity of the four polypeptides described above may be co-ordinated in human cells within a single multi-protein complex.
Article
Full-text available
Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+: poly(adenosine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyltransferase, EC 2.4.2.30] is a zinc-finger DNA-binding protein that detects specifically DNA strand breaks generated by genotoxic agents. To determine its biological function, we have inactivated both alleles by gene targeting in mice. Treatment of PARP-/- mice either by the alkylating agent N-methyl-N-nitrosourea (MNU) or by gamma-irradiation revealed an extreme sensitivity and a high genomic instability to both agents. Following whole body gamma-irradiation (8 Gy) mutant mice died rapidly from acute radiation toxicity to the small intestine. Mice-derived PARP-/- cells displayed a high sensitivity to MNU exposure: a G2/M arrest in mouse embryonic fibroblasts and a rapid apoptotic response and a p53 accumulation were observed in splenocytes. Altogether these results demonstrate that PARP is a survival factor playing an essential and positive role during DNA damage recovery.
Article
Full-text available
Mice lacking the gene encoding poly(ADP-ribosyl) transferase (PARP or ADPRT) display no phenotypic abnormalities, although aged mice are susceptible to epidermal hyperplasia and obesity in a mixed genetic background. Whereas embryonic fibroblasts lacking PARP exhibit normal DNA excision repair, they grow more slowly in vitro. Here we investigated the putative roles of PARP in cell proliferation, cell death, radiosensitivity, and DNA recombination, as well as chromosomal stability. We show that the proliferation deficiency in vitro and in vivo is most likely caused by a hypersensitive response to environmental stress. Although PARP is specifically cleaved during apoptosis, cells lacking this molecule apoptosed normally in response to treatment with anti-Fas, tumor neurosis factor alpha, gamma-irradiation, and dexamethasone, indicating that PARP is dispensable in apoptosis and that PARP-/- thymocytes are not hypersensitive to ionizing radiation. Furthermore, the capacity of mutant cells to carry out immunoglobulin class switching and V(D)J recombination is normal. Finally, primary PARP mutant fibroblasts and splenocytes exhibited an elevated frequency of spontaneous sister chromatid exchanges and elevated micronuclei formation after treatment with genotoxic agents, establishing an important role for PARP in the maintenance of genomic integrity.
Article
Full-text available
Poly(ADP-ribose) polymerase (PARP; EC 2.4.2.30 ) is a zinc-finger DNA-binding protein that detects and signals DNA strand breaks generated directly or indirectly by genotoxic agents. In response to these breaks, the immediate poly(ADP-ribosyl)ation of nuclear proteins involved in chromatin architecture and DNA metabolism converts DNA damage into intracellular signals that can activate DNA repair programs or cell death options. To have greater insight into the physiological function of this enzyme, we have used the two-hybrid system to find genes encoding proteins putatively interacting with PARP. We have identified a physical association between PARP and the base excision repair (BER) protein XRCC1 (X-ray repair cross-complementing 1) in the Saccharomyces cerevisiae system, which was further confirmed to exist in mammalian cells. XRCC1 interacts with PARP by its central region (amino acids 301 to 402), which contains a BRCT (BRCA1 C terminus) module, a widespread motif in DNA repair and DNA damage-responsive cell cycle checkpoint proteins. Overexpression of XRCC1 in Cos-7 or HeLa cells dramatically decreases PARP activity in vivo, reinforcing the potential protective function of PARP at DNA breaks. Given that XRCC1 is also associated with DNA ligase III via a second BRCT module and with DNA polymerase β, our results provide strong evidence that PARP is a member of a BER multiprotein complex involved in the detection of DNA interruptions and possibly in the recruitment of XRCC1 and its partners for efficient processing of these breaks in a coordinated manner. The modular organizations of these interactors, associated with small conserved domains, may contribute to increasing the efficiency of the overall pathway.
Article
Full-text available
The ability of the potent poly(ADP-ribose) polymerase (PARP) inhibitor, NU1025 (8-hydroxy-2-methyl-quinazolin-4-[3H]one) to potentiate the cytotoxicity of a panel of mechanistically diverse anti-cancer agents was evaluated in L1210 cells. NU1025 enhanced the cytotoxicity of the DNA-methylating agent MTIC, gamma-irradiation and bleomycin 3.5-, 1.4- and 2-fold respectively. The cytotoxicities of the thymidylate synthase inhibitor, nolatrexed, and the cytotoxic nucleoside, gemcitabine, were not increased. Potentiation of MTIC cytotoxicity by a delayed exposure to NU1025 was equally effective as by a simultaneous exposure to NU1025, indicating that the effects of NU1025 were mediated by an inhibition of the cellular recovery. The recovery from potentially lethal gamma-irradiation damage cytotoxicity in plateau-phase cells was also inhibited by NU1025. Investigation of DNA strand breakage and repair in gamma-irradiated cells by alkaline elution demonstrated that NU1025 caused a marked retardation of DNA repair. A structurally different PARP inhibitor, NU1064 (2-methylbenzimidazole-4-carboxamide), also potentiated the cytotoxicity of MTIC, to a similar extent to NU1025. NU1064 potentiated a sublethal concentration of a DNA methylating agent in a concentration-dependent manner. Collectively, these data suggest that the most suitable cytotoxic agents for use in combination with PARP inhibitors are methylating agents, bleomycin and ionizing radiation, but not anti-metabolites.
Article
Full-text available
Poly(ADP-ribosyl)ation is a post-translational modification of proteins. During this process, molecules of ADP-ribose are added successively on to acceptor proteins to form branched polymers. This modification is transient but very extensive in vivo, as polymer chains can reach more than 200 units on protein acceptors. The existence of the poly(ADP-ribose) polymer was first reported nearly 40 years ago. Since then, the importance of poly(ADP-ribose) synthesis has been established in many cellular processes. However, a clear and unified picture of the physiological role of poly(ADP-ribosyl)ation still remains to be established. The total dependence of poly(ADP-ribose) synthesis on DNA strand breaks strongly suggests that this post-translational modification is involved in the metabolism of nucleic acids. This view is also supported by the identification of direct protein-protein interactions involving poly(ADP-ribose) polymerase (113 kDa PARP), an enzyme catalysing the formation of poly(ADP-ribose), and key effectors of DNA repair, replication and transcription reactions. The presence of PARP in these multiprotein complexes, in addition to the actual poly(ADP-ribosyl)ation of some components of these complexes, clearly supports an important role for poly(ADP-ribosyl)ation reactions in DNA transactions. Accordingly, inhibition of poly(ADP-ribose) synthesis by any of several approaches and the analysis of PARP-deficient cells has revealed that the absence of poly(ADP-ribosyl)ation strongly affects DNA metabolism, most notably DNA repair. The recent identification of new poly(ADP-ribosyl)ating enzymes with distinct (non-standard) structures in eukaryotes and archaea has revealed a novel level of complexity in the regulation of poly(ADP-ribose) metabolism.
