ArticlePDF AvailableLiterature Review

The role of CXC chemokines in pulmonary fibrosis

Authors:

Abstract and Figures

The CXC chemokine family is a pleiotropic family of cytokines that are involved in promoting the trafficking of various leukocytes, in regulating angiogenesis and vascular remodeling, and in promoting the mobilization and trafficking of mesenchymal progenitor cells such as fibrocytes. These functions of CXC chemokines are important in the pathogenesis of pulmonary fibrosis and other fibroproliferative disorders. In this Review, we discuss the biology of CXC chemokine family members, specifically as it relates to their role in regulating vascular remodeling and trafficking of circulating mesenchymal progenitor cells (also known as fibrocytes) in pulmonary fibrosis.
Content may be subject to copyright.
Review series
The Journal of Clinical Investigation http://www.jci.org  Volume 117  Number 3  March 2007  549
The role of CXC chemokines in pulmonary fibrosis
Robert M. Strieter,1 Brigitte N. Gomperts,2 and Michael P. Keane3
1Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
2Division of Pediatric Hematology/Oncology, Department of Pediatrics, and 3Division of Pulmonary, Critical Care Medicine, and Hospitalists,
David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
The CXC chemokine family is a pleiotropic family of cytokines that are involved in promoting the trafficking of
various leukocytes, in regulating angiogenesis and vascular remodeling, and in promoting the mobilization and
trafficking of mesenchymal progenitor cells such as fibrocytes. These functions of CXC chemokines are important
in the pathogenesis of pulmonary fibrosis and other fibroproliferative disorders. In this Review, we discuss the biol-
ogy of CXC chemokine family members, specifically as it relates to their role in regulating vascular remodeling and
trafficking of circulating mesenchymal progenitor cells (also known as fibrocytes) in pulmonary fibrosis.
Introduction
The body’s response to various known and unknown (idiopathic) 
processes in the lung can lead to pulmonary fibrosis. The most 
common and devastating form of pulmonary fibrosis is referred 
to as idiopathic pulmonary fibrosis (IPF). IPF is a chronic, and 
usually fatal, pulmonary disorder with a mortality rate of approxi-
mately 70% five years after diagnosis (1, 2). Most reported cases of 
IPF seem to be spontaneous, with less than 2% of cases familial in 
character (3, 4). The prevalence of IPF increases with age (2, 5). The 
term IPF was previously applied to all cases of pulmonary fibro-
sis that did not have a recognized cause. However, it is currently 
reserved for, and is synonymous with, the pathological diagnosis 
of usual interstitial pneumonia (UIP) following lung biopsy. The 
hallmark of UIP is temporal heterogeneity (that is, areas of estab-
lished fibrosis interspersed with areas of relatively normal lung, 
and gradations between these two extremes) and architectural loss 
and chronic scarring accompanied by microscopic honeycomb-
like structural change in the subvisceral pleura region (Figure 1). 
The fibrosis is present in the interstitial space (the space between 
the endothelium and the basement membrane, beneath the epi-
thelium), which includes the alveolar walls. Other distinguish-
ing features of UIP include the relative paucity of inflammation, 
a hyperplastic epithelium, and the presence of focal collections 
of fibroblasts, referred to as fibroblastic foci. This has led some 
investigators to hypothesize that IPF is a disease that is character-
ized by repetitive epithelial injury and abnormal repair (6). The 
absence of marked inflammatory infiltrates has led to substantial 
controversy as to the role of inflammation in IPF. This absence of 
inflammation does not, however, exclude a role for inflammation 
in the initiation of the injury that subsequently leads to fibrosis 
(7, 8). Furthermore, the origin and importance of the fibroblastic 
foci is controversial. It has recently been suggested that they are 
not discrete foci but in fact represent an organized reticulum that 
courses through the lung (9). Interestingly, this reticulum is sur-
rounded by an extensive capillary network, which suggests that 
vascular remodeling is an important component of pulmonary 
fibrosis (9). The pathological findings regarding UIP contrast with 
those regarding cryptogenic organizing pneumonia (COP), which 
is characterized by airway aggregates of fibroblasts in an imma-
ture collagen matrix. The lung architecture is typically preserved in 
COP, and although there might be interstitial inflammation, there 
is no interstitial fibrosis. COP typically has an excellent prognosis 
and does not lead to end-stage fibrosis. Why then do these two pat-
terns of lung injury, each with a substantial presence of fibroblasts 
and collagen matrices and variable degrees of vascular remodeling, 
have two different outcomes? It is probable that the preservation 
of the lung architecture and the intact basement membrane allows 
repair to proceed normally in  COP, as opposed  to the aberrant 
repair that is seen in UIP.
One of the major limitations to pulmonary fibrosis research is 
the lack of a good animal model of fibrotic lung disease, particu-
larly a model of IPF. Bleomycin has been used in mice to initiate 
fibrotic lung lesions that have many of the histological compo-
nents of IPF (10, 11). Bleomycin administration results in epitheli-
al cell necrosis within 24 hours, acute alveolitis 2–3 days following 
challenge, and intense interstitial inflammation 4–12 days follow-
ing challenge (10, 11). Fibroblast proliferation and ECM synthe-
sis are initiated 4–14 days after challenge, with collagen content 
elevated approximately 2-fold  3 weeks following challenge (10, 
11). Furthermore, the injury is self limited and begins to resolve 
after 4–6 weeks. Although these pathologic changes clearly occur 
in a more rapid fashion than in human IPF, and not withstanding 
the fact that the injury is self limited and spontaneously resolves 
with time, the bleomycin model has been widely used as a model 
of human pulmonary fibrosis and can provide useful insights into 
the biology of lung injury, fibrosis, and repair.
In this  Review,  we focus on the role of  CXC  chemokines in 
regulating vascular remodeling and extravasation of circulating 
mesenchymal progenitor cells (also known as fibrocytes) in pul-
monary fibrosis. We present data from animal models of fibrosis, 
particularly the bleomycin model of pulmonary  fibrosis,  which 
provide a conceptual framework from which to begin to address 
the pathogenesis of the human disease IPF.
Angiogenesis: vascular remodeling relevant to
pulmonary fibrosis
Angiogenesis is defined as the growth of new blood vessels and is 
a critical biological event that occurs during various physiologic 
and pathologic processes (12). Pathological angiogenesis is associ-
ated with all chronic inflammatory and chronic fibroproliferative 
disorders as well as with tumor growth. The terms angiogenesisand 
Nonstandard abbreviations used:CCL, CC chemokine ligand; CCR, CC chemokine 
receptor; COP, cryptogenic organizing pneumonia; CPC, circulating progenitor cell; 
CXCL, CXC chemokine ligand; CXCR, CXC chemokine receptor; IPF, idiopathic pul-
monary fibrosis; UIP, usual interstitial pneumonia.
Conflict of interest: The authors have declared that no conflict of interest exists.
Citation for this article:J. Clin. Invest.117:549–556 (2007). doi:10.1172/JCI30562.
review series
550 The Journal of Clinical Investigation http://www.jci.org  Volume 117  Number 3  March 2007
vascular remodeling are often used interchangeably in the context of 
both pathological and aberrant angiogenesis, as they are here.
Although inflammation and angiogenesis are distinct and separa-
ble processes, they are linked and often temporally overlap (13). The 
histological appearance that is associated with all chronic fibropro-
liferative disorders is granulation-like tissue that shows prominent 
vascular remodeling. The metabolic demands of granulation-like 
tissue that is undergoing hyperplastic and reparative changes are 
extremely high, and such tissue requires a proportionally greater 
capillary blood supply than normal tissue to meet these increased 
demands. Therefore, the vascular remodeling that  is associated 
with chronic fibroproliferative disorders is analogous to the angio-
genesis that occurs during tumorigenesis to increase the delivery of 
metabolic substrates to the proliferating tumor cells.
Vascular remodeling is tightly regulated (14–28). In the local 
microenvironment, the extent of  vascular remodeling is deter-
mined by the balance between expression of factors that promote 
angiogenesis and expression of factors that inhibit angiogenesis. 
The CXC chemokine family of cytokines is unique in that different 
family members regulate vascular remodeling in a disparate man-
ner. Each member of this family has four highly conserved cysteine 
residues, with the first two cysteines separated by a nonconserved 
aa (29, 30). A second structural domain dictates their functional 
activity in regulating angiogenesis (30). The amino terminus of 
several family members contains a 3-aa sequence (Glu-Leu-Arg), 
known as the ELR motif, immediately before the first cysteine res-
idue (29, 30). ELR+CXC chemokines promote angiogenesis (29, 
30). By contrast, CXC chemokines that are IFN inducible and lack 
the ELR motif inhibit angiogenesis (29, 30). ELR+ and ELR CXC 
chemokines bind different CXC chemokine receptors (CXCRs) on 
endothelial cells, which ultimately leads to either promotion or 
inhibition of angiogenesis, respectively.
Angiogenic ELR+ CXC chemokines. The ELR+ members of the CXC 
chemokine family that promote angiogenesis are CXC chemokine 
ligand 1 (CXCL1), CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and 
CXCL8 (Table 1) (29, 30). Angiogenic factors in a local microen-
vironment can function in a direct or serial manner to promote 
angiogenesis. For example, in a mouse model of Kaposi sarcoma, a 
serial mechanism is as follows: VEGF activation of endothelial cells 
leads to upregulation of the antiapoptotic molecule BCL2, which 
in turn promotes the expression of endothelial cell–derived CXCL8 
(31); the upregulated expression of CXCL8 functions in an auto-
crine and paracrine manner to maintain the angiogenic phenotype 
of the endothelium (Figure 2) (31). Other serial pathways can also 
promote CXCL8-dependent angiogenesis,  such as the signaling 
pathways induced by intracellular ROS, EGF, and HGF, which lead 
to nuclear translocation of NF-κB, expression of CXCL8 in tumor 
cells, and subsequent tumor-associated angiogenesis (32–35).
