ArticlePDF Available

Surface Ices and the Atmospheric Composition of Pluto

Authors:

Abstract

Observations of the 1.4- to 2.4-micrometer spectrum of Pluto reveal absorptions of carbon monoxide and nitrogen ices and confirm the presence of solid methane. Frozen nitrogen is more abundant than the other two ices by a factor of about 50; gaseous nitrogen must therefore be the major atmospheric constituent. The absence of carbon dioxide absorptions is one of several differences between the spectra of Pluto and Triton in this region. Both worlds carry information about the composition of the solar nebula and the processes by which icy planetesimals formed.
Surface Ices and the Atmospheric Composition of Pluto
Tobias C. Owen; Ted L. Roush; Dale P. Cruikshank; James L. Elliot; Leslie A. Young; Catherine
de Bergh; Bernard Schmitt; Thomas R. Geballe; Robert H. Brown; Mary Jane Bartholomew
Science, New Series, Vol. 261, No. 5122. (Aug. 6, 1993), pp. 745-748.
Stable URL:
http://links.jstor.org/sici?sici=0036-8075%2819930806%293%3A261%3A5122%3C745%3ASIATAC%3E2.0.CO%3B2-G
Science is currently published by American Association for the Advancement of Science.
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.
Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/aaas.html.
Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.
JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For
more information regarding JSTOR, please contact support@jstor.org.
http://www.jstor.org
Tue May 22 10:21:36 2007
j ~
5. CGS4 is a cryogenic grating spectrometercontain-
ing a two-dimensionalarray of lnSb photodiodes,
usable in the 1- to 5-pn wavelength band at re-
solving powers between 200 and 20,000. UKIRT is
operated by the Royal Observatory Edinburgh on
behalf of the United Kingdom Science and Engi-
neering Research Council. Triton spectra were
obtained on 29 June 1991 (comparisons stars BS
7340 and BS
6965), 18 October 1991 (comparison
star BS 7340),5 May 1992 (poor data) and 27 and
28 May 1992 (comparison stars BS 6998 and BS
7504) (presented here in Fig.
1). Additional data
showing the N, band at higher resolution (from
which the wavelengths given in the text are de-
rived) were obtained on 22, 23, and 24 September
1992.All dates in universal time.
6. B. Hapke,
J.
Geophys. Res. 86, 3039 (1981);
lcarus 59, 41 (1984); lcarus 67, 264 (1986).
7. T. L. Roush, J. B. Pollack, F. C. Witteborn, J. D.
Bregman, J. P. Simpson, lcarus 86, 355 (1990).
8. B. Schmitt, E. Quirico, E. Lellouch, Proc. Symp.
Titan,
ESA
SP-338, 383 (1992);J. R. Green, R. H.
Brown, D. P. Cruikshank, Bull. Am. Astron. Soc.
23, 1208 (1991); G. B. Hansen, Appl. Opt. 25,
2650 (1986); S. G. Warren, Bull. Am. Astron. Soc.
24, 978 (1992). In our modeling we derive the
radiance factor at zero degrees phase angle
(i
=
e
=
0 degrees). We assume isotropic surface
scattering, a lunar-likeregolith parameterfor Hap-
ke's h-value, and we make no corrections for
macroscopic surface roughness. The continuum
is defined as a series of straight line segments
connecting local maxima such that data between
maximaare not cut by the continuum. This has the
effect of eliminating absolute albedo information.
However, preliminary calculations of geometric
albedos for these mixtures are entirely consistent
with the values derived from the telescopic data.
We shifted the optical constant values to agree
with the
0b~e~ati0naldata (1992 smoothed data)
prior to calculation of the spectra.
9.
B. Schmitt etal., Bull. Am. Astron. Soc. 22, 1121
(1990) (abstract). The CH, fraction has been
changed since publication of this abstract and is
now "between 0.05 and 0.5%." A more extensive
paper has been submitted to Icarus.
10. A. L. Broadfoot et a/., in
(2);
G. L. Tyler et al.,
Science 246, 1466 (1989).
11. L. Trafton, lcarus 58, 312 (1984)
12. The wavelength calibration of the CGS4 spec-
trometer is determined from emission-line lamps
and is accurate to 0.0001
pm (one sigma).
13. The presence of a-N, is unexpected on Triton
because the surface temperature (if it is in fact in
strict vapor pressure equilibrium with the atmo-
sphere at P,
=
16 pbar) is 37.7
K.
The uniform
temperature predicted by Trafton
(11)
further
argues against coexistence of surface exposures
of the
a
and
p
phases. In addition, although the
phase transition temperature in N, is raised when
the nitrogen is contaminated with CO or CH,
[T.
A.
Scott, Phys. Rep. 27 (no. 3), 89 (1976)], the
concentrations of the contaminantsimplied by our
spectra are too low to raise the transition temper-
ature at least the 2 K required. Nevertheless,
physica1,studies of solid N, contaminated with
CH, and near the 35.6 K phase transitiontemper-
ature show that the N, in close proximity to a CH,
molecule is in the a phase, while that further away
from a pontaminant molecule is in the
p
phase.
Thus, a mixed a-p spectrum may result.
14. J. Eluszkiewicz,
J.
Geophys. Res. 96, 19,219
(1991).
15.
T.
C. Owen et a/., Int Astron. Union Circ.
5532
(1992)
16. F. Herbert and B. R. Sandel,
J.
Geophys. Res. 96,
19,241 (1991).
17. The shifting of the bands of CH, diluted in N, is
not related simply to the concentration. In partic-
ular, the band at 2.324-pm shifts slightly and then
splits as the
CH, concentration is reduced; even-
tually the "pure" component diminishes as the
2.311-pm component dominates.
18. S. A. Sandford, L. J. Allamandola, A. G. G. M.
Tielens, G. J. Valero,Astrophys.
J.
329,498 (1988).
