ArticlePDF Available

Weathering, atmospheric deposition and vegetation uptake: Role for ecosystem sensitivity to acid deposition and critical load

Authors:
  • Caisse Centrale de Reassurance
  • CRBE-Centre de Recherches sur la Biodiversité et l'Environnement

Abstract and Figures

Critical loads of acidity represent the maximum acceptable atmospheric deposition for an ecosystem type. Two hundred and forty-one ecosystem types have been defined in France using pedologic, geologic and vegetation data. Weathering rate plays the most important part in soil buffering capacity, but for poor weatherable soils, non-marine atmospheric deposition represents up to 80% of base-cation inputs. Base-cation vegetation uptake decreases significantly the buffering capacity in case of high-productivity forests. Ecosystems combining low weathering rate and low non-marine base-cation deposition with high biomass productivity are the most sensitive to acidification.
Content may be subject to copyright.
Weathering, atmospheric deposition and vegetation uptake:
role for ecosystem sensitivity to acid deposition and critical load
David Moncoulona, Anne Probst a,, Jean-Paul Partyb
aCNRS–IRD–UPS, LMTG, 14, av. Édouard-Belin, 31400 Toulouse, France
bSol Conseil, 251, route de la Wantzenau, Robertsau, 67000 Strasbourg, France
Abstract
Critical loads of acidity represent the maximum acceptable atmospheric deposition for an ecosystem type. Two hundred and
forty-one ecosystem types have been defined in France using pedologic, geologic and vegetation data. Weathering rate plays
the most important part in soil buffering capacity, but for poor weatherable soils, non-marine atmospheric deposition represents
up to 80% of base-cation inputs. Base-cation vegetation uptake decreases significantly the buffering capacity in case of high-
productivity forests. Ecosystems combining low weathering rate and low non-marine base-cation deposition with high biomass
productivity are the most sensitive to acidification.
Résu
Altération, dépôts atmosphériques et prélèvement par la végétation : rôle dans la sensibilité des écosystèmes aux dé-
pôts acides et charges critiques. Les charges critiques d’acidité représentent le dépôt atmosphérique maximal admissible pour
un écosystème. Deux cent quarante et un types d’écosystèmes ont été définis en France à partir de données pédologiques, géo-
logiques et de végétation. L’altération joue un rôle prépondérant contre l’acidification, mais pour les sols faiblement altérables,
les dépôts atmosphériques non marins peuvent représenter jusqu’à 80 % des apports de cations basiques. Le prélèvement de
cations par la végétation contribue significativement à diminuer le pouvoir tampon des sols pour les forêts à forte productivité.
Les écosystèmes combinant faible altération et faibles dépôts de cations non marins ainsi qu’une forte productivité sont les plus
sensibles à l’acidification.
Keywords: acidification; ecosystems; weathering; atmospheric deposition; critical load; France
Mots-clés : acidification ; écosystèmes ; altération ; dépôt atmosphérique ; charge critique ; France
*Corresponding author.
E-mail address: aprobst@lmtg.obs-mip.fr (A. Probst).