Although CXCL12 is not  an  ELR+ CXC  chemokine,  it  has 
been implicated in mediating angiogenesis through its receptor, 
CXCR4 (36–39). This in turn has led to speculation that the pre-
dominant function in tumorigenesis of this ligand-receptor pair 
is to mediate angiogenesis. However, several other studies have 
shown that low levels of CXCL12 exist in tumors and that CXCR4 
is predominately expressed by tumor cells and not endothelial 
cells (40, 41). In these studies, it was found that CXCL12 did not 
promote angiogenesis but instead promoted tumor metastasis 
(41). A  possible explanation for  these different results  is that 
tumor cells expressing CXCR4 might be able to “out-compete” 
tumor-associated endothelial cells for any CXCL12 binding due 
to their higher level of expression of CXCR4. A similar mechanism 
might exist  in chronic fibroproliferative disorders where  sur-
rounding parenchymal cells or other stromal cells such as fibro-
cytes might express CXCR4 and out-compete endothelial cells 
for CXCL12. This would lead to CXCL12 exerting its profibrotic 
effects through recruitment of stromal cells or fibrocytes rather 
than through mediation of angiogenesis (42).
CXCR2 mediates the angiogenic effect of ELR+ CXC chemokines. There 
are two CXCRs, CXCR1 and CXCR2, that are relevant to ELR+ CXC 
chemokines. However, only CXCL6 and CXCL8 specifically bind 
CXCR1, whereas all ELR+ CXC chemokines bind CXCR2 (43). Fur-
thermore, although expression of both CXCR1 and CXCR2 can 
be detected in endothelial cells (43–45), CXCR2 has been found 
to be the primary functional  chemokine receptor in  mediating 
in vitro human lung microvascular endothelial cell chemotaxis 
toward ELR+CXC chemokines (43, 44, 46). Further studies have 
confirmed the importance of CXCR2 in mediating ELR+CXC che-
mokine–induced angiogenesis in human intestinal microvascular 
endothelial cells (47). Activation of CXCR2 on endothelial cells by 
CXCL8 induces rapid stress fiber assembly, chemotaxis, enhanced 
Figure 1
Histopathology of normal lung tissue (A) and lung tissue from two
patients with IPF (B and C). Shown are (A) normal lung tissue (H&E
staining); (B) IPF lung tissue with severe end-stage fibrosis and honey-
comb changes (trichrome staining); and (C) IPF lung tissue with areas
of fibrosis and an area compatible with a fibroblastic focus (FF) (H&E
staining). Magnification, ×200.
review series
The Journal of Clinical Investigation http://www.jci.org  Volume 117  Number 3  March 2007  551
proliferation, and phosphorylation of ERK1/2 (47). These in vitro 
studies, which demonstrate the importance of CXCR2 in mediat-
ing the angiogenic effects of ELR+ CXC chemokines, have been con-
firmed in vivo, for example, in studies using an orthotropic lung 
cancer model, a heterotopic renal cell cancer model, and a mouse 
model of chronic airway allograft rejection (48–51).
ELR CXC chemokines are inhibitors of angiogenesis. The angiostatic 
members of the CXC chemokine family include CXCL4, CXCL9, 
CXCL10, and CXCL11 (29, 30) (Table 1). CXCL9, CXCL10, and 
CXCL11 (but not CXCL4) are induced by both type I and type II 
IFNs (52). Moreover, the relationship among IFNs, IFN-inducible 
CXC chemokines, and their biological functions are directly rel-
evant to the function of other cytokines, such as Th1 cytokines, 
that lead to the stimulation of IFN expression. Therefore, through 
the induction of IFN-γ, Th1 cytokines such as IL-2, IL-12, IL-15, 
IL-18, and IL-23 and chemokines such as CC chemokine ligand 
19 (CCL19) and CCL21 have profound effects on the production 
of CXCL9, CXCL10, and  CXCL11. Furthermore,  this cytokine 
cascade connects the Th1 cytokine profile with angiostasis and 
creates the concept of immunoangiostasis (53). Interestingly, it has 
recently been shown that the inflammatory lung disease sarcoid-
osis is associated with an angiostatic environment, as compared 
with the angiogenic environment that is seen in IPF (54). This is 
important because sarcoidosis is considered a Th1-mediated dis-
ease that resolves spontaneously in many patients (54), whereas 
IPF is considered more of a Th2-mediated disease.
CXCR3 mediates the angiostatic effects of ELR CXC chemokines. CXCR3 
is the receptor that mediates the angiostatic effects of ELR CXC 
chemokines. CXCR3 exists as several variants that are generated 
by alternative splicing (CXCR3A, CXCR3B, and CXCR3-alt), all of 
which are involved in mediating the recruitment of Th1 cells to a 
site of tissue damage as well as mediating the inhibition of angio-
genesis (55, 56). CXCR3A is the main chemokine receptor expressed 
by Th1 effector cells, cytotoxic CD8+ T cells, activated B cells, and 
NK cells  (55). In addition, mouse endothelial  cells were found 
to express CXCR3 (57). Further studies, using a mouse model of 
melanoma, have  confirmed  the  observation  that expression of 
CXCR3 by endothelial cells is necessary for the angiostatic effects 
of CXCR3 ligands, although these studies did not determine which 
CXCR3 variant is necessary (58). Subsequent studies demonstrated 
that, through CXCR3B, CXCR3 ligands blocked the migration and 
proliferation of human microvascular endothelial cells in response 
to various angiogenic factors (59). Furthermore, in a mouse model 
of pulmonary fibrosis, CXCL11 inhibited vascular remodeling in a 
CXCR3-dependent manner (60). Mice that received bleomycin and 
were treated with CXCL11 had decreased fibrosis and decreased 
intrapulmonary angiogenesis, and these decreases could be blocked 
using an antibody specific to CXCR3 (60).
CXC chemokines in the regulation of angiogenesis
associated with fibroproliferation
The lung has two circulatory systems, a bronchial system that 
arises from the systemic circulation and a pulmonary system that 
arises directly from the pulmonary artery. Evidence exists for vas-
cular remodeling in the lung in various pathological conditions, 
including pulmonary fibrosis (61–64). The angiogenic response 
of the bronchial circulation is a fundamental response related to 
alterations in the pulmonary vascular resistance, as can be seen 
following loss of pulmonary vasculature or in pulmonary hyper-
tension (65–69). Although mice lack a bronchial circulation, vas-
cular remodeling of the systemic circulation can supply up to 15% 
of the normal pulmonary blood flow within five to six days of 
experimental ligation of the pulmonary artery (65). The angio-
genic factors that were instrumental in mediating angiogenesis 
under these conditions were found to be ELR+ CXC chemokines 
(70). Current dogma is that the pulmonary circulation has lim-
ited potential for vascular remodeling; however, Dutly and associ-
ates have recently demonstrated that the pulmonary circulation 
has a major role in contributing to angiogenesis and the creation 
of a new blood supply into transplanted tissue in the lung (69). 
Together these findings support the notions that under ischemic 
and/or hypoxic conditions, ELR+ CXC chemokines are involved in 
promoting angiogenesis in the lung and that both the bronchial 
and pulmonary circulations of the lung are important in promot-
ing vascular remodeling.
Vascular remodeling in IPF was originally identified by Turner-
Warwick, who, when she examined the lungs of patients with wide-
spread interstitial fibrosis, found evidence of vascular remodeling 
leading to anastamoses between the systemic and pulmonary micro-
vasculatures (61). Renzoni et al. have also observed vascular remod-
eling in both IPF and the fibrosing alveolitis that is associated with 
systemic sclerosis (71). Cosgrove et al. provided further support for 
the concept of vascular remodeling in IPF when they demonstrated 
a relative absence of vessels in the fibroblastic foci (72). Interestingly, 
Table 1
Structural and functional differences of CXC chemokines in the regulation of vascular remodeling
Chemokine Effect on Relevant structural Receptor through which
angiogenesis motif effect on angiogenesis is mediated
CXCL1 (also known as GROα) Angiogenic A-T-E-L-R-C-Q-C CXCR2
CXCL2 (also known as GROβ) Angiogenic A-T-E-L-R-C-Q-C CXCR2
CXCL3 (also known as GROγ) Angiogenic V-T-E-L-R-C-Q-C CXCR2
CXCL5 (also known as ENA-78) Angiogenic L-R-E-L-R-C-V-C CXCR2
CXCL8 (also known as IL-8) Angiogenic A-K-E-L-R-C-Q-C CXCR2
CXCL4 (also known as PF4) Angiostatic D-G-D-L-Q-C-L-C CXCR3
CXCL9 (also known as MIG) Angiostatic V-R-K-G-R-C-S-C CXCR3
CXCL10 (also known as IP-10) Angiostatic S-R-T-V-R-C-T-C CXCR3
CXCL11 (also known as ITAC) Angiostatic F-K-R-G-R-C-L-C CXCR3
The underlined ELR motif indicates the conserved aa sequence of Glu-Leu-Arg in the amino terminus of CXC chemokines, which is an important structural
motif in dictating binding to the putative CXC chemokine receptor, CXCR2.
review series
552 The Journal of Clinical Investigation http://www.jci.org  Volume 117  Number 3  March 2007
they also noted marked vascularity in the areas of fibrosis around 
the fibroblastic foci, with numerous abnormal vessels in the regions 
of severe architectural distortion. These findings are similar to those 
of Renzoni and support the concept of heterogeneity of vascularity 
in IPF (73). This heterogeneity is not surprising, as IPF is defined by 
its regional and temporal heterogeneity.
