ArticlePDF Available

Mosaicism of activating FGFR3 mutations in human skin causes epidermal nevi

Authors:

Abstract and Figures

Epidermal nevi are common congenital skin lesions with an incidence of 1 in 1,000 people; however, their genetic basis remains elusive. Germline mutations of the FGF receptor 3 (FGFR3) cause autosomal dominant skeletal disorders such as achondroplasia and thanatophoric dysplasia, which can be associated with acanthosis nigricans of the skin. Acanthosis nigricans and common epidermal nevi of the nonorganoid, nonepidermolytic type share some clinical and histological features. We used a SNaPshot multiplex assay to screen 39 epidermal nevi of this type of 33 patients for 11 activating FGFR3 point mutations. In addition, exon 19 of FGFR3 was directly sequenced. We identified activating FGFR3 mutations, almost exclusively at codon 248 (R248C), in 11 of 33 (33%) patients with nonorganoid, nonepidermolytic epidermal nevi. In 4 of these cases, samples from adjacent histologically normal skin could be analyzed, and FGFR3 mutations were found to be absent. Our results suggest that a large proportion of epidermal nevi are caused by a mosaicism of activating FGFR3 mutations in the human epidermis, secondary to a postzygotic mutation in early embryonic development. The R248C mutation appears to be a hot spot for FGFR3 mutations in epidermal nevi.
Content may be subject to copyright.
Research article
The Journal of Clinical Investigation http://www.jci.org  Volume 116    Number 8  August 2006  2201
Mosaicism of activating FGFR3 mutations
in human skin causes epidermal nevi
Christian Hafner,
1
Johanna M.M. van Oers,
2
Thomas Vogt,
1
Michael Landthaler,
1
Robert Stoehr,
3
Hagen Blaszyk,
4
Ferdinand Hofstaedter,
5
Ellen C. Zwarthoff,
2
and Arndt Hartmann
5
1
Department of Dermatology, University of Regensburg, Regensburg, Germany.
2
Department of Pathology, Josephine Nefkens Institute, Erasmus MC,
Rotterdam, The Netherlands.
3
Department of Urology, University of Regensburg, Regensburg, Germany.
4
Department of Pathology,
University of Vermont College of Medicine, Burlington, Vermont, USA.
5
Institute of Pathology, University of Regensburg, Regensburg, Germany.
Epidermal nevi are common congenital skin lesions with an incidence of 1 in 1,000 people; however, their
genetic basis remains elusive. Germline mutations of the FGF receptor 3 (FGFR3) cause autosomal dominant
skeletal disorders such as achondroplasia and thanatophoric dysplasia, which can be associated with acan-
thosis nigricans of the skin. Acanthosis nigricans and common epidermal nevi of the nonorganoid, nonepi-
dermolytic type share some clinical and histological features. We used a SNaPshot multiplex assay to screen
39 epidermal nevi of this type of 33 patients for 11 activating FGFR3 point mutations. In addition, exon 19 of
FGFR3 was directly sequenced. We identified activating FGFR3 mutations, almost exclusively at codon 248
(R248C), in 11 of 33 (33%) patients with nonorganoid, nonepidermolytic epidermal nevi. In 4 of these cases,
samples from adjacent histologically normal skin could be analyzed, and FGFR3 mutations were found to be
absent. Our results suggest that a large proportion of epidermal nevi are caused by a mosaicism of activating
FGFR3 mutations in the human epidermis, secondary to a postzygotic mutation in early embryonic develop-
ment. The R248C mutation appears to be a hot spot for FGFR3 mutations in epidermal nevi.
Introduction
Epidermal nevi show a prevalence of about 1 in 1,000 people and 
canbe divided into either nonorganoid (keratinocytic) types or 
organoid types characterized by hyperplasia of adnexal structures 
such as sebaceous glands, sweat glands, and hair follicles. Epider
-
mal nevi ofthe common, nonorganoid and nonepidermolytic type 
are benign skin lesions and may vary in their extent from a single 
(usually linear) lesion to widespread and systematizedinvolvement 
(Figure 1). They may be present at birth or develop early during 
childhood as localizedepidermalthickening with hyperpigmenta
-
tion, frequently following the lines of Blaschko. This suggests that 
epidermal nevi maybe due to mosaicism resulting from postzygot
-
ic mutations in keratinocytes.Mutationsof keratins1 and 10 were 
shown to beresponsible fora raresubgroup ofepidermal nevi, 
the linear epidermolytic hyperkeratosis (1, 2). Another variant of 
epidermal nevi, the congenital hemidysplasia with ichthyosiform 
nevus and limb defects (CHILD)
nevus, is caused by NADPH ste-
roid dehydrogenase-like protein (NSDHL) mutations (Xq28) and 
represents a functional X chromosomal mosaicism (3). However, 
the genetic basis of the much more common nonorganoid, non
-
epidermolytic keratinocytic epidermal nevi remains elusive.
TheFGFreceptor  (FGFR)  family  comprises 4major trans
-
membranereceptor tyrosine kinases (FGFR1–4) andis involved 
in embryogenesis, angiogenesis, and tissue homeostasis (4). The 
FGFR3gene contains19 exons encodingan extracellular region 
for ligandbinding composedof 3 Ig-like domains, a hydropho
-
bic transmembrane domain and 2 cytoplasmic tyrosinekinase 
domains (Figure 2). Alternative splicing of the second half of the 
IgIII-like domain (exon 8versus exon 9)resultsin the isoforms 
IIIb and IIIc. The isoforms show different ligand specificity and 
tissue expression. 
FGFR3IIIb is mainly expressed in epithelial cells 
while 
FGFR3IIIc ispredominantly found in mesenchymal cells (5). 
This paper assigns all codon numbersto the openreading frame of 
the 
FGFR3 IIIb isoform. More than 20 FGFs are known as ligands 
now (4). The interaction of the ligand with the receptor requires 
the presence of sulfated glycosaminoglycans such as heparin and 
leads to the dimerization of the receptor with consecutive phos
-
phorylation of intracellular tyrosine residues in the kinase domain 
and activation of intracellular signaling pathways. The autophos
-
phorylation sites of FGFR3 represent potential binding sites for 
signalingproteins,forexample, with phosphotyrosine binding 
(PTB) and Src homology 2 (SH2) domains. Activation of the cyto
-
plasmic region causes phosphorylation of Shp2, PLC
g, ERK1/2, 
and STAT3 and also PI3K activation (4). FGFRs can also be acti
-
vated by interaction with EphA4, anotherreceptor tyrosine kinase, 
which demonstrates the complexity of FGFR signaling (6).
Activatinggermline mutations of the 
FGFR3gene resultin dwarf-
ism,severe skeletal dysplasia, and craniosynostosis syndromes such 
asachondroplasia (ACH), hypochondroplasia (HCH), thanato
-
phoric dysplasia (TD), Crouzonsyndrome (CS), Muenke syndrome 
(MS), and SADDAN (severe achondroplasia with developmental 
delay and acanthosis nigricans) syndrome (7–10). These activating 
mutations result in negative chondrocytic growth regulation of 
the epiphyseal plates of long bones,causing dwarfism (11). Identi
-
cal mutations are found in different cancer entities and probably 
provide proliferative signals (4). FGFR3 signaling in mutated cells 
is poorly understood, but previous studies provide some insights. 
All known missense mutations causing TD I create an unpaired 
cysteine residue (12–14), such as the R248C and S249C mutations. 
These mutations are localized in the extracellular domain at the 
linker region betweenthe Ig-likedomains IIand III while other 
Nonstandard abbreviations used:ACH, achondroplasia; CS, Crouzon syndrome; 
FGFR3, fibroblast growth factor receptor 3; HCH, hypochondroplasia; SADDAN, 
severe achondroplasia with developmental delay and acanthosis nigricans;  
TD, thanatophoric dysplasia.
Conflict of interest: The authors have declared that no conflict of interest exists.