19. Transmission spectra of molecular mixtures of CO
in N, show that the matrix shift of the CO overtone
phys. Res. 98, 3065 (1993).
band at 2.351 pm is approximately -0.0006 pm,
22. We thank Douglas Hudgins for his laboratory work
or about 1 cm-'. This resultwas confirmed by D.
on the N,
+
CO spectrum. We also thank the staff
Hudgins at Ames Research Center.
of the United Kingdom InfraredTelescope Facility
20. G.
N. Brown, Jr., and W. T. Ziegler, Adv Ciyog.,
for their support during the observations reported
Eng. 25, 662 (1979)
here.
21. M. H. Stevens et al., Geophys. Res. Lett. 19,
669 (1992); V. A. Krasnopolsky et al.,
J.
Geo-
12 January 1993; accepted 16 April 1993
Surface Ices and the Atmospheric
Composition of Pluto
Tobias C. Owen,* Ted L. Roush, Dale
P.
Cruikshank,
James
L.
Elliot, Leslie
A.
Young, Catherine de Bergh,
Bernard Schmitt, Thomas R. Geballe, Robert
H.
Brown,
Mary Jane Bartholomew
Observationsof the
1.4-
to 2.4-micrometer spectrumof Pluto revealabsorptions of carbon
monoxide and nitrogen ices and confirm the presence of solid methane. Frozen nitrogen
is more abundant than the other two ices by a factor of about
50;
gaseous nitrogen must
therefore bethe major atmosphericconstituent.The absence of carbondioxideabsorptions
is one of several differences between the spectra of Pluto and Triton in this region. Both
worlds carry information about the composition of the solar nebula and the processes by
which icy planetesimals formed.
Although Pluto is usually classified as a
planet, its closest relative in the solar sys-
tem appears to be Triton, Neptune's largest
satellite. Both of these obiects evidentlv
formed from the solar nebula at a distance
of -40 astronomical units (AU) from the
sun, where temperatures were
<50
K.
In
this respect, they may.be considered huge
icy planetesimals that somehow escaped
accretion by the giant planets. The lower
end of the mass distribution of such obiects
is represented by the common comets, ob-
jects 2060 Chiron, 5145 Pholus, 1992
QB1, and the great comet of 1729
(1).
These objects represent an especially prim-
itive stage in the transition from the grains
and
gas of interstellar clouds to the
la nets
and satellites of the solar system.
We have presented observations of the
near-infrared spectrum of Triton
(2).
We
used the same instrumental configuration to
study Pluto, without the benefit of Voyager
data to provide a context for our work. It is
the only planet not yet visited by space-
craft, but its recent occultation of a star
(3)
and the mutual eclipses and occultations
exhibited by Pluto and its synchronously
orbiting satellite Charon
(4)
have helped to
define this distant system
(5).
Using the cooled grating array spectrom-
eter with the United Kingdom Infrared
Telescope, we recorded Pluto's spectrum
from 1.4 to
2.4
pm (4160 to 7140 cm-l) at
a resolution of 350 on 27 and 28 May 1992
(UT) (6). Previous observations at lower
resolution had established that there is solid
CH, on Pluto's surface
(7).
Our spectra
T.
C.
Owen, Institute for Astronomy, University of
conkrmed the presence of this ice, reveal-
Hawaii, 2680 Woodlawn Drive,
HO~OIUIU,
HI 96822.
ing the same series of strong CH4 bands
T. L. Roush, Department of Geosciences, San Fran-
seen
on
T ~ ~ ~ ~ ~ .
ln addition, the (2,o) band
cisco State University,San Francisco, CA 94132, and
NASA Ames Research Center, Space Sciences Divi-
of CO at 1-35 km and the N, absorption at
sion, Moffett Field, CA 94035-1000.
2.15 um were added, both of which are also
D. P. Cruikshank, NASA Ames Research Center,
present
in ~ ~ i ~ ~ ~
spectrum
(2) (~i~.1).
Space Sciences Division, Moffett Field, CA 94035-
I
nnn
Des~itethese general similarities, the
8""".
-
J. L. Elliot and L. A. Young, Department of Earth,
spectra of Pluto and Triton are not identi-
Atmospheric and Planetary Sciences, Massachusetts
cal.
we
do
not
find the solid
CO,
absorp-
lnstitute of Technology, Cambridge, MA 02139.
C, de Bergh, Obse~atoirede Paris, 92195 Meudon
tions on Pluto that are so prominent on
Cedex, France.
Triton. In particular, the absence of the
B. Schmitt, Laboratoire de Glaciologie et Geophy-
sique de I'Environnement,38402 St. Martin d'Heres,
France.
T. R. Geballe, Joint Astronomy Centre, Hilo, HI 96720.
R. H. Brown,Jet PropulsionLaboratory, Pasadena,CA
91109.
M. J. Bartholomew, Sterling Software,
Inc., NASA
Ames Research Center, Moffett Field, CA 94035-
1000.
*To whom correspondence should be addressed.
strong triad
bf
CO, bands near 2.0 pm (2)
means that the amount of this ice on Pluto
must be less than one-third of the amount
that forms the spectrum of Triton. The
shapes of the CH4bands in the region from
2.0 to 2.4 pm are broader and deeper on
Pluto, whose spectrum exhibits an addi-
tional CH4 feature at 1.48 pm that is not
SCIENCE
VOL.
261
6
AUGUST
1993
present on Triton (Fig. 2). Another CH,
band of comparable strength in the labora-
tory (at 1.68 pm) does not appear in the
spectrum of either Pluto or Triton. This
difference in appearance of the CH, absorp-
tions must carry some information'about a
difference in temperature, composition, or
average grain size on the surfaces of Pluto
and Triton. Unfortunately, the laboratory
data are not yet adequate to determine this
difference.
The N, feature at 2.15 pm is distinctly
weaker on Pluto than on Triton; there is a
hint of an accompanying absorption at 2.16
pm (Fig. 1). The association of this feature
with N, is confirmed by the fact that its
strength has the same proportion to the
primary 2.15-pm N, absorption as in the
spectrumof Triton (2). Further study of this
band should help to place better constraints
on the poorly defined surface temperature of
Pluto
(8)
because the relative intensity of
the 2.16-pm feature is strongly tempera-
ture-sensitive
(9).