Article
Full-text available
The human genetic disorder ataxia telangiectasia (A-T), caused by mutation in the ATM gene, is characterized by chromosomal instability, radiosensitivity and defective cell cycle checkpoint activation. DNA double-strand breaks (dsbs) persist in A-T cells after irradiation, but the underlying defect is unclear. To investigate ATM's interactions with dsb repair pathways, we disrupted ATM along with other genes involved in the principal, complementary dsb repair pathways of homologous recombination (HR) or non-homologous end-joining (NHEJ) in chicken DT40 cells. ATM(-/-) cells show altered kinetics of radiation-induced Rad51 and Rad54 focus formation. Ku70-deficient (NHEJ(-)) ATM(-/-) chicken DT40 cells show radiosensitivity and high radiation-induced chromosomal aberration frequencies, while Rad54-defective (HR(-)) ATM(-/-) cells show only slightly elevated aberration levels after irradiation, placing ATM and HR on the same pathway. These results reveal that ATM defects impair HR-mediated dsb repair and may link cell cycle checkpoints to HR activation.
Article
Full-text available
Topoisomerase I cleavage complexes can be induced by a variety of DNA damages and by the anticancer drug camptothecin. We have developed a ligation-mediated PCR (LM-PCR) assay to analyze replication-mediated DNA double-strand breaks induced by topoisomerase I cleavage complexes in human colon carcinoma HT29 cells at the nucleotide level. We found that conversion of topoisomerase I cleavage complexes into replication-mediated DNA double-strand breaks was only detectable on the leading strand for DNA synthesis, which suggests an asymmetry in the way that topoisomerase I cleavage complexes are metabolized on the two arms of a replication fork. Extension by Taq DNA polymerase was not required for ligation to the LM-PCR primer, indicating that the 3' DNA ends are extended by DNA polymerase in vivo closely to the 5' ends of the topoisomerase I cleavage complexes. These findings suggest that the replication-mediated DNA double-strand breaks generated at topoisomerase I cleavage sites are produced by replication runoff. We also found that the 5' ends of these DNA double-strand breaks are phosphorylated in vivo, which suggests that a DNA 5' kinase activity acts on the double-strand ends generated by replication runoff. The replication-mediated DNA double-strand breaks were rapidly reversible after cessation of the topoisomerase I cleavage complexes, suggesting the existence of efficient repair pathways for removal of topoisomerase I-DNA covalent adducts in ribosomal DNA.
Article
Full-text available
Potent poly(ADP-ribose) polymerase (PARP) inhibitors have been developed that potentiate the cytotoxicity of ionizing radiation and anticancer drugs. The biological effects of two novel PARP inhibitors, NU1025 (8-hydroxy-2-methylquinazolin-4-[3H]one, Ki = 48 nM) and NU1085 [2-(4-hydroxyphenyl)benzamidazole-4-carboxamide, Ki = 6 nM], in combination with temozolomide (TM) or topotecan (TP) have been studied in 12 human tumor cell lines (lung, colon, ovary, and breast cancer). Cells were treated with increasing concentrations of TM or TP +/- NU1025 (50, 200 microM) or NU1085 (10 microM) for 72 h. The potentiation of growth inhibition by NU1025 and NU1085 varied between the cell lines from 1.5- to 4-fold for TM and 1- to 5-fold for TP and was unaffected by p53 status. Clonogenic assays undertaken in two of the cell lines confirmed that the potentiation of growth inhibition reflected the potentiation of cytotoxicity. NU1025 (50 microM) was about as effective as 10 microM NU1085 at potentiating growth inhibition and cytotoxicity, consistent with the relative potencies of the two molecules as PARP inhibitors. Potentiation of cytotoxicity was obtained at concentrations of NU1025 and NU1085 that were not toxic per se; however, NU1085 alone was 3-fold more cytotoxic (LC50 values ranged from 83 to 94 microM) than NU1025 alone (LC50 > 900 microM). These data demonstrate that PARP inhibitors are effective resistance-modifying agents in human tumor cell lines and have provided a comprehensive assessment protocol for the selection of optimum combinations of anticancer drugs, PARP inhibitors, and cell lines for in vivo studies.
Article
Full-text available
The potent novel poly(ADP-ribose) polymerase (PARP) inhibitor, NU1025, enhances the cytotoxicity of DNA-methylating agents and ionizing radiation by inhibiting DNA repair. We report here an investigation of the role of PARP in the cellular responses to inhibitors of topoisomerase I and II using NU1025. The cytotoxicity of the topoisomerase I inhibitor, camptothecin, was increased 2.6-fold in L1210 cells by co-incubation with NU1025. Camptothecin-induced DNA strand breaks were also increased 2.5-fold by NU1025 and exposure to camptothecin-activated PARP. In contrast, NU1025 did not increase the DNA strand breakage or cytotoxicity caused by the topoisomerase II inhibitor etoposide. Exposure to etoposide did not activate PARP even at concentrations that caused significant levels of apoptosis. Taken together, these data suggest that potentiation of camptothecin cytotoxicity by NU1025 is a direct result of increased DNA strand breakage, and that activation of PARP by camptothecin-induced DNA damage contributes to its repair and consequently cell survival. However, in L1210 cells at least, it would appear that PARP is not involved in the cellular response to etoposide-mediated DNA damage. On the basis of these data, PARP inhibitors may be potentially useful in combination with topoisomerase I inhibitor anticancer chemotherapy.
Article
Full-text available
PARP-1 and ATM are both involved in the response to DNA strand breaks, resulting in induction of a signaling network responsible for DNA surveillance, cellular recovery, and cell survival. ATM interacts with double-strand break repair pathways and induces signals resulting in the control of the cell cycle-coupled checkpoints. PARP-1 acts as a DNA break sensor in the base excision repair pathway of DNA. Mice with mutations inactivating either protein show radiosensitivity and high radiation-induced chromosomal aberration frequencies. Embryos carrying double mutations of both PARP-1 and Atm genes were generated. These mutant embryos show apoptosis in the embryo but not in extraembryonic tissues and die at embryonic day 8.0, although extraembryonic tissues appear normal for up to 10.5 days of gestation. These results reveal a functional synergy between PARP-1 and ATM during a period of embryogenesis when cell cycle checkpoints are not active and the embryo is particularly sensitive to DNA damage. These results suggest that ATM and PARP-1 have synergistic phenotypes due to the effects of these proteins on signaling DNA damage and/or on distinct pathways of DNA repair.
Article
Full-text available
To ensure the high-fidelity transmission of genetic information, cells have evolved mechanisms to monitor genome integrity. Cells respond to DNA damage by activating a complex DNA-damage-response pathway that includes cell-cycle arrest, the transcriptional and post-transcriptional activation of a subset of genes including those associated with DNA repair, and, under some circumstances, the triggering of programmed cell death. An inability to respond properly to, or to repair, DNA damage leads to genetic instability, which in turn may enhance the rate of cancer development. Indeed, it is becoming increasingly clear that deficiencies in DNA-damage signaling and repair pathways are fundamental to the etiology of most, if not all, human cancers. Here we describe recent progress in our understanding of how cells detect and signal the presence and repair of one particularly important form of DNA damage induced by ionizing radiation-the DNA double-strand break (DSB). Moreover, we discuss how tumor suppressor proteins such as p53, ATM, Brca1 and Brca2 have been linked to such pathways, and how accumulating evidence is connecting deficiencies in cellular responses to DNA DSBs with tumorigenesis.