Further studies  have found  that the bronchoalveolar lavage 
fluid and lung tissue from patients with IPF have marked angio-
genic activity that is almost entirely attributable to overexpression 
of the angiogenic ELR+ CXC chemokines CXCL5 and CXCL8 and 
the relative downregulation of the angiostatic ELR CXC chemo-
kines CXCL10 and CXCL11 (54, 60, 64, 74, 75). Furthermore, it 
seems that vascular remodeling in IPF  is regulated differently 
than in either sarcoidosis or COP (54, 72). Both COP and sarcoid-
osis have a better prognosis than IPF, and studies aimed at under-
standing the differences in the regulation of vascular remodel-
ing in these three diseases might lead to novel insights as to the 
pathogenesis of IPF.
To determine whether the imbalance in the expression of these 
angiogenic and angiostatic CXC chemokines is relevant to the 
pathogenesis of pulmonary fibrosis, studies have been extended to 
the mouse bleomycin model. In this model, there is clear evidence 
of extensive vascular remodeling during the pathogenesis of pul-
monary fibrosis (76). The amounts of CXCL2 and CXCL3 and of 
CXCL10 and CXCL11 were measured in the lung during bleomy-
cin-induced pulmonary fibrosis and were found to be directly and 
inversely correlated, respectively, with measures of fibrosis (77, 78). 
Moreover, when endogenous CXCL2 and CXCL3 were depleted or 
when exogenous CXCL10 or CXCL11 was administered to  the 
animals during exposure to bleomycin, a marked attenuation of 
pulmonary fibrosis was observed that was entirely attributable to a 
reduction in angiogenesis in the lung (60, 77, 78). Taken together, 
these findings support the notions that vascular remodeling is 
critical to promote the development of fibrosis and that angio-
genic and angiostatic factors, such as CXC chemokines, have an 
important role in the pathogenesis of this process.
Fibrocytes, a circulating mesenchymal progenitor cell
able to induce pulmonary fibrosis
Chronic lung injury is often associated with dysregulated tissue 
repair because the persistent or recurrent insults over time pro-
mote the loss of basement membrane integrity, which in turn leads 
to failure of normal tissue repair and the development of fibrosis, 
which is accompanied by loss of normal lung architecture. Recent 
studies in mouse models have added complexity to this paradigm 
of tissue injury and repair by indicating that circulating progenitor 
cells can extravasate and participate, with resident mesenchymal 
cells, in the repair process (52, 79, 80). The existence of circulating 
progenitor cells (CPCs) has changed the perspective of the scientif-
ic community about lung repair. These cells can behave as progeni-
tor cells that extravasate into the lung and differentiate into dif-
ferent cellular lineages (42, 79, 81–83). CPCs are believed to reside 
primarily in the BM and can be mobilized to enter the circulation 
and subsequently to extravasate into a new tissue microniche (42, 
52, 79, 80). In their new microniche, CPCs can respond to specific 
environmental cues, undergo differentiation into specific cellular 
lineages, integrate into the new microenvironment, and function 
in a tissue-specific manner (42, 52, 79, 80).
Currently, there are three ideas (one classical and two contem-
porary) about the origin  of the fibroblasts  and myofibroblasts 
in lung tissue that contribute to the pathogenesis of pulmonary 
fibrosis (42, 84–88). The classical concept is that tissue injury in 
Figure 2
Serial mechanisms of angiogenesis promoted by CXCL8. CXCL8 is
an ELR+ member of the CXC chemokine family. The ELR+ members
of this chemokine family promote angiogenesis in a direct (not shown)
or serial manner. (A) In a mouse model of Kaposi sarcoma, a serial
mechanism of angiogenesis is the following: VEGF activation of its
receptor (VEGFR) on endothelial cells leads to upregulation of the
anti-apoptotic molecule BCL2. This in turn promotes the expression
of endothelial cell–derived CXCL8, which functions in an autocrine
and paracrine manner to promote angiogenesis (31). (B) Other serial
pathways can also promote CXCL8-dependent angiogenesis, such as
the signaling pathways induced by intracellular ROS, EGF, and HGF,
which lead to nuclear translocation of NF-κB, expression of CXCL8 by
tumor cells, and subsequent tumor-associated angiogenesis (32–35).
EGFR, EGF receptor; HGFR, HGF receptor.
review series
The Journal of Clinical Investigation http://www.jci.org  Volume 117  Number 3  March 2007  553
the lung induces the activation and differentiation of a population 
of resident interstitial fibroblasts into myofibroblasts that migrate 
into the intraalveolar space, proliferate, and express constituents 
of the ECM, leading to intraalveolar and interstitial pulmonary 
fibrosis (86–88). Another idea is that lung injury can induce epi-
thelial cells to transition to a mesenchymal phenotype (that is, to 
gain the phenotype of fibroblasts and/or myofibroblasts) (84, 88). 
The third concept is that circulating fibrocytes, derived from BM 
progenitor cells, home and extravasate to sites of tissue injury and 
differentiate into myofibroblasts (42, 52, 80, 85).
Although a number of cell types have been implicated in tissue 
injury and repair, the fibroblast and myofibroblast have a pivotal 
role in the generation of the ECM. Bucala and associates discov-
ered unique blood-borne fibroblast-like cells that expressed CD34, 
CD45, and type I  collagen and named these cells  fibrocytes(52). 
Despite expressing the common leukocyte antigen CD45, fibro-
cytes are morphologically distinct from leukocytes (52). Fibrocytes 
can be cultured from a population of CD14+cells isolated from 
the peripheral blood (80). Cultured fibrocytes are spindle shaped, 
express type I collagen, and neither  express CD14 nor stain for 
nonspecific esterase (that is, they do not have the characteristics of 
monocytes and macrophages); they also lack expression of cell sur-
face markers for epithelial and endothelial cells (42, 52) (Figure 3). 
Fibrocytes in the circulation and in culture express the fibroblast 
markers vimentin, collagen I, collagen III, and fibronectin, but they 
do not express CD3, CD4, CD8, CD16, CD19, CD25, or CD54 (52, 
80, 85, 89). In addition, fibrocytes express the adhesion molecules 
CD11b and CD18, the common leukocyte antigen (CD45), the pan-
myeloid antigen (CD13), HLA-DR, and the hematopoietic stem cell 
antigen (CD34) (42, 52, 79, 80, 85, 89) (Figure 3). Fibrocytes in cul-
ture spontaneously express α-SMA, and this expression increases 
in the presence of either TGF-β or endothelin, compatible with the 
differentiation of fibrocytes into myofibroblasts (42, 79, 80, 85, 89). 
This is associated with loss of expression of CD34 (42, 79, 89, 90) 
and CD45 (42), supporting the notion that with differentiation, 
these cells lose their stem and common leukocyte markers.
Fibrocytes have been found to be pleiotropic in their behavior 
and possess several functions that are relevant to fibrosis. They are 
potent APCs and can recruit and activate T cells that might play 
a role in the early injury that leads to the development of fibrosis 
(91). Fibrocytes can promote angiogenesis by producing various 
angiogenic factors (92). They also produce various cytokines that 
are potent inducers of collagen production (85, 93) and have been 
shown to play an important role in the development of fibrosis in 
animal models of pulmonary fibrosis (42, 82, 83). Interestingly, 
Rojas and coworkers demonstrated the importance of intact BM 
in the repair of injured lung, suggesting that there is a popula-
tion of cells in the BM that are important in the attenuation of 
lung injury and fibrosis (94). Similarly Ortiz et al. have shown 
that BM-derived mesenchymal cells have the ability to develop 
an epithelial phenotype and attenuate bleomycin-induced lung 
injury (95). The specific conditions that stimulate the release and
recruitment of reparative cells as opposed to fibrosis-promoting 
fibrocytes remain to be determined.
Chemokine receptors in fibrocyte trafficking to the lung. Classic cell 
trafficking has been well described for leukocytes, but it is an area 
of relatively new investigation for fibrocytes. The complicated, 
multi-step process  of  leukocyte trafficking  from  the BM into 
the tissues involves specific combinations of chemokine ligands 
and chemokine receptors to orchestrate these events (96). In the 
lung, different expression patterns of chemokine ligands occur at 
defined points after injury to mediate recruitment of cells includ-
ing leukocytes and fibrocytes.
Human fibrocytes express the chemokine receptors CC chemo-
kine receptor 3 (CCR3), CCR5, CCR7, and CXCR4 (42, 80, 89). By 
contrast, mouse fibrocytes express CCR2, CCR7, and CXCR4 (42, 
80, 89, 97). Fibrocytes that express CXCR4 migrate in response 
to CXCL12 under specific conditions in vitro, and the CXCL12-
CXCR4 axis has an important role in mediating fibrocyte extrav-
asation into the lungs so that  fibrocytes  can contribute to the 
pathology of pulmonary fibrosis (Figure 4) (42). Fibrocytes also 
express CCR7, which is a chemokine receptor that is important 
for DC and T cell migration in response to the CC chemokines 
CCL19 and CCL21 (98). A population of fibrocytes that express 
CCR7 and that are distinct from the CXCR4-expressing fibrocytes 
has been identified in a mouse model of pulmonary fibrosis (42). 
