ArticlePDF Available

The chromosomal polymorphism and divergence of populations in Chironomus nuditarsis Str. (Diptera, Chironomidae)

Authors:

Abstract

The karyotype structure and chromosomal polymorphisms were investigated in 6 natural and 2 laboratory populations of Chironomus nuditarsis from Europe and Asia. The pool of rearranged polytene chromosome banding sequences of this species was determined that includes 16 inversion banding sequences and sequences with giant DNA-knobs (ndtG1k, ndtG2k). Obvious differences were demonstrated in the level of chromosomal polymorphism between European and Asian (Siberian) populations: the former were highly polymorphic, while the latter were practically monomorphic. It was suggested to consider the Siberian populations as marginal one. Cytogenetic distances between populations of C. nuditarsis as well between C. nuditarsis and the related species C. plumosus were estimated. The data obtained show that chromosomal rearrangements play a very important role in cytogenetic divergence of populations.
ÕÐÎÌÎÑÎÌÍÛÉ ÏÎËÈÌÎÐÔÈÇÌ È ÄÈÂÅÐÃÅÍÖÈß ÏÎÏÓËßÖÈÉ
ÓCHIRONOMUS NUDITARSIS STR. (DIPTERA, CHIRONOMIDAE)
© È. È. Êèêíàäçå,1Ï. Ìèõàéëîâà,2À. Ã. Èñòîìèíà,1Â. Â. Ãîëûãèíà,1
Ë. Èíò Ïàíèñ,3Á. Êðàñòàíîâ2
È. È. Êèêíàäçå, Ï. Ìèõàéëîâà è äð.
Õðîìîñîìíûéïîëèìîðôèçì è äèâåðãåíöèÿïîïóëÿöèé ó Chironomus nuditarsis
1Èíñòèòóò öèòîëîãèè è ãåíåòèêè ÑÎ ÐÀÍ, Íîâîñèáèðñê 630090, Ðîññèÿ,
2Èíñòèòóò çîîëîãèè ÁÀÍ, Ñîôèÿ 1000, Áîëãàðèÿ, è
3Ôëàìàíäñêèé èíñòèòóò òåõíîëîãè÷åñêèõ èññëåäîâàíèé îêðóæàþùåé ñðåäû, Áåðåòàí 200, 2400 Ìîë, Áåëüãèÿ
Ïðîâåäåí ñðàâíèòåëüíûé àíàëèç ñòðóêòóðû êàðèîòèïà è õðîìîñîìíîãî ïîëèìîðôèçìà â øåñòè ïðè-
ðîäíûõ è äâóõ ëàáîðàòîðíûõ ïîïóëÿöèÿõ Chironomus nuditarsis èç Åâðîïû è Àçèè. Ñ ïîìîùüþ ïðåöèçè-
îííîãî êàðòèðîâàíèÿ ïîñëåäîâàòåëüíîñòåé äèñêîâ â õðîìîñîìíûõ ïëå÷àõ îïðåäåëåí êàðèîôîíä äàííîãî
âèäà, âêëþ÷àþùèé â ñåáÿ 16 èíâåðñèîííûõ ïîñëåäîâàòåëüíîñòåé è 2 ïîñëåäîâàòåëüíîñòè (ndtG1 è
ndtG2) ñ ëîêàëüíî àìïëèôèöèðîâàííûìè ãèãàíòñêèìè ÄÍÊ-êíîáàìè. Óñòàíîâëåíû ÷åòêèå ðàçëè÷èÿ â
óðîâíå õðîìîñîìíîãî ïîëèìîðôèçìà ìåæäó âûñîêîïîëèìîðôíûìè åâðîïåéñêèìè è ïðàêòè÷åñêè ìîíî-
ìîðôíûìè ñèáèðñêèìè ïîïóëÿöèÿìè. Îïðåäåëåíû öèòîãåíåòè÷åñêèå ðàññòîÿíèÿ ìåæäó èññëåäîâàííû-
ìè ïîïóëÿöèÿìè C. nuditarsis è ìåæäó áëèçêèìè âèäàìè C. nuditarsisC. plumosus íà îñíîâàíèè ïîëè-
ìîðôèçìà ñïåêòðîâ è ÷àñòîò èíâåðñèîííûõ ïîñëåäîâàòåëüíîñòåé äèñêîâ. Àíàëèç öèòîãåíåòè÷åñêèõ ðàñ-
ñòîÿíèé ïîêàçàë, ÷òî õðîìîñîìíûå ïåðåñòðîéêè èãðàþò âàæíóþ ðîëü â äèâåðãåíöèè ïîïóëÿöèé è âèäîâ.
Êëþ÷åâûå ñëîâà: êàðèîòèï, õðîìîñîìíûé ïîëèìîðôèçì, õðîìîñîìíûå ïåðåñòðîéêè, ýâîëþöèÿ
êàðèîòèïà, õèðîíîìèäû.
 ïîñëåäíèå ãîäû áîëüøîå âíèìàíèå óäåëÿåòñÿ àíà-
ëèçó çàêîíîìåðíîñòåé ãåíåòè÷åñêîãî ïîëèìîðôèçìà â
ïðèðîäíûõ ïîïóëÿöèÿõ æèâîòíûõ è ðàñòåíèé è åãî ðîëè
â äèâåðãåíöèè ïîïóëÿöèé (Ayala et al., 1977; Àëòóõîâ,
2003). Ê ñîæàëåíèþ, ðîëü õðîìîñîìíîãî ïîëèìîðôèçìà
â äèâåðãåíöèè ïîïóëÿöèé â íàñòîÿùåå âðåìÿ èññëåäóåò-
ñÿ çíà÷èòåëüíî ìåíåå èíòåíñèâíî, õîòÿ åùå â 1930-å
ãîäû áûëî ïîêàçàíî, ÷òî õðîìîñîìíàÿ èçìåí÷èâîñòü ÿâ-
ëÿåòñÿ âàæíåéøèì ôàêòîðîì àäàïòàöèè ïîïóëÿöèé ê
ôàêòîðàì âíåøíåé ñðåäû è ñîîòâåòñòâåííî èãðàåò ñóùå-
ñòâåííóþ ðîëü â èõ äèâåðãåíöèè (Dubinin et al., 1936;
Dobzansky, 1970; King, 1993). Íîâàÿ âîëíà èíòåðåñà ê
õðîìîñîìíîé èçìåí÷èâîñòè â ïîïóëÿöèÿõ âîçíèêëà íå-
äàâíî â ñâÿçè ñ ðàçâèòèåì ãëîáàëüíîãî öèòîãåíåòè÷åñêî-
ãî àíàëèçà ãîëàðêòè÷åñêèõ âèäîâ õèðîíîìèä, ïîêàçàâøå-
ãî ãëóáîêóþ äèâåðãåíöèþ ïàëåàðêòè÷åñêèõ è íåàðêòè÷å-
ñêèõ ïîïóëÿöèé çà ñ÷åò èçìåíåíèÿ ñïåêòðà è ÷àñòîò
èíâåðñèîííûõ ïîðÿäêîâ ãåíîâ, âîçíèêøèõ â ðåçóëüòàòå
õðîìîñîìíûõ ïåðåñòðîåê (Acton, 1962; Martin, Porter,
1973; Ãóíäåðèíà è äð., 1996; Kiknadze et al., 1996, 1998,
2000; Butler et al., 1999). Áûëî ïîêàçàíî òàêæå, ÷òî è â
Ïàëåàðêòèêå ïîïóëÿöèè ìíîãèõ âèäîâ-áëèçíåöîâ èç
ãðóïïû plumosus è ãðóïïû tentans ÷åòêî ðàçëè÷àþòñÿ ïî
ñïåêòðó è ÷àñòîòàì èíâåðñèîííûõ ïîñëåäîâàòåëüíîñòåé
äèñêîâ. Ýòè ðàçëè÷èÿ îïðåäåëÿþòñÿ â ñâîþ î÷åðåäü
óñëîâèÿìè âîäîåìîâ, â êîòîðûõ îáèòàþò èññëåäóåìûå
ïîïóëÿöèè (Øîáàíîâ, 1994; Ãóíäåðèíà è äð., 1996, 1999,
2000).  ðÿäå ñëó÷àåâ ïðè äëèòåëüíîé êîíòèíåíòàëüíîé
èçîëÿöèè èçìåíåíèå ñïåêòðà è ÷àñòîò èíâåðñèîííûõ ïî-
ñëåäîâàòåëüíîñòåé äèñêîâ çàõîäèò ñòîëü äàëåêî, ÷òî
ïðèâîäèò ê ôîðìèðîâàíèþ íîâîãî âèäà (Kiknadze et al.,
1996; Shobanov et al., 1999). Âûÿñíåíèå îáùèõ çàêîíî-
ìåðíîñòåé õðîìîñîìíîé äèâåðãåíöèè ïîïóëÿöèé è âè-
äîâ òðåáóåò èññëåäîâàíèÿ êàê ìîæíî áîëüøåãî ÷èñëà ïî-
ïóëÿöèé èç ðàçíûõ ÷àñòåé àðåàëà ó ðàçíûõ âèäîâ.
C. nuditarsis ÿâëÿåòñÿ óäîáíîé ìîäåëüþ äëÿ òàêîãî ðîäà
èññëåäîâàíèé, òàê êàê íàìè áûëî îáíàðóæåíî, ÷òî îí èìååò
î÷åíü áîëüøîé àðåàë — îò Çàïàäíîé Åâðîïû äî Ñèáèðè.
Êàðèîòèï C. nuditarsis áûë îïèñàí Êåéëîì (Keyl,
1961, 1962), Ìèõàéëîâîé (Michailova, 1989) è Ïåòðîâîé ñ
ñîàâòîðàìè (Petrova et al., 2000). Â çàïàäíîåâðîïåéñêèõ
ïîïóëÿöèÿõ ýòîãî âèäà áûëî îáíàðóæåíî íåñêîëüêî òè-
ïîâ õðîìîñîìíûõ ïåðåñòðîåê, òàêèõ êàê ïàðàöåíòðè÷å-
ñêèå èíâåðñèè, ðåöèïðîêíûå òðàíñëîêàöèè è ÄÍÊ-êíî-
áû (Rosin, Fischer, 1965, 1966, 1972; Fischer, 1978; Fisc-
her, Tichy, 1980). Îäíàêî õðîìîñîìíûé ïîëèìîðôèçì â
ïîïóëÿöèÿõ èç ðàçíûõ ÷àñòåé àðåàëà äåòàëüíî íå èññëå-
äîâàëñÿ, íå áûëî ïðîâåäåíî òî÷íîå êàðòèðîâàíèå ìíîãèõ
ñòàíäàðòíûõ è èíâåðñèîííûõ ïîñëåäîâàòåëüíîñòåé äèñ-
êîâ. Ïîïûòêà îöåíèòü êàðèîôîíä C. nuditarsis â ðàáîòå
Ïîëóêîíîâîé è ñîàâòîðîâ (2005) ñëåäóåò ñ÷èòàòü íåóäà÷-
íîé, òàê êàê â íåé áûë íåïðàâèëüíî èäåíòèôèöèðîâàí è
êàðòèðîâàí ðÿä âàæíåéøèõ ïîñëåäîâàòåëüíîñòåé äèñêîâ
ïðè ÿâíî íåäîñòàòî÷íîì ìàòåðèàëå äëÿ ïîïóëÿöèîííîãî
àíàëèçà.
 íàñòîÿùåé ðàáîòå ïðîâåäåíî ñðàâíèòåëüíîå èçó÷åíèå
õðîìîñîìíîãî ïîëèìîðôèçìà â íåñêîëüêèõ ïîïóëÿöèÿõ
C. nuditarsis èç óäàëåííûõ ÷àñòåé àðåàëà (Åâðîïà—Àçèÿ)
äëÿ óñòàíîâëåíèÿ öèòîãåíåòè÷åñêîé äèâåðãåíöèè ýòèõ
ïîïóëÿöèé. Áûë îïðåäåëåí îáúåì êàðèîôîíäà ýòîãî âèäà,
595
2006 ÖÈÒÎËÎÃÈß Òîì48, ¹7
âêëþ÷àþùèé â ñåáÿ 16 èíâåðñèîííûõ ïîñëåäîâàòåëüíî-
ñòåé äèñêîâ ïëþñ 2 ïîñëåäîâàòåëüíîñòè ñ ëîêàëüíî àìï-
ëèôèöèðîâàííûìè ãèãàíòñêèìè ÄÍÊ-êíîáàìè, óñòàíîâ-
ëåíû áîëüøèå ðàçëè÷èÿ â óðîâíå õðîìîñîìíîãî ïîëè-
ìîðôèçìà, ñïåêòðå è ÷àñòîòå ýòèõ èíâåðñèîííûõ
ïîñëåäîâàòåëüíîñòåé ìåæäó åâðîïåéñêèìè è ñèáèðñêè-
ìè ïîïóëÿöèÿìè. Áûë ïðîâåäåí ñðàâíèòåëüíûé àíàëèç
öèòîãåíåòè÷åñêèõ ðàññòîÿíèé êàê ìåæäó ïîïóëÿöèÿìè
ñàìîãî C. nuditarsis, òàê è ìåæäó ïîïóëÿöèÿìè C. nudi-
tarsis è áëèçêîãî åìó âèäà C. plumosus, ïîêàçûâàþùèé
âàæíóþ ðîëü õðîìîñîìíîãî ïîëèìîðôèçìà â äèâåðãåí-
öèè ïîïóëÿöèé è âèäîâ.