At the scale of the entrance slit of the
spectrometer, Pluto and its satellite Charon
are not resolved into individual obiects. so
,
,
the resulting spectrum is a composite of the
contributions of each. The spectrum of
Charon is known to exhibit absorption
from H,O ice (10, 11). At a given wave-
length, Charon's contribution to the com-
bined spectrum with Pluto is weighted by
the relative areas of the two bodies and by
the geometric albedos of their surfaces.
From the mutual eclipses and transits of
Pluto and
Charon observed in the 1980s, we
ado~tthe radii of Pluto and Charon as 1142
and596 km, respectively. The area ratio of
Pluto to Charon is then 3.67, with Charon's
contribution as 27% of the total (12).
We have modeled the Pluto spectrum
Wavelength
(pm)
Fig.
1.
Smoothed spectra of Triton (heavy
trace) and Pluto (light trace) are shown
in
the
region from 2.1 to 2.4 km The dashed line
in
the Pluto spectrum indicates the continuum
in
the region of
N,
absorption. Absorption from
ices of
N,
(2.15km),
CH,
(2.2,2.32, and 2.38
km),
and
CO
(2.35km) are apparent.
using the same basic approach we applied to
Triton (2, 13). The model consists of an
intimate mixture (a salt-and-pepper config-
uration) of
N,, CH4, and CO ices to
represent Pluto, plus a spatially segregated
area of H,O ice representing Charon's con-
tribution to the spectrum (Fig. 2). The
H,O spectrum used for Charon's contribu-
tion was computed separately on the basis
of scattering theory with the use of the
Charon spectrum of Buie and colleagues
(I I) and optical constants of the pure ices
(14). Absorption bands of H20 ice in the
wavelength region of interest are broad (0.1
to 0.3 pm), and in the model they princi-
pally affect the shape of the continuum on
which the narrower bands of
CH,, N,, and
CO are superimposed. In the present case,
the H20 ice that is included as a spatially
segregated component in the model spec-
trum most strongly affects the regions from
1.45 to 1.55 pm and from 2.10 to 2.30 pm.
The effect of the H20ice is not evident in
the observed spectrum of Pluto plus
Charon; our calculated spectrum is too low
at 1.5 pm and too high at the longer
wavelengths.
As in the case of Triton, we find that N,
is the most abundant surface ice on Pluto.
The abundances of CH, and CO are greater
on Pluto than on Triton but are still small
relative to that of N,. As in the case of
Triton, Pluto's CH, bands are shifted from
their laboratory-measured wavelengths,
demonstrating that
CH4 and N2 must be
mixed at the molecular level to form a solid
solution. A checkerboard or salt-and-pep-
per model for the surface distribution of the
two ices does not help to explain the
observed wavelengths of the CH4 bands.
Thus, the intimate mixture (salt-and-pep-
per) model we have used (Fig. 2) is not
correct but is the best we can do with
available laboratory data for the optical
constants of these ices (15). As noted in
our discussion of Triton's spectrum
(2), the
shifting of the CH, bands is a complex
phenomenon related to the concentration
in the solvent (N,) that affects not only the
central wavelength but the shape of the
bands as well. Furthermore, the various
CH, bands in this spectral region behave
differently from one another (16). In the
case of our model of Pluto's spectrum, the
derived abundance of
CH, (1.5%) is con-
sistent with the degree of shift of the bands.
-
This consistency means that CH4ice is more
abundant on the surface of Pluto than on
Triton, where it is -0.05% (2). The exact
abundance will be more reliably derived
from models that incorporate optical con-
stants of true molecular mixes of
N, and
CH, when they become available. The pre-
sent uncertainty in the CH, abundance as
determined from our models is a factor of 2.
We modeled the CO in Pluto's spectrum
using only the (2,O) band at 2.352 pm,
although the weaker (3,O) band at 1.578
pm may also be marginally present on the
short wavelength slope of a CH4 band. As
in the case of Triton, we cannot establish
whether the CO is present as individual
grains or dissolved in a molecular mixture
with
N, and CH,, because the wavelength
shift of CO that results from matrix effects
is below the resolution limit of our Pluto
spectrum. The similarities in the vapor
pressures of CO and N, suggest that these
ices are mixed at the molecular level, but
there is no independent information from
the planet's atmosphere or surface to help
resolve this question. If CO is present as
individual grains of ice, the particle sizes
cannot be extremely small because of the
quenching effect that small grains would
have on the strength of the
N, band. In our
best fitting model, the abundance and grain
size of CO are 0.5% and 0.5 mm, respec-
tively, again with a factor of 2 uncertainty.
There are several conclusions we can
draw from this coupled set of observations
of these two frigid worlds. The first involves
Pluto's atmosphere. If we assume that
CH4,
CO. and N, are the onlv volatiles on Pluto.
that the ices are in ideal solutions, and that
the atmospheric composition is determined
simply by vapor-ice equilibrium, then the
partial pressures are Pi
=
Xi.Vi, where
Xi
is
Fig.
2.
A
comparison of a contin-
uum-adjusted spectrum of Pluto
and a model spectrum based on
the indicated mixture of ices over
the wavelength range of 1.4to 2.4
km. This model is an intimate
mixture of the components rather
than the expected molecular mix-
ture.
1.4
1.6
1.8
2.0
2.2
2.4
Wavelength
(pm)
746
SCIENCE
VOL.
261 6
AUGUST
1993
the mole fraction on the surface (0.026,
0.005, and 0.969 for CH4, CO, and N,,
respectively) and
Vi
is the vapor pressure of
the ith gas over its pure ice (1
7).
Thus,
using the surface temperature, the observed
mixine ratios in the solid. and the known
u
vapor pressures (18) we can find the partial
pressure and the atmospheric mixing ratio
qi
for each gas. Unfortunately, Pluto's surface
temperature is not well determined: pub-
lished values range from 31
K
to 59
K,
depending on the observations used and the
different assumptions of the surface proper-
ties, especially the solar phase integral and
emissivity (8). We have constructed Table
1 for three representative temperatures. For
each temperature and volatile there is a
tabulated vapor pressure over pure ice, par-
tial pressure in the atmosphere, and mixing
ratio in the atmosphere.