However, intrapulmonary recruitment  of CXCR4+ fibrocytes is 
markedly greater than the intrapulmonary recruitment of CCR7+
fibrocytes (42). Similarly, CCR2 was shown to play a role in the 
recruitment of fibrocytes in a model of FITC-induced lung injury, 
and this seemed to be mediated by CCL12 (82, 83). Interestingly, 
in a model of renal fibrosis, CCR7 seemed to have an important 
role in the recruitment of fibrocytes to the kidney (99). Therefore, 
at least in mice, CXCR4 and CCR2 seem to mediate recruitment 
of fibrocytes to the lung, whereas CCR7 might be important for 
the recruitment of fibrocytes to the kidney (42, 83). If indeed these 
cells can traffic to human lung, become activated, proliferate, and 
differentiate into myofibroblasts, then preventing their recruit-
ment would impact the pathogenesis of pulmonary fibrosis.
Fibrocytes contribute to pulmonary fibrosis. Depletion of CXCL12 in 
the bleomycin-induced pulmonary fibrosis mouse model directly 
correlated with decreased deposition of ECM and decreased detec-
tion of cells expressing α-SMA in the lung (42). This suggests that 
fibrocytes directly contribute to the development of pulmonary 
fibrosis. In  another study, Moore and colleagues examined the 
contribution of fibrocytes to fibrosis in a FITC-induced mouse 
model of pulmonary fibrosis (83). In this study, fibrocytes in the 
bronchoalveolar lavage fluid and lung tissue were analyzed. They 
found that  populations  of fibrocytes  expressed  CCR2, CCR5, 
CCR7, and CXCR4. The finding of high expression of CCR2 by 
mouse fibrocytes is in contrast to what is known about human 
Figure 3
Markers associated with human fibrocytes. Human fibrocytes express
ECM components (type I collagen, type III collagen, and vimentin). They
also express a range of cell surface markers, including the common
leukocyte antigen CD45, the hematopoietic stem cell antigen CD34, the
adhesion molecules CD11b and CD18, the pan-myeloid antigen CD13,
and the chemokine receptors CCR3, CCR5, CCR7, and CXCR4.
review series
554 The Journal of Clinical Investigation http://www.jci.org  Volume 117  Number 3  March 2007
fibrocytes, which express low levels of CCR2 after isolation (100). 
Fibrocytes isolated from mouse lungs expressed CCR2, migrated 
toward the CCR2 ligands, CCL2 and CCL12, and lost expression of 
CCR2 when cultured in vitro (83). Fibrocyte recruitment has also 
been shown to be reduced in Ccr2–/– mice exposed to intrapulmo-
nary FITC (83). Recruitment of lung fibrocytes in Ccr2–/– mice was 
restored if the mice received BM from CCR2-sufficient mice. Con-
versely, if wild-type mice received a Ccr2–/–BM transplant, the mice 
were protected from FITC-induced fibrosis (83). Interestingly, the 
same authors did not find the same results with mice lacking the 
CCR2 ligand CCL2; they instead found that CCL12 was the most 
important CCR2 ligand for the recruitment of CCR2+ fibrocytes 
to the lung in this  model of pulmonary fibrosis (82). However, 
CCL12 is likely to only be relevant to mouse biology, as no human 
homolog has been identified.
To further confirm that fibrocytes can differentiate into myofi-
broblasts in vivo, Mori and colleagues studied skin wound heal-
ing in chimeric mice in which  only BM-derived cells expressed 
GFP. The GFP+ BM-derived  fibrocytes in  wounds coexpressed 
GFP and α-SMA, indicating that fibrocytes were derived from the 
BM (101). BM-derived progenitor myofibroblasts have also been 
found in pulmonary fibrosis after lung irradiation in mice (102). 
Hashimoto et al. also used a GFP chimeric model and found that, 
following bleomycin administration, there were abundant GFP+
fibroblasts in the lung (103). Surprisingly, no GFP+myofibroblasts 
were detected. Notwithstanding this study, most in vitro and in 
vivo studies of fibrocytes suggest that fibrocytes recruited from 
the peripheral circulation ultimately develop an α-SMA+ pheno-
type and contribute to the development of pulmonary  fibrosis 
in the mouse. This is compatible with the  in vitro findings  for 
human fibrocytes, and therefore it is conceivable that fibrocytes 
contribute to the pathogenesis of pulmonary fibrosis in humans. 
Interestingly, it has recently been shown that both CXCR4 and 
CCR7 are expressed in human pulmonary fibrosis specimens (104, 
105). Yang et al. demonstrated increased expression of CXCL12 
and CXCR4 in both familial and sporadic pulmonary fibrosis as 
compared with normal specimens (105). By contrast, Choi et al. 
described increased expression of CCR7 but not CXCR4 in IPF 
specimens as compared with normal  lung  tissue  adjacent  to 
tumors (104). The difference in the normal specimens used as con-
trols in these two studies (104, 105) might explain the differences 
in the findings. Therefore, although there is no direct evidence of a 
role for fibrocytes in the pathogenesis of human pulmonary fibro-
sis, the presence of the ligands and receptors that are necessary for 
the recruitment of fibrocytes is circumstantial evidence for their 
playing an important role.
Figure 4
The role of the CXCL12-CXCR4 biological axis in fibrocyte extravasation in pulmonary fibrosis. Lung-derived factors (such as GM-CSF, G-CSF,
and M-CSF) generated under conditions of lung injury communicate with the BM to expand the number of fibrocytes in the BM and to mobilize
fibrocytes that express CXCR4 into the circulation. CXCR4-expressing fibrocytes traffic through the circulation and extravasate into the lung in
response to the CXCR4 ligand CXCL12, which is produced during the pathogenesis of fibrosis.
review series
The Journal of Clinical Investigation http://www.jci.org  Volume 117  Number 3  March 2007  555
Conclusions
Normal wound repair requires a coordinated sequence of events 
that includes angiogenesis and recruitment of fibrocytes, which 
regress when healing is complete. By contrast, the development 
of fibrosis is associated with aberrant repair, persistence of col-
lagen deposition, and the development of vascular remodeling. 
The CXC chemokines are a unique cytokine family that has the 
potential to regulate  both fibrocyte recruitment and vascular 
remodeling. CXC chemokines can exhibit either angiogenic or 
angiostatic biological activity, and the balance of their expres-
sion seems to be important in the regulation of vascular remod-
eling associated with chronic fibroproliferative disorders in the 
lung. Similarly, the ability of fibrocytes to differentiate along the 
mesenchymal lineage has  created a  novel paradigm related to 
their role in mediating pulmonary fibrosis. The CXCL12-CXCR4 
biological axis and perhaps other chemokine–chemokine recep-
tor interactions seem to be important  for the  trafficking and 
extravasation of fibrocytes into the lung during the pathogenesis 
of pulmonary fibrosis (Figure 4).
However, several questions remain to be fully answered, such as, 
What other signals are involved in the recruitment of fibrocytes? 
Are signals different between humans and mice? What factors and 
signaling pathways are involved in the differentiation of fibro-
cytes into myofibroblasts? Does the microniche in the lung deter-
mine whether the fibrocyte differentiates into a myofibroblast or 
another mesenchymal lineage cell? Furthermore, it remains to 
be determined whether, similar to the mouse models, there are 
separate populations of BM-derived cells that are important for 
repair instead of the promotion of fibrosis. If indeed there are 
distinct populations of BM-derived mesenchymal cells, what fac-
tors are involved in the recruitment of these distinct populations? 
All of these issues are critical to our understanding of fibrosis 
and should be addressed in order to design therapeutic strategies 
to attenuate fibrocyte function and vascular remodeling, thereby 
preventing them contributing to fibrotic disorders of the lungs.
Acknowledgments
This  work  was  supported  in  part  by  NIH  grants  HL66027, 
HL087849, P50 HL67665, and CA87879 (to  R.M. Strieter) and 
HL03906 and P50 HL67665 and AR 055075 (to M.P. Keane).
Address correspondence to: Robert M. Strieter, Department of 
Medicine, Hospital Dr., 6th floor Outpatient Clinics Building, 
Room 6560, University of Virginia School of Medicine, Charlot-
tesville, Virginia 22908, USA. Phone: (434) 982-6999; Fax: (434) 
243-0399; E-mail: strieter@virginia.edu.
1. Coultas, D.B., Zumwalt,  R.E.,  Black,  W.C., and 
Sobonya, R.E. 1994. The  epidemiology of  inter-
stitial lung diseases. Am. J. Respir. Crit. Care Med.
150:967–972.
2. Perez, A., Rogers, R.M., and Dauber, J.H. 2003. The 
prognosis of idiopathic pulmonary fibrosis. Am. J.
Respir. Cell Mol. Biol.29(3 Suppl.):S19–S26.
3. Allam, J.S., and Limper, A.H. 2006. Idiopathic pul-
monary fibrosis: is it a familial disease? Curr. Opin.
Pulm. Med.12:312–317.
4. Steele, M.P., et al. 2005.  Clinical and  pathologic 
features of familial interstitial pneumonia. Am. J.
Respir. Crit. Care Med.172:1146–1152.
5. du Bois, R. 1997. Diffuse lung disease: a view for the 
future. Sarcoidosis Vasc. Diffuse Lung Dis.14:23–30.
6. Selman, M., King, T.E., and Pardo, A . 2001. Idio-
pathic pulmonary fibrosis: prevailing and evolving 
hypotheses about its  pathogenesis and implica-
tions for therapy. Ann. Intern. Med.134:136–151.