Article
Full-text available
PARP-1-deficient mice display a severe defect in the base excision repair pathway leading to radiosensitivity and genomic instability. They are protected against necrosis induced by massive oxidative stress in various inflammatory processes. Mice lacking p53 are highly predisposed to malignancy resulting from defective cell cycle checkpoints, resistance to DNA damage-induced apoptosis as well as from upregulation of the iNOS gene resulting in chronic oxidative stress. Here, we report the generation of doubly null mutant mice. We found that tumour-free survival of parp-1(-/-)p53(-/-) mice increased by 50% compared with that of parp- 1(+/+)p53(-/-) mice. Tumour formation in nude mice injected with oncogenic parp-1(-/-)p53(-/-) fibroblasts was significantly delayed compared with parp-1(+/+)p53(-/-) cells. Upon gamma-irradiation, a partial restoration of S-phase radiosensitivity was found in parp-1(-/-)p53(-/-) primary fibroblasts compared with parp-1(+/+)p53(-/-) cells. In addition, iNOS expression and nitrite release were dramatically reduced in the parp-1(-/-)p53(-/-) mice compared with parp-1(+/+)p53(-/-) mice. The abrogation of the oxydated status of p53(-/-) cells, due to the absence of parp-1, may be the cause of the delay in the onset of tumorigenesis in parp-1(-/-)p53(-/-) mice.
Article
Full-text available
ATR, a human phosphatidylinositol 3-kinase-related kinase, is an important component of the cellular response to DNA damage. In the present study, we evaluated the role of ATR in modulating the response of cells to S phase-associated DNA double-stranded breaks induced by topoisomerase poisons. Prolonged exposure to low doses of the topoisomerase I poison topotecan (TPT) resulted in S phase slowing because of diminished DNA synthesis at late-firing replicons. In contrast, brief TPT exposure, as well as prolonged exposure to the topoisomerase II poison etoposide, resulted in subsequent G(2) arrest. These responses were associated with phosphorylation of the checkpoint kinase Chk1. The cell cycle responses and phosphorylation of Chk1 were markedly diminished by forced overexpression of a dominant negative, kinase-inactive allele of ATR. In contrast, deficiency of the related kinase ATM had no effect on these events. The loss of ATR-dependent checkpoint function sensitized GM847 human fibroblasts to the cytotoxic effects of the topoisomerase I poisons TPT and 7-ethyl-10-hydroxycamptothecin, as assessed by inhibition of colony formation, increased trypan blue uptake, and development of apoptotic morphological changes. Expression of kdATR also sensitized GM847 cells to the cytotoxic effects of prolonged low dose etoposide and doxorubicin, albeit to a smaller extent. Collectively, these results not only suggest that ATR is important in responding to the replication-associated DNA damage from topoisomerase poisons, but also support the view that ATM and ATR have unique roles in activating the downstream kinases that participate in cell cycle checkpoints.
Article
Full-text available
B-cell chronic lymphocytic leukemia (B-CLL) is a heterogeneous disease involving more than one molecular mechanism that leads to the transformation of CD5(+) B cells at either the pregerminal or postgerminal center stage of differentiation. It was previously demonstrated that ataxia telangiectasia mutated (ATM) gene mutations can occur in B-CLL and cause a defect in the p53 pathway. Here the role of ATM mutations in the pathogenesis of B-CLL is addressed. Of 50 B-CLL tumors with fully analyzed ATM and TP53, 16 had ATM mutations. Six of 50 B-CLLs showed mutations in TP53 and the remaining 28 tumors had wild-type ATM or TP53. No tumor had both ATM and TP53 mutations. Remarkably, all 16 ATM mutant B-CLLs showed the absence of somatic variable region heavy chain hypermutation indicating a pregerminal center cell origin and a common pathogenesis for these tumors. Furthermore, in 5 of the 16 B-CLLs, ATM mutation preceded the transformation stage of differentiation. At the cellular level, ATM mutant tumors exhibited a deficient ATM-dependent p53 response to gamma irradiation, failure to up-regulate TRAIL-R2, a downstream target that links irradiation-induced p53 response with apoptosis, and an inability to repair induced chromosome breaks. Mantle cell lymphoma (MCL) is also of pregerminal center origin and ATM mutations are frequent in this malignancy. It is concluded that ATM is likely to play an important role at the pregerminal center stage and a model is proposed where loss of ATM function during B-cell ontogeny drives B-CLL tumorigenesis in pregerminal B cells by a dual defect in p53 damage response and repair of chromosome breaks.
Article
Full-text available
Ku is an abundant heterodimeric nuclear protein, consisting of 70- and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP-ribose) polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significance or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-/Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.
Article
Full-text available
Cells with non‐functional poly(ADP‐ribose) polymerase (PARP‐1) show increased levels of sister chromatid exchange, suggesting a hyper recombination phenotype in these cells. To further investigate the involvement of PARP‐1 in homologous recombination (HR) we investigated how PARP‐1 affects nuclear HR sites (Rad51 foci) and HR repair of an endonuclease‐induced DNA double‐strand break (DSB). Several proteins involved in HR localise to Rad51 foci and HR‐deficient cells fail to form Rad51 foci in response to DNA damage. Here, we show that PARP‐1 mainly does not localise to Rad51 foci and that Rad51 foci form in PARP‐1–/– cells, also in response to hydroxyurea. Furthermore, we show that homology directed repair following induction of a site‐specific DSB is normal in PARP‐1‐inhibited cells. In contrast, inhibition or loss of PARP‐1 increases spontaneous Rad51 foci formation, confirming a hyper recombination phenotype in these cells. Our data suggest that PARP‐1 controls DNA damage recognised by HR and that it is not involved in executing HR as such.
Article
Full-text available
Mismatch repair (MMR) deficiency confers resistance to temozolomide, a clinically active DNA-methylating agent. The purpose of the current study was to investigate the reversal mechanism of temozolomide resistance by the potent novel poly(ADP-ribose) polymerase (PARP)-1 inhibitor, AG14361, in MMR-proficient and -deficient cells. The effects of AG14361, in comparison with the methylguanine DNA methyltransferase inhibitor, benzylguanine, on temozolomide-induced growth inhibition were investigated in matched pairs of MMR-proficient (HCT-Ch3, A2780, and CP70-ch3) and -deficient (HCT116, CP70, and CP70-ch2) cells. AG14361 enhanced temozolomide activity in all MMR-proficient cells (1.5-3.3-fold) but was more effective in MMR-deficient cells (3.7-5.2-fold potentiation), overcoming temozolomide resistance. In contrast, benzylguanine only increased the efficacy of temozolomide in MMR-proficient cells but was ineffective in MMR-deficient cells. The differential effect of AG14361 in MMR-deficient cells was not attributable to differences in PARP-1 activity or differences in its inhibition by AG14361, nor was it attributable to differences in DNA strand breaks induced by temozolomide plus AG14361. MMR-deficient cells are resistant to cisplatin, but AG14361 did not sensitize any cells to cisplatin. PARP-1 inhibitors potentiate topotecan-induced growth inhibition, but AG14361 did not potentiate topotecan in MMR-deficient cells more than in MMR-proficient cells. MMR defects are relatively common in sporadic tumors and cancer syndromes. PARP-1 inhibition represents a novel way of selectively targeting such tumors. The underlying mechanism is probably a shift of the cytotoxic locus of temozolomide to N(7)-methylguanine and N(3)-methyladenine, which are repaired by the base excision repair pathway in which PARP-1 actively participates.