We can tightly constrain the possibili-
ties for the surface temperature and pressure
by combining our inferences about the at-
mospheric composition with the constraints
imposed by the 1988 stellar occultation.
The data in Table 1 demonstrate that for all
temperatures, the atmosphere is >99% N,,
close to the 100% N, atmosphere consid-
ered by Elliot and Young (19). The absence
of near-surface haze would suggest a surface
radius of 1206
+
11 km, a surface temper-
ature of 35.3
+
0.4
K,
and a surface
pressure of 3.3
+
0.8 pbar. This tempera-
ture is close to 35.62
K,
the triple point of
vapor, alpha, and beta N,. The presence of
a near-surface haze would decrease the sur-
face radius, with a corresponding increase
in surface temperature and pressure.
Although our discovery of N, and CO
substantiates the suggestion by Yelle and
Lunine (20) that a gas heavier than CH4 is
present in Pluto's atmosphere, the amount
of
CH, gas that we infer is less than the
0.1%
apparently required by their model to
maintain the lower atmosphere at 106
K.
However. their model has alreadv survived
.
,
some observational tests. It predicts that
Table
1.
Vapor pressures, partial pressures,
and mixing ratios for gases
in
Pluto's atmo-
sphere.
Gas
V(pbar)
P
(pbar)
4
the atmospheric temperature profile should
be isothermal with altitude, which has been
established from the Kuiper Airborne Ob-
servatory occultation data (19) for a zone
that begins -10 km above the surface (or
haze layer) and extends upward for several
scale heights (21). At those altitudes, un-
der the assumption of 100% N, (19), the
atmospheric temperature is 104
+-
21
K.
The agreement of this observationally de-
rived value with Yelle and Lunine's predic-
tion may mean that even less CH4 than
they proposed is needed to raise the tem-
perature or that there is another way of
increasing the CH4 vapor pressure in the
atmosphere than by sublimation from sur-
face frosts. An atmospheric heating source
other than CH, (such as aerosols) may also
be at work.
The role of
CH, heating is significant to
an understanding of the difference between
the atmospheric models for Pluto and Tri-
ton, which results from the amount of CH,
in each atmosphere. For Triton, the
amount of CH4 (as determined by Voyager
observations) is too low for radiative Dro-
cesses to affect the energy balance signifi-
cantly (22). However, in the current model
for Pluto radiative absorption and reemis-
sion by CH4set the energy balance at 106
K
(20). A test of the CH, atmospheric abun-
dance that we have inferred from the sur-
face ice spectra will come from an observa-
tional study of CH, gas absorption in Plu-
to's atmos~here(23).
As on Triton: ~lutoshows no evidence
of other ices; we found the same list of
absent ices on that planet. In one respect,
this absence is even more puzzling than for
Triton because Pluto is darker and exhibits
a 0.3-magnitude (-30%) variation in
brightness as it rotates, indicating an inho-
mogeneous surface. If the general similarity
of Pluto's
sDectrum to that of Triton is at all
diagnostic of surface conditions on these
two bodies, we expect thicker, more wide-
spread deposits on Pluto of dark material
similar to the isolated patches the Voyager
cameras revealed on Triton. This exoecta-
tion carries with it the idea that intermedi-
ate products in the chemical reactions lead-
ing from
CH, and
N,
to this dark material
should be Dresent. Evidentlv their concen-
tration is extremely low.
The relatively high abundance of molec-
ular N, on Pluto and Triton supports the
widely held hypothesis that the missing
(that is, unobserved) 70% of the cosmic
abundance of N, expected in the interstel-
lar medium (ISM) is in the form of N, (24).
The low abundance of N, in Halley's Com-
et (2.5) could then be understood to result
.
,
from sublimation and desorption of an orig-
inal endowment of N, (26). The low rela-
tive abundance of CO on Pluto and Triton
poses a problem, however. From ISM abun-
dances, one expects the CON, ratio to be
-
1. Evidently some combination of the
partial processing of CO to CH4 and CO,
during accretion [following pathways dem-
onstrated in the laboratory (27)] with sub-
sequent layering on the surface according to
vapor pressure led to the presently observed
state. From this view, the absence of ob-
servable CO, on Pluto, in contrast to Tri-
ton, resulted from the current difference in
the general circulations of the atmospheres
of these two bodies, corresponding to the
different inclinations of their rotational
axes. On Triton, the flight of
N, from the
sunlit southern hemisphere could have ex-
posed underlying CO, to view. Observa-
tions over the next few decades could easilv
test this model if the circulation pattern on
Pluto changes sufficiently before the atmo-
sphere simply freezes out.
Finally, the amount of neon in the
atmospheres of these objects is important
because the cosmic abundance of this ele-
ment is about equal to that of N, (28) and
its vapor pressure is 5
x
lo6
the pressure of
neon at 35
K.
Neon should therefore dom-
inate these atmospheres, although on Tri-
ton this is clearly not the case (29). If neon
were so abundant, there would be a lower
mean molecular weight on Pluto from oc-
cultation observations than the value cor-
responding to 99%
N, (Table 1) (30). If
Triton and Pluto formed at temDeratures
above 20
K,
neon would not have been
trapped in the constituent water ice (31)
and would therefore not be expected in
their two atmospheres.
We now only have observations of one
hemisphere of this variegated planet. Fu-
ture investigations may reveal some spectral
signature that could help to identify the
dark material on both of these objects.
Laboratory studies of the CO,
CH4, and N,
ices to develop better matches to the spec-
tra should provide better insight into sur-
face conditions.
REFERENCESANDNOTES
1. The data are from W.
K.
Hartman,
D.
Tholen,
K.
Meech, and D. P. Cruikshank [Icarus83, 1 (1990)l
for 2060 Chiron;
€3.
E. Mueller,
D.
J. Tholen, W.
K.
Hartmann, and
D.
P. Cruikshank [ibid.
97,
150
(1992)l for 5145 Pholus; and
D.