7. Gauldie, J. 2002. Pro. Inflammatory mechanisms 
are a  minor  component of  the  pathogenesis of 
idiopathic pulmonary fibrosis. Am. J. Respir. Crit.
Care Med.165:1205–1206.
8. Strieter, R.M.  2002. Con.  Inflammatory mecha-
nisms are not a minor component of the patho-
genesis of idiopathic pulmonary  fibrosis. Am. J.
Respir. Crit. Care Med.165:1206–1207;  discussion 
1207–1208.
9. Cool, C.D., et al. 2006. Fibroblast  foci are not dis-
crete sites of lung injury or  repair: the  fibroblast 
reticulum.Am. J. Respir. Crit. Care Med.174:654–658.
10. Adamson, I.Y., and Bowden, D.H. 1974. The patho-
genesis of bleomycin-induced pulmonary fibrosis 
in mice. Am. J. Pathol.77:185–197.
11. Chandler, D.B. 1990. Possible mechanisms of bleo-
mycin-induced fibrosis. Clin. Chest Med.11:21–30.
12. Polverini, P. 2002. Angiogenesis in health and dis-
ease: insights into basic mechanisms and therapeu-
tic opportunities. J. Dent. Educ.66:962–975.
13. Jackson, J.R.,  et  al.  1997. The  codependence of 
angiogenesis and chronic inflammation. FASEB J.
11:457–465.
14. Auerbach, W., and Auerbach, R. 1994. Angiogenesis 
inhibition: a review. Pharmacol. Ther.63:265–311.
15. Auerbach, R.,  Auerbach, W., and  Polakowski, I. 
1991. Assays for angiogenesis: a review. Pharmacol.
Ther.51:1–11.
16. Ziche,  M.,  Morbi delli,  L.,  and  Donnin i, S . 19 96. 
Angiogenesis. Exp. Nephrol.4:1–14.
17. Pluda, J.M. 1997. Tumor-associated angiogenesis: 
mechanisms, clinical implications, and therapeutic 
strategies. Semin. Oncol.24:203–218.
18. Pluda,  J. M.,  and  Park inson,  D. R.  1996.  Cli nical 
implications of tumor-associated neovasculariza-
tion and current antiangiogenic strategies for the 
treatment of  malignancies  of  pancreas. Cancer.
78:680–687.
19. Gastl, G., et al. 1997. Angiogenesis as a target  for 
tumor treatment. Oncology.54:177–184.
20. Risau, W. 1998. Angiogenesis is coming of age. Circ.
Res.82:926–928.
21. Risau, W.  1997. Mechanisms of  angiogenesis. 
Nature.386:671–674.
22. Hotfi lder,  M.,  N owak-Got tl,  U.,  an d  Wolff,  J. E. 
1997. Tumorangiogenesis: a network of cytokines. 
Klin. Padiatr.209:265–270.
23. Hui, Y.F.,  and Ignoffo, R.J.  1998.  Angiogenesis 
inhibitors. A  promising  role in cancer  therapy. 
Cancer Pract.6:60–62.
24. Kumar, R., and Fidler, I.J. 1998. Angiogenic  mol-
ecules and cancer metastasis. In Vivo.12:27–34.
25. Zetter, B.R. 1988. Angiogenesis. State of the  art. 
Chest.93(3 Suppl.):159S–166S.
26. Zetter, B.R. 1998. Angiogenesis and t umor metas-
tasis. Annu. Rev. Med.49:407–424.
27. Lund,  E.L.,  Spang-Thomsen,  M.,  Skovgaard-
Poulsen, H.,  and Kristjansen,  P.E. 1998.  Tumor 
angiogenesis — a  new therapeutic  target in  glio-
mas. Acta Neurol. Scand.97:52–62.
28. Lund, E.L., a nd Kristjansen,  P.E. 1999. Neovas cu-
larization of tumors. New therapeutic possibilities 
[In Danish]. Ugeskr Laeger.161:2929–2933.
 29. Belperio, J.A.,  et  al.  2000.  CXC  chemokines  in 
angiogenesis. J. Leukoc. Biol.68:1–8.
30. Strieter, R.M., et al. 1995. The functional role of the 
ELR motif in CXC chemokine-mediated angiogen-
esis. J. Biol. Chem.270:27348–27357.
31. Nor,  J.E.,  et  al .  2001.  Up-r egulati on  of  Bcl-2  in 
microvascular endothelial cells enhances intratu-
moral angiogenesis and accelerates tumor growth. 
Cancer Res.61:2183–2188.
32. Dong, G., et al. 2001. Hepatocyte  growth factor/
scatter factor-induced activation of MEK and PI3K 
signal pathways contributes to expression of pro-
angiogenic cytokines interleukin-8  and vascular 
endothelial growth factor in head and neck squa-
mous cell carcinoma. Cancer Res.61:5911–5918.
33. Hirata, A., et al. 2002. ZD1839 (Iressa) induces anti-
angiogenic effects through inhibition of epidermal 
growth factor receptor tyrosine kinase. Cancer Res.
62:2554–2560.
34. Strieter, R.M. 2005. Masters of angiogenesis. Nat.
Med.11:925–927.
35. Strieter, R.M., et al. 2005. CXC chemokines in angio-
genesis. Cytokine Growth Factor Rev.16:593–609.
36. Bachelder, R.E., Wendt, M.A., and Mercurio, A.M. 
2002. Vascular endothelial growth factor promotes 
breast carcinoma invasion in an autocrine manner 
by regulating the chemokine receptor CXCR4. Can-
cer Res.62:7203–7206.
37. Salcedo, R.,  and Oppenheim,  J.J. 2003.  Role of 
chemokines in angiogenesis: CXCL12/SDF-1 and 
CXCR4 interaction, a key regulator of endothelial 
cell responses. Microcirculation.10:359–370.
38. Kijowski, J., et al.  2001. The  SDF-1–CXCR4 axis 
stimulates VEGF secretion and activates integrins 
but does not affect  proliferation and  survival in 
lymphohematopoietic cells. Stem Cells.19:453–466.
39. Salcedo, R., et al. 1999. Vascular endothelial growth 
factor and basic fibroblast  growth factor  induce 
expression of CXCR4 on human endothelial cells: in 
vivo neovascularization induced by stromal-derived 
factor-1alpha. Am. J. Pathol.154:1125–1135.
40. Schrader, A.J., et al. 2002. CXCR4/CXCL12 expres-
sion and signalling in kidney cancer. Br. J. Cancer.
86:1250–1256.
41. Phillips, R.J.,  et al. 2003.  The stromal d erived fac-
tor-1/CXCL12-CXC chemokine receptor 4 biologi-
cal axis in non-small cell  lung cancer metastases. 
Am. J. Respir. Crit. Care Med.167:1676–1686.
42. Phillips, R.J., et al. 2004. Circulating fibrocytes traf-
fic to the lungs in response to CXCL12 and mediate 
fibrosis. J. Clin. Invest.114:438–446. doi:10.1172/
JCI200420997.
43. Addison, C.L.,  et al.  2000.  The CXC  chemokine 
receptor 2,  CXCR2, is  the  putative receptor  for 
ELR(+) CXC chemokine-induced angiogenic activ-
ity. J. Immunol.165:5269–5277.
 44. Murdoch, C.,  Monk,  P.N.,  and  Finn,  A.  1999. 
CXC chemokine receptor  expression on human 
endothelial cells. Cytokine.11:704–712.
review series
556 The Journal of Clinical Investigation http://www.jci.org  Volume 117  Number 3  March 2007
 45. Salcedo, R., et  al. 2000. Differential  expression 
and  responsiveness  of  chemokine  receptors 
(CXCR1-3) by human microvascular endothelial 
cells and umbilical vein endothelial cells. FASEB J.
14:2055–2064.
46. Schraufstatter, I.U., et al. 2003. IL-8-mediated cell 
migration in endothelial cells depends on cathep-
sin B activity and transactivation of the epidermal 
growth factor receptor. J. Immunol.171:6714–6722.
47. Heidemann, J., et  al. 2003. Angiogenic  effects of 
interleukin 8 (CXCL8) in human intestinal micro-
vascular endothelial cells are mediated by CXCR2. 
J. Biol. Chem.278:8508–8515.
48. Keane, M.P., et al. 2004. Depletion of CXCR2 inhib-
its tumor  growth and  angiogenesis in  a murine 
model of lung cancer. J. Immunol.172:2853–2860.
49. Mestas, J., et al. 2005. The role of CXCR2/CXCR2 
ligand  biological  axis  in  renal  cell  carcinoma. 
J. Immunol.175:5351–5357.
50. Belperio, J.A., et al. 2005. Role of CXCR2/CXCR2 
ligands in vascular remodeling during bronchiolitis 
obliterans syndrome. J. Clin. Invest.115:1150–1162. 
doi:10.1172/JCI200524233.
51. Wislez, M., et al. 2006. High expression of ligands 
for chemokine receptor CXCR2 in alveolar epithe-
lial neoplasia induced  by oncogenic  kras. Cancer
Res.66:4198–4207.
52. Bucala, R., et al. 1994. Circulating fibrocytes define 
a new leukocyte subpopulation that mediates tis-
sue repair. Mol. Med.1:71–81.
53. Pan, J., et al. 2006. CXCR3/CXCR3 ligand biological 
axis impairs RENCA tumor growth by a mechanism 
of immunoangiostasis.J. Immunol.176:1456–1464.