Article
Full-text available
Fludarabine, the current standard treatment for B-cell chronic lymphocytic leukemia (CLL), can induce apoptosis in CLL cells in vitro, and a number of molecular mechanisms contribute to its cytotoxicity. Using gene expression profiling, we investigated the molecular consequences of fludarabine treatment of patients with CLL in vivo. In 7 patients with CLL, a consistent gene expression signature of in vivo fludarabine exposure was identified. Many of the fludarabine signature genes were known p53 target genes and genes involved in DNA repair. In vitro treatment of CLL cells with fludarabine induced the same set of genes as observed in vivo, and many of these genes were also induced by in vitro exposure of CLL cells to ionizing radiation. Using isogenic p53 wild-type and null lymphoblastoid cell lines, we confirmed that many of the fludarabine signature genes were also p53 target genes. Because in vivo treatment with fludarabine induces a p53-dependent gene expression response, fludarabine treatment has the potential to select p53-mutant CLL cells, which are more drug resistant and associated with an aggressive clinical course. These considerations suggest that fludarabine treatment should be given in strict accordance to the current National Cancer Institute (NCI) guidelines that have established criteria of disease activity that warrant treatment.
Article
Full-text available
DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.
Article
Full-text available
DNA-dependent protein kinase (DNA-PK) and poly (ADP-ribose) polymerase-1 (PARP-1) participate in nonhomologous end joining and base excision repair, respectively, and are key determinants of radio- and chemo-resistance. Both PARP-1 and DNA-PK have been identified as therapeutic targets for anticancer drug development. Here we investigate the effects of specific inhibitors on enzyme activities and DNA double-strand break (DSB) repair. The enzyme activities were investigated using purified enzymes and in permeabilized cells. Inhibition, or loss of activity, was compared using potent inhibitors of DNA-PK (NU7026) and PARP-1 (AG14361), and cell lines proficient or deficient for DNA-PK or PARP-1. Inactive DNA-PK suppressed the activity of PARP-1 and vice versa. This was not the consequence of simple substrate competition, since DNA ends were provided in excess. The inhibitory effect of DNA-PK on PARP activity was confirmed in permeabilized cells. Both inhibitors prevented ionizing radiation-induced DSB repair, but only AG14361 prevented single-strand break repair. An increase in DSB levels caused by inhibition of PARP-1 was shown to be caused by a decrease in DSB repair, and not by the formation of additional DSBs. These data point to combined inhibition of PARP-1 and DNA-PK as a powerful strategy for tumor radiosensitization.
Article
Full-text available
Genetically distinct checkpoints, activated as a consequence of either DNA replication arrest or ionizing radiation-induced DNA damage, integrate DNA repair responses into the cell cycle programme. The ataxia-telangiectasia mutated (ATM) protein kinase blocks cell cycle progression in response to DNA double strand breaks, whereas the related ATR is important in maintaining the integrity of the DNA replication apparatus. Here, we show that thymidine, which slows the progression of replication forks by depleting cellular pools of dCTP, induces a novel DNA damage response that, uniquely, depends on both ATM and ATR. Thymidine induces ATM-mediated phosphorylation of Chk2 and NBS1 and an ATM-independent phosphorylation of Chk1 and SMC1. AT cells exposed to thymidine showed decreased viability and failed to induce homologous recombination repair (HRR). Taken together, our results implicate ATM in the HRR-mediated rescue of replication forks impaired by thymidine treatment.
Article
Full-text available
The efficient repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity. In mammalian cells, the nonhomologous end-joining process that represents the predominant repair pathway relies on the DNA-dependent protein kinase (DNA-PK) and the XRCC4-DNA ligase IV complex. Nonetheless, several in vitro and in vivo results indicate that mammalian cells use more than a single end-joining mechanism. While searching for a DNA-PK-independent end-joining activity, we found that the pretreatment of DNA-PK-proficient and -deficient rodent cells with an inhibitor of the poly(ADP-ribose) polymerase-1 enzyme (PARP-1) led to increased cytotoxicity of the highly efficient DNA double-strand breaking compound calicheamicin gamma1. In addition, the repair kinetics of the DSBs induced by calicheamicin gamma1 was delayed both in PARP-1-proficient cells pretreated with the PARP-1 inhibitor and in PARP-1-deficient cells. In order to get new insights into the mechanism of an alternative route for DSBs repair, we have established a new synapsis and end-joining two-step assay in vitro, operating on DSBs with either nuclear protein extracts or recombinant proteins. We found an end-joining activity independent of the DNA-PK/XRCC4-ligase IV complex but that actually required a novel synapsis activity of PARP-1 and the ligation activity of the XRCC1-DNA ligase III complex, proteins otherwise involved in the base excision repair pathway. Taken together, these results strongly suggest that a PARP-1-dependent DSBs end-joining activity may exist in mammalian cells. We propose that this mechanism could act as an alternative route of DSBs repair that complements the DNA-PK/XRCC4/ligase IV-dependent nonhomologous end-joining.
Article
Full-text available
The serine/threonine protein kinase ATM signals to cell cycle and DNA repair components by phosphorylating downstream targets such as p53, CHK2, NBS1, and BRCA1. Mutation of ATM occurs in the human autosomal recessive disorder ataxia-telangiectasia, which is characterized by hypersensitivity to ionizing radiation and a failure of cells to arrest the cell cycle after the induction of DNA double-strand breaks. It has thus been proposed that ATM inhibition would cause cellular radio- and chemosensitization. Through screening a small molecule compound library developed for the phosphatidylinositol 3'-kinase-like kinase family, we identified an ATP-competitive inhibitor, 2-morpholin-4-yl-6-thianthren-1-yl-pyran-4-one (KU-55933), that inhibits ATM with an IC(50) of 13 nmol/L and a Ki of 2.2 nmol/L. KU-55933 shows specificity with respect to inhibition of other phosphatidylinositol 3'-kinase-like kinases. Cellular inhibition of ATM by KU-55933 was demonstrated by the ablation of ionizing radiation-dependent phosphorylation of a range of ATM targets, including p53, gammaH2AX, NBS1, and SMC1. KU-55933 did not show inhibition of UV light DNA damage induced cellular phosphorylation events. Exposure of cells to KU-55933 resulted in a significant sensitization to the cytotoxic effects of ionizing radiation and to the DNA double-strand break-inducing chemotherapeutic agents, etoposide, doxorubicin, and camptothecin. Inhibition of ATM by KU-55933 also caused a loss of ionizing radiation-induced cell cycle arrest. By contrast, KU-55933 did not potentiate the cytotoxic effects of ionizing radiation on ataxia-telangiectasia cells, nor did it affect their cell cycle profile after DNA damage. We conclude that KU-55933 is a novel, specific, and potent inhibitor of the ATM kinase.