Version française abrégée
Les dépôts atmosphériques acides de soufre et
d’azote ont fortement augmenté en Europe entre 1960
et 1980. Depuis, les émissions de soufre ont été ré-
duites de 70% alors que les émissions d’azote sont
constantes ou en légère augmentation [1,5]. L’étude
de ces phénomènes en France a montré leur impact
sur la santé des écosystèmes forestiers et aquatiques
[9,10,16,17]. En forêt, l’acidification se traduit par
une augmentation de [H+]et[Al
3+] dans la solution
de sol, la désaturation du complexe d’échange et le
lessivage des cations basiques [19]. La convention de
l’ONU sur la pollution atmosphérique transfrontière à
longue distance (1979) a défini les charges critiques
comme « l’estimation quantitative de l’exposition à un
ou plusieurs polluants, en dessous de laquelle des ef-
fets néfastes significatifs sur des éléments sensibles
précis de l’environnement n’apparaissent pas, en l’état
actuel des connaissances » [11]. La France, en tant que
pays signataire du dernier protocole (Göteborg, 1999),
s’est engagée à calculer les charges critiques spéci-
fiques à ses écosystèmes et à les fournir aux instances
chargées de la coordination au niveau européen [13,
14,18]. Ces données constituent un élément important
dans la négociation sur la réduction des émissions de
polluants. La présente étude vise à déterminer la sen-
sibilité des écosystèmes de la France métropolitaine
vis-à-vis des dépôts atmosphériques acides par le cal-
cul des charges critiques en soufre et azote. Dans ce
but, une nouvelle classification des écosystèmes est
créée à partir de données géologiques, pédologiques et
de végétation. L’altération, les dépôts atmosphériques
et les prélèvements par la végétation sont déterminés
et l’importance relative de ces paramètres est mise en
évidence.
L’équation de calcul des charges critiques en soufre
est la suivante [6] :
CLmax(S)=BCweath +BC
dep BCuptake ANCle,crit
Pour la charge critique en azote acidifiant (si les dépôts
de soufre sont nuls) :
CLmax(N)=CL(S+N)
=CLmax(S)+Nimm +Nuptake
le suffixe weath est le taux d’altération, le le les-
sivage,
dep désigne les dépôts totaux non ma-
rins, uptake le prélèvement par la végétation, et
crit signifie critique, imm immobilisation. Tous les
flux sont en equivha1an1. BC(cations basiques) =
Mg2++Ca2++K++Na2+;BC
dep =Mg2++Ca2+
+K++Na2+Cl.
Les deux principales méthodes pour le calcul de la
limite critique, ANCle,crit sont [6] :
(1) [H+]et[Al
3+] critiques dans l’eau de drainage
ANCle,crit [Al]=−Q[H+]crit +[Al3+]crit
(2) [Al]
[BC]critique dans l’eau de drainage
ANCle,crit [Al/BC]
=−Q[H+]crit [Al]
[BC]crit
×1,5BC
dep +BCweath BCuptake
Le drainage Qest déterminé en combinant les
cartes des écosystèmes et des pluies efficaces, via une
relation entre pluies efficaces et eau de drainage sur
12 stations du réseau français de surveillance des fo-
rêts (RENECOFOR) [12,21].[H+]crit et [Al3+]crit sont
fixés respectivement à 25 µequiv l1(pH =4,6) et à
200 µequivl1[3,13,16].[Al]
[BC]crit est fixé à 1,2 [12].
La première méthode utilise des concentrations cri-
tiques fixées de protons et d’aluminium et est donc
essentiellement dépendante du drainage. La seconde
méthode prend en compte un bilan de flux de cations
en solution, qui limite la toxicité de l’aluminium à
pH faible. Prenant en compte un effet tampon lié au
milieu, la seconde méthode est utilisée à l’échelle na-
tionale.
Les dépôts atmosphériques de cations basiques
BC
dep, corrigés des apports marins [4], ont été déter-
minés à partir de l’extrapolationde données de dépôts
hors couvert forestier du réseau RENECOFOR [2] sur
une grille de 10 ×10 km. Pour estimer les dépôts secs
et humides sous couvert forestier, et en l’absence de
données spatialisées, un coefficient a été appliqué aux
dépôts hors couvert. Il est estimé à partir de mesures
in situ [21] de pluviolessivats, qui sont ici considérés
comme équivalents aux dépôts totaux sous couvert fo-
restier. Les prélèvements par la gétation BCuptake et
Nuptake sont calculés à partir des données de l’Inven-
taire forestier national sur la production de biomasse
par les forêts [8] et du contenu de l’espèce dominante
en cations et azote [12]. Le taux d’altération en cations
basiques BCweath est calculé en appliquant le modèle
numérique PROFILE [20] aux sols des Vosges, des
Ardennes et de 12 stations du réseau RENECOFOR.