54. Antoniou, K.M., et al. 2006. Different angiogenic 
activity in pulmonary sarcoidosis and idiopathic 
pulmonary fibrosis. Chest.130:982–988.
55. Loetscher, M.,  et al. 1998.  Lymphocyte-specific 
chemokine receptor CXCR3:  regulation, chemo-
kine binding and gene localization. Eur. J. Immunol.
28:3696–3705.
56. Ehlert, J.E., et al. 2004. Identif ication and partial 
characterization of  a  variant of  human  CXCR3 
generated by posttranscriptional exon skipping. 
J. Immunol.173:6234–6240.
57. Soto, H., et  al. 1998. The CC  chemokine 6Ckine 
binds the CXC chemokine receptor CXCR3. Proc.
Natl. Acad. Sci. U. S. A.95:8205–8210.
 58. Yang, J.,  and  Richmond,  A.  2004.  The  angio-
static activity of interferon-inducible protein-10/
CXCL10 in human melanoma depends on binding 
to CXCR3 but not to glycosaminoglycan. Mol. Ther.
9:846–855.
59. Romagnani, P., et al. 2001.  Cell cycle-dependent 
expression  of  CXC  chemokine  receptor  3  by 
endothelial cells mediates angiostatic  activity. 
J. Clin. Invest.107:53–63.
60. Burdick, M.D.,  et  al.  2005. CXCL11  attenuates 
bleomycin-induced pulmonary fibrosis via inhibi-
tion of vascular remodeling. Am. J. Respir. Crit. Care
Med.171:261–268.
61. Turner-Warwick, M. 1963. Precapillary  systemic-
pulmonary anastomoses. Thorax.18:225–237.
62. Keane, M.P., et al. 2002. Imbalance in the  expres-
sion of  CXC  chemokines correlates with  bron-
choalveolar lavage fluid angiogenic activity  and 
procollagen levels in acute respiratory distress syn-
drome. J. Immunol.169:6515–6521.
63. Keane, M. P., et al . 2001.  ENA-78  is an  important 
angiogenic factor in idiopathic pulmonary fibrosis. 
Am. J. Respir. Crit. Care Med.164:2239–2242.
64. Keane, M.P., et al. 1997. The CXC chemokines, IL-8 
and IP-10, regulate angiogenic activity in idiopath-
ic pulmonary fibrosis. J. Immunol.159:1437–1443.
65. Mitzner, W.,  Lee, W., Georgakopoulos,  D.,  and 
Wagner, E. 2000. Angiogenesis in the mouse lung. 
Am. J. Pathol.157:93–101.
66. Charan, N.B., and Carvalho, P. 1997. Angiogenesis in 
bronchial circulatory system after unilateral pulmo-
nary artery obstruction. J. Appl. Physiol.82:284–291.
67. Schlaepfer, K. 1924.  Ligation of  the pulmonary 
artery of one  lung with and without resection of 
the phrenic nerve. Arch. Surg.9:25–94.
 68. Michel, R.P., Hakim, T.S., and Petsikas, D. 1990. 
Segmental vascular  resistance in  postobstruc-
tive pulmonary vasculopathy. J. Appl. Physiol.
69:1022–1032.
69. Dutly, A.E.,  et al.  2005. A  novel model  for post-
transplant  obliterative  airway  disease  reveals 
angiogenesis from the pulmonary circulation. Am.
J. Transplant.5:248–254.
70. Srisum a,  S.,  et  al.  20 03.  Iden tific ation  of  ge nes 
promoting angiogenesis in  mouse lung  by tran-
scriptional profiling.  Am. J. Respir. Cell Mol. Biol.
29:172–179.
71. Renzoni, E.A., et al. 2003.  Interstitial vascularity 
in fibrosing alveolitis. Am. J. Respir. Crit. Care Med.
167:438–443.
72. Cosgrove, G.P., et al. 2004.  Pigment epithelium-
derived factor in  idiopathic pulmonary fibrosis: 
a role in aberrant angiogenesis. Am. J. Respir. Crit.
Care Med.170:242–251.
73. Keane, M.P. 2004. Angiogenesis and pulmonary 
fibrosis: feast  or famine? Am. J. Respir. Crit. Care
Med.170:207–209.
74. Keane, M. P., et al . 2001.  ENA-78  is an  important 
angiogenic factor in idiopathic pulmonayr fibrosis. 
Am. J. Respir. Crit. Care Med.164:2239–2242.
75. Belperio, J.A., et al.  2003. Role of  CXCL9/CXCR3 
chemokine biology during pathogenesis  of acute 
lung allograft rejection. J. Immunol.171:4844–4852.
76. Peao, M.N., Aguas, A.P., de Sa, C.M., and Grande, 
N.R. 1994. Neoformation of blood vessels in associ-
ation with rat lung fibrosis induced by bleomycin. 
Anat. Rec.238:57–67.
77. Keane, M.P., et al. 1999. Neutralization of the CXC 
chemokine, macrophage inflammatory protein-2, 
attenuates bleomycin-induced pulmonary fibrosis. 
J. Immunol.162:5511–5518.
78. Keane, M.P., et al. 1999. IFN-gamma-inducible pro-
tein-10 attenuates bleomycin-induced pulmonary 
fibrosis via inhibition of angiogenesis. J. Immunol.
163:5686–5692.
79. Schmidt, M., et al. 2003. Identification of circulat-
ing fibrocytes as precursors of bronchial myofibro-
blasts in asthma. J. Immunol.171:380–389.
80. Abe, R., et al.  2001. Peripheral  blood f ibrocytes: 
differentiation pathway and migration to wound 
sites. J. Immunol.166:7556–7562.
81. Gomperts, B.N., et al. 2006. Circulating progenitor 
epithelial cells traffic via CXCR4/CXCL12 in response 
to airway injury.J. Immunol.176:1916–1927.
82. Moore, B.B., et al. 2006. The role of CCL12 in the 
recruitment of fibrocytes and lung fibrosis. Am. J.
Respir. Cell Mol. Biol. 35:175–181.
83. Moore, B.B., et al. 2005. CCR2-mediated recruit-
ment of fibrocytes to the alveolar space after fibrot-
ic injury. Am. J. Pathol.166:675–684.
84. Iwano, M., et al.  2002. Evidence  that fibroblasts 
derive from epithelium during tissue fibrosis. J. Clin.
Invest.110:341–350. doi:10.1172/JCI200215518.
85. Metz, C.N. 2003. Fibrocytes: a unique cell popula-
tion implicated in wound healing. Cell. Mol. Life Sci.
60:1342–1350.
86. Fukuda,  Y.,  et al . 198 7. The  role  of  intraal veolar 
fibrosis in  the  process of pulmonary  structural 
remodeling in patients with diffuse alveolar dam-
age. Am. J. Pathol.126:171–182.
87. Marshall, R., Bellingan, G., and Laurent,  G. 1998. 
The acute respiratory distress syndrome: fibrosis in 
the fast lane. Thorax.53:815–817.
88. Kalluri, R.,  and  Neilson,  E.G.  2003. Epithelial-
mesenchymal transition and  its implications for 
fibrosis. J. Clin. Invest.112:1776–1784. doi:10.1172/
JCI200320530.
89. Quan, T.E., et al. 2004. Circulating fibrocytes: col-
lagen-secreting cells of the peripheral blood. Int. J.
Biochem. Cell Biol.36:598–606.
90. Chauhan, H., et al. 2003. There  is more than one 
kind of myofibroblast: analysis of CD34 expression 
in benign, in situ, and invasive breast lesions. J. Clin.
Pathol.56:271–276.
91. Chesney, J., Bacher, M., Bender, A.,  and Bucala, R. 
1997. The peripheral blood fibrocyte is a potent anti-
gen-presenting cell capable of priming naive T cells 
in situ. Proc. Natl. Acad. Sci. U. S. A.94:6307–6312.
92. Hart lapp ,  I.,  e t  al. 2001. Fibr ocyt es  in duce an 
angiogenic phenotype in  cultured  endothelial 
cells and promote angiogenesis in vivo. FASEB J.
15:2215–2224.
93. Chesney, J., et al. 1998. Regulated production of type 
I collagen and inflammatory cytokines by periph-
eral blood fibrocytes. J. Immunol.160:419–425.
 94. Mora, A.L.,  et  al.  2006.  Activation  of  alveolar 
macrophages via the alternative pathway in herpes-
virus-induced lung fibrosis. Am. J. Respir. Cell Mol.
Biol. 35:466–473.
95. Ortiz, L.A., et  al.  2003.  Mesenchymal stem  cell 
engraftment in  lung is  enhanced in  response to 
bleomycin exposure and  ameliorates its fibrotic 
effects. Proc. Natl. Acad. Sci. U. S. A.100:8407–8411.
96. Smith, R.E., Strieter, R.M., Phan, S.H., and Kunkel, 
S.L. 1996. CC chemokines: novel mediators of the 
profibrotic inflammatory response to  bleomycin 
challenge. Am. J. Respir. Cell Mol. Biol.15:693–702.
97. Moore, B.B., et al. 2005. Bleomycin-induced E pros-
tanoid receptor changes alter fibroblast responses 
to prostaglandin E2. J. Immunol.174:5644–5649.
98. Jang, M.H., et al. 2006. CCR7 is critically important 
for migration of dendritic cells in intestinal lamina 
propria to  mesenteric lymph  nodes.  J. Immunol.
176:803–810.