Article
Full-text available
BRCA1 and BRCA2 are important for DNA double-strand break repair by homologous recombination, and mutations in these genes predispose to breast and other cancers. Poly(ADP-ribose) polymerase (PARP) is an enzyme involved in base excision repair, a key pathway in the repair of DNA single-strand breaks. We show here that BRCA1 or BRCA2 dysfunction unexpectedly and profoundly sensitizes cells to the inhibition of PARP enzymatic activity, resulting in chromosomal instability, cell cycle arrest and subsequent apoptosis. This seems to be because the inhibition of PARP leads to the persistence of DNA lesions normally repaired by homologous recombination. These results illustrate how different pathways cooperate to repair damage, and suggest that the targeted inhibition of particular DNA repair pathways may allow the design of specific and less toxic therapies for cancer.
Article
Full-text available
Poly(ADP-ribose) polymerase (PARP1) facilitates DNA repair by binding to DNA breaks and attracting DNA repair proteins to the site of damage. Nevertheless, PARP1-/- mice are viable, fertile and do not develop early onset tumours. Here, we show that PARP inhibitors trigger gamma-H2AX and RAD51 foci formation. We propose that, in the absence of PARP1, spontaneous single-strand breaks collapse replication forks and trigger homologous recombination for repair. Furthermore, we show that BRCA2-deficient cells, as a result of their deficiency in homologous recombination, are acutely sensitive to PARP inhibitors, presumably because resultant collapsed replication forks are no longer repaired. Thus, PARP1 activity is essential in homologous recombination-deficient BRCA2 mutant cells. We exploit this requirement in order to kill BRCA2-deficient tumours by PARP inhibition alone. Treatment with PARP inhibitors is likely to be highly tumour specific, because only the tumours (which are BRCA2-/-) in BRCA2+/- patients are defective in homologous recombination. The use of an inhibitor of a DNA repair enzyme alone to selectively kill a tumour, in the absence of an exogenous DNA-damaging agent, represents a new concept in cancer treatment.
Article
Full-text available
Poly(ADP-ribose) polymerase 1 (PARP-1) is a zinc-finger DNA-binding enzyme that is activated by binding to DNA breaks. Poly(ADP-ribosyl)ation of nuclear proteins by PARP-1 converts DNA damage into intracellular signals that activate either DNA repair by the base-excision pathway or cell death. A family of 18 PARPs has been identified, but only the most abundant, PARP-1 and PARP-2, which are both nuclear enzymes, are activated by DNA damage. PARP inhibitors of ever-increasing potency have been developed in the 40 years since the discovery of PARP-1, both as tools for the investigation of PARP-1 function and as potential modulators of DNA-repair-mediated resistance to cytotoxic therapy. Owing to the high level of homology between the catalytic domains of PARP-1 and PARP-2, the inhibitors probably affect both enzymes. Convincing biochemical evidence, which has been corroborated by genetic manipulation of PARP-1 activity, shows that PARP inhibition is associated with increased sensitivity to DNA-alkylating agents, topoisomerase I poisons and ionising radiation. Novel PARP inhibitors of sufficient potency and suitable pharmacokinetic properties to allow evaluation in animal models have been shown to enhance the antitumour activity of temozolomide (a DNA-methylating agent), topoisomerase poisons and ionising radiation; indeed, the combination with temozolomide resulted in complete tumour regression in two independent studies. The combination of a PARP inhibitor and temozolomide is currently undergoing clinical evaluation for the first time.
Article
Full-text available
The ataxia telangiectasia mutated (ATM) protein is the principal activator of the p53 protein in the response to DNA double-strand breaks. Mutations in the ATM gene have been previously found in B-cell chronic lymphocytic leukemias (B-CLLs) but their clinical significance is unknown. We analyzed 155 CLL tumors and found 12% with ATM mutations and 4% with TP53 mutations; 2 tumors contained mutations in both genes. Retrospective analysis on selected samples indicated that the ATM mutations were usually present at diagnosis. Compared with patients with wild-type ATM/TP53 genes, patients with ATM mutations had statistically significantly reduced overall and treatment-free survival. Although present in both IGVH mutation subgroups, ATM mutations were associated with unmutated IGVH genes and they provided independent prognostic information on multivariate analysis. Mutations in the ATM gene resulted in impaired in vitro DNA damage responses. Tumors with ATM mutations only partially correlated with tumors with loss of an ATM allele through an 11q deletion and, interestingly, those 11q-deleted tumors with a second wild-type ATM allele had a preserved DNA damage response. The majority of patients with ATM mutations were refractory to DNA damaging chemotherapeutic drugs and as such might benefit from therapies that bypass the ATM/p53 pathway.
Article
Here, the sequence in the hprt gene of the duplication mutant SPD8 originating from V79 Chinese hamster cells was determined. The duplication arose after non-homologous recombination between exon 6 and intron 7, resulting in an extra copy of the 3′ portion of exon 6, of exon 7 and of flanking intron regions. Only a duplication of exon 7 is present in the mRNA, since the duplicated exon 6 lacks its 5′ splice site and is removed during RNA processing. The findings in this study suggest that the non-homologous recombination mechanism which occurred here may have been initiated by endonucleases, rather than by a spontaneous double strand break. Subsequently, 14 spontaneous SPD8 revertants with a functional hprt gene were isolated and characterized using PCR and sequencing. The data revealed that although the SPD8 cell line arose by non-homologous recombination, it reverts spontaneously by homologous recombination. Interestingly, the downstream copy of exon 7 was restored by this process. This was indicated by the presence of a specific mutation, a T-to-G transversion, close to the breakpoint, a characteristic unique to the SPD8 clone. Our results suggest that the spontaneous reversion of this cell line by homologous recombination may involve an exchange, rather than a conversion mechanism.
Article
The modifying effects of PD 128763 (3,4-dihydro-5-methyl-1(2H)-isoquinolinone), a potent inhibitor of poly(adenosine-diphosphate (ADP)-ribose) polymerase, on radiation-induced cell killing were examined in Chinese hamster V79 cells. This compound has an IC50 value against the purified enzyme approximately 50X lower than 3-aminobenzamide (3-AB), a widely used specific inhibitor of the enzyme. Exposure of exponentially growing cells to a noncytotoxic concentration (0.5 mM) of PD 128763 for 2 h immediately following X irradiation increased their radiation sensitivity, modifying both the shoulder and the slope of the survival curve. When recovery from sublethal damage and potentially lethal damage was examined in exponential and plateau-phase cells, respectively, postirradiation incubation with 0.5 mM PD 128763 was found not only to inhibit both these processes fully, but also to enhance further the level of radiation-induced cell killing. This is in contrast to the slight effect seen with the less potent inhibitor, 3-AB. The results presented suggest that the mechanism of radiosensitization by PD 128763 is related to the potent inhibition of poly(ADP-ribose) polymerase by this compound.
Article
Poly(ADP-ribosyl)ation is catalyzed by NAD+: protein(ADP-ribosyl) transferase (ADPRT), a chromatin-associated enzyme which, in the presence of DNA breaks, transfers ADP-ribose from NAD+ to nuclear proteins. This post-translational modification has been implicated in many fundamental processes, like DNA repair, chromatin stability, cell proliferation, and cell death. To elucidate the biological function of ADPRT and poly(ADP-ribosyl)ation in vivo the gene was inactivated in the mouse germ line. Mice homozygous for the ADPRT mutation are healthy and fertile. Analysis of mutant tissues and fibroblasts isolated from mutant fetuses revealed the absence of ADPRT enzymatic activity and poly(ADP-ribose), implying that no poly(ADP-ribosyl)ated proteins are present. Mutant embryonic fibroblasts were able to efficiently repair DNA damaged by UV and alkylating agents. However, proliferation of mutant primary fibroblasts as well as thymocytes following gamma-radiation in vivo was impaired. Moreover, mutant mice are susceptible to the spontaneous development of skin disease as approximately 30% of older mice develop epidermal hyperplasia. The generation of viable ADPRT-/-mice negates an essential role for this enzyme in normal chromatin function, but the impaired proliferation and the onset of skin lesions in older mice suggest a function for ADPRT in response to environmental stress.