Ìàòåðèàë è ìåòîäèêà
 ðàáîòå èñïîëüçîâàëè ëè÷èíîê ïîñëåäíåãî ëè÷è-
íî÷íîãî âîçðàñòà C. nuditarsis èç íåñêîëüêèõ ïîïóëÿöèé
Çàïàäíîé Ñèáèðè, Áåëüãèè, Áîëãàðèè è Øâåéöàðèè. Ìå-
ñòà ñáîðîâ, îáúåì âûáîðêè è ñèìâîëû ïîïóëÿöèé ïðåä-
ñòàâëåíû â òàáë. 1. Â Áîëãàðèè òîëüêî â îäíîì ìåñòå
ñáîðà îêàçàëîñü äîñòàòî÷íî ëè÷èíîê äëÿ öèòîãåíåòè÷å-
ñêîãî àíàëèçà, âî âñåõ äðóãèõ ìåñòàõ áûëè èññëåäîâàíû
åäèíè÷íûå ëè÷èíêè, íî èõ èçó÷åíèå ïîêàçàëî ñõîäñòâî
õðîìîñîìíîãî ïîëèìîðôèçìà âî âñåõ ìåñòàõ ñáîðà, ÷òî
äàëî âîçìîæíîñòü îáúåäèíèòü èõ â «îáùóþ» ïîïóëÿöèþ
n-E-BG-CO (òàáë. 1). Ãèáðèäíûå ëè÷èíêè C. nuditarsis %
C. plumosus, òàê æå êàê è ëàáîðàòîðíàÿ ïîïóëÿöèÿ C. nu-
ditarsis, áûëè ëþáåçíî ïðåäîñòàâëåíû ïðîô. Äæ. Ôèøå-
ðîì (Øâåéöàðèÿ).
Äëÿ öèòîãåíåòè÷åñêîãî àíàëèçà ëè÷èíîê ôèêñèðîâà-
ëè â ñìåñè 96%-íîãî ñïèðòà è ëåäÿíîé óêñóñíîé êèñëîòû
(3 : 1). Ïðèãîòîâëåíèå äàâëåíûõ ïðåïàðàòîâ ïîëèòåííûõ
õðîìîñîì ïðîâîäèëè îáû÷íûì ñïîñîáîì (Keyl, Keyl,
1959; Êèêíàäçå è äð., 1991).
Êàðòèðîâàíèå õðîìîñîìíûõ ïëå÷ A,EèFïðîâîäèëè
ïî Êåéëó (Keyl, 1962), ïëå÷CèD—ïîÄåâàè è ñîàâòî-
ðîì (D*evai et al., 1989) ñ èñïîëüçîâàíèåì ðèñóíêà äèñêîâ
ïîëèòåííûõ õðîìîñîì C. piger â êà÷åñòâå ñòàíäàðòà.
Öèòîãåíåòè÷åñêèå ðàññòîÿíèÿ ìåæäó ïîïóëÿöèÿìè
ðàññ÷èòûâàëè ïî Íåþ (Nei, 1972). Ðàíåå áûëî ïîêàçàíî
áîëüøîå ñõîäñòâî êàðèîòèïîâ C. nuditarsis èC. plumosus
(Petrova et al., 2000; Kiknadze et al., 2003; Êèêíàäçå è äð.,
2004á), ÷òî ïîñëóæèëî îñíîâàíèåì ðàññìàòðèâàòü èõ êàê
âèäû-áëèçíåöû (Petrova et al., 2000). Ïîýòîìó ïðåäñòàâ-
ëÿëî áîëüøîé èíòåðåñ îïðåäåëåíèå öèòîãåíåòè÷åñêîãî
ðàññòîÿíèÿ ìåæäó ýòèìè âèäàìè. Ïðè îöåíêå öèòîãåíå-
òè÷åñêèõ ðàññòîÿíèé áûëè èñïîëüçîâàíû íàøè áîëåå
ðàííèå äàííûå ïî õðîìîñîìíîìó ïîëèìîðôèçìó ó
C. plumosus (Ãîëûãèíà, Êèêíàäçå, 2001).
Ñðàâíèòåëüíûé àíàëèç èíâåðñèîííûõ ïîñëåäîâà-
òåëüíîñòåé äèñêîâ â êàðèîôîíäå C. nuditarsis ñ êàðèî-
ôîíäàìè äðóãèõ âèäîâ ðîäà Chironomus ïîçâîëèë âûÿ-
âèòü ÷èñëî òî÷åê ðàçðûâîâ â õðîìîñîìàõ ýòîãî âèäà,
596 È. È. Êèêíàäçå, Ï. Ìèõàéëîâà è äð.
Òàáëèöà 1
Ìåñòà ñáîðîâ Chironomus nuditarsis
Ìåñòî ñáîðà Ñèìâîë
ïîïóëÿöèè Äàòà ñáîðà Êîëè÷åñòâî
ëè÷èíîê Àâòîð ñáîðà
Àçèÿ, Ñèáèðü
Íîâîñèáèðñêàÿ îáë., ïðóä,
ð. Êàìûøåâêà
n-S-NSK-KA 28 V 1996 2 À. Ã. Èñòîìèíà
Â. Â. Ãîëûãèíà
Íîâîñèáèðñêàÿ îáë., ïðóä,
ð. Êàðïûñàê
n-S-NSK-KR 13 V 1996
20 V 2003
17
2
Òî æå
Ðåñïóáëèêà Àëòàé, îç. Òåíüãèí-
ñêîå
n-S-RAL-TE Ìàé 1997 ã. 35 » »
Åâðîïà
Áåëüãèÿ, çàïîâåäíèê Waelenhoek
(Niel 8), ãëèíÿíûå ÿìû
n-E-BE-WA 09 III 1994
06 IV 1994
44 Ë. Èíò Ïàíèñ
Áîëãàðèÿ, î-â Âàðäèí, ð. Äóíàé n-E-BG-VA 17 VI 2002 16 Á. Êðàñòàíîâ
Áîëãàðèÿ,
Ìîíòàíà,
Ðàñîâî Ëîì,
Ëîìñêî áëàòî,
Ñàðàÿ,
×åëîïåöåíå,
Âîëóÿê,
Êàëèìîê,
Ñèòîâî
n-E-BG-CO
16 V 2002
16 V 2002
16 V 2002
16 V 2002
18 VI 2003
15 IV 2002
03 VII 2002
6
2
1
1
1
2
2
1
Øâåéöàðèÿ, ëàáîðàòîðíàÿ êóëüòó-
ðà C. plumosus %C. nuditarsis
n-E-SH-BE Èþíü 1989 ã. 10 H. A. Fischer
Øâåéöàðèÿ, ëàáîðàòîðíûé ñòîê
èç ïðèðîäíîé ïîïóëÿöèè
n-E-SH-BE 1981 ã.
1982 ã.
1987 ã.
1989 ã.
1990 ã.
5
5
2
1
2
Ïîääåðæèâàåòñÿ â ëà-
áîðàòîðèè Ï. Ìè-
õàéëîâîé
îïðåäåëÿþùèõ äèâåðãåíöèþ ïîñëåäîâàòåëüíîñòåé äèñ-
êîâ, îöåíèòü ñòåïåíü èõ ñõîäñòâà è ïîñòðîèòü ôèëîãåíå-
òè÷åñêîå äåðåâî õðîìîñîìíîé ýâîëþöèè ïî ìåòîäó áëè-
æàéøèõ ñîñåäåé (Êèêíàäçå è äð., 2004à).
Ðåçóëüòàòû
Êàðèîòèï C. nuditarsis. Êàðèîòèï C. nuditarsis
âî âñåõ èçó÷åííûõ ïîïóëÿöèÿõ èìåë ãàïëîèäíûé íàáîð
õðîìîñîì n = 4 ñ êîìáèíàöèåé õðîìîñîìíûõ ïëå÷ AB,
CD, EF è G (öèòîêîìïëåêñ thummi). Åäèíñòâåííîå ÿä-
ðûøêî ðàñïîëàãàëîñü íà êîíöå êîðîòêîãî ïëå÷à G, äâà
êîëüöà Áàëüáèàíè ðàçâèâàëèñü â ïëå÷åGèîäíî—âïëå
-
֌ B.
Êàðèîòèï èç ñèáèðñêèõ ïîïóëÿöèé. Ñòðóê-
òóðà êàðèîòèïà C. nuditarsis ïðåäñòàâëåíà íà ðèñ. 1, îíà
ÿâëÿåòñÿ òèïè÷íîé äëÿ âñåõ èçó÷åííûõ ïîïóëÿöèé. Öåí-
òðîìåðíûå äèñêè â ñèáèðñêîé ïîïóëÿöèè ÷åòêèå, íî íå-
êðóïíûå. Öåíòðîìåðíûé ãåòåðîõðîìàòèí ñîñòîèò èç êîí-
ñòèòóòèâíîãî ãåòåðîõðîìàòèíà.
Âî âñåõ èçó÷åííûõ ñèáèðñêèõ ïîïóëÿöèÿõ êàðèîòèï
îêàçàëñÿ ïðàêòè÷åñêè ìîíîìîðôíûì, çà èñêëþ÷åíèåì
åäèíè÷íûõ ñëó÷àåâ ãåòåðîçèãîòíîñòè ïëå÷à G ïî êðóï-
íîìó ãåòåðîõðîìàòè÷åñêîìó áëîêó (êíîáó) â îäíîì èç
ãîìîëîãîâ.
 ïëå÷å A (ðèñ. 1; 2, à,á; «Ïðèëîæåíèå»; òàáë. 2)
ôèêñèðîâàíà òîëüêî îäíà èç äâóõ àëüòåðíàòèâíûõ ïîñëå-
äîâàòåëüíîñòåé äèñêîâ, îïèñàííûõ äëÿ C. nuditarsis
(Keyl, 1962), — ndtA2 (ðèñ. 2, á). Ñîãëàñíî Êåéëó, ïî-
ñëåäîâàòåëüíîñòü ndtA1 (ðèñ. 2, à) áëèçêà ê ïîñëåäîâà-
òåëüíîñòè pluA1 ó C. plumosus è îòëè÷àåòñÿ îò íåå íå-
áîëüøîé ïðîñòîé èíâåðñèåé.  ñâîþ î÷åðåäü ndtA1 è
ndtA2 ðàçëè÷àþòñÿ êðóïíîé èíâåðñèåé, çàõâàòûâàþùåé
âñþ öåíòðàëüíóþ ÷àñòü ïëå÷à (ðèñ. 2, à,á; «Ïðèëîæå-
íèå»).
Ñëåäóåò îáðàòèòü âíèìàíèå íà íåîáû÷íóþ ñòðóêòó-
ðó öåíòðîìåðíîãî ðàéîíà â õðîìîñîìå AB ó C. nuditarsis
(ðèñ. 2, à,á). Êàê ïðàâèëî, ó âèäîâ ðîäà Chironomus öåí-
òðîìåðíûé äèñê (Ñ) ðàñïîëîæåí áëèçêî ê äâóì ïëîòíûì
äèñêàì ïëå÷à A — 19ef. Ó C. nuditarsis ìåæäó äèñêîì Ñ
è äèñêàìè 19ef íàáëþäàåòñÿ áîëüøîå ïðîñòðàíñòâî, îá-
ðàçîâàííîå çà ñ÷åò ìàëåíüêîé ïåðèöåíòðè÷åñêîé èíâåð-
ñèè, ïåðåìåùàþùåé òîíêèå äèñêè 28de èç ïëå÷àBâïëå
-
÷î A. Ýòà èíâåðñèÿ áûëà îáíàðóæåíà Â. Â. Ãîëûãèíîé, è
âàæíî îòìåòèòü íåïðàâèëüíîñòü óêàçàíèÿ åå â ïîñëåäî-
âàòåëüíîñòè A1, îïèñàííîé Êåéëîì, êàê ýòî ñäåëàíî â
ñòàòüå Ïîëóêîíîâîé ñ ñîàâòîðàìè (2005). Êåéë íå óêàçû-
âàë äàííîé èíâåðñèè â ñâîåé ñòàòüå (Keyl, 1962).
Ïëå÷î B (ðèñ. 1; 2, â,ã; òàáë. 2) ìîíîìîðôíî.  íåì
ôèêñèðîâàíà ïîñëåäîâàòåëüíîñòü ndtB1 (ðèñ. 2, ã). Ïî-
ñëåäîâàòåëüíîñòè ndtB1 è ndtB2 ðàçëè÷àþòñÿ ïðîñòîé
èíâåðñèåé (ðèñ. 2, â,ã).
Ïëå÷î Ñ (ðèñ. 1; 3, à; «Ïðèëîæåíèå»; òàáë. 2) ìîíî-
ìîðôíî è èìååò îäíó ïîñëåäîâàòåëüíîñòü ndtC1, èäåí-
òè÷íóþ ïîñëåäîâàòåëüíîñòè pluC2.
Ïëå÷î D (ðèñ. 1; 3, á; «Ïðèëîæåíèå»; òàáë. 2) ìîíî-
ìîðôíî è èìååò îäíó ïîñëåäîâàòåëüíîñòü ndtD1, èäåí-
òè÷íóþ pluD1.
Ïëå÷î E (ðèñ. 1; 3, â; «Ïðèëîæåíèå»; òàáë. 2) ìîíî-
ìîðôíî è èìååò äîìèíèðóþùóþ ïîñëåäîâàòåëüíîñòü
ndtE1, êîòîðàÿ îòëè÷àåòñÿ ïðîñòîé èíâåðñèåé îò pluE1.
Õðîìîñîìíûé ïîëèìîðôèçì è äèâåðãåíöèÿ ïîïóëÿöèé ó Chironomus nuditarsis 597
Ðèñ. 1. Êàðèîòèï Chironomus nuditarsis èç ñèáèðñêèõ ïîïóëÿöèé.
Îáîçíà÷åíèÿ çäåñü è íà âñåõ îñòàëüíûõ ðèñóíêàõ: ndtA2.2, ndtB2.2, ndtC1.1 è ò. ä. — ñèìâîëû ãåíîòèïè÷åñêèõ ñî÷åòàíèé ïîñëåäîâàòåëüíîñòåé äèñ-
êîâ â õðîìîñîìíûõ ïëå÷àõ; BR — êîëüöà Áàëüáèàíè, N — ÿäðûøêî, p — ïóôôû; ñòðåëêàìè óêàçàíû öåíòðîìåðíûå ðàéîíû.