99. Sakai, N., et al. 2006. Secondary  lymphoid tissue 
chemokine (SLC/CCL21)/CCR7  signaling regu-
lates fibrocytes in renal f ibrosis. Proc. Natl. Acad.
Sci. U. S. A.103:14098–14103.
100. Hong, K.M., et al. 2005. Characterization of human 
fibrocytes as circulating adipocyte progenitors and 
the formation of  human adipose  tissue in SCID 
mice. FASEB J.19:2029–2031.
101. Mori, L.,  et al. 2005. Fibrocytes contribute to the 
myofibroblast population  in wounded  skin and 
originate from  the  bone  marrow.  Exp. Cell Res.
304:81–90.
102. Epperly, M.W., Guo, H., Gretton, J.E., and Green-
berger, J.S. 2003. Bone  marrow origin  of myofi-
broblasts in irradiation pulmonary fibrosis. Am. J.
Respir. Cell Mol. Biol.29:213–224.
103. Hashimoto, N.,  et al. 2004. Bone marrow-derived 
progenitor cells in  pulmonary fibrosis.  J. Clin.
Invest.113:243–252. doi:10.1172/JCI200418847.
104. Choi, E.S., et al. 2006. Focal interstitial CC chemo-
kine receptor 7  (CCR7) expression  in idiopathic 
interstitial pneumonia. J. Clin. Pathol.59:28–39.
105. Yang, I.V., et al. 2007. Gene expression profiling of 
familial and sporadic cases of interstitial pneumo-
nia. Am. J. Respir. Crit. Care Med. In press.
... Significance IPF is a fatal condition of unbalanced immune responses associated with physiological manifestations such as lung mechanical dysfunction and dyspnea. Recent studies suggest that chemokines are important regulators of immune responses and fibrogenesis in the context of pulmonary fibrosis, accompanied by both elevated acute lung injury and infection [19][20][21][22][23], lung immune responses triggered by helminth infections [24], asthma [25], and pulmonary fibrosis [26,27]. Chemokines modulate fibrogenesis, leukocyte and fibrocyte influx, angiogenesis, alternative macrophage activation, and fibroblast collagen production that can sustain IPF development [3,28]. ...
... Chemokines contribute to modulating the lung immune response and play key roles in activating fibroblasts, thus governing IPF manifestation [26,27]. Recent findings have suggested that therapies targeting GPCRs [73] as well as chemokine targeting might represent novel approaches to IPF treatments. ...
... Emerging researches have emphasized the role of chemokines in pulmonary fibrosis, including CC Chemokines (Liu et al. 2023 and CXC family (Strieter et al. 2007). Chemokines, such as CXCL12 (Antoniou et al. 2010;Chow et al. 2016), CCL1 , and CCL18 (Prasse et al. 2006), are implicated in pulmonary fibrosis, acting as chemoattractants by combining with the chemokine receptors, and yet the role of CXCL16 and its receptor remain poorly understood. ...
Article
Full-text available
Background The development of pulmonary fibrosis involves a cascade of events, in which inflammation mediated by immune cells plays a pivotal role. Chemotherapeutic drugs have been shown to have dual effects on fibrosis, with bleomycin exacerbating pulmonary fibrosis and bortezomib alleviating tissue fibrotic processes. Understanding the intricate interplay between chemotherapeutic drugs, immune responses, and pulmonary fibrosis is likely to serve as the foundation for crafting tailored therapeutic strategies. Methods A model of bleomycin-induced pulmonary fibrosis was established, followed by treatment with bortezomib. Tissue samples were collected for analysis of immune cell subsets and functional assessment by flow cytometry and in vitro cell experiments. Additionally, multi-omics analysis was conducted to further elucidate the expression of chemokines and chemokine receptors, as well as the characteristics of cell populations. Results Here, we observed that the expression of CXCL16 and CXCR6 was elevated in the lung tissue of a pulmonary fibrosis model. In the context of pulmonary fibrosis or TGF-β1 stimulation in vitro, macrophages exhibited an M2-polarized phenotype and secreted more CXCL16 than those of the control group. Moreover, flow cytometry revealed increased expression levels of CD69 and CXCR6 in pulmonary CD4 T cells during fibrosis progression. The administration of bortezomib alleviated bleomycin-induced pulmonary fibrosis, accompanied by reduced ratio of M2-polarized macrophages and decreased accumulation of CD4 T cells expressing CXCR6. Conclusions Our findings provide insights into the key immune players involved in bleomycin-induced pulmonary fibrosis and offer preclinical evidence supporting the repurposing strategy and combination approaches to reduce lung fibrosis.
... Emerging research has emphasized the role of chemokines in pulmonary brosis, including CC Chemokines 20, 21 and CXC family 22 . Chemokines, such as CXCL12 23 24 , CCL1 21 , and CCL18 25 , are implicated in pulmonary brosis, acting as chemoattractants by combining with the chemokine receptors, and yet the role of CXCL16 and its receptor remain poorly understood. ...
Preprint
Full-text available
Background The development of pulmonary fibrosis entails a cascade of events, where immune cell-mediated inflammation plays a central role. Chemotherapeutic drugs have been observed to exert dual impacts on fibrosis, with bleomycin exacerbating pulmonary fibrosis and bortezomib alleviating tissue fibrotic processing. Understanding of the complex interactions between chemotherapeutic drugs, immune responses, and pulmonary fibrosis is likely to serve as the foundation for crafting tailored therapeutic strategies. Methods A bleomycin-induced pulmonary fibrosis model was established, followed by bortezomib treatment. Tissue samples were collected for immune cell subset analysis and functional evaluation through flow cytometry and in vitro cell experiments. Additionally, multi-omics analysis was conducted to further elucidate the expression of chemokines and chemokine receptors and the characteristics of cell populations. Result Here, we noticed that CXCL16 and CXCR6 were elevated in the lung tissue of pulmonary fibrosis model. In the context of pulmonary fibrosis or in vitro TGF-β1 stimulation, macrophages exhibited M2-polarized phenotype and secreted more CXCL16 compared with control group. In addition, flow cytometry revealed that pulmonary CD4 T cells expressed higher CD69 and CXCR6 levels in fibrosis progress. Upon administration of bortezomib, bleomycin-induced pulmonary fibrosis was alleviated accompanied by decreased M2-polarized macrophages and reduced accumulation of CXCR6-expressing CD4 T cells. Conclusions Our findings provide insights into the key immune players in bleomycin-induced pulmonary fibrosis and offer the preclinical evidence supporting the repurposing strategy and combination approach to reduced lung fibrosis.
... Recent studies have shown a significant expression of TGF-β1 in patients with pulmonary fibrosis [55]; in this regard, our results showed that treatment with KYP-2047 significantly reduced TGF-β1 protein levels in the lung lesion. Furthermore, overexpression of α-SMA actively produces extracellular matrix (ECM) resulting in collagen accumulation [56]. In agreement with this evidence, our results showed an overexpression of α-SMA following induction with bleomycin while treatment with KYP-2047 significantly reduced its expression. ...
Article
Full-text available
Background Pulmonary fibrosis is a progressive disease characterized by lung remodeling due to excessive deposition of extracellular matrix. Although the etiology remains unknown, aberrant angiogenesis and inflammation play an important role in the development of this pathology. In this context, recent scientific research has identified new molecules involved in angiogenesis and inflammation, such as the prolyl oligopeptidase (PREP), a proteolytic enzyme belonging to the serine protease family, linked to the pathology of many lung diseases such as pulmonary fibrosis. Therefore, the aim of this study was to investigate the effect of a selective inhibitor of PREP, known as KYP-2047, in an in vitro and in an in vivo model of pulmonary fibrosis. Methods The in vitro model was performed using human alveolar A549 cells. Cells were exposed to lipopolysaccharide (LPS) 10 μg/ml and then, cells were treated with KYP-2047 at the concentrations of 1 μM, 10 μM and 50 μM. Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) bromide colorimetric assay, while inflammatory protein expression was assessed by western blots analysis. The in vivo model was induced in mice by intra-tracheal administration of bleomycin (1 mg/kg) and then treated intraperitoneally with KYP-2047 at doses of 1, 2.5 and 5 mg/kg once daily for 12 days and then mice were sacrificed, and lung tissues were collected for analyses. Results The in vitro results demonstrated that KYP-2047 preserved cell viability, reduced inflammatory process by decreasing IL-18 and TNF-α, and modulated lipid peroxidation as well as nitrosative stress. The in vivo pulmonary fibrosis has demonstrated that KYP-2047 was able to restore histological alterations reducing lung injury. Our data demonstrated that KYP-2047 significantly reduced angiogenesis process and the fibrotic damage modulating the expression of fibrotic markers. Furthermore, KYP-2047 treatment modulated the IκBα/NF-κB pathway and reduced the expression of related pro-inflammatory enzymes and cytokines. Moreover, KYP-2047 was able to modulate the JAK2/STAT3 pathway, highly involved in pulmonary fibrosis. Conclusion In conclusion, this study demonstrated the involvement of PREP in the pathogenesis of pulmonary fibrosis and that its inhibition by KYP-2047 has a protective role in lung injury induced by BLM, suggesting PREP as a potential target therapy for pulmonary fibrosis. These results speculate the potential protective mechanism of KYP-2047 through the modulation of JAK2/STAT3 and NF-κB pathways. Graphical abstract
... IPF mainly occurs in male patients and may develop earlier in men than in women for various biological reasons [8]. In terms of age, IPF predominantly affects elderly individuals, and its prevalence increases with age [9]. These microinjuries induce abnormal epithelial-fibroblast communication [10,11]. ...