Citation for this article:
J. Clin. Invest.116:2201–2207 (2006). doi:10.1172/JCI28163.
research article
2202 The Journal of Clinical Investigation http://www.jci.org    Volume 116    Number 8  August 2006
mutations causing unpaired cysteine residues such as G372C are 
localized at the junction of the extracellular and the transmem
-
brane domain of 
FGFR3. The newlycreated unpairedcysteine 
amino acid allows the formation of disulfide bonds between the 
extracellular domains of 2 receptors, resulting in homodimeriza
-
tion, increased tyrosine phosphorylation, and ligand-independent 
constitutive receptor activation (15, 16). Similar mechanisms were 
also shown for other receptor tyrosine kinases, the erythropoietin 
receptor and the epidermal growth factor receptor (17, 18). Con
-
stitutive activation in cells bearing the G372C or S373C mutation 
results in high basal phosphorylation with significantly increased 
constitutive levels of MAPK phosphorylation and c-fos transcrip
-
tion, probably caused by mutant homodimer FGFR3 complexes 
(19). Other mutations, such as G382R, which is found in about 
97% of ACH patients, affect the transmembrane domain and lead 
to the formation of hydrogen bonds between 2 FGFRs, resulting 
in constitutive receptor activation (20). The A393E mutation in 
CS also affects the transmembrane domain and results in FGFR3 
dimer stabilization, measured by the change in the free energy of 
thedimerization, thus largely increasing the fraction ofdimers 
(21). A third class of mutations affect the tyrosine kinase domain, 
such as the K652E mutation in TD II or the N542K mutation in 
HCH (11). These mutations likely cause conformational changes 
in the activation loop that activate the receptor tyrosine kinase 
activity and downstream ERK1/2 (22). Other studies suggest that 
FGFR3mutations may delay the downregulation and ligand-medi-
atedinternalizationof thereceptor (23). Thephosphorylated 
immature form of the mutant receptor accumulates in the endo
-
plasmicreticulumand fails tobe degraded (24). The different 
degree of receptor activation seems to correlate with the severity of 
the phenotype. Stronger activation of the receptor by ligand-inde
-
pendentdimerizationviadisulfidebonds in TD patients deter
-
mines the more severe phenotype compared with other skeletal 
dysplasia syndromes such as ACH and HCH (15, 25).
Somatic activating
FGFR3mutations have been identified in 40% 
of human seborrheic keratoses (26) and in several human cancers 
(4), including multiple myeloma (27), urothelial carcinoma (28), 
cervix carcinoma (29), and colorectal carcinoma (30). Some of the 
skeletal dysplasia syndromes (TD, CS, SADDAN) caused by 
FGFR3
mutations are also characterized by marked thickening of the epi
-
dermis. This skin lesion, termed 
acanthosis nigricans, and epidermal 
nevi share similar histological features, including acanthosis and 
papillomatosis (31, 32). Herein we investigate the role of 
FGFR3
mutations in common nonorganoid, nonepidermolytic keratino
-
cytic epidermal nevi.
Results
We analyzed 39 common nonepidermolytic, nonorganoid kera
-
tinocytic epidermal nevi of 33 patients using a SNaPshot mul
-
tiplexassay that covered 11 
FGFR3pointmutations described 
inskeletaldysplasiasyndromes andcancerentities(Figure 2). 
Thefollowingsubtypesofkeratinocyticepidermalneviwere 
Figure 1
Patient 29 displayed a systematized epidermal nevus of the common
soft type with involvement of the face (bilateral), the right scapular region,
the right arm, the right hip, and the right thigh. Abnormalities of the skel-
etal or nervous system were not present. A biopsy was taken from the
epidermal nevus of the right forearm. This epidermal nevus revealed an
R248C FGFR3 gene mutation. DNA isolated from the blood of this patient
revealed WT status at codon 248, excluding a germline mutation.
Figure 2
FGFR3 gene. The position of the muta-
tions covered by the SNaPshot multiplex
assay is indicated. Codons are numbered
according to the FGFR3 IIIb isoform;
potential mutations of the stop codon 809
in exon 19 associated with TD I were ana-
lyzed by direct sequencing. C, C-terminus;
Ig I, Ig II, Ig III, Ig-like domains I–III; N,
N-terminus; TM, transmembrane domain;
TKI, TKII, tyrosine kinase domains I–II.
research article
The Journal of Clinical Investigation http://www.jci.org  Volume 116    Number 8  August 2006  2203
includedin the study:28 common soft type,5commonhard 
type, 4 seborrheic-like type, and 2 acrokeratosis verruciformis-
like type. We identified activating 
FGFR3 mutations in 11 of 33 
(33%)patients andin 16 of39 (41%) epidermal nevi (Table 1). In 
15 of 16 epidermal nevi (94%), the mutation occurred in exon 7 
atcodon248 (CGCto TGC), resulting in an Arg to Cys amino 
acid substitution. In one epidermal nevus (patient 15), a double 
mutationwasfoundin exon 10atcodon 372(GGC toTGC), 
resulting in a Gly to Cys amino acid substitution, and at codon 
382(GGGto AGG),resultingina Gly toArgamino acidsub
-
stitution. Theepidermalnevus with thedoublemutationwas 
a commonsoft-typenevus andshowednohistological abnor
-
malities compared with the other epidermal nevi. All activating 
FGFR3mutations werefoundincommon-
typeepidermalnevi(14common softtype, 
and 2 common hard type).
In 4 patients (patients 3, 17, 21, and 32) with 
an 
FGFR3mutation (R248C) in the epidermal 
nevus, clinically and histologically normal epi
-
dermis adjacentto the nevus showed a WTcodon 
248, suggesting an epidermal mosaicism of the 
FGFR3 mutation and a strong genotype-pheno-
type correlation (Figure 3). In 1 patient (patient 
29)with a systematizedepidermal nevus display
-
ing the R248C mutation (biopsy was taken from 
the right forearm), additional genomic DNA was 
isolated from blood. The DNA revealed the WT 
codon 248, thus excluding a germline mutation. 
Multiple intraindividual epidermal nevi biop
-
sies could be analyzed in 2 patients. One patient 
(patient 11a, b) did not show any
FGFR3 muta-
tions. The other patient (patient 33a–e) under
-
wentablativelaser treatment of the common 
soft-type epidermal nevus at the rightside of the 
neck (Figure 4). Before treatment, 6 of the scat
-
tered brownish papules were curetted for 
FGFR3
mutation analysis. All6samples,which were 
spatially distant from each other, revealed the 
R248C mutation in the SNaPshot analysis.
All 
FGFR3mutations detected so farin skin 
lesions (seborrheickeratoses and epidermal nevi) 
are associated with TD, CS, and SADDAN syn
-
drome in the germline. The SNaPshot multiplex 
assay covered all mutations responsible for these 
syndromes except for the stop codon mutation 
X809L/G/R/C/W in exon 19 causing TD I (Fig
-
ure 2). For 20 epidermal nevi (nevi of patients 1, 
2, 5, 6, 7, 8, 9, 10, 11 [a, b], 14, 16, 17, 20, 23, 27, 
28, 30, 31, and 32), DNA was available for fur
-
ther analysis. Weadditionally sequenced exon 19 
of these samples. Seventeen of the 20 epidermal 
nevi had not shown any 
FGFR3mutations in the 
SNaPshot analysis. However, no further 
FGFR3
mutations were detected in exon 19.
Since epidermal nevi represent aheteroge
-
neous skin disorder, we also studied an organ
-
oid typeof  epidermal  nevus, the sebaceous 
nevus. This nevusis found almost exclusively 
onthe scalporfaceand isusually presentat 
birth. Sebaceous nevi are histopathologically 
characterized bythe presence of large numbers of mature seba
-
ceous glands and papillomatous hyperplasia of the epidermis. We 
analyzed 13 sebaceous nevi for 
FGFR3 point mutations using the 
SNaPshot multiplex assay (Table 2). In contrast to the common 
nonorganoid keratinocytic nevi, this organoid type of epidermal 
nevus revealed no 
FGFR3mutations. Thus, activating FGFR3 muta-
tions, especially the frequently detected R248C mutation, appear 
to be specific for common nonorganoid keratinocytic nevi.
Discussion
Our results indicate that a significant number of epidermal nevi 
of the common, nonorganoid, and nonepidermolytic keratinocytic 
type are caused by postzygotic mutations in the 
FGFR3 gene, which 
Table 1
FGFR3 mutations in epidermal nevi
No. Sex Age (yr) Site Subtype Nevus Control Syst.