Ces résultats sont ensuite extrapolés à l’ensemble des
sols de la carte des sols de France, en se basant sur leur
teneur en argile [12]. L’immobilisation d’azote est es-
timée à 150 equivha1an1pour les zones de plaine
et à 300 equivha1an1pour les zones de montagne
[15].
Les classifications d’écosystèmes existantes, es-
sentiellement basées sur des données de végétation,
manquent d’informations pédologiques et géologiques
pour être appliquées au calcul des charges critiques
[12]. La création d’une nouvelle classification a donc
été nécessaire. La carte des sols et matériaux paren-
taux de l’INRA est regroupée en 31 types [7,12], puis
croisée avec la carte de végétation potentielle. La carte
résultante est ensuite croisée avec la carte d’occupa-
tiondusol[12]. Seuls les polygones forestiers ou de
plus de 85 % de prairies sont conservés. Parmi les 241
types d’écosystèmes de la classification finale, cinq
écosystèmes non calcaires et représentatifs des zones
sensibles à l’acidification ont été choisis pour présen-
ter le calcul des charges critiques (Tableau 1). Les
charges critiques de soufre ont été calculées et carto-
graphiées à l’échelle de la France (Fig. 1).
Le taux d’altération du sol est le premier indi-
cateur du pouvoir tampon vis-à-vis de l’acidifica-
tion. Selon les types de sol, l’altération produit 30
à30×103equiv ha1an1. Les écosystèmes sur
sols développés sur roches calcaires et volcaniques
ont un pouvoir tampon élevé vis-à-vis de l’acidifi-
cation (BCweath >1500 equivha1an1). Les autres
écosystèmes (51,5% de la surface étudiée) sont po-
tentiellement sensibles à l’acidification. Les surfaces
les plus sensibles (BCweath <200 equivha1an1)
correspondent aux sables et grès acides (Tableau 1,
sites 3, 4 et 5). Pour les granites (site 2), les schistes
et les quartzites, BCweath est compris entre 200 et
500 equivha1an1. Les formations détritiques ont
des taux d’altération compris entre 500 et 1000 equiv·
ha1an1. Les dépôts atmosphériques de cations ba-
siques nonmarins varient de 112 à 2181 equivha1·
an1. Ils peuvent apporter un pouvoir tampon non né-
gligeable sur des sols l’altération est faible. Ce phé-
nomène est important, au vu de nosrésultats au sud du
Massif central, dans les massifs cristallins des Alpes
du Nord et sur les granites vosgiens. Les prélèvements
par la végétation varient de 67 à 1222 equivha1an1
pour les cations et de 57 à 1324 equivha1an1pour
l’azote. De forts prélèvements de cations diminuent
le pouvoir tampon du sol. Au contraire, les prélève-
ments d’azote diminuent l’impact acidifiant. BCuptake
et Nuptake sont importants pour les espèces dominantes
Pinus pinaster A., Picea excelsa L. pour les coni-
fères, Fagus sylvatica L.oulegenreQuercus pour
les feuillus. Les régions à forte productivité sont sur-
tout le Sud-Ouest (côte atlantique), le Massif central
et le Nord-Est de la France. L’influence du choix de
l’espèce forestière n’est pas négligeable sur des sites
sensibles à l’acidification.
Les charges critiques calculées sur les écosystèmes
français mettent en évidence des zones considérées
sensibles aux dépôts acidifiants de soufre et d’azote :
Landes, schistes de Bretagne, Vendée et Normandie,
formations détritiques en Sologne et Île-de-France,
grès vosgiens, granites du Nord-Est du Massif central.
Les zones de dépassement de charge critique sont dé-
terminées par comparaison avec les données de dépôts
atmosphériques acides [2]. Ces zones sont principale-
ment : la côte atlantique (Landeset Pyrénées), les grès
vosgiens et les schistes de Bretagne et de Normandie.