Article
Full-text available
Background: Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with a high mortality rate. On this basis, exploring potential therapeutic targets to meet the unmet needs of IPF patients is important. Aim: To explore novel hub genes for IPF therapy. Methods: Here, we used public datasets to identify differentially expressed genes between IPF patients and healthy donors. Potential targets were considered based on multiple bioinformatics analyses, especially the correlation between hub genes and carbon monoxide diffusing capacity of carbon monoxide, forced vital capacity, and patient survival rate. The mRNA levels of the hub genes were determined through quantitative real-time polymerase chain reaction. Results: We found that TDO2 was upregulated in IPF patients and predicted poor prognosis. Surprisingly, single-cell RNA sequencing data analysis revealed significant enrichment of TDO2 in alveolar fibroblasts, indicating that TDO2 may participate in the regulation of proliferation and survival. Therefore, we verified the upregulated expression of TDO2 in an experimental mouse model of transforming growth factor-β (TGF-β)-induced pulmonary fibrosis. Furthermore, the results showed that a TDO2 inhibitor effectively suppressed TGF-β-induced fibroblast activation. These findings suggest that TDO2 may be a potential target for IPF treatment. Based on transcription factors-microRNA prediction and scRNA-seq analysis, elevated TDO2 promoted the IPF proliferation of fibroblasts and may be involved in the P53 pathway and aggravate ageing and persistent pulmonary fibrosis. Conclusion: We provided new target genes prediction and proposed blocking TGF-β production as a potential treatment for IPF.
Article
Full-text available
Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by abscesses, nodules, dissecting/draining tunnels, and extensive fibrosis. Here, we integrate single-cell RNA sequencing, spatial transcriptomics, and immunostaining to provide an unprecedented view of the pathogenesis of chronic HS, characterizing the main cellular players, and defining their interactions. We describe a striking layering of the chronic HS infiltrate and identify the contribution of two fibroblast subtypes (SFRP4+ and CXCL13+) in orchestrating this compartmentalized immune response. We further demonstrate the central role of the Hippo pathway in promoting extensive fibrosis in HS and provide pre-clinical evidence that the pro-fibrotic fibroblast response in HS can be modulated through inhibition of this pathway. These data provide novel insights into key aspects of HS pathogenesis with broad therapeutic implications.
Article
Full-text available
In this article, early career members of the Assembly 3: Basic and Translational Sciences of the European Respiratory Society summarise the key messages discussed during six selected sessions that took place at the ERS congress 2023 in Milan, Italy. Aligned with the theme of the congress, the first topic covered is “micro- and macro-environments and respiratory health”, followed by a summary of the “Scientific year in review” session. Next, recent advances in experimental methodologies and new technologies were highlighted within the “tissue modelling and remodelling” session, as well as summary of the translational science session, “what did you always want to know about omics analyses for clinical practice?”, organised as part of the ERS Translational Science Working group's aims. Details on how the next-generation sequencing can be integrated with laboratory methods were provided in the “lost in translation: new insights into cell-to-cell crosstalk in lung disease” session and a final summary of studies presented in the “from the transcriptome landscape to innovative preclinical models in lung diseases” session linking the transcriptome landscape with innovative preclinical models was included in this review. The wide range of topics covered in the selected sessions and the high quality of the research discussed highlight the strength of the basic and translational science being presented at the international respiratory conference organised by the ERS.
Article
Aims: Pulmonary fibrosis seriously affects the health and life quality of patients. Exercise has been shown to have anti-inflammatory and antioxidant effects, but its effect on pulmonary fibrosis is unclear. In this study, the effect and mechanism of exercise on pulmonary fibrosis induced by paraquat were detected. Main methods: Three data sets were retrieved from GEO data. The biological significance of DEGs generation was determined by GO, KEGG, GSEA, and PPI. Thirty male BALB/C mice were randomly divided into control group, model group and exercise group. H&E staining, Masson staining, Immunohistochemistry and Western blot were used to explore the results. The levels of SOD, CAT, MDA, and GSH in lung tissue were analyzed with detection kits. The levels of inflammatory factors in serum and BALF were measured by ELISA. Key findings: Compared with the control group, the infiltration of inflammatory cells and fibrotic lesions were increased in the model group. Compared with the model group, voluntary wheel-running reducing the EMT of alveolar epithelial cells, the activation of the Wnt/β-catenin signaling pathway and the level of oxidative distress. Moreover, compared to model group, the serum IL-4, IL-10 and IFN-γ were increased, while the serum CXCL1 were decreased, while the levels of CXCL1, IL-6, IL-10, TNF-α and IFN-γ in the bronchoalveolar lavage fluid were decreased in exercise group. Significance: Voluntary wheel-running reduced inflammatory infiltration and upregulated the expression of antioxidative distress proteins, further to improve the degree of EMT, and ultimately alleviated paraquat induced pulmonary fibrosis.
Article
IL-22 has emerged as a crucial cytokine mediating protective response against pathogens and tissue regeneration. Dysregulated production of IL-22 has been shown to play a pivotal role in the pathogenesis of various diseases like malignant tumours, viral, cardiovascular, allergic and autoimmune disorders. Interleukin 22 belongs to IFN-IL-10 cytokine family. It is a major proinflammatory cytokine secreted by activated Th1 cells (Th22), though can also be secreted by many other immune cells like group 3 innate lymphocytes, γδ T cells, NK cells, NK T cells, and mucosal associated invariant T cells. Th22 cells exclusively release IL-22 but not IL-17 or IFN-γ (as Th1 cells releases IFN-γ along with IL-22 and Th17 cells releases IL-17 along with IL-22) and also express aryl hydrocarbon receptor as the key transcription factor. Th22 cells also exhibit expression of chemokine receptor CCR6 and skin-homing receptors CCR4 and CCR10 indicating the involvement of this subset in bolstering epithelial barrier immunity and promoting secretion of antimicrobial peptides (AMPs) from intestinal epithelial cells. The function of IL-22 is modulated by IL-22 binding protein (binds to IL-22 and inhibits it binding to its cell surface receptor); which serves as a competitor for IL-22R1 chain of IL-22 receptor. The pathogenic and protective nature of the Th22 cells is modulated both by the site of infected tissue and the type of disease pathology. This review aims to discuss key features of IL-22 biology, comparisons between IL and 22 and IFN-γ and its role as a potential immune therapy target in different maladies.
Article
This article will detail late results following ligation of the left pulmonary artery in dogs, without and with simultaneous section of the phrenic nerve. In a previous report¹ it was shown that the operative procedure is unassociated with any definite shock, that the animals regain normal activity within twenty-four hours and remain so until the experiment is terminated, as much as four months later. In the interval included in the reported experiments, the lung with intact pulmonary artery expands and herniations in the thinnest areas of the mediastinum occur, but this process becomes stabilized after a month. On the other hand, the lung with ligated pulmonary artery gradually decreases in size, and this process progresses more rapidly when the phrenic nerve has been sectioned. Collateral circulation is established by increase in the caliber of the bronchial artery which doubles its size in three months but somewhat less rapidly when
Article
Angiogenesis is the process by which new blood vessels are formed. This process occurs in the developing embryo, developing or growing tissue, wound healing and normal repair, inflammation, and a variety of pathologic processes which are accompanied by the abnormal growth of new blood vessels. Although the topic of angiogenesis has long been considered important, progress in understanding angiogenic mechanisms or in isolating angiogenic factors has, until recently, been quite slow. Rapid recent advances in angiogenesis research have stemmed largely from improvements in assay techniques which have resulted in the purification and identification of a number of distinct angiogenic factors. This review discusses current understanding of the cellular components of angiogenesis, the nature of factors that can cause angiogenesis and the identity of cell types that produce these factors, as well as possible mechanisms for the regulation of angiogenesis in vivo.
Article
Furthermore, subcutaneous SDF-1 alpha injections into mice induced formation of local small blood vessels that was accompanied by leukocytic infiltrates. To test whether these effects were dependent on circulating leukocytes, we successfully obtained SDF-1 alpha-induced neovascularization from cross sections of leukocyte-free rat aorta. Taken together, our data indicate that SDF-1 alpha acts as a potent chemoattractant for endothelial cells of different origins bearing CXCR4 and is a participant in angiogenesis that is regulated at the receptor level by VEGF and bFGF, The contribution of chemokines toward angiogenesis is currently a focus of intensive investigation. Certain members of the CXC chemokine family can induce bovine capillary endothelial cell migration in vitro and corneal angiogenesis in vivo, and apparently act via binding to their receptors CXCR1 and CXCR2, We used an RNAse protection assay that permitted the simultaneous detection of mRNA for various CXC chemokine receptors in resting human umbilical vein endothelial cells (HUVECs) and detected low levels of only CXCR4 mRNA, Stimulation of HUVECs with vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) up-regulated levels of only CXCR4 mRNA, CXCR4 specifically binds the chemokine stromal-derived factor-1 alpha (SDF-1 alpha), Competitive binding studies using I-125-labeled SDF-1 alpha with Scatchard analysis indicated that VEGF or bFGF induced an average number of approximately 16,600 CXCR4 molecules per endothelial cell, with a K-d = 1.23 x 10(-9) mol/L, These receptors were functional as HUVECs and human aorta endothelial cells (HAECs) migrated toward SDF-1 alpha. Although SDF-1 alpha-induced chemotaxis was inhibited by the addition of a neutralizing monoclonal CXCR4 antibody, endothelial chemotaxis toward VEGF was not altered; therefore, the angiogenic effect of VEGF is independent of SDF-1 alpha.