1 F 1 Head Seborrheic WT No
2 M 59 Head Acro-verruc WT
3 F 9 Left axilla Common hard R248C WT
4 M 13 Neck Seborrheic WT No
5 F 36 Right axilla Common soft R248C No
6 M 17 Head Common soft WT
7 M 7 Head Common soft WT
8 M 21 Head Common soft WT
9 M 15 Head Common soft WT
10 F 15 Right shoulder Common hard WT
11a M 22 Head Common soft WT No
11b M 22 Head Common soft WT No
12 M 20 Left groin Common soft R248C No
13 F 13 Back Common soft WT
14 F 23 Back Common soft WT
15 F 5 Left axilla Common soft G372C/G382R
16 F 2 Neck Common soft WT No
17 M 6 Neck Common soft R248C WT Yes
18 M 16 Head Common soft WT No
19 F 27 Neck Common soft WT
20 F 25 Right shoulder Common soft WT
21 M 29 Head Common hard R248C WT No
22 F 20 Right arm Common soft R248C
23 F 16 Trunk Common hard WT No
24 M 31 Head Common soft WT No
25 F 18 Back Seborrheic WT
26 M 9 Neck Common soft R248C Yes
27 M 14 Head Seborrheic WT No
28 F 9 Head Acro-verruc WT No
29 F 11 Right forearm Common soft R248C Yes
30 F 15 Head Common hard WT No
31 F 16 Neck Common soft WT
32 M 23 Back Common soft R248C WT No
33a F 13 Neck Common soft R248C Yes
33b F 13 Neck Common soft R248C Yes
33c F 13 Neck Common soft R248C Yes
33d F 13 Neck Common soft R248C Yes
33e F 13 Neck Common soft R248C Yes
33f F 13 Neck Common soft R248C Yes
Age, age at time of biopsy; site, site of biopsy; control, DNA from clinically and histologically
normal epidermis adjacent to the epidermal nevus; syst., systematized epidermal nevus;
M, male; F, female; acro-verruc, acrokeratosis verruciformis-like; R248C, exon 7, codon 248,
CGC to TGC with Arg to Cys; G372C, exon 10, codon 372, GGC to TGC with Gly to Cys;
G382R, exon 10, codon 382, GGG to AGG with Gly to Arg. Codon numbers refer to the open
reading frame of the FGFR3 IIIb isoform.
research article
2204 The Journal of Clinical Investigation http://www.jci.org    Volume 116    Number 8  August 2006
likely occur early in embryonic development in a single keratinocyt-
ic stem cell. The descendants of the mutated stem cell will migrate 
along the lines of Blaschko, resulting in the linear or whirled cuta
-
neous patterns usually observed in epidermal nevi (33).
Several findings supportthenotion that thedetected 
FGFR3
mutations are causative for the development of epidermal nevi: 
(a) The detected mutationsR248C and, inone case, G372C are 
known to occur in TD I patients and act as dominant germline 
mutations inthis lethalskeletaldysplasia syndrome. Affected 
individuals are often stillborn or die as neonates. It has previously 
been postulated that such lethal mutations may only survive by 
mosaicism (34). The R248C mutation results in strong constitu
-
tive and ligand-independent receptor activation (15), excluding 
the possibility that thedetectedmutations have no functional 
consequence  in  theinvestigatedskinsamples.(b) Mutations 
responsible for TDI (including R248Cand G372C)have been 
shown to cause anotherbenignskin lesion, the seborrheic kerato
-
sis (26). Epidermal nevi and seborrheic keratoses share many clini
-
cal and histopathological features. Another activating mutation 
(S249C) associated with TD I causes thickening of the skin and 
verrucous skin tumors in a mouse model. The murine skin lesions 
resemble seborrheic keratoses(and likewise epidermal nevi) clini
-
callyand histologically(26). (c) A TD IpatientwithanR248C 
mutation and long-term survival developed acanthosis nigricans, 
a skin disorder that is clinically and histologically very similar to 
epidermal nevi (10). Bothacanthosis nigricans and epidermal nevi 
show acanthosis, papillomatosis, hyperkeratosis, and basal 
hyperpigmentation(31, 32). A potential overlapbetween 
the 2 skin disorders is acknowledged since both acanthosis 
nigricans type of epidermal nevus and nevoidacanthosis 
nigricans have been described (32, 35, 36). In our series of 
epidermal nevi,an acanthosisnigricans-like type was not 
included. A female patient with a mosaicism of R248C (25% 
ofthebloodlymphocytes wereaffected by themutation) 
developed disseminatedthickeningandhyperpigmenta
-
tion of the skin consistent with acanthosis nigricans (37). 
(d) Some patients with epidermal nevus syndrome showed 
typical keratinocytic epidermal nevi, skeletal abnormalities, 
and the occurrence of urothelial carcinoma at an early age 
(38–40). This correlation ofepidermal nevus and urothelial 
carcinomais thoughttobe nonstochastic. 
FGFR3muta-
tions are frequent events in papillary urothelial carcinoma 
(29, 41). These findings and the skeletal abnormalities rem
-
iniscentofskeletaldysplasia syndromes stronglysuggest 
that such patients feature a mosaicism of activating 
FGFR3
mutations, which in turn cause epidermal nevi of the skin, 
skeletal changes, and bladder cancer. (e) In one patient of 
our series (patient 33), multiple intraindividual samples of 
the epidermal nevus localized on the neck could be analyzed. 
All 6 samples revealed the same R248C mutation, suggest
-
ing the presence of a scattered 
FGFR3 mutation mosaicism in the 
skin of this patient following the lines of Blaschko. (f) The stron
-
gest support that the detected mutations are indeed causative for 
epidermal nevi is that 4 patients with an R248C mutation in the 
epidermal nevus showed the WT allelein clinically and histologi
-
cally normal epidermisadjacent to the epidermal nevus. This also 
suggests mosaicism of an 
FGFR3 mutation in the epidermis and a 
strong genotype-phenotype correlation.
In our series, 15 of 16 epidermal nevi with an 
FGFR3mutation 
displayed theR248C mutation,resulting ina cytosine-thymine 
substitution (CGC toTGC).This CtoTtransitionisatypical 
example of deamination of methylated cytosines leading to CpG 
dinucleotide depletion. The reason for this mutational hot spot 
isunknown. One could speculatethat thedevelopment ofepi
-
Figure 3
Patient 32 had a common soft-type epidermal nevus on his back. Two biop-
sies were taken from the epidermal nevus and the adjacent normal skin.
The epidermal nevus histologically showed the typical acanthosis and papil-
lomatosis (H&E staining; original magnification, ×40) and an R248C muta-
tion in the SNaPshot analysis. In contrast, the clinically and histologically
normal epidermis revealed a WT status for codon 248. This result suggests
a strong genotype-phenotype correlation and the presence of a mosaicism
of the FGFR3 mutation in the epidermis of this patient.
Figure 4
Patient 33 revealed a common soft-type epidermal nevus at the right
side of the neck consisting of scattered brownish papules following
the lines of Blaschko. Before ablative laser treatment, 6 papules dis-
tant from each other were curetted for FGFR3 mutation analysis. The
green peaks represent WT codon 375, the black peaks WT codon 248.
The R248C mutation is characterized by a red peak. All 6 samples
displayed the R248C mutation. In the bottom right corner, control DNA
with WT codon 248 is shown.
research article
The Journal of Clinical Investigation http://www.jci.org  Volume 116    Number 8  August 2006  2205
dermal nevi with acanthosis and papillomatosis of the epidermis 
requiresstrong activationof the receptorand not allactivating 
FGFR3mutations are capableof this strong activation. Indeed, 
Naski et al. found that the R248C mutation activates the receptor 
more stronglythan the G382R mutation responsible for ACH (15). 