Jewitt and J. Luu
[Nature 362, 730 (1993)] for 1992 QB1
. These
three objects have diameters on the order of 200
km. The great comet of 1729 achieved naked-eye
visibility although it never came closer to the sun
than 4.0 AU
[R.A. Lyttleton, The Cornetsand Their
Origin (Cambridge Univ. Press, Cambridge,
1953), p. 52; B.
G.
Marsden, Catalogue of
Cornetary Orbits (Minor Planet Center, Smithson-
ian Astrophysics Obse~atoly,Cambridge, MA,
1986), ed. 5, p. 10.
2. D. P. Cruikshank et al., Science 261, 742 (1993).
3. W.
€3.
Hubbard,
D.
M. Hunten, S. W. Dieter,
K.
M.
Hill, R.
D.
Watson, Nature 336, 452 (1988);
J.
L.
Elliot et al., lcarus
77,
148 (1989).
4. M. W. Buie and
D.
J. Tholen, lcarus
79,
23 (1989).
5. S. A. Stern,Annu. Rev. Astron. Astrophys. 30, 185
(1992).
SCIENCE
VOL.
261
6
AUGUST
1993
6. Observationswere as follows: 27 May 1992 (UT),
556 to 7:34 and 8:07to 9:31 (UT), Charon phase
0.096;28 May 1992 (UT),6:25 to 8:08 and 9:00to
9:20 (UT), Charon phase 0.255, where Charon
phase 0 is near northern elongation and Charon
phase 0.25 is near eastern elongation. The obser-
vations on 27 May had better signal to noise and
received greater weight in the analysis.
7. D. P. Cruikshank, C. B. Pilcher,
D.
Morrison,
Science 194, 835 (1976).
8.
W. J. Altenhoff et ab, Astron. Astrophys. 190, 15
(1988): H. H. Aumann and R. G. Walkter, Astron.
J.
94, 1088 (1987), M.
V.
Sykes, R. M. Cutri, L. A.
Lebofsky, R. P. Binzel, Science 237, 1336 (1987);
E.
F.
Tedesco et al., Nature 327, 127 (1987).
9. K. A. Tryka, R. H. Brown,
V.
Anicich, D. P. Cruik-
shank, T. C. Owen, Science 261, 751 (1993); W.
Grundy, B. Schmitt, E. Quirico, Icarus, in press.
10. R. L. Marcialis, G. H. Rieke, L. A. Lebofsky,
Science 237, 1349 (1987)
11. M.
W. Buie et al., Nature 329, 522 (1987).
12.
D.
J. Tholen and M. W. Buie, Astron.
J.
96, 1977
(1988)
13. Our models were calculated with the use of scat-
tering theory developed by B. Hapke
[J.
Geo-
phys. Res. 86,3039 (1981); lcarus 59,41 (1984);
ibid. 67, 264 (1986)]. In all of our calculations we
derive the radiance factor at a phase angle of 0" (i
=
e
=
0"). We assume isotropic surface scatter-
ing, a lunar-like regolith parameter for Hapke's h
value, and make no corrections for macroscopic
surface roughness.The continuum is defined as a
series of straight line segments connecting local
maxima such that data between maxima are not
cut by the continuum. This definition eliminates
absolute albedo information. However, prelimi-
nary calculations of geometric albedos for these
mixtures are entirely consistent with the values
derived from the telescopic data. We shifted the
wavelengths of the optical constants to agree with
the wavelength values for our observed Pluto
spectrum before calculation of the spectra.
14. B. Schmitt,
E.
Quirico, E. Lellouch, Proceedingsof
the Symposium on Titan, Toulouse, France, 15 to
18 September 1991, publ. no. SP-338 (European
Space Agency, Paris, 1992), p. 383; J. R. Green,
R.
H. Brown,
D.
P. Cruikshank, Bull. Am. Astron.
Soc. 23, 1208 (1991); G. B. Hansen, Appl. Opt.
25, 2650 (1986); S. G. Warren, ibid. 23, 1206
(1984); Bull. Am. Astron. Soc. 24, 978 (1992).
15. The noisiness of the data in the short-wavelength
wing of the 2.3-pm CH, bands (Fig.2) exemplifies
the inadequacy of the available optical constants.
This effect does not appear in our model for the
Triton spectrum
(2)
because there is less CH, in
Triton's surface ices than in those of Pluto.
16. The shifting of the bands of CH, diluted in
N, is
related not only to the concentration. In particular,
the band at 2.34 bm shifts slightly and then splits
as the CH, concentration is reduced. ~ventuall~
the component of the band produced by pure
methane diminishes in intensity as the 2.311-pm
component resulting from solution in N, domi-
nates the spectrum.
17. L. Trafton, Astrophys.
J.
359, 512 (1990). Eventu-
ally it should be possible to use the equation for
nonideal solid solutions of N, and CH,, which
have the form
P,
=
K.Y.V(,
where
K
is a constant
2
1
;
no value for
K
is now available.
18. G. N. Brown, Jr., and W. T. Ziegler, Adv. Cyog.
Eng. 25, 662 (1980).
19. J. L. Elliot and L. A. Young, Astron.
J.
103, 991
(1992).
20. R.
V.
Yelle and J.
I.
Lunine, Nature 339, 228
(1989).
21. Pluto's pressure scale height is 55.7
&
4.5 km
(79).
22. R.
V.
Yelle, J.
I.
Lunine,
D.
M. Hunten, lcarus 89,
347 (1991).
23. J. L. Elliot et a/.,in preparation.
24. W. M, lrvine and R. F. Knacke, in Origin and
Evolutionof Planetaryand SatelliteAtmospheres,
S. K. Atreya, J. B. Pollack, M. S. Matthews, Eds.
(Univ. of Arizona Press, Tucson, 1989), pp. 3-34.
25. J. Geiss, Astron. Astrophys. 187, 189 (1987).
Rev. Mod. Astron.
1, 1 (1988).
26. T. Owen, Astrophys. Space Sci., in press.
27. A. Bar-Nun and
S. Chang,
J.
Geophys. Res.
88,
6662 (1983).
28. E. Anders and N. Grevesse, Geochim. Cosmo-
chim. Acta. 33, 197 (1989).