Ce sont ces écosystèmes « sensibles», qui sont utili-
sés pour la modélisation dynamiquede la réponse aux
baisses de dépôts atmosphériques acidifiants.
1. Introduction
Between 1960 and 1980, long-range transbound-
ary deposition of atmospheric acidifying pollutants
(SO2,NO
x,andNH
3) has dramatically increased, fol-
lowing the rise of industrial activity, agriculture and
traffic development in Europe. Since 1980, sulphur
emissions have been reduced up to 70%, but nitro-
gen emissions are constant or slightly increasing [1,
5]. Acid atmospheric deposition on soil induces the
increase of [H+]and[Al
3+] in soil solution and the
leaching of base cations [19]. Toxicity of Al3+at
low pH is responsible for some ecosystem damage.
In France, the effects of acidification on surface wa-
ter [10,16] and forest [9,17] have been investigated
since the 1980s, mainly in the Vosges Mountains and
the Ardennes. Within the framework of the United Na-
tions Economic Commission for Europe ‘Convention
on Long-Range Transboundary Air Pollution’ (1979),
31 countries signed the 1999 Gothenburg protocol to
reduce acidification and eutrophicationby 2010. Since
1991, critical load maps are used as a basis for inter-
national negotiations on air pollution abatement strate-
gies [6]. The critical load is “the quantitative estimate
of an exposure to one or more pollutants below which
significant harmful effects on specified sensitive ele-
ments of the environments do not occur according to
the present knowledge” [11]. As a signatory country,
France has provided critical load results to the Euro-
pean coordination centre database in 1995, 1999, and
2003 [13,14,18]. These data play an important part in
the negotiation on pollutant emission reduction. Crit-
ical load input parameters were derived from a sim-
plified ecosystem classification, which consisted of 31
types of forest ecosystems, and were mainly focused
on the determination of weathering rates and acid neu-
tralising capacity.
The present study aims at determining the ecosys-
tem sensitivity against acid atmospheric deposition in
metropolitan France. For this purpose, a new ecosys-
tem classification was created from geological, pedo-
logical and vegetation parameters. Soil weathering
rate, atmospheric deposition, and base-cation removal
in vegetation are determined and their relative weight
is discussed in the calculations of critical loads of sul-
phur and nitrogen.
2. Method
2.1. Critical-load calculation
Critical loads for sulphur (SO2) and nitrogen (NOx
and NHx) are derived from a simplified steady-state
mass balance (Eq. (1)) applied on the soil top-layer
leachate flux [6]:
Hle +Alle +BCle +NH4,le
(1)
=SO4,le +NO3,le +Clle +HCO3,le +RCOOle
Leaching of acid neutralising capacity (ANCle)isde-
fined as (Eq. (2)):
(2)ANCle =HCO3,le +RCOOle Hle Alle
At the steady state, after all simplifications (Eqs. (3)–
(6)):
(3)BCle =BCweath +BC
dep BCuptake
(4)Clle =Cl
dep
(5)SO4,le =Sdep
(6)Nle =NO3,le =Ndep Nuptake Nimm
Critical load for S, CLmax(S), thus corresponds to the
critical Sdep (Eq. (7)) with no N deposition:
CLmax(S)=BCweath +BC
dep BCuptake
(7)ANCle,crit
Critical load for acid nitrogen CLmax(N) corresponds
to the critical deposition of nitrogen assuming S depo-
sition is zero (Eq. (8)):
CLmax(N)=CL(S+N)
(8)=CLmax(S)+Nimm +Nuptake
Subscript weath stands for weathering, le for leach-
ing,
dep for total non-marine deposition, uptake for
vegetation uptake, crit for critical. All fluxes are in
equivha1yr1. BC(base cations) =Mg2++Ca2++
K++Na2+;BC
dep =Mg2++Ca2++K++Na2+
Cl.N
imm stands for nitrogen immobilisation.