Ïëå÷î F (ðèñ. 1; 3, ã; «Ïðèëîæåíèå»; òàáë. 2) ìîíî-
ìîðôíî è èìååò îäíó ïîñëåäîâàòåëüíîñòü ndtF1, îòëè÷à-
þùóþñÿ ïðîñòîé èíâåðñèåé îò pluF1.
Ïëå÷î G (ðèñ. 1; 4, à; òàáë. 2) ïðàêòè÷åñêè ìîíîìîð-
ôíî ñ ïîñëåäîâàòåëüíîñòüþ ndtG1, ëèøü ó äâóõ ëè÷èíîê
â ïîïóëÿöèè Êàðïûñàê íàáëþäàëàñü ãåòåðîçèãîòíîñòü
ïëå÷à ïî ïðèñóòñòâèþ êðóïíîãî êíîáà ó îäíîãî èç ãîìî-
ëîãîâ (ðèñ. 4, ã). Ïîñëåäîâàòåëüíîñòü ndtG1 îòëè÷àåòñÿ
îò ïîñëåäîâàòåëüíîñòåé pluG1 âêëþ÷åííîé èíâåðñèåé,
çàõâàòûâàþùåé âñþ öåíòðàëüíóþ ÷àñòü ïëå÷à. Êàê ïðà-
âèëî, ãîìîëîãè â ïëå÷å G ó C. nuditarsis ïëîòíî êîíúþ-
ãèðóþò (ðèñ. 4, à) â îòëè÷èå îò C. plumosus. Ïðàâäà, â îò-
äåëüíûõ êëåòêàõ æåëåçû ìîæåò íàáëþäàòüñÿ ðàñõîæäå-
íèå ãîìîëîãîâ, íî ýòî íå ðåãóëÿðíî.
598 È. È. Êèêíàäçå, Ï. Ìèõàéëîâà è äð.
Ðèñ. 2. Ïîñëåäîâàòåëüíîñòè äèñêîâ â ïëå÷àõAèB:ãîìîçèãîòû ndtA1.1 (à), ndtA2.2 (á), ndtB1.1 (â) è ndtB2.2 (ã).
Ñêîáêè íàä õðîìîñîìàìè óêàçûâàþò ëîêàëèçàöèþ èíâåðñèé.
Òàêèì îáðàçîì, â ñèáèðñêèõ ïîïóëÿöèÿõ C. nuditar-
sis îáíàðóæèâàåòñÿ ïðàêòè÷åñêè ìîíîìîðôíûé êàðèîòèï
ñ ôèêñàöèåé àëüòåðíàòèâíûõ ïîñëåäîâàòåëüíîñòåé äèñ-
êîâ â ïëå÷å A (ndtA2) è â ïëå÷å B (ndtB2) (òàáë. 2, 3).
Åäèíè÷íûå ñëó÷àè ïîëèìîðôèçìà íàáëþäàëèñü òîëüêî â
ïëå÷å G çà ñ÷åò îáðàçîâàíèÿ ãèãàíòñêèõ êíîáîâ â îäíîì
èç ãîìîëîãîâ (ndtG1.1k).
Êàðèîòèï èç áåëüãèéñêîé ïîïóëÿöèè. Êàðè-
îòèï C. nuditarsis èç Áåëüãèè áûë íàìè ðàíåå îïèñàí ïîä
ñèìâîëîì C. sp. Be1 (Int Panis et al., 1994). Ñòðóêòóðà åãî
êàðèîòèïà èäåíòè÷íà òàêîâîìó èç ñèáèðñêèõ ïîïóëÿöèé,
íî íàáëþäàþòñÿ è ñóùåñòâåííûå ðàçëè÷èÿ ïî ñïåêòðó è
÷àñòîòàì îòäåëüíûõ ïîñëåäîâàòåëüíîñòåé äèñêîâ, òàê
êàê áåëüãèéñêàÿ ïîïóëÿöèÿ áûëà âûñîêîïîëèìîðôíîé â
îòëè÷èå îò ìîíîìîðôíûõ ñèáèðñêèõ ïîïóëÿöèé.
Ïëå÷î A îêàçàëîñü íàèáîëåå ïîëèìîðôíûì, â íåì
îáíàðóæåíî 6 èíâåðñèîííûõ ïîñëåäîâàòåëüíîñòåé:
ndtA1, ndtA2, ndtA3, ndtA4, ndtA5 è ndtA6 (òàáë. 2;
«Ïðèëîæåíèå»). Äîìèíèðóþùåé áûëà ïîñëåäîâàòåëü-
íîñòü ndtA1 â ïðîòèâîïîëîæíîñòü ñèáèðñêèì ïîïóëÿöè-
ÿì, ãäå áûëà ôèêñèðîâàíà ndtA2. Â áåëüãèéñêèõ ïîïóëÿ-
öèÿõ íàéäåíî íåñêîëüêî ïîñëåäîâàòåëüíîñòåé, ñôîðìè-
ðîâàâøèéñÿ íà îñíîâå ïîñëåäîâàòåëüíîñòè ndtA 2 çà ñ÷åò
ïðîñòûõ è ñëîæíûõ èíâåðñèé. Òàê, ïîñëåäîâàòåëüíîñòü
ndtA3 îòëè÷àåòñÿ ïðîñòîé èíâåðñèåé â äèñòàëüíîé ÷àñòè
ïëå÷à (ðèñ. 2, á; «Ïðèëîæåíèå»); ndtA4 (ðèñ. 2, á; «Ïðè-
ëîæåíèå») âîçíèêàåò çà c÷åò ñî÷åòàíèÿ äâóõ íåïåðåêðû-
âàþùèõñÿ èíâåðñèé: èíâåðñèÿ 4a-10d, ôîðìèðóþùàÿ
ïîñëåäîâàòåëüíîñòü ndtA3, è èíâåðñèÿ 17h-12c, îáîçíà-
÷åííàÿ íàìè êàê Z (òàê êàê îíà íå áûëà âñòðå÷åíà ñàìî-
ñòîÿòåëüíî); ndtA5 îòëè÷àåòñÿ îò ndtA2 ïðîñòîé êîðîòêîé
èíâåðñèåé â ñåðåäèíå ïëå÷à (ðèñ. 2, á; «Ïðèëîæåíèå»).
Ðÿä èíâåðñèé, ôîðìèðóþùèõ îïèñàííûå íàìè ïî-
ñëåäîâàòåëüíîñòè äèñêîâ íà îñíîâå ïîñëåäîâàòåëüíîñòè
ndtA2, áûë îïèñàí ðàíåå â øâåéöàðñêîé ïîïóëÿöèè Ðî-
çèíûì è Ôèøåðîì (Rosin, Fischer, 1965). Ñîãëàñíî ïðè-
íÿòûì â òî âðåìÿ îáîçíà÷åíèÿì, In2 ïðîäóöèðîâàëà ñàìó
ïîñëåäîâàòåëüíîñòü ndtA2 èç ndtA1, In 4 — ïîñëåäîâà-
òåëüíîñòü ndtA3, êîìáèíàöèÿ In4 + In5 — ïîñëåäîâà-
òåëüíîñòü ndtA4. Ðîçèí è Ôèøåð ïðèäàâàëè áîëüøîå
çíà÷åíèå èçó÷åíèþ ñâÿçè ãåòåðîçèãîòíûõ èíâåðñèé ñ
îïðåäåëåíèåì ïîëà ó õèðîíîìèä.  ÷àñòíîñòè, îíè ïîëà-
ãàëè, ÷òî ãåòåðîçèãîòíûå èíâåðñèè â ïëå÷å A â êîìáèíà-
öèè ñ ãåòåðîçèãîòíîé èíâåðñèåé B1.2 â ïëå÷å B îïðåäå-
ëÿþò ìóæñêîé ïîë. Îäíàêî â íàñòîÿùåå âðåìÿ áîëåå ïðî-
äóêòèâíûì îêàçûâàåòñÿ âûÿâëåíèå ìóæñêèõ ïîëîâûõ
ôàêòîðîâ ìîëåêóëÿðíûìè ìåòîäàìè, ïîýòîìó ìû íå àíà-
ëèçèðîâàëè êîððåëÿöèþ ìåæäó èíâåðñèÿìè è ïîëîì.
Ïîñëåäîâàòåëüíîñòü ndtA1 ïðîäóöèðîâàëà ëèøü îäíó
èíâåðñèîííóþ ïîñëåäîâàòåëüíîñòü ndtA6 — íîâóþ ïî-
ñëåäîâàòåëüíîñòü äëÿ C. nuditarsis. Ïîñëåäíÿÿ îòëè÷àåòñÿ
îò ndtA1 ïðîñòîé èíâåðñèåé (ðèñ. 2, à; «Ïðèëîæåíèå»).
Èç îáíàðóæåííûõ â ïëå÷å A èíâåðñèîííûõ ïîñëå-
äîâàòåëüíîñòåé òîëüêî ndtA1 è ndtA2 âñòðå÷àþòñÿ â ãî-
Õðîìîñîìíûé ïîëèìîðôèçì è äèâåðãåíöèÿ ïîïóëÿöèé ó Chironomus nuditarsis 599
Òàáëèöà 2
×àñòîòû èíâåðñèîííûõ ïîñëåäîâàòåëüíîñòåé äèñêîâ â ïîïóëÿöèÿõ Chironomus nuditarsis
Ïîñëåäîâàòåëüíîñòü
×àñòîòû ïîñëåäîâàòåëüíîñòåé â ïîïóëÿöèÿõ
Ñèáèðü Áåëüãèÿ Áîëãàðèÿ ÈòàëèÿàØâåéöàðèÿ
n-S-NSK-KR n-S-RAL-Te n-E-BE-WA n-E-BG-VA n-E-BG-CO n-It-Tu n-E-SH-BE
ndtA1 0 0 0.591 0.634 0.845 0.826 0.958
ndtA2 1.0 1.0 0.250 0.033 0.062 0.154 0.042
ndtA3 0 0 0.023 0.066 0 0.020 0
ndtA4 0 0 0.102 0000
ndtA5 0 0 0.011 0.033 0.031 0 0
ndtA6 0 0 0.023 0.234 0.062 0 0
ndtB1 0 0 0.795 0.833 0.562 0.808 0.417
ndtB2 1.0 1.0 0.205 0.167 0.438 0.192 0.583
ndtC1 1.0 1.0 1.0 1.0 1.0 0.962 1.0
ndtC2 0 0 0 0 0 0.038 0
ndtD1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ndtE1 1.0 1.0 0.989 1.0 1.0 1.0 1.0
ndtE2 0 0 0.011 0000
ndtF1 0 1.0 1.0 1.0 1.0 1.0 1.0
ndtG1 0.941 1.0 0.693 0.733 0.688 0.885 0.6
ndtG2 0 0 0.307 0.267 0.250 0.115 0.3
ndtG1k 0.059 0 0 0 0.062 0 0.067
ndtG2k 0 0 00000.033
Äîëÿ ãåòåðîçèãîòíûõ ëè-
÷èíîê, %
11.8 0 81.8 100 87.5 — 67
Ñðåäíåå êîëè÷åñòâî ãåòå-
ðîçèãîòíûõ èíâåðñèé
íà îñîáü
0.12 0 1.4 1.4 1.4 1.1
àÏî äàííûì Ïåòðîâîé è ñîàâòîðîâ (Petrova et al., 2000).
ìîçèãîòå, îñòàëüíûå íàéäåíû ëèøü â ãåòåðîçèãîòàõ
(ðèñ. 5, à,á,å,ç) è ñ íèçêîé ÷àñòîòîé (òàáë. 2, 3).
 ïëå÷å B äîìèíèðóåò ïîñëåäîâàòåëüíîñòü ndtB1
(ðèñ. 2, â) â ïðîòèâîïîëîæíîñòü ñèáèðñêèì ïîïóëÿöèÿì,
ãäå ôèêñèðîâàíà ndtB2 (òàáë. 2, 3). Â áåëüãèéñêîé ïîïó-
ëÿöèè ãîìîçèãîòû ndtB2.2 êðàéíå ðåäêè, íî ÷àñòî âñòðå-
÷àþòñÿ ãåòåðîçèãîòû ndtB1.2.
Ïëå÷è C,DèFìîíîìîðôíû â áåëüãèéñêîé ïî-
ïóëÿöèè, òàê æå êàê è â ñèáèðñêèõ ïîïóëÿöèÿõ (òàáë. 2,
3).
600 È. È. Êèêíàäçå, Ï. Ìèõàéëîâà è äð.
Ðèñ. 3. Ïîñëåäîâàòåëüíîñòè äèñêîâ â ïëå÷àõ C, D,EèF:ndtC1.1 (à), ndtD1.1 (á), ndtE1.1 (â) è ndtF1.1 (ã).
Ïëå÷î E ïðàêòè÷åñêè òàêæå ìîíîìîðôíî, íî ó îäíîé
ëè÷èíêè áûëà îáíàðóæåíà êîðîòêàÿ óíèêàëüíàÿ èíâåð-
ñèÿ ndtE2 (ðèñ. 6, à; «Ïðèëîæåíèå»).