Article
There are one million molecules of poly(ADP-ribose) polymerase (PARP) in mammalian cell nuclei and the enzyme is found in most eukaryotes, with the notable exception of yeasts. In response to DNA damage caused by ionizing radiation or alkylating agents, PARP binds to strand interruptions in DNA and undergoes rapid automodification with synthesis of long branched polymers of highly negatively charged poly(ADP-ribose). DNA repair occurs after dissociation of modified PARP from DNA strand breaks. Biochemical data with enzyme-depleted extracts and studies of enzyme-deficient mice show that PARP does not participate directly in DNA repair. Possible roles for poly(ADP-ribose) synthesis are discussed.
Article
Ataxia-telangiectasia (AT) is an autosomal recessive disorder characterized by cerebellar ataxia, oculocutaneous telangiectasia, immune deficiency, genome instability and predisposition to malignancies, particularly T-cell neoplasms. The responsible gene, designated ataxia-telangiectasia mutated (ATM), was recently identified by positional cloning in the chromosomal region 11q22.3-23.1 (ref. 4, 5) ATM is 150 kb in length, consists of 66 exons and encodes a nuclear phosphoprotein of approximately 350 kDa (ref. 4-9). Although ATM is considered to be a tumorigenic factor in several human cancers, it has not yet been found mutated in tumors of non-AT patients. Given the marked predisposition of AT patients to develop neoplasms of the T-cell lineage, we analyzed a series of T-cell leukemias (T-prolymphocytic leukemia, or T-PLL) in non-AT patients in search of genomic changes associated with the development of this disease. Among the recurrent aberrations identified, deletion of the chromosome arm 11q was very frequent. Subsequent molecular cytogenetic analyses allowed us to define a small commonly deleted segment at 11q22.3-23.1 in 15 of 24 T-PLLs studied. Since this critical region contained ATM, we further analyzed the remaining copy of the gene in six cases showing deletions affecting one ATM allele. In all six cases, mutations of the second ATM allele were identified, leading to the absence, premature truncation or alteration of the ATM gene product. Thus, our study demonstrates disruption of both ATM alleles by deletion or point mutation in T-PLL, suggesting that ATM functions as a tumor-suppressor gene in tumors of non-AT individuals.
Article
Poly(ADP-ribose) polymerase (PARP) and DNA-dependent protein kinase (DNA-PK) are DNA break-activated molecules, Although mice that lack PARP display no gross phenotype and normal DNA excision repair, they exhibit high levels of sister chromatid exchange, indicative of elevated recombination rates. Mutation of the gene for DNA-PK catalytic subunit (Prkdc) cases defective antigen receptor V(D)J recombination and arrests B- and T-lymphocyte development in severe combined immune-deficiency (SCID) mice. SCID V(D)J recombination can be partly rescued in T-lymphocytes by either DNA-damaging agents (gamma-irradiation and bieomycin) or a null mutation of the p53 gene, possibly because of transiently elevated DNA repair activity in response to DNA damage or to delayed apoptosis in the absence of p53. To determine whether the increased chromosomal recombination observed in PARP-deficient cells affects SCID V(D)J recombination, we generated mice lacking both PARP and DNA-PK. Here, we show that thymocytes of SCID mice express both CD4 and CD8 co-receptors, bypassing the SCID block. Double-mutant T-cells in the periphery express TCR beta, which is attributable to productive TCR beta joints. Double-mutant mice develop a high frequency of T-cell lymphoma. These results demonstrate that increased recombination activity after the loss of PARP anti-recombinogenic function can rescue V(D)J recombination in SCID mice and indicate that PARP and DNA-PK cooperate to minimize genomic damage caused by DNA strand breaks.
Article
The ability of 6(5H)-phenanthridinone (Phen), a new potent poly(ADP-ribose)polymerase (PARP) inhibitor, to potentiate the effect of ionizing radiation on tumour cells was evaluated. RDM4 murine lymphoma cells were irradiated using a 60Co panoramic source and then examined for their growth, cell cycle distribution and apoptosis. Phen (100 microM) was found to inhibit more than 90% of the PARP activity in control and irradiated cells. Cell proliferation was assessed using Alamar Blue, a new fluorometric assay. Phen was found to sharply increase the radiation-induced inhibition of cell proliferation. Indeed, at 2.5 Gy the relative cell number of Phen-treated cells was 60% below control levels. At the same radiation dose, the G2M arrest was also significantly reinforced by the addition of Phen. Furthermore, this PARP inhibitor was shown to significantly increase the amount of DNA fragmentation as revealed by the DNA migration pattern in agarose gel electrophoresis. Comparable results were obtained with 3-aminobenzamide, another PARP inhibitor, but at concentrations 200-fold higher. Taken together, these results indicate the potential interest of Phen as a valuable pharmacological probe for investigating the role of PARP in cellular responses to radiation. They also suggest a possible use of Phen as an adjuvant in radiotherapy.
Article
Mutations in the ATM gene located on the long arm of chromosome 11 at 11q22-23 cause ataxia-telangiectasia, an autosomal recessive disorder that is associated with increased incidence of malignancy and, particularly, lymphoid tumors. A role for ATM in the development of sporadic T-cell chronic leukemias is supported by the finding of loss of heterozygosity at 11q22-23 and ATM mutations in leukemias carrying TCL-1 rearrangements. Approximately 14% of B-cell chronic lymphocytic leukemia (B-CLL), the most common adult leukemia, carry deletions of the long arm of chromosome 11 at 11q22-23. Loss of heterozygosity at 11q22-23 and, more recently, absence of ATM protein, have been associated with poor prognosis in B-CLL. To determine whether the ATM gene is altered in B-CLL, we have sequenced individual ATM exons in six B-CLL cases. We show that the ATM gene is mutated in a fraction of B-CLLs and that mutations can be present in the germ line of patients, suggesting that ATM heterozygotes may be predisposed to B-CLL.