29. A. L. Broadfoot et a/., Science 246, 1459 (1989);
G. L. Tyler et a/, ibid., p. 1466.
30. The partial pressure of any additional species
such as neon would have contributed to the
occultation determination of the refractivity scale
height (19). This additional pressure would have
forced us to lower our estimate of the surface
temperature below that permitted by observations
in order to reduce the pressure of N, to accom-
modate the new species.
31. D. Laufer, E. Kochavi, A. Bar-Nun, Phys. Rev. B
36, 9219 (1987).
8 March 1993; accepted 2 June 1993
The Phase Composition of Triton's Polar Caps
N.
S.
Duxbury and
R.
H.
Brown
Triton's polar caps are modeled as permanent nitrogen deposits hundreds of meters thick.
Complex temperature variations on Triton's surface induce reversible transitions between
the cubic and hexagonal phases of solid nitrogen, often with two coexisting propagating
transition fronts. Subsurface temperature distributions are calculated using a two-dimen-
sional thermal modelwith phase changes. The phase changes fracture the upper nitrogen
layer, increasing its reflectivity and thus offering an explanation for the surprisingly high
southern polar cap albedo (approximately
0.8)
seen duringthe Voyager
2
flyby. The model
has other implications for the phase transition phenomena on Triton, such as a plausible
mechanism for the origin of geyser-like plume vent areas and a mechanism of energy
transport toward them.
Since the discovery of N, on Triton (I),
Neptune's largest moon, and especially
since the Voyager flyby (2), there have
been several attempts to model the trans-
port of volatiles on Triton in response to its
complex seasonal cycle (3). It has usually
been assumed that the albedo distribution
on Triton is the result of the seasonal N,
transport (4-8), but so far no models have
successfully reproduced the observed albedo
pattern.
An understanding of the mechanisms
LJ
driving the albedo distribution is somewhat
incidental to the auestion of the vertical
phase composition of N, ice deposits on
Triton. Ground-based s~ectralmeasure-
ments show that Triton's illuminated sur-
face is mostly covered with frozen N, at
least many centimeters deep (1). The mean
insolation on Triton is greatest at the equa-
tor and smallest at the poles (4,
5,
9).
As a
result, any
N,
in excess of that which can
be sublimated and recondensed during one
-
of Triton's extreme seasons (3) is transport-
ed to permanent polar caps, which may be
several hundred meters thick and extend as
far toward the equator as 245' of latitude,
depending on Triton's total inventory of
surface N2
(8).
The seasonal redistribution
of volatiles also causes global temperature
variations on time scales of a few tens of
years (4,
5,
1
O),
which can be as much as
15 to 20
K
or as little as
2
to
4
K,
depending
again upon the total surface inventory of
N,. Furthermore, the 38
K
temperature of
M.S. 183-501, Jet Propulsion Laboratory, California
Institute of Technology, 4800 Oak Grove Drive, Pasa-
dena, CA 91109.
Triton's lower atmosphere is thought to be
representative of all the N, ice on Triton's
surface (4,
5)
and is perilously close to the
temperature (35.61 K) of the a-p (cubic-
hexagonal) phase transition in solid N,.
The subsurface ice layer on Triton is
therefore likely to experience the passage of
multiple phase transition fronts as the glob-
al temperature oscillates above and below
35.61
K.
Besides the absorption and liber-
ation of latent heat at the phase transition,
there is also a large change in volume over
a small range in temperature: Laboratory
measurements indicate that the density of
solid
N, changes by 1 to 2% in a range of
about
1
K
around 35.61
K
(1I). The in-
duced stresses cause severe fracturing of the
crystalline solid when the transition is from
the
p
to the
a
phase (1 1). (To our knowl-
edge, experiments to determine whether
a-N, crystals shatter when the phase tran-
sition is approached from lower tempera-
tures have not been done; experiments
(I
I)
have dealt only with powdered a-N2 be-
cause large crystals are difficult to obtain.)
We assume that Triton is completely
differentiated (2, 8), with a silicate core of
radius
-
1000 km overlain by a water-ice
mantle about 350 km thick and a thin
veneer of solid N,, no more than 1 km
thick. We include in our heat transfer
model the effect of the reversible phase
transition from the denser cubic
a
phase to
the hexagonal
P
phase that occurs when
the temperature rises to 35.61
K
(for the
14N2isotope at equilibrium vapor pressure),
at which latent heat of 55.62 callmol for
the 14N2 isotope (11) is absorbed. The
SCIENCE VOL.
261
'
6
AUGUST
1993
... Objects that still possess abundant methane at present include Triton, Pluto, Eris, and Makemake, in order of increasing methane absorption band depths observed in ground-based spectra (e.g. Cruikshank et al. 1993;Owen et al. 1993;Licandro et al. 2006a,b;Brown et al. 2005Dumas et al. 2007;Tegler et al. 2007Tegler et al. , 2008Tegler et al. , 2010Tegler et al. , 2012Alvarez-Candal et al. 2011). ...
... We see no evidence for CO ice absorption in either spectrum, which is somewhat surprising since it is readily seen in infrared spectra of Triton and Pluto (e.g., Cruikshank et al. 1993;Owen et al. 1993). The fundamental vibrational absorption band in pure α CO occurs at 4.67 μm. ...
Preprint
Full-text available
James Webb Space Telescope's NIRSpec infrared imaging spectrometer observed the outer solar system dwarf planets Eris and Makemake in reflected sunlight at wavelengths spanning 1 through 5 microns. Both objects have high albedo surfaces that are rich in methane ice, with a texture that permits long optical path lengths through the ice for solar photons. There is evidence for N2 ice absorption around 4.2 um on Eris, though not on Makemake. No CO ice absorption is seen at 4.67 um on either body. For the first time, absorption bands of two heavy isotopologues of methane are observed at 2.615 um (13CH4), 4.33 um (12CH3D), and 4.57 um (12CH3D). These bands enable us to measure D/H ratios of (2.5 +/- 0.5) x 10-4 and (2.9 +/- 0.6) x 10-4, along with 13C/12C ratios of 0.012 +/- 0.002 and 0.010 +/- 0.003 in the surface methane ices of Eris and Makemake, respectively. The measured D/H ratios are much lower than that of presumably primordial methane in comet 67P/Churyumov-Gerasimenko, but they are similar to D/H ratios in water in many comets and larger outer solar system objects. This similarity suggests that the hydrogen atoms in methane on Eris and Makemake originated from water, indicative of geochemical processes in past or even ongoing hot environments in their deep interiors. The 13C/12C ratios are consistent with commonly observed solar system values, suggesting no substantial enrichment in 13C as could happen if the methane currently on their surfaces was the residue of a much larger inventory that had mostly been lost to space. Possible explanations include geologically recent outgassing from the interiors as well as processes that cycle the surface methane inventory to keep the uppermost surfaces refreshed.