Ïëå÷î G ïîëèìîðôíî (ðèñ. 2, à—ã; òàáë. 2, 3).  íåì
íàéäåíû äâå ïîñëåäîâàòåëüíîñòè äèñêîâ — ndtG1 è
ndtG2. Ïîñëåäîâàòåëüíîñòü ndtG1 îòëè÷àåòñÿ îò pluG1
âêëþ÷åííîé èíâåðñèåé, çàõâàòûâàþùåé âñþ öåíòðàëü-
íóþ ÷àñòü ïëå÷à.  ñâîþ î÷åðåäü ndtG2 îòëè÷àåòñÿ îò
ndtG1 ïðîñòîé èíâåðñèåé (ðèñ. 2, á). Ðåãóëÿðíîå ðàñõîæ-
äåíèå ãîìîëîãîâ ýòîé õðîìîñîìû ñâÿçàíî òîëüêî ñ èí-
âåðñèåé â îäíîì èç ãîìîëîãîâ. Ïîñëåäîâàòåëüíîñòü
ndtG1 äîìèíèðóåò, îíà âñòðå÷àåòñÿ êàê ãîìî-, òàêèâãå
-
òåðîçèãîòå (ðèñ. 4, à,â). Ðåäêî óäàåòñÿ îáíàðóæèòü ãîìî-
çèãîòû ndtG2.2 (ðèñ. 2, á), ndtG2 âñòðå÷àåòñÿ ïðåèìóùå-
Õðîìîñîìíûé ïîëèìîðôèçì è äèâåðãåíöèÿ ïîïóëÿöèé ó Chironomus nuditarsis 601
Ðèñ. 4. Ïîñëåäîâàòåëüíîñòè äèñêîâ â ïëå÷å G: ndtG1.1 (à), ndtG2.2 (á), ndtG1.2 (â), ndtG1.1k (ã
ndtG1.1 ñ äèñêîì, ãåòåðîçèãîòíûì ïî èíòåðêàëÿðíîìó ãåòåðîõðîìàòèíó (ä).
k — êíîá, ãîëîâêîé ñòðåëêè óêàçàí ãåòåðîçèãîòíûé äèñê.
ñòâåííî â ãåòåðîçèãîòàõ. Ó îäíîé ëè÷èíêè áûëà âûÿâëå-
íà ãåòåðîçèãîòíîñòü ïî äèñêó (ðèñ. 4, ä).
Òàêèì îáðàçîì, áåëüãèéñêàÿ ïîïóëÿöèÿ ñóùåñòâåííî
îòëè÷àåòñÿ îò ñèáèðñêèõ ïîïóëÿöèé ïî òàêèì öèòîãåíå-
òè÷åñêèì ïàðàìåòðàì, êàê ñïåêòð è ÷àñòîòû èíâåðñèîí-
íûõ ïîñëåäîâàòåëüíîñòåé äèñêîâ (òàáë. 2, 3).
Êàðèîòèï èç áîëãàðñêèõ ïîïóëÿöèé. Îáùàÿ
ñòðóêòóðà êàðèîòèïà áîëãàðñêèõ ïîïóëÿöèé èäåíòè÷íà
òàêîâîé èç Ñèáèðè è Áåëüãèè, îäíàêî ó íåêîòîðûõ îñî-
áåé íàáëþäàëèñü óâåëè÷åííûå ðàçìåðû öåíòðîìåð-
íûõ äèñêîâ. Ñîãëàñíî äàííûì Ìèõàéëîâîé (Michailova,
1989, 1990), â Áîëãàðèè èìåþòñÿ äâå öèòîãåíåòè÷å-
ñêèå ôîðìû C. nuditarsis: îäíà ñ íåáîëüøèìè öåíòðî-
ìåðàìè, äðóãàÿ — ñ áîëåå êðóïíûìè. Íåêîððåêòíî ðàñ-
ñìàòðèâàòü âòîðóþ ôîðìó êàê C. curabilis (Ïîëóêîíîâà
è äð., 2005), òàê êàê òàêñîíîìè÷åñêèé ñòàòóñ âòîðîé ôîð-
ìû åùå íå îïðåäåëåí â ñâÿçè ñ îòñóòñòâèåì ñðàâ-
íèòåëüíîãî ìîðôîëîãè÷åñêîãî àíàëèçà ýòîé ôîðìû ñ
òèïîâûì ìàòåðèàëîì C. curabilis èC. nuditarsis. Èçó÷å-
íèå ðàçìåðîâ öåíòðîìåðíûõ äèñêîâ ó îñîáåé áîëãàð-
ñêèõ ïîïóëÿöèé ïîêàçàëî, ÷òî ó âñåõ îñîáåé õðîìîñîìà
AB èìååò ìàëåíüêèé öåíòðîìåðíûé äèñê, òîãäà êàê
õðîìîñîìû CD è EF îáëàäàþò áîëåå êðóïíûìè öåíòðî-
ìåðàìè. Ýòà êàðòèíà îòðàæàåò ïîïóëÿöèîííûé ïîëèìîð-
ôèçì ïî ðàçìåðàì öåíòðîìåðíîãî ãåòåðîõðîìàòèíà, êîòî-
ðûé ìîæåò áûòü âàæíûì ôàêòîðîì äèâåðãåíöèè ïîïó-
ëÿöèé.
Ïî ñïåêòðó è ÷àñòîòàì ïîñëåäîâàòåëüíîñòåé äèñêîâ,
òàê æå êàê è ïî âûñîêîìó óðîâíþ õðîìîñîìíîãî ïîëè-
ìîðôèçìà, áîëãàðñêèå ïîïóëÿöèè îêàçàëèñü áîëåå áëèç-
êèìè ê áåëüãèéñêèì ïîïóëÿöèÿì.
 ïëå÷å A îáíàðóæåíî 5 ïîñëåäîâàòåëüíîñòåé
äèñêîâ: ndtA1, ndtA2, ndtA3, ndtA5 è ndtA6 (ðèñ. 2, à,á;
òàáë. 2, 3; «Ïðèëîæåíèå»). Ïîñëåäîâàòåëüíîñòü ndtA1
äîìèíèðóåò è âñòðå÷àåòñÿ êàê â ãîìî-, òàê è â ãåòåðîçè-
ãîòå (ðèñ. 2, à;5,à,â,ã), òîãäà êàê ndtA2 âñòðå÷àåòñÿ
ðåæå, ïðåèìóùåñòâåííî â ãåòåðîçèãîòàõ (ðèñ. 5, à,ä),
îñòàëüíûå íàéäåíû ëèøü â ãåòåðîçèãîòå (ðèñ. 5, æ).
Ïëå÷î B òàêæå ïîëèìîðôíî (òàáë. 2, 3). Îáíàðóæåíû
äâå ïîñëåäîâàòåëüíîñòè — ndtB1, ndtB2, ñ äîìèíèðîâàíè-
602 È. È. Êèêíàäçå, Ï. Ìèõàéëîâà è äð.
Òàáëèöà 3
×àñòîòû ãåíîòèïè÷åñêèõ ñî÷åòàíèé èíâåðñèîííûõ ïîñëåäîâàòåëüíîñòåé äèñêîâ
â ïîïóëÿöèÿõ Chironomus nuditarsis
Ãåíîòèïè÷åñêèå
ñî÷åòàíèÿ
×àñòîòû ïîñëåäîâàòåëüíîñòåé â ïîïóëÿöèÿõ
Ñèáèðü Áåëüãèÿ Áîëãàðèÿ Èòàëèÿà
n-S-NSK-KR n-S-RAL-Te n-E-BE-WA n-E-BG-VA n-E-BG-CO n-It-Tu
ndtA1.1 0 0 0.341 0.467 0.752 0.654
ndtA2.2 1.0 1.0 0.045 0 0 0
ndtA1.2 0 0 0.341 0 0.062 0.338
ndtA1.3 0 0 0.023 0 0 0
ndtA1.4 0 0 0.091 0 0 0
ndtA1.5 0 0 0 0.066 0.062 0
ndtA1.6 0 0 0.045 0.267 0.062 0
ndtA2.4 0 0 0.068 0 0 0
ndtA2.6 0 0 0 0.066 0.062 0
ndtA3.4 0 0 0.023 0 0 0
ndtA3.6 0 0 0 0.134 0 0
ndtA4.5 0 0 0.023 0 0 0
ndtB1.1 0 0 0.614 0.667 0.312 0.615
ndtB2.2 1.0 1.0 0.023 0 0.188 0.039
ndtB1.2 0 0 0.363 0.333 0.500 0.346
ndtC1.1 1.0 1.0 1.0 1.0 1.0 0.923
ndtC1.2 0 0 0 0 0 0.077
ndtD1.1 1.0 1.0 1.0 1.0 1.0 1.0
ndtE1.1 1.0 1.0 0.977 1.0 1.0 1.0
ndtE1.2 0 0 0.023 0 0 0
ndtF1.1 1.0 1.0 1.0 1.0 1.0 1.0
ndtG1.1 0.882 1.0 0.477 0.466 0.375 0.770
ndtG2.2 0 0 0.091 0 0 0
ndtG1.2 0 0 0.432 0.534 0.500 0.230
ndtG1.1k 0.118 0 0 0 0.125 0
àÏî äàííûì Ïåòðîâîé è ñîàâòîðîâ (Petrova et al., 2000).
Õðîìîñîìíûé ïîëèìîðôèçì è äèâåðãåíöèÿ ïîïóëÿöèé ó Chironomus nuditarsis 603
Ðèñ. 5. Ïîëèìîðôèçì â ïëå÷å A: ãåòåðîçèãîòû ndtA1.2 (à), ndtA1.4 (á), ndtA1.5 (â), ndtA1.6 (ã),
ndtA2.6 (ä), ndtA3.4 (å), ndtA3.6 (æ) è ndtA4.5 (ç).
åì ndtB1. Âòîðàÿ ïîñëåäîâàòåëüíîñòü íàéäåíà â îñíîâíîì â
ãåòåðîçèãîòàõ è ðåäêèõ ãîìîçèãîòàõ.
Ïëå÷è C, D,EèFîêàçàëèñü ìîíîìîðôíûìè, òàê æå
êàê â ñèáèðñêèõ è áåëüãèéñêèõ ïîïóëÿöèÿõ (òàáë. 2).
Ïëå÷î G ïîëèìîðôíî ñ òðåìÿ ïîñëåäîâàòåëüíîñòÿ-
ìè — èíâåðñèîííûìè ïîñëåäîâàòåëüíîñòÿìè ndtG1 è
ndtG2 è ïîñëåäîâàòåëüíîñòÿìè ndtG1k ñ êíîáîì. Äîìè-
íèðóþùåé ÿâëÿåòñÿ ndtG1, ndtG2 íàéäåíà òîëüêî â ãåòå-
ðîçèãîòàõ, ndtG1k îáíàðóæåíà âñåãî ó äâóõ ëè÷èíîê â ãå-
òåðîçèãîòå ndtG1.1k (ðèñ. 4, à—ã).
Ó îäíîé ëè÷èíêè áûëà îáíàðóæåíà òðàíñëîêàöèÿ
ìåæäó õðîìîñîìàìè AB è EF (ðèñ. 6, á) — ýòî íîâàÿ ðå-
öèïðîêíàÿ òðàíñëîêàöèÿ äëÿ äàííîãî âèäà.
Ïî îáùèì öèòîãåíåòè÷åñêèì õàðàêòåðèñòèêàì áîë-
ãàðñêèå ïîïóëÿöèè îêàçàëèñü ñõîäíûìè ñ áåëüãèéñ-
êèìè.
Êàðèîòèï èç øâåéöàðñêèõ ëàáîðàòîðíûõ
êóëüòóð. Êàðèîòèï îñîáåé èç ëàáîðàòîðíîé êóëüòóðû
C. nuditarsis îêàçàëñÿ ìåíåå ïîëèìîðôíûì, ÷åì â ñàìîé
ïðèðîäíîé ïîïóëÿöèè, èç êîòîðîé äàííàÿ êóëüòóðà áûëà
604 È. È. Êèêíàäçå, Ï. Ìèõàéëîâà è äð.
Ðèñ. 5 (ïðîäîëæåíèå).
ïîëó÷åíà Ðîçèíûì è Ôèøåðîì. Íàìè áûëè îáíàðóæåíû
ñëåäóþùèå ïîñëåäîâàòåëüíîñòè: ndtA1 è ndtA2 (ïîñëåä-
íÿÿ òîëüêî â ãåòåðîçèãîòå ñ íèçêîé ÷àñòîòîé), ndtB1,
ndtB2, ndtC1, ndtD1, ndtE1, ndtF1, ndtG1, ndtG2, ndtG1k è
ndtG2k (òàáë. 2, 3). Ó òðåõ ëè÷èíîê áûëè âûÿâëåíû
ÄÍÊ-êíîáû.
Èçó÷åíèå ðèñóíêà äèñêîâ ó ãèáðèäîâ C. nuditarsis %
C. plumosus ïîêàçàëî, ÷òî âñå ïîñëåäîâàòåëüíîñòè äèñ-
êîâ â ãîìîëîãàõ, ïðèíàäëåæàùèõ C. nuditarsis, ñîîòâåò-
ñòâóþò åâðîïåéñêîìó âàðèàíòó êàðèîòèïà: ndtA1, ndtB1,
ndtC1, ndtD1, ndtE1, ndtF1 è ndtG1.
Ñðàâíèòåëüíûé àíàëèç ñèáèðñêèõ è åâðî-
ïåéñêèõ ïîïóëÿöèé. Ñðàâíåíèå öèòîãåíåòè÷åñêèõ
õàðàêòåðèñòèê èññëåäîâàííûõ ïîïóëÿöèé ïîçâîëÿåò ðàç-
äåëèòü èõ íà äâå ãðóïïû — ñèáèðñêèå è åâðîïåéñêèå
ïîïóëÿöèè (áåëüãèéñêèå, áîëãàðñêèå è øâåéöàðñêèå).