Article
Poly(ADP-ribose) polymerase (PARP; EC 2.4.2.30) is a chromatin-bound enzyme which is known to regulate chromatin structure by poly(ADP-ribosyl)ation of nuclear proteins, to facilitate DNA base excision repair, and to contribute to cellular recovery following DNA damage. Because inhibitors of PARP are able to potentiate the cell-killing effects of some DNA-damaging agents and to inhibit the repair of induced DNA strand breaks, such compounds may enhance the anti-tumour efficacy of radiotherapy or cytotoxic drug treatment. The PARP-inhibitory effects and radiosensitization of a new compound, 4-amino-1,8-naphthalimide (ANI), were examined. The inhibition of radiation-induced poly(ADP-ribosyl)ation (50 Gy; 60Co gamma-radiation) was evaluated by immunofluorescence assay using MoAb 10H directed against poly(ADP-ribose). Cell survival was assessed by colony forming assay (CFA) to determine the cytotoxicity of radiosensitization potential in exponentially growing hamster lung fibroblasts (V79), rat prostate carcinoma (R3327-AT1) and human prostate carcinoma (DU145) cells. At concentrations above 30 nmol x dm(-3) ANI, radiation-induced poly(ADP-ribose) was not detectable by immunofluorescence in V79, AT1 and DU145 cells. At the highest concentration tested for chronic exposure (20 micromol x dm(-3)), ANI was not cytotoxic and significantly potentiates the cytotoxicity of gamma-irradiation. The level of radiation enhancement was directly proportional to drug concentration. Survival curves for the three cell lines using 20 micromol x dm(-3) ANI revealed sensitizer enhancement ratios of 1.3 for V79, 1.5 for AT1 and 1.3 for DU145. In living cells, ANI is about 1000-fold more potent at inhibiting PARP activity compared with 3-aminobenzamide (3-ABA). CFA studies demonstrated that ANI is a radiation sensitizer at non-toxic and lower concentrations (20 micromol x dm(-3)) than 3-ABA (10 mmol x dm(-3)).
Article
Patients with the inherited disorder ataxia telangiectasia (A-T) have an increased susceptibility to lymphoid malignancies. In these patients mutations affect both alleles of the A-T gene (ATM). We have looked for mutations in the ATM gene in sporadic cases of B-cell chronic lymphocytic leukaemia (B-CLL). 32 cases of B-CLL were analysed by restriction endonuclease fingerprinting to detect mutations within ATM. In six of the cases in which mutations were detected in tumour samples, germline DNA was screened to assess ATM carrier status. The samples in 20 cases were also studied by western blot for abnormal expression of ATM protein. Expression of the ATM protein was impaired in eight (40%) of the 20 tumours analysed, being absent in three and decreased in five. Mutations within ATM were detected in six (18%) of the 32 patients. These point mutations, deletions, and one insertion were distributed across the coding sequence of ATM. Germline mutations, which indicate ATM carrier status, were found in two of these six patients compared with a frequency within the general population of below 1 in 200. Abnormal expression of ATM protein is a frequent finding in B-CLL. Although the precise function of this protein is unknown, it is thought to have a role in programmed cell death, a deficiency of which would fit with the characteristic phenotype of prolonged cell survival seen in B-CLL tumour cells. Our results also suggest that carriers of ATM mutations may be at a particular risk for the development of B-CLL and this may partly explain the known genetic susceptibility to this disease.
Article
To elucidate the biological functions of poly(ADP-ribose) polymerase (PARP, [EC 2.4.2.30]) in DNA damage responses, genetic and biochemical approaches were undertaken. By disrupting exon 1 of the mouse PARP gene by a homologous recombination, PARP-deficient mouse embryonic stem (ES) cell lines and mice could be produced without demonstrating lethality. PARP -/- ES cells showed complete loss of PARP activity and increased sensitivity to γ-irradiation and an alkylating agents, indicating a physiological role for PARP in the response to DNA damage. p53, a key molecule in cellular DNA damage response, was found to stimulate PARP activity and became poly(ADP-ribosyl)ated in the presence of damaged DNA. However, PARP -/- ES cells showed p21 and Mdm-2 mRNA induction following γ-irradiation, indicating that PARP activity is not indispensable for p21 and Mdm-2 mRNA induction in the established p53-cascade. On the other hand, in a reconstituted reaction system, purified PARP from human placenta suppressed the pRB-phosphorylation activity in the presence of NAD and damaged DNA. Human PARP expressed in E. coli showed a similar effect on pRB-phosphorylation activity of cdk2. These findings suggest a direct involvement of PARP in the regulation of cdk activity for cell-cycle arrest.
Article
Deletion in chromosome bands 11q22-q23 is one of the most common chromosome aberrations in B-cell chronic lymphocytic leukemia (B-CLL). It is associated with extensive lymph node involvement and poor survival. The minimal consensus deletion comprises a segment, which contains the ATM gene presenting an interesting candidate gene, as mutations in ATM predispose A-T patients to lymphoid malignancies. To investigate a potential pathogenic role of ATM in B-cell tumorigenesis, we performed mutation analysis of ATM in 29 malignant lymphomas of B-cell origin (B-CLL = 27; mantle cell lymphoma, [MCL] = 2). Twenty-three of these carried an 11q22-q23 deletion. In five B-CLLs and one MCL with deletion of one ATM allele, a point mutation in the remaining allele was detected, which resulted in aberrant transcript splicing, alteration, or truncation of the protein. In addition, mutation analysis identified point mutations in three cases without 11q deletion: two B-CLLs with one altered allele and one MCL with both alleles mutated. In four cases analyzed, the ATM alterations were not present in the germ line indicating a somatic origin of the mutations. Our study demonstrates somatic disruption of both alleles of the ATM gene by deletion or point mutation and thus its pathogenic role in sporadic B-cell lineage tumors.
Article
DNA double-strand breaks (DSB) represent a major disruption in the integrity of the genome. DSB can be generated when a replication fork encounters a DNA lesion. Recombinational repair is known to resolve such replication fork-associated DSB, but the molecular mechanism of this repair process is poorly understood in mammalian cells. In the present study, we investigated the molecular mechanism by which recombination resolves camptothecin (CPT)-induced DSB at DNA replication forks. The frequency of homologous recombination (HR) was measured using V79/SPD8 cells which contain a duplication in the endogenous hprt gene that is resolved by HR. We demonstrate that DSB associated with replication forks induce HR at the hprt gene in early S phase. Further analysis revealed that these HR events involve an exchange mechanism. Both the irs1SF and V3-3 cell lines, which are deficient in HR and non-homologous end joining (NHEJ), respectively, were found to be more sensitive than wild-type cells to DSB associated with replication forks. The irs1SF cell line was more sensitive in this respect than V3-3 cells, an observation consistent with the hypothesis that DSB associated with replication forks are repaired primarily by HR. The frequency of formation of DSB associated with replication forks was not affected in HR and NHEJ deficient cells, indicating that the loss of repair, rather than the formation of DSB associated with replication forks is responsible for the increased sensitivity of the mutant strains. We propose that the presence of DSB associated with replication forks rapidly induces HR via an exchange mechanism and that HR plays a more prominent role in the repair of such DSB than does NHEJ.
Article
Poly(ADP-ribose) polymerases (PARPs) are defined as cell signaling enzymes that catalyze the transfer of ADP-ribose units from NAD(+)to a number of acceptor proteins. PARP-1, the best characterized member of the PARP family, that presently includes six members, is an abundant nuclear enzyme implicated in cellular responses to DNA injury provoked by genotoxic stress (oxygen radicals, ionizing radiations and monofunctional alkylating agents). Due to its involvement either in DNA repair or in cell death, PARP-1 is regarded as a double-edged regulator of cellular functions. In fact, when the DNA damage is moderate, PARP-1 participates in the DNA repair process. Conversely, in the case of massive DNA injury, elevated PARP-1 activation leads to rapid NAD(+)/ATP consumption and cell death by necrosis. Excessive PARP-1 activity has been implicated in the pathogenesis of numerous clinical conditions such as stroke, myocardial infarction, shock, diabetes and neurodegenerative disorders. PARP-1 could therefore be considered as a potential target for the development of pharmacological strategies to enhance the antitumor efficacy of radio- and chemotherapy or to treat a number of clinical conditions characterized by oxidative or NO-induced stress and consequent PARP-1 activation. Moreover, the discovery of novel functions for the multiple members of the PARP family might lead in the future to additional clinical indications for PARP inhibitors.