Stronger activation of the receptor is thought to result in a more 
severe phenotype inTD compared with other skeletaldysplasia 
syndromes(14). According to this theory, mosaicismof 
FGFR3
mutations other than R248C may also be present in the skin, but 
they may be insufficient to induce epidermal nevi. This hypoth
-
esis is supported by Logie et al. (26), who found that seborrheic 
keratoses sharing some histological characteristics with epidermal 
nevi are caused by acquired somatic 
FGFR3mutations. All somatic 
mutations detected so far in seborrheic keratoses (R248C, S249C, 
G372C, S373C, Y375C, K652E, and K652M) are associated with 
TDandSADDANsyndrome ingermline.Remarkably, noneof 
the mutations associated with ACH or HCH were foundin this 
series of 62 seborrheic keratoses. Patients with TD and SADDAN 
syndrome show acanthosis nigricans whereas ACH and HCH are 
usually not associated with this skin lesion except for in 1 reported 
case (42). ACH is the most common cause of dwarfism in humans, 
with an incidence of 1:15,000 to 1:40,000 of live births, and the 
mutated nucleotide 1138 in ACH is thought be the most muta
-
ble nucleotide in the human genome described so far (9, 43). The 
R248C mutation is the most common mutation in TD (44), but 
it remains elusive why other mutations causing TD and SADDAN 
syndrome (S249C, S373C, Y375C, K652E,  K652M) were  not 
detected in our series of epidermal nevi.
Epidermalnevussyndromesare characterizedbyepidermal 
nevi,  abnormalitiesof  the skeletal  and  nervoussystem, and 
rarely, some associatedcancer entities(45, 46).Theoccurrence 
of papillary bladder cancer and skeletal abnormalities in epider
-
malnevus syndromes (38–40) suggests that 
FGFR3is a promis-
ing candidate gene for epidermal nevus syndromes that may be 
caused by a more widespread mosaicism of 
FGFR3 mutations. If 
the 
FGFR3mosaicism involves the germcells inthose patients, 
the offspring should show a TD phenotype. However, we did not 
find any reports of patients with systematized epidermal nevi or 
epidermal nevus syndrome and an offspring with TD in the litera
-
ture. Another interesting fact is that acanthosis nigricans is pre
-
dominantly observed in intertriginous areas in skeletal dysplasia 
syndromes. The reason for this preferential localization remains 
unclear since the entireskin carries the mutation.There seems 
to be a preponderance of intertriginous localization (neck, axilla, 
groin)also inthe epidermal neviwith
FGFR3mutations in our 
series (Table 1). Additional cofactors in intertriginous areas may 
favor the development of acanthosis and papillomatosis on the 
basis of activating 
FGFR3 mutations.
One epidermal nevus in our series displayed a double mutation, 
theG372Cmutationknown fromTD I and thetypical G382R 
mutation known from ACH. It remains elusive whether the G372C 
mutation alone, which causes a stronger activation of the FGFR3 
receptor according to the associated skeletal dysplasia syndromes 
(13–15),was abletocause the epidermalnevus orwhether the 
combination of both mutations was necessary for the induction 
of the nevus. The possibility that the nevus was mainly caused by 
the G382R mutation seems unlikely since ACH patients, in con
-
trast to TD patients, usually do not develop acanthosis nigricans 
(10, 42). Double mutations in the 
FGFR3 gene have been reported 
in urothelial carcinoma (28, 47, 48). To our knowledge, germline 
compound heterozygosity for mutations associated with TD and 
ACH has not been described.The epidermalnevus carryingthe 
double mutation displayed no histopathological abnormalities.
Each of the major 3 celltypes presentin our microdissected 
samples (keratinocytes, dendritic cells, and melanocytes) may 
theoretically bethe carrier ofthedetected mutations, but kera
-
tinocytes represent the likely host cell type. Logie et al. studied a 
mouse model in which the S249C mutation (causing TD I) was 
targeted to the basal layer of the epidermis using the keratin 5 pro
-
moter (26). Keratin 5 is a marker for basal keratinocytes and not 
expressed in melanocytes or dendritic cells. The transgenic mice 
developed thickening of the skin and verrucous skin tumors with 
histological features similar to epidermal nevi. The basal hyper
-
pigmentation mediated by melanocytes would be a secondary phe
-
nomenon if the mutations affect keratinocytes. However, further 
studies are needed to prove this hypothesis.
Itis unclear whythesame mutation(R248C) cancauseboth 
seborrheic keratoses and epidermal nevi. 
FGFR3mutations exhibit 
pleiotropic effects ranging from inherited skeletal dysplasia syn
-
dromes and benign skin tumors to cancer. The cell type–specific 
involvement of different signaling pathways such as Ras/MAPK 
and STAT as well as the FGFR3-dependent recruitment of cell-spe
-
cific second receptors such as EphA4 (6) may determine the effect 
of activating 
FGFR3 mutations in each cell type (4).
Mutations of 
FGFR3 in the urothelium are significantlyassoci-
ated with benign urothelial papillomas (49) and with low-grade 
and low-stagepTa G1/2 tumors, which rarelyprogress(41, 48, 
50). These findings support the conceptthat mutations ofthe 
FGFR3 IIIb isoform can induce proliferation and tumor forma-
tionbutare associated withalowmalignantpotential.This 
would be consistentwithourfindings of 
FGFR3mutationsin 
epidermal nevithat represent a benign skin disorderandshow 
signsof hyperproliferation (namely acanthosis and papilloma
-
tosis) but bear no malignant potential.
Several small molecule tyrosine kinase inhibitors of FGFR3, such 
as PKC412, PD173074, and SU5402, are alreadyavailable. They 
havebeen used in vitro and in animal models to inhibit the growth 
of multiple myeloma cell lines with activating 
FGFR3 mutations 
(51–54). PKC412 is currently being evaluated in phase II trials for 
acute myeloid leukemia patients(55). This molecule effectively 
inhibits the tyrosinekinaseactivity of FGFR3,as shown bythe 
Table 2
FGFR3 mutation analysis in sebaceous nevi
No. Sex Age (yr) Site Sebaceous nevus
1 M 17 Head WT
2 M 15 Head WT
3 F 7 Head WT
4 M 12 Head WT
5 M 33 Head WT
6 M 17 Head WT
7 M 7 Head WT
8 M 14 Head WT
9 M 13 Head WT
10 F 16 Head WT
11 M 12 Head WT
12 M 32 Head WT
13 M 13 Head WT
research article
2206 The Journal of Clinical Investigation http://www.jci.org    Volume 116    Number 8  August 2006
inhibition of proliferation in hematopoietic cells transformed by 
a mutant 
FGFR3gene (55). Abroader use of this drug in other 
disorders associated with an increased activity of FGFR3 has been 
suggested. This may also include benign skin lesions such as seb
-
orrheic keratoses (26) and epidermal nevi. The current standard 
therapy for epidermal nevi and seborrheic keratoses is surgery or 
ablative laser treatment, which is often associated with irreversible 
scar formation. Topical application of tyrosine kinase inhibitors of 
FGFR3 may obviate the need for surgical intervention.
In summary, a large proportion of human epidermal nevi are 
caused by mosaicism of postzygotic activating 
FGFR3mutations 
in the human epidermis. The R248C mutation appears to be a hot 
spot for 
FGFR3 mutations in epidermal nevi. Additional studies 
are needed to investigate other regionsof
FGFR3anddifferent 
receptortyrosine kinases aspossiblemutational targets inepi
-
dermalneviand elucidate functional aspects of enhanced FGFR3 
signaling in the skin.
Methods
Microdissection. Thirty-nine histologically confirmed nonepidermolytic 
epidermal nevi ofthe commonnonorganoid typeof33 patients with 
varyingdegreesofskininvolvementwereretrievedfromthe  histol-
ogy files of the Department of Dermatology, University of Regensburg. 
Informed consent for the scientific use of the material and photographs 
had been obtainedfrom all patients according to the guidelines of the 
ethics committee of the University of Regensburg and the Declaration of 
Helsinki. Classical symmetrical acanthosis nigricans in addition to the 
epidermal nevi was not seenin any of the study patients, and no signs 
ofskeletal dysplasia orassociated cancer wereobserved. Weclassified 
the different subtypesof epidermal nevi according to a previous study 
(32). The common keratinocytic type was subdivided into soft and hard 
typesaccording to the degree of hyperkeratosis. Thecharacteristics of 
the patients and their nevi are shown in Table 1. We also investigated an 
organoid epidermal nevus type, the sebaceous nevus, because epidermal 
nevirepresent a heterogeneousgroup of lesions. Thirteen sebaceous nevi 
were retrieved from the histology files of the Department ofDermatology 
of the University of Regensburg (Table 2).