Ñèáèðñêèå ïîïóëÿöèè õàðàêòåðèçóþòñÿ ìîíîìîðô-
íîñòüþ è ôèêñàöèåé àëüòåðíàòèâíûõ ïîñëåäîâàòåëüíî-
ñòåé äèñêîâ â ïëå÷àõAèB.Óðîâåíü õðîìîñîìíîãî ïî-
ëèìîðôèçìà â ñèáèðñêèõ ïîïóëÿöèÿõ, â êîòîðûõ âñòðå-
÷àåòñÿ åäèíñòâåííàÿ õðîìîñîìíàÿ ïåðåñòðîéêà —
îáðàçîâàíèå ãåòåðîõðîìàòè÷åñêîãî êíîáà â îäíîì èç ãî-
ìîëîãîâ ïëå÷à G, — íå ïðåâûøàåò 13 %, à ñðåäíåå ÷èñëî
ãåòåðîçèãîòíûõ ïåðåñòðîåê íà îñîáü ñîñòàâëÿåò âñåãî
0.12 (òàáë. 2).
 ïðîòèâîïîëîæíîñòü ñèáèðñêèì ïîïóëÿöèÿì
âñå åâðîïåéñêèå ïîïóëÿöèè âûñîêîïîëèìîðôíû: ÷èñëî
îñîáåé â ïîïóëÿöèè ñ ãåòåðîçèãîòíûìè ïåðåñòðîéêàìè
äîñòèãàåò 80—90 % ñî ñðåäíèì ÷èñëîì ïåðåñòðîåê íà
îñîáü 1.4 (òàáë. 2). Ìåæäó ñîáîé åâðîïåéñêèå ïîïóëÿöèè
Áåëüãèè, Áîëãàðèè è Øâåéöàðèè î÷åíü ñõîäíû: îíè èìå-
þò îäèíàêîâûé èõ ñïåêòð, â íèõ äîìèíèðóþò ïîñëåäîâà-
òåëüíîñòè ndtA1 è ndtB1. Â öåëîì åâðîïåéñêèå ïîïóëÿ-
öèè ñîäåðæàò 16 èíâåðñèîííûõ ïîñëåäîâàòåëüíîñòåé äè-
ñêîâ è 2 ïîñëåäîâàòåëüíîñòè ñ ÄÍÊ-êíîáàìè.
Îöåíêà öèòîãåíåòè÷åñêèõ ðàññòîÿíèé ìåæäó èññëå-
äîâàííûìè ïîïóëÿöèÿìè (òàáë. 4) ïîêàçûâàåò, ÷òî ó
C. nuditarsis îíè áëèçêè ê òåì, ÷òî íàáëþäàþòñÿ ó äðó-
ãèõ âèäîâ õèðîíîìèä (Ãóíäåðèíà è äð., 1996, 1999; Kik-
nadze et al., 1996, 1998, 2000; Butler et al., 1999). Èç äåíä-
ðîãðàììû öèòîãåíåòè÷åñêèõ ðàññòîÿíèé (ðèñ. 7) âèäíî,
÷òî èññëåäîâàííûå ïîïóëÿöèè ãðóïïèðóþòñÿ â äâà ÷åò-
êèõ êëàñòåðà — åâðîïåéñêèé è ñèáèðñêèé. Ìåæäó ýòèìè
äâóìÿ êëàñòåðàìè öèòîãåíåòè÷åñêîå ðàññòîÿíèå çíà÷è-
òåëüíî âûøå, ÷åì â ïðåäåëàõ êëàñòåðîâ. Ïðè ñðàâíå-
íèè öèòîãåíåòè÷åñêèõ ðàññòîÿíèé ìåæäó ïîïóëÿöèÿìè
C. nuditarsis è áëèçêèì åìó âèäîì C. plumosus (ðèñ. 7)
âèäíû ÷åòêèå ìåæâèäîâûå ðàçëè÷èÿ, îäíàêî ìåæäó áî-
ëüøèíñòâîì ïîïóëÿöèé C. plumosus íåò òàêèõ ðàçëè÷èé,
êàê ìåæäó åâðîïåéñêèìè è ñèáèðñêèìè ïîïóëÿöèÿìè
C. nuditarsis. Òîëüêî ÿêóòñêàÿ ïîïóëÿöèÿ ó C. plumosus
âåäåò ñåáÿ ñõîäíî ñ ñèáèðñêèìè ïîïóëÿöèÿìè C. nuditar-
sis. Âåðîÿòíî, ÷òî ó îáîèõ âèäîâ ñèáèðñêèå ïîïóëÿöèè
ÿâëÿþòñÿ êðàåâûìè ïîïóëÿöèÿìè â èõ àðåàëàõ è ïîýòîìó
òàê ñèëüíî äèôôåðåíöèðîâàíû.
Õðîìîñîìíûé ïîëèìîðôèçì è äèâåðãåíöèÿ ïîïóëÿöèé ó Chironomus nuditarsis 605
Ðèñ. 6. Ïîëèìîðôèçì â ïëå÷å E: ãåòåðîçèãîòà ndtE1.2 (à
òðàíñëîêàöèÿ ìåæäó õðîìîñîìàìè AB—EF (á).
Ðèñ. 7. Äåíäðîãðàììà öèòîãåíåòè÷åñêèõ ðàññòîÿíèé ìåæäó ïî-
ïóëÿöèÿìè Chironomus nuditarsis èC. plumosus.
Ñèìâîëû ïîïóëÿöèè è ìåñòà ñáîðà: p-S-ALT-BE — Êóðüèíñêèé ð-í,
îç. Áåëîå; p-S-ALT-KO — Çìåèíîãîðñêèé ð-í, îç. Êîëûâàíñêîå;
p-S-SVE-SH — Ñâåðäëîâñêàÿ îáë., îç. Øàðòàø; p-S-KUR-YU — Êóðãàí-
ñêàÿ îáë., îç. Þðãàìàø; p-E-SAR-VO — Ñàðàòîâñêàÿ îáë., ð. Âîëãà;
p-E-LEN-SP — Ëåíèíãðàäñêàÿ îáë. è ã. Ñàíêò-Ïåòåðáóðã; p-E-DK-ES —
Äàíèÿ, îç. Ýñðîì; p-S-RAL-TE — Ñèáèðü; p-E-VOL-VU — Âîëîãîä-
ñêàÿ îáë., ã. Âåëèêèé Óñòþã; p-S-NSK-KR — ð. Êàðïûñàê, ñ. Êàðïûñàê;
p-S-ALT-TG — îç. Ãîðüêîå; p-E-YAK-BE — ßêóòèÿ; n-S-NSK-KR —
ð. Êàðïûñàê,ñ. Êàðïûñàê; n-S-RAL-TE — Ñèáèðü; N-E-BG-VA — Áîëãà-
ðèÿ, ð. Äóíàé, î-â Âàðäèí; n-E-BE-WA — Áåëüãèÿ, Waelennoek;
n-E-BG-CO — Áîëãàðèÿ, îáùàÿ ïîïóëÿöèÿ (p — ïîïóëÿöèé C. plumosus,
n — ïîïóëÿöèé C. nuditarsis).
Îáñóæäåíèå
Ïðè èçó÷åíèè õðîìîñîìíîãî ïîëèìîðôèçìà â ïîïó-
ëÿöèÿõ C. nuditarsis íàìè îáíàðóæåíî 16 èíâåðñèîííûõ
ïîñëåäîâàòåëüíîñòåé äèñêîâ. 4 èç íèõ (ndtA1, ndtA2,
ndtE1 è ndtF1) áûëè êàðòèðîâàíû Êåéëîì (Keyl, 1962,
ð. 489—490), îñòàëüíûå êàðòèðîâàíû â íàñòîÿùåé ðàáî-
òå (ñì. «Ïðèëîæåíèå»). Ýòè 16 ïîñëåäîâàòåëüíîñòåé ñî-
ñòàâëÿþò êàðèîôîíä äàííîãî âèäà. Õðîìîñîìíûé ïîëè-
ìîðôèçì ó C. nuditarsis èìååò äâå îñîáåííîñòè. Âî-ïåð-
âûõ, íå âñå õðîìîñîìû â åãî êàðèîòèïå ïîëèìîðôíû, êàê
ýòî èìååò ìåñòî ó áîëüøèíñòâà âèäîâ ðîäà Chironomus
(Êèêíàäçå è äð., 2004à). Õðîìîñîìíûé ïîëèìîðôèçì ó
C. nuditarsis ñîñðåäîòî÷åí â òðåõ ïëå÷àõ èç ñåìè — ïëå-
÷àõA,BèG.Âàæíî îòìåòèòü, ÷òî ïîëèìîðôíû ýòè ïëå-
÷è â åâðîïåéñêèõ ïîïóëÿöèÿõ.  ïîïóëÿöèÿõ èç åâðîïåé-
ñêîé ÷àñòè Ðîññèè îòìå÷àåòñÿ ïîëèìîðôèçì óæå â äâóõ
ïëå÷àõ—AèG(Æèðîâ, Ïåòðîâà, 1993).  ñèáèðñêèõ æå
ïîïóëÿöèÿõ âñå ïëå÷è ñòàíîâÿòñÿ ìîíîìîðôíûìè. Âîç-
ìîæíî, ÷òî ìîíîìîðôèçì ñèáèðñêèõ ïîïóëÿöèé ñâÿçàí,
êàê óæå îòìå÷àëîñü, ñ òåì, ÷òî îíè íàõîäÿòñÿ íà êðàþ
àðåàëà, ãäå, êàê ïðàâèëî, óðîâåíü õðîìîñîìíîãî ïîëè-
ìîðôèçìà ñíèæàåòñÿ (Dobzansly, 1970; King, 1993).
Âòîðîé îñîáåííîñòüþ õðîìîñîìíîãî ïîëèìîðôèçìà
óC. nuditarsis ÿâëÿåòñÿ ïîâûøåííûé óðîâåíü íåêîòîðûõ
õðîìîñîìíûõ ïåðåñòðîåê, íåòèïè÷íûõ äëÿ äðóãèõ âèäîâ
õèðîíîìèä. Òàê, â ïðèðîäíûõ ïîïóëÿöèÿõ ó íåãî íåî-
áû÷íî ÷àñòî âñòðå÷àþòñÿ ðåöèïðîêíûå òðàíñëîêàöèè è
ãåòåðîõðîìàòè÷åñêèå êíîáû. Îäíà èç òðàíñëîêàöèé îïè-
ñàíà â íàñòîÿùåé ðàáîòå (ðèñ. 6, á), íåñêîëüêî äðóãèõ
áûëî îáíàðóæåíî ðàíåå (Fischer, 1978). Ýòîò àâòîð íà-
øåë 4 òèïà ñïîíòàííûõ ðåöèïðîêíûõ òðàíñëîêàöèé,
èìåþùèõ ðàçëè÷íûé ýôôåêò íà ôåðòèëüíîñòü îñîáåé â
çàâèñèìîñòè îò ïîëîæåíèÿ òðàíñëîêàöèîííûõ ðàçðûâîâ
è íàëè÷èÿ êðîññèíãîâåðà â çîíå òðàíñëîêàöèè (Rosin,
Fischer, 1966). Â áîëãàðñêîé ïîïóëÿöèè ìû íàøëè íîâûé
âàðèàíò òðàíñëîêàöèè (AB—EF). Åå íèçêàÿ ÷àñòîòà ìî-
æåò áûòü ñâÿçàíà ñ âûñîêèì ëåòàëüíûì ýôôåêòîì.
Ãèãàíòñêèå êíîáû, íàáëþäàåìûå â ïëå÷å G, ñîñòàâ-
ëÿþò âòîðóþ îñîáåííîñòü õðîìîñîìíîãî ïîëèìîðôèçìà
óC. nuditarsis. Îíè áûëè âûÿâëåíû ïî÷òè âî âñåõ èçó-
÷åííûõ ïîïóëÿöèÿõ ýòîãî âèäà. Êðîìå C. nuditarsis îíè
áûëè âûÿâëåíû åùå òîëüêî ó îäíîãî âèäà — C. anthraci-
nus è òî òîëüêî â êàíàäñêèõ ïîïóëÿöèÿõ (Rempel et al.,
1962; Kiknadze et al., 2005). Èçâåñòíî, ÷òî ÄÍÊ-êíîáû
âîçíèêàþò â ðåçóëüòàòå ëîêàëüíîé àìïëèôèêàöèè ÄÍÊ,
íî èõ çíà÷åíèå íåïîíÿòíî. Ïðåäïîëàãàëîñü, ÷òî êíîáû
ìîãóò ñîäåðæàòü ìóæñêîé ïîëîâîé ôàêòîð M2 (Fisher,
Tichy, 1980).
Öèòîãåíåòè÷åñêèé àíàëèç ïîêàçàë âûñîêèé óðîâåíü
äèâåðãåíöèè ïîïóëÿöèé C. nuditarsis â ïðåäåëàõ àðåàëà.
Ýòî õîðîøî ñîâïàäàåò ñ äàííûìè î òîì, ÷òî õðîìîñîì-
íàÿ èçìåí÷èâîñòü èìååò âàæíîå çíà÷åíèå â ìèêðîýâîëþ-
öèîííîì ïðîöåññå, â ÷àñòíîñòè ó õèðîíîìèä (Êèêíàäçå è
äð., 2004à, 2004á). Îñíîâíûìè ìåõàíèçìàìè öèòîãåíåòè-
÷åñêîé äèâåðãåíöèè ïîïóëÿöèé ÿâëÿþòñÿ èçìåíåíèÿ ÷àñ-
òîò îñíîâíûõ è àëüòåðíàòèâíûõ ïîñëåäîâàòåëüíîñòåé
äèñêîâ âïëîòü äî èõ ôèêñàöèè, èçìåíåíèÿ ñïåêòðà è ÷àñ-
òîò ôëóêòóèðóþùèõ èíâåðñèîííûõ ïîñëåäîâàòåëüíî-
ñòåé, ïîÿâëåíèå íîâûõ óíèêàëüíûõ èíâåðñèîííûõ ïî-
ñëåäîâàòåëüíîñòåé. Äðóãèå õðîìîñîìíûå ïåðåñòðîéêè,
òàêèå êàê ëîêàëüíàÿ àìïëèôèêàöèÿ îòäåëüíûõ äèñêîâ, â
606 È. È. Êèêíàäçå, Ï. Ìèõàéëîâà è äð.