... Pluto's surface is composed primarily of nitrogen, methane, and carbon monoxide ice (Owen et al. 1993;Grundy et al. 2013), and has a high albedo of 0.866 ± 0.007 in visible (Marcialis et al. 1992). This combination of volatile compounds provides a thin but complex atmosphere consisting mainly of nitrogen and trace amounts of methane and other hydrocarbons . ...
Article
Full-text available
This manuscript analyzes forced photometry data of the dwarf planets Pluto and Eris obtained by the ATLAS network between 2015 and 2023 using the o- and c-band filters. The phase curves of Pluto and Eris show no noticeable opposition effect. Eris shows no changes in its absolute magnitudes between 2016 and 2022, and its weighted mean absolute magnitudes are H\(_{o}=-1.35 \pm 0.03\) and H\(_{c}=-1.01 \pm 0.02\). Pluto’s absolute magnitudes in the o and c filters show temporal variations between 2017 and 2022 Pluto and Eris show temporal variations in their phase coefficients \(\beta \) in the o and c filters related to “phase reddening.’ This effect is more pronounced for Eris than for Pluto. The absolute color Hc-Ho of Eris is \(0.34 \pm 0.05\). The absolute colors of Pluto are systematically redder than those of Eris. The absolute color and relative phase coefficients of Pluto in the o- and c-filter show a significant anti-correlation on an annual basis, which is a direct result of “phase reddening”. The relationship between these two variables is not obvious in Eris because of the small annual variations in absolute color. Eris and Pluto show no comet-like outbursts during the observation period studied here.
... Additional discoveries continued in the 1990s and 2000s with improvements to ground-based observations and the advent of the Hubble Space Telescope (HST). This included the detection of nitrogen and carbon monoxide ices (Owen et al., 1993). While variations in the brightness of the surface had been mapped using light curves from ground-based photometric observations (e.g., Buie & Tholen, 1989;Buie et al., 1992), Stern et al. (1997) used the Hubble Space Telescope (HST) to collect the first direct images of the Pluto's surface. ...
... Larger, planetary-scale bodies with stronger gravity and/or cooler surfaces could better retain their volatiles (e.g., Schaller and Brown 2007;Johnson et al. 2015). In our Solar System, Pluto and Triton host abundant N 2 , CO, and CH 4 on their surfaces, as revealed by the vibrational absorption features of these molecules in near-infrared reflectance spectra (e.g., Owen et al. 1993;Cruikshank et al. 1993). Sublimation of N 2 , CO, and CH 4 powered by sunlight leads to their seasonal migration (e.g., Spencer et al. 1997;Trafton et al. 1998). ...
Preprint
Full-text available
Nitrogen, carbon monoxide, and methane are key materials in the far outer Solar System where their high volatility enables them to sublimate, potentially driving activity at very low temperatures. Knowledge of their vapor pressures and latent heats of sublimation at relevant temperatures is needed to model the processes involved. We describe a method for using a quartz crystal microbalance to measure the sublimation flux of these volatile ices in the free molecular flow regime, accounting for the simultaneous sublimation from and condensation onto the quartz crystal to derive vapor pressures and latent heats of sublimation. We find vapor pressures to be somewhat lower than previous estimates in literature, with carbon monoxide being the most discrepant of the three species, almost an order of magnitude lower than had been thought. These results have important implications across a variety of astrophysical and planetary environments.
Preprint
Full-text available
Assessing the origin of Pluto and Triton has profound implications for the bigger picture of Solar System formation and evolution. In such a context, this chapter reviews our current knowledge of the formation conditions of Pluto and Triton's constitutive building blocks in the protosolar nebula, which can be derived from their known or estimated volatile contents. Assuming that the ultravolatiles carbon monoxide and dinitrogen detected in Pluto and Triton are primordial, the presence of these molecules suggest that the two bodies accreted material originating from the vicinity of the carbon monoxide and dinitrogen icelines. Dinitrogen--rich and water--poor comets such as comet C/2016 R2 (PanSTARRS) obviously present a compositional link with Pluto and Triton, indicating that their building blocks formed in nearby regions of the protosolar nebula, despite of the variation of the water abundance among those bodies. Also, the assumption of Triton's growth in Neptune's circumplanetary disk requires that its building blocks formed at earlier epochs in the protosolar nebula, to remain consistent with its estimated composition.
Article
Full-text available
Ocean worlds, or icy bodies in the outer solar system that have or once had subsurface liquid water oceans, are among the most compelling topics of astrobiology. Typically, confirming the existence of a subsurface ocean requires close spacecraft observations. However, combining our understanding of the chemistry that takes place in a subsurface ocean with our knowledge of the building blocks that formed potential ocean worlds provides an opportunity to identify tracers of endogenic activity in the surface volatiles of Pluto and Triton. We show here that the current composition of the volatiles on the surfaces and in the atmospheres of Pluto and Triton are deficient in carbon, which can only be explained by the loss of CH 4 through a combination of aqueous chemistry and atmospheric processes. Furthermore, we find that the relative nitrogen and water abundances are within the range observed in building block analogs, comets, and chondrites. A lower limit for N/Ar in Pluto’s atmosphere also suggests source building blocks that have a cometary or chondritic composition, all pointing to an origin for their nitrogen as NH 3 or organics. Triton’s lower abundance of CH 4 compared to Pluto, and the detection of CO 2 at Triton but not at Pluto points to aqueous chemistry in a subsurface ocean that was more efficient at Triton than Pluto. These results have applications to other large Kuiper Belt objects as well as the assessment of formation locations and times for the four giant planets given future probe measurements of noble gas abundances and isotope ratios.