Sections of 10-mm thickness were microdissectedmanually from par-
affin-embedded epidermal nevi tissues with a needle underan inverted 
microscope. We dissected the acanthotic epidermis of the nevi containing 
mainly keratinocytes but also small numbers of melanocytes and dendritic 
cells. In sebaceous nevi, both the hypertrophic sebaceous glands and the 
acanthotic epidermis were dissected. Clinically and histologically normal 
epidermis adjacent to the nevus was microdissected in 4 patients with com-
mon keratinocytic nevi to serve as a source of control DNA. 
DNA isolation. DNA was isolated following standard protocols. In brief, 
about 25–50 mg formalin-fixed paraffin-embedded tissue was microdis-
sected for each sample. The microdissected tissue was digested with pro-
teinase K overnight in lysis buffer, and DNA isolation was performed with 
the High Pure PCR Template Preparation Kit (Roche Diagnostics) accord-
ing to the manufacturer’s protocol. The DNA of each tissue was eluted in a 
volume of 200 ml elution buffer. The amount of isolated DNA ranged from 
5 mg to 30 mg for each sample.
SNaPshot assay. A previously described SNaPshot multiplex assay, based 
on the SNaPshot Multiplex System assay (Applied Biosystems), was used to 
screen for activating FGFR3point mutations (56). We used 2 ml template 
DNA for the multiplex PCR. The SNaPshot multiplex PCR assay can detect 
mutations with an input DNA amount of only 1 ng genomic DNA (56). 
Three regions of interest in exons 7, 10, and 15 comprising 11 FGFR3 muta-
tions were amplified in 1 multiplex PCR, followed by extension of muta-
tion-specific primers with a labeled dideoxynucleotide. Twonew antisense 
primerswere added tothe original assay to screen for mutations S373C 
(5-T19GAGGATGCCTGCATACACAC-3) and G382R (5-T56GAACAG-
GAAGAAGCCCACCC-3). Concentrations for those primers used in the 
multiplexassay were 1.0 and0.6 pmol/ml, respectively. Thus, screening 
could be performed for 11 known mutations found in bladder tumors and 
other noncutaneous epithelial malignancies (R248C, S249C, G372C, S373C, 
Y375C,G382R, A393E, K652E, K652M,K652Q, and K652T;codons are 
numbered according to the open reading frame of theFGFR3 IIIb isoform, 
which is predominantly present in epithelial cells). This mutation spectrum 
also covers the most frequently foundFGFR3mutations in skeletal dysplasia 
syndromes. Extended primers were separated by capillary electrophoresis in 
an automatic sequencer, and the presence or absence of a mutation was indi-
cated by the incorporatedWT or mutant labeled dideoxynucleotide. When a 
mutation is present, a second peak from the mutated nucleotide will appear 
next to the WT peak in the electropherogram (see Figures 3 and 4). However, 
the assay is not quantitative due to the different emission efficiencies of the 
labels. Mutations were confirmed by a second independent reaction.
FGFR3 sequence analysis. In addition to the SNaPshot analysis, exon 19 of 
the FGFR3 gene was directly sequenced. This exon contains the potential 
mutation at stop codon 809 associated with TD I. We were able to analyze 
20 epidermal nevi. The other samples failed due to limited DNA amounts. 
We used the forward primer 5-CCTGTCGGCGCCTTTGGAGCAG-3and 
the reverse primer 5-CAGACCAAAGCTCTGTAGCT-3to generate a 235 
bp PCR product of exon 19 containing the stop codon 809. Sequence anal-
ysis was performed following standard protocols.
Acknowledgments
We thank our patients for their participation and Alois Eckl for 
the helpful support. The excellent technical work of Monika Ker
-
scher, Kirstin van der Keur, Anne Pietryga-Krieger, Lydia Kuenzel, 
and Nadine Wandtke is gratefully acknowledged.
Received for publication February 8, 2006, and accepted in revised 
form May 16, 2006.
Address correspondence to: Christian Hafner, Department of Der
-
matology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 
93042 Regensburg, Germany. Phone: 49-941-944-9610; Fax: 49-
941-944-9611; E-mail: christian.hafner@klinik.uni-regensburg.de.
1. Rothnagel, J.A., et al. 1992. Mutations in the rod 
domainsofkeratins  1and  10  in  epidermolytic 
hyperkeratosis. Science.257:1128–1130.
2. Paller, A.S., et al. 1994. Genetic and clinical mosa-
icism in a type of epidermal nevus. 
N. Engl. J. Med.
331:1408–1415.
3. Konig, A., Happle, R., Bornholdt, D., Engel, H., and 
Grzeschik,K.H.2000. Mutations in the NSDHL 
gene, encodinga 3beta-hydroxysteroid dehydro-
genase, cause CHILD syndrome. 
Am. J. Med. Genet.
90:339–346.
4. L’Hote, C.G., and Knowles, M.A. 2005. Cell respons
-
es to FGFR3 signalling: growth, differentiation and 
apoptosis. Exp. Cell Res.304:417–431.
5. Scotet,  E.,  and  Houssaint, E.  1995.  The  choice 
between alternativeIIIb and IIIcexons of the FGFR-3 
gene is not strictly tissue-specific. Biochim. Biophys.
Acta.1264:238–242.
6. Yokote, H., et al. 2005. Trans-activation of EphA4 
and FGF receptors mediated by direct interactions 
between  their cytoplasmicdomains.
Proc. Natl.
Acad. Sci. U. S. A.102:18866–18871.
7. Meyers, G.A.,Orlow,S.J., Munro, I.R., Przylepa, 
K.A., and Jabs, E.W. 1995. Fibroblast growth factor 
receptor 3 (FGFR3) transmembrane mutation in 
Crouzon syndrome with acanthosis nigricans. 
Nat.
Genet.11:462–464.
8. Muenke, M., et al. 1997. A unique point mutation 
inthe fibroblastgrowth factor  receptor3  gene 
(FGFR3) defines a new craniosynostosis syndrome. 
Am. J. Hum. Genet.60:555–564.
9. Vajo, Z., Francomano, C.A., and Wilkin, D.J. 2000. 
The molecular  and  genetic basis of fibroblast 
research article
The Journal of Clinical Investigation http://www.jci.org  Volume 116    Number 8  August 2006  2207
growth factor receptor 3 disorders: the achondro-
plasia family of skeletal dysplasias, Muenke cranio-
synostosis, and Crouzon syndrome with acanthosis 
nigricans. 
Endocr. Rev.21:23–39.
10. Baker, K.M., Olson, D.S., Harding, C.O., and 
Pauli,R.M. 1997. Long-termsurvival intypical 
thanatophoric dysplasia type 1.
Am. J. Med. Genet.
70:427–436.
11. Webster, M.K., and Donoghue, D.J. 1997.FGFR 
activation in skeletal disorders: too much of a good 
thing. 
Trends Genet.13:178–182.
12. Tavormina, P.L., et al. 1995. Another mutation that 
results in the substitution of an unpaired cysteine 
residuein the extracellular domain of FGFR3 in 
thanatophoricdysplasia typeI. 
Hum. Mol. Genet.
4:2175–2177.
13. Tavormina, P.L.,et al. 1995. Thanatophoric dys-
plasia (types I and II) caused by distinct mutations 
in fibroblast growth factor receptor 3. 
Nat. Genet.
9:321–328.
14. Rousseau, F., et al.1996. MissenseFGFR3 muta
-
tions createcysteine  residues  inthanatophoric 
dwarfism type I (TD1). Hum. Mol. Genet.5:509–512.
15. Naski, M.C., Wang, Q., Xu, J., and Ornitz,D.M. 1996. 
Graded activation of fibroblast growth factor recep
-
tor3by mutationscausing achondroplasiaand 
thanatophoric dysplasia.Nat. Genet.13:233–237.
16. d’Avis, P.Y., et al. 1998. Constitutive activation of 
fibroblast growth factor receptor 3 by mutations 
responsible for the lethal skeletal dysplasia thanato
-
phoric dysplasia type I. Cell Growth Differ.9:71–78.