Öèòîãåíåòè÷åñêèå äèñòàíöèè ìåæäó ïîïóëÿöèÿìè
Ñèìâîë ïîïóëÿöèè n-E-DK-ES n-E-LEN-SP p-E-VOL-VU n-E-SAR-VO n-S-SVE-SH n-S-KUR-YU p-S-NSK-KR p-S-ALT-TG
p-E-DK-ES
p-E-LEN-SP 0.003
p-E-VOL-VU 0.107 0.109
p-E-SAR-VO 0.030 0.029 0.151
p-S-SVE-SH 0.048 0.047 0.167 0.006
p-S-KUR-YU 0.037 0.037 0.149 0.004 0.001
p-S-NSK-KR 0.083 0.083 0.016 0.102 0.129 0.111
p-S-ALT-TG 0.022 0.021 0.048 0.052 0.064 0.054 0.044
p-S-ALT-BE 0.072 0.070 0.192 0.018 0.004 0.007 0.157 0.090
p-S-ALT-KO 0.072 0.065 0.203 0.021 0.007 0.010 0.169 0.089
p-S-RAL-TE 0.001 0.003 0.105 0.033 0.048 0.037 0.085 0.021
p-E-YAK-BE 0.358 0.347 0.184 0.233 0.219 0.222 0.159 0.240
n-E-BE-WA 1.831 1.773 1.744 1.802 1.784 1.810 1.776 1.515
n-E-BG-VA 1.817 1.759 1.730 1.788 1.770 1.796 1.762 1.501
n-E-BG-CO 1.844 1.785 1.756 1.814 1.796 1.822 1.789 1.527
n-S-NSK-KR 1.921 1.863 1.834 1.892 1.873 1.899 1.866 1.604
n-S-RAL-TE 1.936 1.878 1.849 1.907 1.888 1.915 1.881 1.619
Ïðèìå÷àíèå. Ñðåäíåå öèòîãåíåòè÷åñêîå ðàññòîÿíèå ìåæäó ïîïóëÿöèÿìè C. plumosus èC. nuditarsis — 1.789, ñðåäíåå
öèòîãåíåòè÷åñêîå ðàññòîÿíèå ìåæäó ïîïóëÿöèÿìè C. nuditarsis — 0.138, ñðåäíåå öèòîãåíåòè÷åñêîå ðàññòîÿíèå ìåæäó ïîïóëÿöèÿìè
C. plumosus — 0.095.
îñîáåííîñòè öåíòðîìåðíûõ, è ñëèÿíèå îòäåëüíûõ ïëå÷,
ìîãóò óñèëèâàòü ïðîöåññ öèòîãåíåòè÷åñêîé äèâåðãåí-
öèè. Âëèÿíèå õðîìîñîìíîé èçìåí÷èâîñòè íà äèâåðãåí-
öèþ ïîïóëÿöèé çíà÷èòåëüíî âûøå, ÷åì âëèÿíèå ãåíåòè-
÷åñêîé èçìåí÷èâîñòè (Ãóíäåðèíà, Êèêíàäçå, 2000). Òà-
êèì îáðàçîì, íà îñíîâàíèè íàøèõ äàííûõ ìîæíî
ðàññìàòðèâàòü C. nuditarsis êàê õîðîøóþ ìîäåëü äëÿ
àíàëèçà ðîëè õðîìîñîìíîé èçìåí÷èâîñòè â äèâåðãåíöèè
öåíòðàëüíûõ è ïåðèôåðè÷åñêèõ ïîïóëÿöèé.
Èçó÷åíèå êàðèîòèïà C. nuditarsis ïîêàçûâàåò åãî áîëü-
øîå ñõîäñòâî ñ êàðèîòèïîì C. plumosus: èìåþòñÿ îáùèå
ïîñëåäîâàòåëüíîñòè â ïëå÷àõCèD,îñíîâíûå ïîñëåäîâà-
òåëüíîñòè â êàðèîôîíäàõ îáîèõ âèäîâ ðàçëè÷àþòñÿ, êàê
ïðàâèëî, ïðîñòûìè èíâåðñèÿìè. Ïîýòîìó íà ôèëîãåíåòè-
÷åñêîì äåðåâå (Kiknadze et al., 2003; Êèêíàäçå è äð.,
2004á) C. nuditarsis ïîïàäàåò â êëàñòåð âèäîâ ãðóïïû plu-
mosus. Ðÿä àâòîðîâ (Petrova et al., 2000) ïðåäëàãàþò îòíî-
ñèòü C. nuditarsis ê ãðóïïå plumosus. Îäíàêî ýòîò âèä íå
èìååò õàðàêòåðíîãî ìîðôîëîãè÷åñêîãî ïðèçíàêà — ìîð-
ùèíèñòîñòè âíóòðåííåé ïîâåðõíîñòè âåíòðîìåíòàëüíûõ
ïëàñòèíîê, êîòîðûé ðàññìàòðèâàåòñÿ ñèñòåìàòèêàìè êàê
íåîáõîäèìûé äëÿ îòíåñåíèÿ êàêîãî-ëèáî âèäà ê ãðóïïå
plumosus. Ïîýòîìó, îòìå÷àÿ áîëüøóþ ôèëîãåíåòè÷åñêóþ
áëèçîñòü C. nuditarsis êC. plumosus è äðóãèì âèäàì ýòîé
ãðóïïû, ñëåäóåò ïîêà âîçäåðæàòüñÿ îò âêëþ÷åíèÿ åãî â
äàííóþ ãðóïïó äî ïîëó÷åíèÿ äîïîëíèòåëüíûõ ìîðôîëî-
ãè÷åñêèõ, ýêîëîãè÷åñêèõ è ìîëåêóëÿðíûõ äàííûõ.
Áîëüøàÿ äèâåðãåíöèÿ ïîïóëÿöèé C. nuditarsis, íàëè-
÷èå ó íåãî äâóõ ôîðì ïî ðàçìåðó öåíòðîìåðíûõ äèñêîâ è
âûñîêèé óðîâåíü õðîìîñîìíîãî ïîëèìîðôèçìà â öåíòðå
àðåàëà ïîçâîëÿþò ïðåäïîëàãàòü, ÷òî ýòîò âèä íàõîäèòñÿ
â ñòàäèè èíòåíñèâíîãî ôîðìîîáðàçîâàòåëüíîãî ïðîöåññà
(Michailova, 1989; Petrova et al., 2000).
ÏÐÈËÎÆÅÍÈÅ
쑌֔ A
ndtA1 1a—2c 10a—12c 3i—2h 4d—9d 4a—c 2g—d 9e
13a—19f [28de] C;
ndtA2 1a—2c 10a—12a 13ba 9e 2d—g 4c—a 9d—4d
2h—3i 12c—12b 13c—19f [28de] C;
ndtA3 1a—2c 10a—c 4a—c 2g—d 9e 13a—13b
12a—10d 9d—4d 2h—3i 12c—12b 13c—19f [28de] C;
ndtA4 1a—2c 10a—c 4a—c 2g—d 9e 13a—13b
12a—10d 9d—4d 2h—3i 17h—13c 12b—12c 18a—19f
[28de] C;
ndtA5 1a—2c 10a—12a 13b—13a9e2d—g 4c—a
9d—7c 3b—2h 4d—7b 3c—i 12c—12b 13c—19f [28de] C;
ndtA6 1a—2c 10a—12c 3i—c 7b—4d 2h—3b 7c—9d
4a—c 2g—d 9e 13a—19f [28de] C.
쑌֔ B
ndtB1 íå êàðòèðîâàíà;
ndtB2 íå êàðòèðîâàíà.
쑌֔ C
ndtC1 1a—2c 6c—f 7a—d 16a—17a 6hg 11d—15e
8a—11c 6b—2d 17b—22g C =pluC2;
ndtC2 íå êàðòèðîâàíà (Petrova et al., 2000).
쑌֔ D
ndtD1 1a—3g 11a—13a 10a—8a 18d—18a 7g—4a
10e—10b 13b—17f 18e—24g C =pluD1.
쑌֔ E
ndtE1 1a—3e 5a—7h 4gh 10b—8a 4f—3f 10c—13g C;
Õðîìîñîìíûé ïîëèìîðôèçì è äèâåðãåíöèÿ ïîïóëÿöèé ó Chironomus nuditarsis 607
Òàáëèöà 4
Chironomus plumosus èC. nuditarsis
p-S-ALT-BE p-S-ALT-KO p-S-RAL-TE p-E-YAK-BE n-E-BE-WA n-E-BG-VA n-E-BG-CO n-S-NSK-KR n-S-RAL-TE
0.003
0.071 0.070
0.215 0.235 0.362
1.848 1.788 1.841 1.490
1.834 1.774 1.827 1.476 0.022
1.860 1.800 1.854 1.502 0.022 0.023
1.938 1.877 1.931 1.579 0.201 0.248 0.206
1.953 1.893 1.946 1.594 0.200 0.252 0.207 0.002
ndtE2 1a—3e 5a—7f 9b—d 10ab 4hg 7hg 9a—8a
4f—3d 10c—13g C.
쑌֔ F
ndtF1 1a—1d 6e—1h 8c—7a 1e—g 8d—10d 17d—11a
18a—23f C.
쑌֔ G
ndtG1 íå êàðòèðîâàíà;
ndtG2 íå êàðòèðîâàíà;
ndtG1k íå êàðòèðîâàíà;
ndtG2k íå êàðòèðîâàíà.
Ðàáîòà âûïîëíåíà â ðàìêàõ ïðîãðàììû ïðåçèäèóìà
ÐÀÍ — ïðîåêòû «Äèíàìèêà ãåíîôîíäîâ ðàñòåíèé, æè-
âîòíûõ è ÷åëîâåêà» (¹ 24.4) è «Ïðîèñõîæäåíèå è ýâî-
ëþöèÿ ãåîáèîñèñòåì» (¹ 25.2), à òàêæå â ðàìêàõ õîçäî-
ãîâîðà 07/2002 Ìèíèñòåðñòâà íàóêè è òåõíîëîãèé ÐÔ.
Ïðè âûïîëíåíèè ðàáîòû áûëî èñïîëüçîâàíî îáîðó-
äîâàíèå Öåíòðà êîëëåêòèâíîãî ïîëüçîâàíèÿ ìèêðîñêî-
ïè÷åñêîãî àíàëèçà áèîëîãè÷åñêèõ îáúåêòîâ ÑÎ ÐÀÍ.
Ñïèñîê ëèòåðàòóðû
Àëòóõîâ Þ. Ï. 2003. Ãåíåòè÷åñêèå ïðîöåññû â ïîïóëÿöè-
ÿõ. Ì.: ÈÊÖ «Àêàäåìêíèãà». 431 ñ.
Ãîëûãèíà Â. Â., Êèêíàäçå È. È. 2001. Êàðèîôîíä âèäà Chi-
ronomus plumosus (Diptera, Chironomidae) â Ïàëåàðêòèêå. Öèòî-
ëîãèÿ. 43 (5) : 507—519.
Ãóíäåðèíà Ë. È., Êèêíàäçå È. È. 2000. Äèâåðãåíöèÿ êàðèî-
ôîíäîâ âèäîâ-äâîéíèêîâ ãðóïïû plumosus (Diptera: Chironomi-
dae). Ãåíåòèêà. 36 (3) : 339—347.
Ãóíäåðèíà Ë. È., Êèêíàäçå È. È., Àéìàíîâà Ê. Ã., Èñòîìè-
íà À. Ã., Ïðîâèç Â. È., Ñàëîâà Ò. À., Ðàêèøåâà À. Æ., Áàò-
ëåð Ì. Äæ. 1996. Öèòîãåíåòè÷åñêàÿ äèôôåðåíöèàöèÿ ïðèðîä-
íûõ è ëàáîðàòîðíûõ ïîïóëÿöèé Camptochironomus tentans
(Fabricius ) (Chironomidae: Diptera). Ãåíåòèêà. 32 (1) : 53—67.
Ãóíäåðèíà Ë. È., Êèêíàäçå È. È., Ãîëûãèíà Â. Â. 1999.
Âíóòðèâèäîâàÿ äèôôåðåíöèàöèÿ öèòîãåíåòè÷åñêîé ñòðóêòóðû
ïðèðîäíûõ ïîïóëÿöèé Chironomus plumosus L. — öåíòðàëüíî-
ãî âèäà ãðóïïû âèäîâ-äâîéíèêîâ. Ãåíåòèêà. 35 (2) : 193—202.
Æèðîâ Ñ. Â., Ïåòðîâà Í. À. 1993. Îñîáåííîñòè êàðèîòèïà
íîâîãî äëÿ ôàóíû Ðîññèè âèäà Chironomus nuditarsis Str. Â êí.:
Êàðèîñèñòåìàòèêà áåñïîçâîíî÷íûõ æèâîòíûõ II. ÑÏá.: ÇÈÍ
ÐÀÍ. 50—51.
Êèêíàäçå È. È., Ãîëûãèíà Â. Â., Èñòîìèíà À. Ã., Ãóíäåðè-
íà Ë. È. 2004à. Çàêîíîìåðíîñòè õðîìîñîìíîãî ïîëèìîðôèçìà
ïðè äèâåðãåíöèè ïîïóëÿöèé è âèäîâ ó õèðîíîìèä (Diptera, Chi-
ronomidae). Ñèá. ýêîëîãè÷. æóðí. 11 (5) : 635—652.
Êèêíàäçå È. È., Ãóíäåðèíà Ë. È., Èñòîìèíà À. Ã., Ãó-
ñåâ Â. Ä., Ìèðîøíè÷åíêî (Íåìûòèêîâà)Ë. À. 2004á. Ðåêîíñò-
ðóêöèÿ õðîìîñîìíîé ýâîëþöèè â ðîäå Chironomus. Åâðàçèàò-
ñêèé ýíòîìîë. æóðí. 3 (4) : 265—275.