Article
The function of the ATR (ataxia-telangiectasia mutated– and Rad3-related)–ATRIP (ATR-interacting protein) protein kinase complex is crucial for the cellular response to replication stress and DNA damage. Here, we show that replication protein A (RPA), a protein complex that associates with single-stranded DNA (ssDNA), is required for the recruitment of ATR to sites of DNA damage and for ATR-mediated Chk1 activation in human cells. In vitro, RPA stimulates the binding of ATRIP to ssDNA. The binding of ATRIP to RPA-coated ssDNA enables the ATR-ATRIP complex to associate with DNA and stimulates phosphorylation of the Rad17 protein that is bound to DNA. Furthermore, Ddc2, the budding yeast homolog of ATRIP, is specifically recruited to double-strand DNA breaks in an RPA-dependent manner. A checkpoint-deficient mutant of RPA, rfa1-t11, is defective for recruiting Ddc2 to ssDNA both in vivo and in vitro. Our data suggest that RPA-coated ssDNA is the critical structure at sites of DNA damage that recruits the ATR-ATRIP complex and facilitates its recognition of substrates for phosphorylation and the initiation of checkpoint signaling.
Article
Camptothecin and Adriamycin are clinically important inhibitors for topoisomerase (Topo) I and Topo II, respectively. The ataxia-telangiectasia mutated (ATM) product is essential for ionizing radiation-induced DNA damage responses, but the role of ATM in Topo poisons-induced checkpoints remains unresolved. We found that distinct mechanisms are involved in the activation of different cell cycle checkpoints at different concentrations of Adriamycin and camptothecin. Adriamycin promotes the G(1) checkpoint through activation of the p53-p21(CIP1/WAF1) pathway and decrease of pRb phosphorylation. Phosphorylation of p53(Ser20) after Adriamycin treatment is ATM dependent, but is not required for the full activation of p53. The G(1) checkpoint is dependent on ATM at low doses but not at high doses of Adriamycin. In contrast, the Adriamycin-induced G(2) checkpoint is independent on ATM but sensitive to caffeine. Adriamycin inhibits histone H3(Ser10) phosphorylation through inhibitory phosphorylation of CDC2 at low doses and down-regulation of cyclin B1 at high doses. The camptothecin-induced intra-S checkpoint is partially dependent on ATM, and is associated with inhibitory phosphorylation of cyclin-dependent kinase 2 and reduction of BrdUrd incorporation after mid-S phase. Finally, apoptosis associated with high doses of Adriamycin or camptothecin is not influenced by the absence of ATM. These data indicate that the involvement of ATM following treatment with Topo poisons differs extensively with dosage and for different cell cycle checkpoints.
Article
The precise replication of the genome and the continuous surveillance of its integrity are essential for survival and the avoidance of various diseases. Cells respond to DNA damage by activating a complex network of the so-called checkpoint pathways to delay their cell-cycle progression and repair the defects. In this review we integrate findings on the emerging mechanisms of activation, the signalling pathways and the spatio-temporal organization of the intra-S-phase DNA-damage checkpoint and its impact on the cell-cycle machinery, and discuss its biological significance.
Article
The hereditary disorder ataxia telangiectasia (A-T) is associated with striking cellular radiosensitivity that cannot be attributed to the characterized cell cycle checkpoint defects. By epistasis analysis, we show that ataxia telangiectasia mutated protein (ATM) and Artemis, the protein defective in patients with RS-SCID, function in a common double-strand break (DSB) repair pathway that also requires H2AX, 53BP1, Nbs1, Mre11, and DNA-PK. We show that radiation-induced Artemis hyperphosphorylation is ATM dependent. The DSB repair process requires Artemis nuclease activity and rejoins approximately 10% of radiation-induced DSBs. Our findings are consistent with a model in which ATM is required for Artemis-dependent processing of double-stranded ends with damaged termini. We demonstrate that Artemis is a downstream component of the ATM signaling pathway required uniquely for the DSB repair function but dispensable for ATM-dependent cell cycle checkpoint arrest. The significant radiosensitivity of Artemis-deficient cells demonstrates the importance of this component of DSB repair to survival.
Article
In eukaryotic cells, nonhomologous DNA end joining (NHEJ) is a major pathway for repair of double-strand DNA breaks (DSBs). Artemis and the 469kDa DNA-dependent protein kinase (DNA-PKcs) together form a key nuclease for NHEJ in vertebrate organisms. The structure-specific endonucleolytic activity of Artemis is activated by binding to and phosphorylation by DNA-PKcs. We tested various DNA structures in order to understand the range of structural features that are recognized by the Artemis:DNA-PKcs complex. We find that all tested substrates that contain single-to-double-strand transitions can be cleaved by the Artemis:DNA-PKcs complex near the transition region. The cleaved substrates include heterologous loops, stem-loops, flaps, and gapped substrates. Such versatile activity on single-/double-strand transition regions is important in understanding how reconstituted NHEJ systems that lack DNA polymerases can join incompatible DNA ends and yet preserve 3' overhangs. Additionally, the flexibility of the Artemis:DNA-PKcs nuclease may be important in removing secondary structures that hinder processing of DNA ends during NHEJ.
Article
Homologous recombination is vital to repair fatal DNA damage during DNA replication. However, very little is known about the substrates or repair pathways for homologous recombination in mammalian cells. Here, we have compared the recombination products produced spontaneously with those produced following induction of DNA double-strand breaks (DSBs) with the I-SceI restriction endonuclease or after stalling or collapsing replication forks following treatment with thymidine or camptothecin, respectively. We show that each lesion produces different spectra of recombinants, suggesting differential use of homologous recombination pathways in repair of these lesions. The spontaneous spectrum most resembled the spectra produced at collapsed replication forks formed when a replication fork runs into camptothecin-stabilized DNA single-strand breaks (SSBs) within the topoisomerase I cleavage complex. We found that camptothecin-induced DSBs and the resulting recombination repair require replication, showing that a collapsed fork is the substrate for camptothecin-induced recombination. An SSB repair-defective cell line, EM9 with an XRCC1 mutation, has an increased number of spontaneous gammaH2Ax and RAD51 foci, suggesting that endogenous SSBs collapse replication forks, triggering recombination repair. Furthermore, we show that gammaH2Ax, DSBs, and RAD51 foci are synergistically induced in EM9 cells with camptothecin, suggesting that lack of SSB repair in EM9 causes more collapsed forks and more recombination repair. Furthermore, our results suggest that two-ended DSBs are rare substrates for spontaneous homologous recombination in a mammalian fibroblast cell line. Interestingly, all spectra showed evidence of multiple homologous recombination events in 8 to 16% of clones. However, there was no increase in homologous recombination genomewide in these clones nor were the events dependent on each other; rather, we suggest that a first homologous recombination event frequently triggers a second event at the same locus in mammalian cells.