17. Watowich, S.S., et al. 1992. Homodimerization and 
constitutive activation of the erythropoietin receptor. 
Proc. Natl. Acad. Sci. U. S. A.89:2140–2144.
18. Sorokin, A., Lemmon, M.A., Ullrich, A., and Sch-
lessinger, J. 1994. Stabilization of an active dimeric 
formof the epidermal growth factor receptor by 
introduction of an inter-receptor disulfide bond. 
J. Biol. Chem.269:9752–9759.
19. Adar,R.,Monsonego-Ornan,E.,David,  P.,and 
Yayon, A. 2002. Differential activation of cysteine-
substitution mutants of fibroblast growth factor 
receptor 3 is determined by cysteine localization. 
J. Bone Miner. Res.17:860–868.
20. Webster, M.K., and Donoghue, D.J. 1996. Constitu-
tive activation of fibroblast growth factor receptor 
3 by the transmembrane domain point mutation 
found in achondroplasia. EMBO
J.15:520–527.
21. Li, E., You, M., and Hristova, K. 2006. FGFR3 dimer 
stabilization due to a single amino acid pathogenic 
mutation. J. Mol. Biol.356:600–612.
22. Lievens,P.M., Roncador, A., and Liboi,E. 2006. 
K644E/MFGFR3 mutants activate Erk1/2from 
the endoplasmicreticulum throughFRS2alpha 
and PLCgamma-independent pathways. 
J. Mol. Biol.
357:783–792.
23. Monsonego-Ornan, E., Adar, R.,  Feferman,  T., 
Segev,  O.,  and  Yayon,  A.  2000. Thetransmem
-
brane mutationG380Rin fibroblast growth fac-
tor receptor 3 uncouples ligand-mediated receptor 
activation fromdown-regulation.
Mol. Cell. Biol.
20:516–522.
24. Lievens, P.M., Mutinelli, C., Baynes, D., and Liboi, 
E. 2004. The kinase activity of fibroblast growth 
factor receptor 3 with activation loop mutations 
affects receptor traffickingand signaling. 
J. Biol.
Chem.279:43254–43260.
25. Bellus, G.A., et al. 2000. Distinct missense muta-
tions of the FGFR3 lys650 codon modulate receptor 
kinase activation and the severity of the skeletal dys
-
plasia phenotype.Am. J. Hum. Genet.67:1411–1421.
26. Logie, A., et al. 2005. Activating mutations of the 
tyrosine kinase receptor FGFR3 are associated with 
benign skin tumors in mice and humans. 
Hum. Mol.
Genet.14:1153–1160.
27. Chesi,  M., et al. 1997.  Frequent  translocation 
t(4;14)(p16.3;q32.3) in multiple myeloma is asso
-
ciated withincreasedexpression and activating 
mutations of fibroblast growth factor receptor 3. 
Nat. Genet.16:260–264.
28. van Rhijn, B.W., et al. 2002. Novel fibroblast growth 
factorreceptor 3 (FGFR3) mutationsin bladder 
cancer previously identified in non-lethal skeletal 
disorders. 
Eur. J. Hum. Genet.10:819–824.
29. Cappellen,  D.,  et al.  1999.Frequent activating 
mutations of FGFR3 in human bladder and cervix 
carcinomas. 
Nat. Genet.23:18–20.
30. Jang, J.H., Shin, K.H., and Park, J.G. 2001. Muta-
tions in fibroblast growthfactorreceptor 2 and 
fibroblastgrowth factor receptor 3 genesassoci-
ated with human gastric andcolorectal cancers. 
Cancer Res.61:3541–3543.
31. Schwartz, R.A. 1994. Acanthosis nigricans. J. Am.
Acad. Dermatol.31:1–19; quiz 20–22.
32. Su, W.P. 1982. Histopathologic varieties of epider
-
mal nevus. A study of 160 cases. Am. J. Dermatopathol.
4:161–170.
33. Happle, R. 1993. Mosaicism in human skin. Under-
standing the patterns and mechanisms.Arch. Der-
matol.129:1460–1470.
34. Happle, R. 1987. Lethal genes surviving by mosa-
icism: a possibleexplanation for sporadicbirth 
defectsinvolving theskin.J. Am. Acad. Dermatol.
16:899–906.
35. Curth,H.O.  1976.Unilateralepidermalnaevus 
resembling acanthosis nigricans. 
Br. J. Dermatol.
95:433–436.
36. Kim, M.Y., Lee, J.S., Kim,H.O., and Park, Y.M. 2004. 
A case of nevoid acanthosis nigricans. 
Acta Derm.
Venereol.84:234–235.
37. Hyland,V.J.,  et  al.2003.Somatic  and germline 
mosaicism for  a R248C missense mutation  in 
FGFR3,resulting in a skeletal dysplasia distinct 
from thanatophoric dysplasia. 
Am. J. Med. Genet. A.
120:157–168.
38. Rongioletti,F., andRebora, A. 1991. Epidermal nevus 
with transitionalcellcarcinomas ofthe urinary 
tract. J. Am. Acad. Dermatol.25:856–858.
39. Rosenthal, D., and Fretzin, D.F. 1986. Epidermal 
nevus syndrome: report of association with transi
-
tional cell carcinoma of thebladder.Pediatr. Dermatol.
3:455–458.
40. Garcia de Jalon, A., et al. 2004. Epidermal naevus 
syndrome (Solomon’s syndrome) associated with 
bladder  cancer  in a 20-year-old  female.
Scand. J.
Urol. Nephrol.38:85–87.
41. Kimura, T., et al. 2001. The incidence of thanato-
phoric dysplasia mutations in FGFR3 gene is high
-
er in low-grade or superficial bladder carcinomas. 
Cancer.92:2555–2561.
42. Van Esch, H., and Fryns, J.E. 2004. Acanthosisnigri
-
cans in a boy with achondroplasia due to the clas-
sical Gly380Arg mutation in FGFR3. Genet. Couns.
15:375–377.
43. Wilkie,A.O.1997. Craniosynostosis: genes and 
mechanisms. Hum. Mol. Genet.6:1647–1656.
44. Passos-Bueno, M.R., et al. 1999. Clinical spectrum 
offibroblast growth factorreceptor mutations. 
Hum. Mutat.14:115–125.
45. Vujevich, J.J., and Mancini, A.J. 2004. The epider-
mal nevus syndromes: multisystem disorders. 
J. Am. Acad. Dermatol.50:957–961.
46. Vidaurri-de la  Cruz,  H., Tamayo-Sanchez,  L., 
Duran-McKinster, C., de la Luz Orozco-Covarru-
bias, M., and Ruiz-Maldonado, R. 2004. Epidermal 
nevus syndromes: clinical findings in 35 patients. 
Pediatr. Dermatol.21:432–439.
47. Jebar, A.H., et al. 2005. FGFR3 and Ras gene muta
-
tions are mutually exclusive genetic events in uro-
thelial cell carcinoma. Oncogene.24:5218–5225.
48. van Rhijn, B.W., et al. 2003. Molecular grading of 
urothelial cell carcinoma with fibroblast growth 
factor receptor 3 and MIB-1 is superior to patho
-
logic grade for the prediction of clinical outcome. 
J. Clin. Oncol.21:1912–1921.
49. van Rhijn, B.W.,Montironi, R.,Zwarthoff,E.C., 
Jobsis, A.C., and van derKwast, T.H.2002. Fre
-
quent FGFR3 mutations in urothelial papilloma. 
J. Pathol.198:245–251.
50. Billerey, C., et al. 2001. Frequent FGFR3 mutations 
inpapillarynon-invasive bladder (pTa) tumors. 
Am. J. Pathol.158:1955–1959.
51. Mohammadi,M.,  et  al.1997.  Structuresofthe 
tyrosine kinase domain of fibroblast growth fac-
tor receptor in complex withinhibitors. Science.
276:955–960.
52. Trudel,  S.,et  al.2004.Inhibition  of  fibroblast 
growth factor receptor  3  induces differentia
-
tion  and apoptosis  in t(4;14) myeloma. Blood.
103:3521–3528.
53. Paterson,J.L.,  et al.  2004.  Preclinicalstudies  of 
fibroblast growth factor receptor 3 as a therapeu
-
tic  target  in  multiplemyeloma.  Br. J. Haematol.