Êèêíàäçå È. È., Øèëîâà À. È., Êåðêèñ È. Å. è äð. 1991. Êà-
ðèîòèï è ìîðôîëîãèÿ ëè÷èíîê òðèáû Chironomini. Àòëàñ. Íî-
âîñèáèðñê: Íàóêà. 113 ñ.
Ïîëóêîíîâà Í. Â., Áåëÿíèíà Ñ. È., Ìèõàéëîâà Ï. Â., Ãîëû-
ãèíà Â. Â. 2005. Ñðàâíèòåëüíûé àíàëèç êàðèîòèïîâ è êàðèî-
ôîíäîâ êîìàðîâ-çâîíöîâ Chironomus nuditarsis èCh. curabilis
(Chironomidae, Diptera). Çîîë. æóðí. 84 (2) : 195—206.
Øîáàíîâ Í. À. 1994. Êàðèîôîíä Chironomus plumosus L.
(Diptera, Chironomidae). IV. Âíóòðè- è ìåæïîïóëÿöèîííûé ïî-
ëèìîðôèçì. Öèòîëîãèÿ. 36 (11) : 1129—1145.
Acton A. B. 1962. Incipient taxonomic divergence in Chirono-
mus (Diptera). Evolution. 16 : 330—337.
Ayala F. J., Kiger J. A. 1977. Modern genetics. London etc.:
The Benjamin Cummings Publ. Comp.
Butler M. G., Kiknadze I. I., Golygina V. V., Martin J., Istomi-
na A. G., Wülker W. F., Sublette J. E., Sublette M. F. 1999. Cytoge-
netic differentiation between Palearctic and Nearctic populations of
Chironomus plumosus L. (Diptera, Chironomidae). Genome. 5 :
797—815.
Devai Gy., Miskolczi M., Wülker W. 1989. Standardization of
chromosome arms B, C and D in Chironomus (Diptera, Chironomi-
dae). In: Advances in Chironomidology: Acta Biol. Debr. Oecol.
Hung. 2 : 79—92.
Dobzhansky T. 1970. Genetics of the evolutionary process.
New York: Columbia Univ. Press. 505 p.
Dubinin N. P., Sokolov N. N., Tiniakov G. G. 1936. Occurren-
ce and distribution of chromosome aberration in nature. Nature.
137 : 1035—1036.
Fisher J. 1978. Zum Problem der Chromosomen-Evolution
durch Translocationen bei Chironomus (Diptera). Arch. Genet. 51 :
73—98.
Fisher J., Tichy H. 1980. Über eine Heterochromatin-Mutati-
on aus einer wildpopulation von Chironomus nuditarsis.1.Zur
Funktion des veränderten Genom-Abschnittes. Genetica. 54 :
41—43.
Int Panis L., Kiknadze I.,Bervoets L., Aimanova K. 1994. Ka-
ryological identification of some species of the genus Chironomus
Meigen, 1803 from Belgium. Bull. Annls. Soc. r. belge Ent. 130 :
135—142.
Keyl H.-G. 1961. Die cytologische Diagnostik der Chirono-
mus. III. Diagnose von Chironomus parathummi n. sp. und Ergän-
zungen der Bestimmungstabelle. Arch. Hydrobiol. 58 : 1—6.
Keyl H.-G. 1962. Chromosomenevolution bei Chironomus. II.
Chromosomenumbauten und phylogenetische Beziehungen der Ar-
ten. Chromosoma. 13 : 464—514.
Keyl H. G., Keyl I. 1959. Die cytologische Diagnostic der Chi-
ronomiden. I. Bestimmungstabelle für die Gattung Chironomus auf
Grund der Speicheldrüsen-Chromosomen. Arch. Hy drobiol. 56 :
43—57.
Kiknadze I. I., Butler M. G., Aimanova K. G., Andreeva E. N.,
Martin J., Gunderina L. I. 1998. Divergent cytogenetic evolution in
Nearctic and Palearctic populations of sibling species in the subge-
nus Camptochironomus Kieffer. Can. J. Zool. 76 : 361—376.
Kiknadze I. I., Butler M. G., Aimanova K. G., Gunderina L. I.,
Cooper J. K. 1996. Geographic variation in the polytene chromoso-
me banding pattern of the Holarctic midge Chironomus (Camptoc-
hironomus)tentansm (Fabricius). Can. J. Zool. 74 : 171—191.
Kiknadze I. I., Butler M. G., Golygina V. V., Martin J.,
Wülker W. F., Sublette J. E., Sublette M. F. 2000. Intercontinental
karyotypic differentiation of Chironomus entis Shobanov, a Holarc-
tic member of the C. plumosus group (Diptera, Chironomidae). Ge-
nome. 43 : 857—873.
Kiknadze I. I., Gunderina L. I., Istomina A. G., Gusev V. D.,
Nemytikova L. A. 2003. Similarity analysis of inversion banding se-
quences in chromosomes of Chironomus species (breakpoint phylo-
geny). In: Bioinformatics of genome regulation and structure. Bos-
ton etc.: Kluwer Acad. Publ. 245—253.
Kiknadze I. I., Wülker W. F., Istomina A. G., Andreeva E. N.
2005. Banding sequences pool of Chironomus anthracinus Zett
(Diptera, Chironomidae) in Palearctic and Nearctic. Åâðàçèàòñêèé
ýíòîìîë. æóðí. 4 (1) : 13—27.
King M. 1993. Species evolution: the role of chromosomal
change. Cambridge: Cambridge Univ. Press. 336 p.
Martin J., Porter D. L. 1973. The salivary gland chromosomes
of Glyptotendipes barbipes (Staeger) (Diptera, Chironomidae): des-
cription of inversions and comparison of Nearctic and Palearctic
karyotypes. Stud. Natur. Sci. (Portales, New Mexico). 1 (6) :
1—25.
Michailova P. 1989. The polytene chromosomes and their sig-
nificance to the systematics of the family Chironomidae, Diptera.
Acta Zool. Fenn. 186 : 107 p.
Michailova P. 1990. The polytene chromosomes in taxonomy,
systematics and speciation of family Chironomidae (Diptera).
D. Sc. thesis. Sofia. 378 p.
Nei M. 1972. The genetic distance between populations. Amer.
Natur. 106 : 283—292.
Petrova N., Michailova P., Bovero S. 2000. Cytogenetic cha-
racteristics of Chironomus nuditarsis Str. (Chironomidae, Diptera)
608 È. È. Êèêíàäçå, Ï. Ìèõàéëîâà è äð.
and its relationship with species from the plumosus group. In: Late
29th Century Res. on Chironomidae Shaker Verlag. Aachen. 201—
208.
Rempel J. G., Naylor J. M., Rothfels K., Ottonen B. 1962. The
sex chromosome constitution of chironomid intersex parasitized by
Nematodes. Can. J. Genet. Cytol. 4 : 92—96.
Rosin S., Fischer J. 1965. Geschlechtsgekoppelte Inversion bei
Chironomus nuditarsis Str. Arch. Julius Klaus Stift. 40 : 26—35.
Rosin S., Fischer J. 1966. Über eine Translokation aus einer
Wildpopulation von Chironomus nuditarsis Str. Arch. Julius Kla-
us-Stift. 41 : 37—44.
Rosin S., Fischer J. 1972. Polymorphism des Realisators fur
mannliches Geschlecht bei Chironomus. Rev. Suisse Zool. 79 :
119—141.
Shobanov N. A., Kiknadze I. I., Butler M. G. 1999. Palearctic
and Nearctic Chironomus (Camptochironomus)tentans (Fabricius)
are different species. Entomol. Scand. 30 : 311—322.
Ïîñòóïèëà 29 VIII 2005
THE CHROMOSOMAL POLYMORPHISM AND DIVERGENCE OF POPULATIONS
IN CHIRONOMUS NUDITARSIS STR. (DIPTERA, CHIRONOMIDAE)
I. I. Kiknadze,1P. Michailova,2A. G. Istomina,1V. V. Golygina,1L. Int Panis,3B. Krastanov2
1Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia,
2Institute of Zoology BAS, Sofia 1000, Bulgaria, and 3Flemish Institute for Technological Research Integrated
Environmental Studies, Boeretang 200, 2400 Mol, Belgium
The karyotype structure and chromosomal polymorphisms were investigated in 6 natural and 2 laboratory
populations of Chironomus nuditarsis from Europe and Asia. The pool of rearranged polytene chromosome ban-
ding sequences of this species was determined that includes 16 inversion banding sequences and sequences with
giant DNA-knobs (ndtG1k, ndtG2k). Obvious differences were demonstrated in the level of chromosomal poly-
morphism between European and Asian (Siberian) populations: the former were highly polymorphic, while the
latter were practically monomorphic. It was suggested to consider the Siberian populations as marginal one. Cy-
togenetic distances between populations of C. nuditarsis as well between C. nuditarsis and the related species
C. plumosus were estimated. The data obtained show that chromosomal rearrangements play a very important
role in cytogenetic divergence of populations.
Õðîìîñîìíûé ïîëèìîðôèçì è äèâåðãåíöèÿ ïîïóëÿöèé ó Chironomus nuditarsis 609
... shown that Ch. nuditarsis and Ch. plumosus is very close in the sense of phylogeny (Kiknadze et al., 2006). Polukonova and Karmokov (2013) previously described the karyotype and chromosomal polymorphism of Ch. nuditarsis from three Central Caucasian populations. ...
... We used fourth instar larvae of Chironomus in the karyological study. We provide the collection sites and abbreviations of earlier studied populations (Kiknadze et al., 2006) in Table 1. The Caucasus region (Russian Federation) served as larvae collection sites and included two sites from Krasnodar Krai, six sites from the Republic of Kabardino-Balkaria and two sites from the Republic of Dagestan (Table 2). ...
... The banding sequences were designated per the accepted convention specifying the abbreviated name of the species, symbol of chromosome arm, and sequence number as in ndt A1, ndt A2, etc. (Keyl, 1962;Wülker and Klötzli, 1973). We performed the identification of chromosome banding sequences for arms A, E and F using the photomaps of Kiknadze et al. (2006Kiknadze et al. ( , 2016 in the system of Keyl (1962) and chromosome mapping for arms C and D as per Kiknadze et al. (2006) in the system of Dévai et al. (1989). ...
Article
Full-text available
The study presents data on the karyotype characteristics and features of chromosomal polymorphism of Chironomus nuditarsis Keyl, 1961 (Diptera, Chironomidae) from seven natural populations of Caucasus (Northwest, Central and East Caucasus). We found 16 banding sequences in the Caucasian populations. We observed inversion polymorphism almost in all chromosome arms except for arms C and E. The genetic distances between all the studied populations of Ch. nuditarsis were calculated using Nei criteria (1972). In spite of relative geographic proximity, the genetic distances between populations of the Caucasus are quite big, and they do not form a single cluster of Caucasian populations. The population of the Northwest Caucasus goes to European cluster; the populations of Central and East Caucasus form their own separate clusters. The principal component analysis (PCA) shows the similar picture. Four of the Caucasian populations do not follow Hardy-Weinberg expectation. In two populations of them, there being a marked deficiency of heterozygotes in arms B, F and G. In two other populations, there being a marked excess of heterozygotes in arms B and G. One can suggest that observed pictures could be a reflection of multi-directional selection of heterozygotes in different populations.
... Some of these species have a large areal, occur throughout the entire Palaearctic and Holarctic, are easily available for collection, and have been studied karyologically by different authors from different regions. Thus, for instance, species of the genus Cryptochironomus and the species Chirono mus bernensis, which have been well studied in Europe, have been relatively recently found in Siberia (Istomina et al., 1992;Istomina, Kiknadze, 2004;Kiknadze et al., 2006). Another species, C. obreptans (2n = 4), differs in the Italian population from the Saratov and Novosibirsk populations in the significant homozygous inversion located in chromosome II. ...
... A peculiarity of this spe cies is the large "heterochromatin node" located in chromosome G, which sometimes is divided into the smaller "heterochromatin nodules." Fischer and Tichy (1980), as well as Kiknadze et al. (2006), revealed a similar "node" in C. nuditarsis, a European species of the genus Chironomus. In the C. nuditarsis Italian population, the "node" was not found (Petrova et al. 2000). ...
... decreases from west to east. Thus, in the European populations (Belgium, Bulgaria, and Switzerland) (Kiknadze et al., 2006), heterozygous inversions are concentrated in arms A, B, and G, while in the Italian population they are in arms A, B, and G (Petrova et al., 2000); in the population from the European part of Russia, they are present in two arms, A and G (Zhi rov, Petrova, 1993). In the Siberian populations, all arms turned out to be monomorphous (Kiknadze et al., 2006). ...
Article
Full-text available
Karyotypes of four chironomid species were studied: Cryptochironomus obreptans Walker, Cryptochironomus sp., Chironomus plumosus Linnaeus, and Stictochironomus rosenscholdi Zetterstedt. All these species belong to the subfamily Chironominae. Each species is characterized by a specific karyotype structure. The first species in the list has 2n = 4, while the three other species have 2n = 8.
... High level of chromosomal polymorphism (inversions, reciprocal translocations, DNA-knobs) was observed in West and East European populations of C. nuditarsis (Rosin & Fischer, 1965Fischer, 1978;Fischer & Rosin, 1967;Fischer & Tichy, 1980;Michailova, 1989;Zhirov & Petrova, 1993;Petrova et al., 2000;Polukonova et al., 2005;Karmokov, 2013). Comparison of karyotypes and chromosomal polymorphism between European and Asian C. nuditarsis populations was presented by Kiknadze and coauthors (Kiknadze et al., 2006). ...
... It was shown that C. nuditarsis and C. plumosus is phylogenetically very close (Kiknadze et al. (2006). Palearctic species. ...