Article
Full-text available
A mathematically rigorous formalism is derived by which an arbitrary photometric function for the bidirectional reflectance of a smooth surface may be corrected to include effects of general macroscopic roughness. The correction involves only one arbitrary parameter, the mean slope angle , and is applicable to surfaces of any albedo. Using physically reasonable assumptions and mathematical approximations the correction expressions are evaluated analytically to second order in . The correction is applied to the bidirectional reflectance function of B. Hapke (1981, J. Geophys. Res.86, 3039–3054). Expressions for both the differential and integral brightnesses are obtained. Photometric profiles on hypothetical smooth and rough planets of low and high albedo are shown to illustrate the effects of macroscopic roughness. The theory is applied to observations of Mercury and predicts the integral phase function, the apparent polar darkening, and the lack of limb brightness surge on the planet. The roughness-corrected bidirectional reflectance function is sufficiently simple that it can be conveniently evaluated on a programmable hand-held calculator.
Article
Full-text available
The author presents estimates for molecular and elemental abundances in the material released by Halley's comet. Highly volatile material is very abundant, consistent with condensation and accretion at very low temperature. Isotopic data obtained with different methods in material of cometary origin support the view that comets are regular members of the solar system which, however, have preserved the original characteristics of the condensed and accreted matter better than other bodies in this system. This article is an updated version of 44.103.589.
Article
Laboratory spectra of the first overtone band (2.1480 micrometers, 4655.4 reciprocal centimeters) of solid nitrogen show additional structure at 2.1618 micrometers (4625.8 reciprocal centimeters) over a limited temperature range. The spectrum of Neptune's satellite Triton shows the nitrogen overtone band as well as the temperature-sensitive component. The temperature dependence of this band may be used in conjunction with ground-based observations of Triton as an independent means of determining the temperature of surface deposits of nitrogen ice. The surface temperature of Triton is found to be 38.0+2.0–1.0 K, in agreement with previous temperature estimates and measurements. There is no spectral evidenceforthe presence of α-nitrogen on Triton's surface, indicating thatthere is less than 10 percent carbon monoxide in solid solution with the nitrogen on the surface.
Article
On 16 August 1983 the Infrared Astronomical Satellite made two separate pointed observations of Pluto and its moon Charon. Because of the small angular displacement of the system between the times of measurement, the Pluto-Charon system was identified as a source in the Serendipitous Survey (SSC 14029+0518). Detections were made at 60 and 100 micrometers with color-corrected flux densities of 581 ± 58 and 721 ± 123 millijanskys, respectively. Pluto is best described as having a dark equatorial band, and brighter polar caps of methane ice extending to ±45° latitude, at most. An upper limit of approximately 9 meter-amagats is placed on the column abundance of a methane atmosphere on Pluto, which is comparable to recent upper limits based on independent ground-based spectroscopy.
Article
We present measurements of the temperature dependence of the near-infrared spectra of α and β nitrogen ice, measured in transmission in 1-cm-thick samples. Our 0.9-cm-1 resolution spectra of β ice reveal that the 4650 cm-1 (2.15 μm) hand is a complex, temperature-dependent absorption, composed of at least two components. For lower temperature α ice, our spectra show a complex, temperature-dependent pattern involving several weak features in addition to the strong, narrow band we attribute to a double phonon transition. We apply our results in modeling telescopic spectra of Triton and conclude that the spectral data are consistent with a surface composed predominantly of β nitrogen ice at temperatures between 35.6 and 41 K, in the form of grains of order 1 cm or larger in size or in the form of a surface glaze with a depth of at least 6 cm.
Article
Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data.
Article
The recently discovered outer Solar System object, (5145) 1992 AD, in a somewhat Chiron-like orbit, has colors far redder than any other known asteroids or comets, and represents a hitherto-unknown spectral class. The red color may be associated with exposure of organics that are purer or more pristine than those found on the surfaces of C, P, and D asteroids, and comets, and such materials are likely to show diagnostic spectral features in the infrared.
Article
Consideration of the roles of thermal conduction, eddy mixing, condensation, and radiative heating in the thermal balance of Triton's lower atmosphere results in the conclusion that the temperature gradient is negative in the lower atmosphere but becomes positive at higher altitudes. The negative temperature gradient is caused by eddy mixing, which drives the atmosphere toward the dry adiabat. The positive gradient at higher altitudes is a result of the downward conduction of heat produced in the ionosphere. The low concentrations of thermally active molecules and the small aerosol optical depths imply that radiative processes have a negligible effect on the thermal structure. We show that this temperature profile is reasonably consistent with the data from the radio-occultation experiment. Based on the height of the geyser-like plumes seen by Voyager we suggest that the convective and conductive regions of the atmosphere join at a tropopause near 10 km. We suggest that the eddy diffusion and heat-transport coefficients are about 106 cm2/s below 8 km, dropping to about 300 cm2/sec just above, for a profile that resembles the Earth's. Rather modest geyser action in the subliming nitrogen ice cap triggers moist convective plumes which must have diameters of at least 1 km and may have velocities up to 100 m/sec; they stop within about 1 km of the tropopause.
Article
New abundance tables have been compiled for Cl chondrites and the solar photosphere and corona, based on a critical review of the literature to mid-1988. The meteorite data are generally accurate to ± 5–10%. Significant discrepancies between Sun and meteorites occur only for Fe, Mn, Ge, Pb, and W; other well-determined elements agree to ±9% on the average. There is no evidence for group fractionations in Cl chondrites of cosmochemically similar elements (refractories, siderophiles, volatiles, etc.), but a selective fractionation of Fe cannot be ruled out. Abundances of odd-A nuclides between A = 65 and 209 show a generally smooth trend, with elemental abundances conforming to the slope defined by isotopic abundances. Significant irregularities occur in the NdSmEu region, however, suggesting that the abundance curve is dependably smooth only down to the ∼20% level.