124:595–603.
54. Grand, E.K., Chase, A.J., Heath, C., Rahemtulla, A., 
andCross,N.C. 2004. TargetingFGFR3 in mul
-
tiple myeloma: inhibition of t(4;14)-positive cells 
by SU5402 and PD173074. Leukemia.18:962–966.
55. Chen, J., et al. 2005. FGFR3 as a therapeutic target 
of the small molecule inhibitor PKC412 in hema-
topoietic malignancies. Oncogene.
24:8259–8267.
56. van Oers,  J.M.,  et al. 2005.  A  simple and  fast 
method forthesimultaneousdetectionof nine 
fibroblast growth factor receptor 3 mutations in 
bladder cancer and voided urine. 
Clin. Cancer Res.
11:7743–7748.
... We examined the variant allele frequency (VAF) of c.1138G>A (p.G380R) and c.1948A>G (p.K650E) in sperm donors of diverse ages and in one post-mortem dissected testis of a 68-year-old donor. The c.1138G>A (p.G380R) variant, screened in the same experiment with some data presented elsewhere [19], is associated with ACH, craniosynostosis syndrome, and epidermal nevus [34][35][36][37][38][39] and is well-characterized in the male germline. It is more prevalent in sperm from older donors [17,40], forms sub-clonal clusters in the testis [23,25], and has a higher incidence in offspring of older fathers [7,35,39]. ...
Article
Full-text available
Advanced paternal age increases the risk of transmitting de novo germline mutations, particularly missense mutations activating the receptor tyrosine kinase (RTK) signalling pathway, as exemplified by the FGFR3 mutation, which is linked to achondroplasia (ACH). This risk is attributed to the expansion of spermatogonial stem cells carrying the mutation, forming sub-clonal clusters in the ageing testis, thereby increasing the frequency of mutant sperm and the number of affected offspring from older fathers. While prior studies proposed a correlation between sub-clonal cluster expansion in the testis and elevated mutant sperm production in older donors, limited data exist on the universality of this phenomenon. Our study addresses this gap by examining the testis-expansion patterns, as well as the increases in mutations in sperm for two FGFR3 variants—c.1138G>A (p.G380R) and c.1948A>G (p.K650E)—which are associated with ACH or thanatophoric dysplasia (TDII), respectively. Unlike the ACH mutation, which showed sub-clonal expansion events in an aged testis and a significant increase in mutant sperm with the donor’s age, as also reported in other studies, the TDII mutation showed focal mutation pockets in the testis but exhibited reduced transmission into sperm and no significant age-related increase. The mechanism behind this divergence remains unclear, suggesting potential pleiotropic effects of aberrant RTK signalling in the male germline, possibly hindering differentiation requiring meiosis. This study provides further insights into the transmission risks of micro-mosaics associated with advanced paternal age in the male germline.
... We examined the variant allele frequency (VAF) of c.1138G>A (p.G380R) and c.1948A>G (p.K650E) in sperm donors of diverse ages and in one post-mortem dissected testis of a 68-year-old donor. The c.1138G>A (p.G380R) variant, screened in the same experiment with some data presented elsewhere [19], is associated with ACH, craniosynostosis syndrome, and epidermal nevus [34][35][36][37][38][39], and is well-characterized in the male germline. It is more prevalent in sperm from older donors [17,40], forms sub-clonal clusters in the testis [23,25], and has a higher incidence in offspring of older fathers [7,35,39]. ...
Preprint
Full-text available
Advanced paternal age increases the risk of transmitting de novo germline mutations, particularly missense mutations activating the receptor tyrosine kinase (RTK) signaling pathway, exemplified by the FGFR3 mutation linked to achondroplasia (ACH). This risk is attributed to the expansion of spermatogonial stem cells carrying the mutation, forming sub-clonal clusters in the ageing testis, thereby increasing the frequency of mutant sperm and the number of affected offspring from older fathers. While prior studies proposed a correlation between sub-clonal cluster expansion in the testis and elevated mutant sperm production in older donors, limited data exist on the universality of this phenomenon. Our study addresses this gap by examining the testis expansion patterns, as well as increases of mutations in sperm for two FGFR3 variants: c.1138G>A (p.G380R) and c.1948A>G (p.K650E)- associated with ACH or thanatophoric dysplasia (TDII), respectively. Unlike the ACH mutation, which showed sub-clonal expansion events in an aged testis and a significant increase of mutant sperm with the donor’s age, the TDII mutation formed sub-clonal clusters, but exhibited reduced transmission into sperm and no significant age-related increase. The mechanism behind this divergence remains unclear, suggesting potential pleiotropic effects of aberrant RTK signaling in the male germline, possibly hindering differentiation requiring meiosis. This study provides further insights into transmission risks of micro-mosaics associated with advanced paternal age in the male germline.
... VEN typically appears at birth or early in life and is caused by mutations in the fibroblast growth factor receptor-3 (FGFR3) gene, which can occur as isolated naevus or as part of the epidermal naevus syndrome. 1 Epidermal naevi represent cutaneous mosaicism that commonly presents along the lines of Blaschko. They typically start as pink to brown plaques that become more verrucous over time. ...
Article
Full-text available
In a rare case of concurrent verrucous epidermal naevi (VEN) with psoriasis, previous treatments with oral methotrexate and acitretin showed minimal improvement. However, treatment with oral apremilast resulted in complete resolution of psoriasis and significant improvement in VEN lesions after 1 month. This is the first documented case of successful VEN treatment with apremilast, highlighting its potential efficacy in treating verrucous epidermal naevus. Further studies are needed to validate its effectiveness.
Chapter
The understanding of congenital naevi has evolved rapidly in the last few years, with the discovery of many of the causative genes, and an increasing understanding of the phenotypic correlates of genotypic mosaicism in the skin. The classification of all congenital naevi is reviewed, based on phenotype, histology and genetics. This allows for the addition of new conditions as they are discovered, and for the regrouping of previously distinct disorders. The clinical features and extracutaneous associations of different congenital naevi are reviewed, as well as those of non‐naevus‐like developmental abnormalities of the skin.
Chapter
The understanding of congenital naevi has evolved rapidly in the last few years, with the discovery of many of the causative genes, and an increasing understanding of the phenotypic correlates of genotypic mosaicism in the skin. A new classification of all congenital naevi is proposed, based on phenotype, histology and genetics, which allows for the addition of new conditions as they are discovered, and for the regrouping of previously distinct disorders. The clinical features and extracutaneous associations of different congenital naevi are reviewed, as well as those of non‐naevoid developmental abnormalities of the skin.
Chapter
Benign keratinocytic acanthomas and proliferations are commonly presenting dermatoses with varied but distinct clinical and histological presentations. Whilst many such as seborrhoeic keratoses are easily diagnosed clinically, histology is mandatory in pseudoepitheliomatous hyperplasia as clinical distinction from squamous cell carcinoma can be very difficult.
Article
Full-text available
We report a 7-year-old boy born with epidermal nevi (EN) arranged according to Blaschko’s lines involving the face and head, right upper limb, chest, and left lower limb, who developed a left paratesticular embryonal rhabdomyosarcoma at 18 months of age. Parallel sequencing identified a gain-of-function variant (c.37G>C, p.Gly13Arg) of HRAS in both epidermal nevus and tumor but not in leukocytes or buccal mucosal epithelial cells, indicating its postzygotic origin. The variant accounted for 33% and 92% of the total reads in the nevus and tumor DNA specimens, respectively, supporting additional somatic hits in the latter. DNA methylation (DNAm) profiling of the tumor documented a signature consistent with embryonal rhabdomyosarcoma and CNV array analysis inferred from the DNAm arrays and subsequent MLPA analysis demonstrated copy number gains of the entire paternal chromosome 11 carrying the mutated HRAS allele, likely as the result of paternal unidisomy followed by subsequent gain(s) of the paternal chromosome in the tumor. Other structural rearrangements were observed in the tumours, while no additional pathogenic variants affecting genes with role in the RAS-MAPK and PI3K-AKT-MTOR pathways were identified. Our findings provide further evidence of the contribution of “gene dosage” to the multistep process driving cell transformation associated with hyperactive HRAS function.