Book
Full-text available
Sixty three species from the genus Chironomus were identified on a larvae stage by studying their karyotypes. Morphological analysis of their larvae allowed us to conduct species identification only for a part of studied larvae and was especially unreliable for the larvae of species belonging to sibling species groups. Most of studied chironomids species have wide areal so the species identification was performed for each population from different geographic locations (Western and Eastern Europe, Western and Eastern Siberia, Far East), which allowed us to evaluate geographical variations in their karyotypes. As a rule, species from the genus Chironomus have high level of chromosomal (mostly inversion) polymorphism. Because of that banding sequence pools of most species have more than 7 banding sequences that would be in accordance with the number of chromosomal arms. The number of banding sequences can range from 7 to 60 in species banding sequence pools. Clear geographic differences in spectrum and frequencies of banding sequences had been found between European and Asian populations of many species studied. The greatest differences had been observed between Palearctic and Nearctic population of Holarctic species.
... In the GenBank, the genetic distances between the COI gene sequences of C. tentans and C. dilutus is about 6%. There is a dispute about two species of C. nuditarsis (Keyl, 1961) and C. curabilis (Beljanina, Sigareva, and Loginova, 1990), which also have a difference only in the size of the centromeric disk [70]. ...
Article
Full-text available
The larvae of the genus Chironomus are a common object for hydrobiological studies, as well as a model object for cytogenetics. Morphologically, the species are very similar. One of these species or species complex is Chironomus “annularius”, which has a Holarctic distribution. It has chromosomal banding sequences characteristic of Nearctic and Palearctic populations. Using an integrated method that included morphology, cytogenetics, and molecular genetics, we analyzed populations from Russia, Mongolia, and Armenia. We found through cytogenetics and larval morphology that the populations have high similarity. Molecular genetic studies have shown significant differences between the populations. The genetic distances between the populations, in some cases, exceed the interspecific threshold of 3%, and are 6.5%. In the South Caucasian population (Lake Sevan), a chromosomal banding sequence, h’annD3, that was previously observed only in North America, was found for the first time. The larvae from Lake Sevan have large genetic distances from others, and are morphologically similar to the species Chironomus markosjani Shilova 1983, described from this lake without comparison with Ch. annularius nor an exact description of the karyotype. The sequences of the COI genes from Montenegro (Lake Skadar) and West Siberia (Novosibirsk) found in GenBank may belong to a new undescribed species, or a species not represented in the database. Thus, the analyzed data on Chironomus “annularius” support the presence of the complex of homosequential species under this name.
... The polytene chromosome features of the other Chironomus spp. used in this study have been taken from the works of some other investigators (Kiknadze, Michaĭlova, Istomina, Golygina, Int, & Krastanov, 2006;Kiknadze, Broshkov, Istomina, Gunderina, & Vallenduuk, 2008; Martin, 1971;Martin et al., 2007;Yamamoto, 1977). The polytene chromosomes exhibiting major bands, Balbiani rings, constricted sites (waists), centromeric region, and NOR along each of the chromosome arms were taken into consideration for the comparative analysis. ...
Article
Full-text available
Background Nine species of Chironomus evolved throughout the world were measured for their divergence with regard to their DNA sequences concerning 18S rRNA since it is conserved for a specific species. With the advancement of the field of molecular evolution, cytogenetics requires further correlation between molecular architecture and morphological features of a species to compare amongst others to decipher their role in speciation. Therefore, divergence of DNA sequences of the Chironomus were compared with differences in the polytene chromosome features of most of the species under this investigation to evaluate underlying correlation among them, if any, to finally establish a novel method of molecular classification broadly applicable in cytogenetics studies. Results When Chironomus javanus Kieffer was considered as a reference organism, an in silico pair-wise alignment of sequences for the 18S rRNA gene regions of the other eight different species of the same genus exhibited nucleotide sequence homology ranging from 67 to 98%. This divergence of the species under consideration might be due to environmental impact causing alteration of nitrogenous bases probably due to mismatch pairing in DNA replication. This may be suggested as a cause of evolution of species in nature. A concomitant study on the polytene chromosome band patterns of majority of these species belonging to this series also indicated a divergence ranging from 10% to 30%. Conclusions Sequence analysis based on 18S rRNA of nine species of Chironomus under this investigation shows a similarity in the polytene chromosome organization in most of the Chironomid species of the series. Hence, molecular divergence in the species is consistent with cytological difference among Chironomid species. Therefore, molecular data based on 18S rRNA and cytological characters based on the polytene chromosome features of the Chironomid species may be useful for their taxonomical recognition. Moreover, variations concerning two aspects of this study may be correlated to their environmental distinctions.
... Specimens collected in the artificial lake have homozygous inversions in arms A and B and a heterozygous inversion in arms C and G. Until now, the inversion in arm F was not recorded in the Polish populations. C. nuditarsis from Lake Łuknajno is less polymorphic than those in Bulgaria and Belgium (Kiknadze et al. 2006). Camptochironomus tentans (Fabricius, 1805) (n=7) had polytene chromosomes with the chromosome arm combinations: the I st (AB), the II nd (CF), the III rd (DE), and the IV th (G) (Fig. 2). ...
Article
Full-text available
The cytotaxonomic characteristics of two species of the Chironomus genus from Lake Łuknajno (northwest Poland) were determined: Chironomus nuditarsis Strenzke, 1959 with the chromosome arm combinations of AB, CD, EF, and G (the "thummi" cytocomplex), and Camptochironomus tentans (Fabricius, 1805) with the chromosome arm combinations of AB, CF, DE, and G. A heterozygous inversion in arm F of the Chironomus nuditarsis chromosomes was detected. The polymorphism of Camptochironomus tentans as a homozygous inversion in arms A and E and a heterozygous inversion in arm F were revealed.
Article
Karyotype of the Chironomus nuditarsis Str. (Keyl, 1962) chironomids from central Caucasian populations located at different altitudes above the sea level (a.s.l.) was examined. Specific features of the inversion polymorphism of the high-mountain (more than 1000 m a.s.l.), foothill (500–1000 m a.s.l.), and plain (up to 500 m a.s.l.) populations were identified. A new chromosome banding sequence, ndt F2 (1g-e 7a–8c), which was endemic to Caucasian populations, was described. With the increase in the altitude of the reservoir a.s.l., the decrease in the frequency of ndt G1.2 and ndt B2.2 inversions and the number of inversions per individual and per arm was observed. In the high-mountain population, only the ndt G2.2 homozygotes were detected. The plain population is an interstitial population, while foothill and high-mountain populations are terminal. Cytogenetic distances between the high-mountain and other samples range from 0.174 to 0.223, which is higher than the mean interpopulation value for this species (0.138). The allochrony of the life cycle in aborigines larvae from the foothill population and aborigines from the high-mountain population can be caused by factors such as low high-mountain reservoir temperature. This factor increases the duration of the stages of larvae developmental, which leads to a reduced number of generations and results in a shift in the imago flight and mating timing.
Article
A faunistic review of larvae and pupae of chironomid midges (Diptera, Chironomidae) from 15 habitats in the Hrazdan River valley (Armenia) is presented. The revealed fauna includes 40 species from 20 genera and 6 families and tribes. Diploid chromosome numbers are specified for 24 species from 13 genera and 4 subfamilies; 23 species from 14 genera and 4 subfamilies are reported from the region for the first time. Predominant oligotrophic status is confirmed for most of the reservoirs studied.
Article
The karyotypes and chromosomal polymorphism of Chironomus pseudothummi were investigated in different parts of its areal. It was established that chromosomal variability in the natural populations of this species was represented mainly by the inversion polymorphism of arm G. Only rare and unique inversions were found to be heterozygous in arms C, D, and E. In total, 14 banding sequences of polytene chromosomes form the banding sequence pool of C. pseudothummi. Geographic differences in the distribution of chromosomal banding sequences throughout the areal were established. The presence of banding sequences pstG1 and pstG2 is characteristic of European populations. The banding sequence pstG1 disappeared completely with a simultaneous increase in the frequency of pstG2 and with the appearance of a new inversion banding sequence pstG3 in Siberian populations. Differences in the set of rare and unique inversions in arms C, D, and E between the West-European and West-Siberian populations have been revealed.
Article
Full-text available
Polytene chromosomes of Chironomus (Camptochironomus) tentans from Europe, Siberia, and North America were examined to clarify genetic relationships among widely distributed populations of this Holarctic midge. This first extensive cytogenetic analysis of Siberian populations confirms earlier suppositions that C. tentans karyotypes are quite uniform across the Palearctic from western Europe to Yakutia. Greater differences exist among North American populations in Minnesota, Michigan, and Massachusetts, and as a group, these Nearctic populations share so few banding sequences with Palearctic C. tentans that recognition of discrete sibling species on each contintent is warranted. Photomaps of polytene chromosomes for both Palearctic and Nearctic sibling species are presented, and banding sequences are described with standardized notation. In total, 42 inversion sequences were found in the 18 Siberian populations examined, 15 of which were previously undescribed. Of the 19 sequences found in the three American populations studied, only 6 were shared with the Palearctic. Three of the seven chromosome arms in Nearctic C. tentans had no sequences in common with European populations and four shared none with Siberian populations.
Chapter
Comparison of polytene chromosome banding sequences and estimation of the degree of chromosomal divergence according to the number of intrachromosomal breakpoints were applied to reconstruct the chromosomal phylogeny in the genus Chironomus. A measure for detecting differences in the banding sequences based on the concept of complexity decomposition (Gusev et al., 2001) was developed. For the first time, a phylogenetic tree based on analysis of the banding sequences in five chromosome arms (A, C, D, E, and F), comprising about 70% bands of the genome, was constructed. The ArmsACDEF tree displayed distinct clusters of banding sequences complying with the species taxonomy (affiliation with groups of sibling species and individual cytocomplexes). These clusters comprised 79% of the sequences studied; the rest 21% appeared unclustered and belonged to the species outside any sibling group. Comparison of the phylogenetic trees for banding sequences based on different set of arms demonstrated a relative independence of banding sequence evolution in individual arms. Distinctness and stability of clusters in the phylogenetic tree increased with the number of arms involved in the analysis. The data obtained demonstrate an essential influence of changes in gene arrangement on species divergence.
Article
From a wild population of Chironomus nuditarsis a mutant has been isolated, in which the fourth, or G, chromosome at its distal end lacks the conspicuous Balbiani ring and instead presents a large compact chromatin mass. This mass, referred to as 'G-knob' (GK), is genetically inactive as judged by uridine incorporation. It is present also in the giant chromosomes of the rectum and of the Malpighian tubules, as well as in the salivary gland chromosomes of nuditarsis x plumosus hybrids. Es wird fiber eine in einer Wildpopulation von Chironomus nuditarsis aufgetretene Heterochromatin-Mutation 'G-Knopf' (GK) berichtet. Ein Genom-Abschnitt, der in den Speicheldrfisen-Chromosomen normalerweise einen Balbianiring bildet, liegt bei der Mutante als grosse, kompakte Chromatinmasse vor. In dieser Form ist der Genom-Abschnitt genetisch inaktiv. Der GK bildet sich auch in den polytiinen Chromosomen des Rectums und der Malpighi-Gefiisse aus, ebenso in den Speicheldrfisen des nuditarsis-plumosus-Artbastards.
Article
Chromosomal polymorphism is described for natural populations of Chironomus pallidivittatus in both the Palearctic and Nearctic regions. The Palearctic populations studied exhibit 24 banding sequences, whereas 10 banding sequences have been recorded from Nearctic C. pallidivittatus. In total, 29 sequences and 37 genotypic combinations have been found. Of the 29 sequences known, only 5 are Holarctic (common to both the Nearctic and Palearctic), 19 are exclusively Palearctic, and 5 are Nearctic. The karyotype of Nearctic C. pallidivittatus is characterized by specific, homozygous Nearctic sequences in arms B and G and fixed Holarctic inversion sequences in the other arms. Only two chromosome arms in C. pallidivittatus, but all seven arms in the sibling species Chironomus tentans, differ between Palearctic and Nearctic forms by the presence of unique, homozygous sequences in the Nearctic karyotype. This indicates a great difference in the cytogenetic histories of these closely related species; much less karyotypic divergence between continents has occurred in C. pallidivittatus than in C. tentans. The cytogenetic distance between Palearctic and Nearctic populations of C. tentans is higher (D-N = 1.62) than in C. pallidivittatus (D-N = 0.27). Thus, Palearctic and Nearctic C. tentans should be regarded as sibling species, but Palearctic and Nearctic C. pallidivittatus are best viewed as strongly divergent races of the same species. A photomap of polytene chromosomes of C. pallidivittatus is presented in which banding sequences are mapped by using C. tentans as a standard.
Article
1. Introduction 2. The species - what's in a name? 3. Speciation in allopatric populations 4. The founder effect 5. Chromosomal isolating mechanisms 6. The fixation of rearrangements 7. Fertility, viability and hybridity 8. Genic change and chromosomal speciation 9. Chromosomal speciation 10. Molecular mechanisms and speciation 11. Conclusions and perspectives References Index.
Article
THE problem of the frequency, types and distribution of chromosome aberrations in Nature has so far not been studied. Yet in analyses of spontaneous mutations, of the divergency of species and of the structure of population, this problem is of the greatest importance. Several separate cases on the occurrence and distribution of different aberrations in Nature have been described (Sturtevant, Blakeslee, Brink and others).
Article
Morphological comparison of populations of Chironomus (Camptochironomus) tentans (Fabricius) from Europe, Asia and North America has confirmed earlier cytogenetic evidence that two distinct species inhabit the Palearctic and the Nearctic under this name. The Palearctic species is the true C. tentans, whereas Nearctic populations constitute a new species described here under the name Chironomus (Camptochironomus) dilutus. Descriptions of the larva, pupa and adult male of both species are presented, and the taxonomic structure of the subgenus Camptochironomus is examined.