Article
Tuberous sclerosis complex (TSC) is a rare genetic disease with neurocutaneous manifestations, often presenting initially to the dermatology clinic. We report a cohort of neonates who presented with a novel finding of white epidermal nevus and were eventually diagnosed with TSC. White epidermal nevus may be yet another dermatological finding that may aid in the early diagnosis of TSC.
Article
Full-text available
A point mutation, Gly380Arg, in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) leads to achondroplasia, the most common form of genetic dwarfism in humans. This substitution was suggested to enhance mutant receptor dimerization, leading to constitutive, ligand-independent activation. We found that dimerization and activation of the G380R mutant receptor are predominantly ligand dependent. However, using both transient and stable transfections, we found significant overexpression only of the mutant receptor protein. Metabolic pulse-chase experiments, cell surface labeling, and kinetics of uptake of radiolabeled ligand demonstrated a selective delay in the down-regulation of the mutant receptor. Moreover, this receptor was now resistant to ligand-mediated internalization, even at saturating ligand concentrations. Finally, transgenic mice expressing the human G380R mutant receptor under the mouse receptor transcriptional control demonstrated a markedly expanded area of FGFR3 immunoreactivity within their epiphyseal growth plates, compatible with an in vivo defect in receptor down-regulation. We propose that the achondroplasia mutation G380R uncouples ligand-mediated receptor activation from down-regulation at a site where the levels and kinetics of FGFR3 signals are crucial for chondrocyte maturation and bone formation.
Article
Full-text available
The erythropoietin receptor (EPO-R) is a member of the recently described cytokine receptor superfamily. A constitutively active (hormone independent) form of the EPO-R was isolated that has a single amino acid change in the exoplasmic domain, converting arginine-129 to cysteine (R129C). Since EPO-Rs containing R129S, R129E, and R129P mutations are functionally wild type, the presence of cysteine at residue 129, and not the loss of arginine, is required for constitutive activity. Several mutant forms of the EPO-R were analyzed; all constitutively active mutants form disulfide-linked homodimers, whereas EPO-responsive or inactive forms of the receptor do not. Monomers and disulfide-linked dimers of the constitutive receptor are present on the plasma membrane and bind EPO with a single affinity. Homodimerization of the EPO-R is likely to play a role in ligand-induced signal transduction, and disulfide-linked dimerization of the constitutive receptor may mimic this step.
Article
The histopathologic features of 167 biopsy specimens from 160 patients with clinically typical epidermal nevi seen at the Mayo Clinic between 1960 and 1978 were reviewed. The most common histopathologic pattern of epidermal nevus was hyperkeratosis, papillo-matosis, and acanthosis with elongation of rete ridges. Other histopathologic varieties of epidermal nevus included 1) acrokeratosis verruciformis-like, 2) epidermolytic hyperkeratosis, 3) seborrheic keratosis-like, 4) psoriasiform (inflammatory linear verrucous epidermal nevus), 5) verrucoid, 6) porokeratosis-like, 7) focal acantholytic dyskeratosis, and 8) nevus comedonicus. Correlation of clinical and histopathologic findings is necessary in all lesions suspected of being epidermal nevus.
Article
The underlying basis of many forms of syndromic craniosynostosis has been defined on a molecular level. However, many patients with familial or sporadic craniosynostosis do not have the classical findings of those craniosynostosis syndromes. Here we present 61 individuals from 20 unrelated families where coronal synostosis is due to an amino acid substitution (Pro250Arg) that results from a single point mutation in the fibroblast growth factor receptor 3 gene on chromosome 4p. In this instance, a new clinical syndrome is being defined on the basis of the molecular finding. In addition to the skull findings, some patients had abnormalities on radiographs of hands and feet, including thimble-like middle phalanges, coned epiphyses, and carpal and tarsal fusions. Brachydactyly was seen in some cases; none had clinically significant syndactyly or deviation of the great toe. Sensorineural hearing loss was present in some, and developmental delay was seen in a minority. While the radiological findings of hands and feet can be very helpful in diagnosing this syndrome, it is not in all cases clearly distinguishable on a clinical basis from other craniosynostosis syndromes. Therefore, this mutation should be tested for in patients with coronal synostosis. 54 refs., 4 figs., 2 tabs.
Article
BACKGROUND The point mutations of fibroblast growth factor receptor 3 (FGFR3) are associated with autosomal dominant human skeletal disorders such as thanatophoric dysplasia (TD). However, point mutations were reported in a small series of bladder carcinomas, suggesting their oncogenic role. In view of these findings, the authors investigated the incidence of TD mutations in the FGFR3 gene in a large series of bladder carcinomas to clarify their role in the progression of bladder carcinoma.METHODS Specimens of transitional cell carcinoma of the urinary bladder from 81 patients were screened for the FGFR3 mutations (codons 248, 249, 372, 373, 375, 652, 809) that have been reported in TD, using polymerase chain reaction–restriction fragment length polymorphism, single-strand conformation polymorphism, and DNA sequencing.RESULTSPoint mutations were detected in 25 of 81 carcinomas (2 at codon 248, 11 at codon 249, 1 at codon 372, 9 at codon 375, 2 at codon 652). Although no significant relation was found between the occurrence of TD mutations and patient age and clinical status, the incidence of TD mutations was significantly higher in low-grade or superficial tumors than high-grade or muscle invasive tumors.CONCLUSIONS These findings indicate that TD mutations in the FGFR3 gene do not cause disease progression of bladder carcinoma. Cancer 2001;92:2555–61. © 2001 American Cancer Society.
Article
Background: The skin is especially suitable for the study of mosaicism. In this review, the various genetic mechanisms leading to mosaicism and the resulting cutaneous patterns are considered.Observations: Mosaicism may produce different cutaneous patterns such as the lines of Blaschko, the checkerboard pattern, the phylloid pattern, and a patchy pattern without midline separation. A unique lateralization pattern is observed in the CHILD syndrome. Two major genetic categories are functional mosaics resulting from X inactivation and genomic mosaics caused by autosomal mutations. Functional mosaicism may be caused by either male-lethal or nonlethal X-linked mutations. Similarly, autosomal mutations resulting in genomic mosaicism may be either lethal or nonlethal. Many mosaics are caused by loss of heterozygosity, and uncommonly this mechanism may give rise to twin spots such as vascular twin nevi. Some cutaneous mosaic phenotypes virtually always occur sporadically, but exceptionally may show a familial aggregation. This paradox may be explained by paradominant inheritance. Heterozygous individuals are, as a rule, unaffected, but they express the birthmark when allelic loss occurs during embryogenesis.Conclusions: The concept of cutaneous mosaicism is important for gene mapping because here we have the opportunity to study two populations of cells differing only with regard to the mutation causing mosaicism. Future research will probably show that a specific genetic anomaly, when present as a mosaic, always produces the same type of cutaneous pattern.(Arch Dermatol. 1993;129:1460-1470)
Article
SUMMARYA man born with a unilateral epidermal naevus on the right side of the abdomen developed at puberty symmetrical benign acanthosis nigricans in the body folds. Tbe symmetrical eruption later disappeared completely. Tbe unilateral epidermal naevus and tbe symmetrical eruption showed identical bistological features, i.e. tbose of acantbosis nigricans. At tbe age of 32 be developed a muco-epidermoid cancer of the left parotid gland. A decision wbetber tbe association of unilateral epidermal naevi witb malignant tumours occurs witb unusual frequency requires (a) a long follow-up of the patient with the unilateral naevus, (b) a differentiation of the unilateral eruption from unilateral malignant acan-thosis nigricans and (c) statistical evidence.
Article
A man born with a unilateral epidermal naevus on the right side of the abdomen developed at puberty symmetrical benign acanthosis nigricans in the body folds. The symmetrical eruption later disappeared completely. The unilateral epidermal naevus and the symmetrical eruption showed identical histological features, i.e. those of acanthosis nigricans. At the age of 32 he developed a muco-epidermoid cancer of the left parotid gland. A decision whether the association of unilateral epidermal naevi with malignant tumours occurs with unusual frequency requires (a) a long follow-up of the patient with the unilateral naevus, (b) a differentiation of the unilateral eruption from unilateral malignant acanthosis nigricans and (c) statistical evidence.