2.1.1. Critical acid neutralising capacity
determination (ANCle,crit)
Two methods for critical ANCle,crit calculation
are compared (Eq. (2)), assuming that HCO3,le and
RCOOle can be neglected for forest soils [6]:
(1) critical [H+]and[Al
3+] in drainage water
(Eq. (9)):
(9)ANCle,crit [Al]=−Q[H+]crit +[Al3+]crit
(2) critical ratio [Al]
[BC]in drainage water (Eq. (10)):
ANCle,crit [Al/BC]
=−Q[H+])crit [Al]
[BC]crit
(10)×1.5(BC
dep +BCweath BCuptake)
Q, the drainage, is determined after combining the
ecosystem and drainage water maps, according to the
relationship between efficient rain water and drainage
calculated on 12 stations of the RENECOFOR net-
work (French forest survey network) [12,21].Ac-
cording to the French forest sensitivity, [H+]crit and
[Al3+]crit are set respectively to 25 µequivl1(pH =
4.6) and 200 µequiv l1[3,13,16].[Al]
[BC]crit is set to 1.2;
this value has been determined on soil solution sam-
ples from 17 sites of the RENECOFOR network [12].
The first method uses constant critical concen-
tration of protons and aluminium and is essentially
drainage-dependent. The second method takes into ac-
count the base-cation fluxes in soil solution, which
decrease Al toxicity. In the present study, to integrate
the ecosystem buffering capacity, the second method
is used at the national scale.
2.1.2. Atmospheric non-marine deposition (BC
dep)
Base-cation deposition, BC
dep (Eq. (11)), has been
determined at the national scale, using extrapolation of
the RENECOFOR network data [2] on a 10 ×10 km
grid. These deposition fluxes are determined from
long-term bulk concentration measurements and in-
terpolated long-term rainfall associated volumes. All
relevant data have been sea-salt corrected, on the ba-
sis of the ratio between base cations and sodium,
considering that Na deposition is 100% originating
from sea salts (Eq. (12)). Marine cation deposition is
not associated with an increase in buffering capacity,
since their deposition is always accompanied with the
strong acid anions Cland SO2
4[4]. The concen-
tration ratios in seawater used for sea-salt correction
are: [Cl]
[Na]sea =1.80; [K]
[Na]sea =0.036; [Ca]
[Na]sea =0.038,
and [Mg]
[Na]sea =0.12 (gl1/gl1). Marine salinity is
35 g kg1.
(11)
BC
dep =Ca
dep +K
dep +Mg
dep +Na
dep Cl
dep
C
dep =Cdep Nadep[C]
[Na]sea (12)with C =Ca,Mg,KorCl
For forest ecosystems, total (wet+dry) deposition
must be considered, because it represents a significant
higher input to soils than the bulk ‘open-field’ depo-
sition [16]. As a default value, throughfall deposition
is considered as an estimation of total (wet +dry) de-
position under forest cover. Since throughfall data are
not available at the national scale [21], a coefficient is
applied to the bulk deposition data from the RENECO-
FOR network, by calculating the ratio between bulk
and throughfall deposition on long-term investigated
sites [21]. This ratio depends on tree species and loca-
tion of the site.
2.1.3. Base-cation and nitrogen vegetation uptake
(BCuptake and Nuptake)
Base-cation and nitrogen uptake (N and BCuptake)
represent the net removal of elements by the vege-
tation (Eqs. (13) and (14)) on a long term. At the
steady state, it is dependent on forest management.Be-
cause annual forest uptake data was not available, the
method of the CCE guidance manual [6] was applied:
(13)BCuptake =Biomassgrowth [BC]biomass
(14)Nuptake =Biomassgrowth [N]biomass
Biomassgrowth is determined using data on regional
forest productivity and forest coverage [8]. [BC]biomass
and [N]biomass is the natural content of base cations in
the biomass, which depends on tree species [12,15].
2.1.4. Base-cation weathering rate (BCweath)
To approximate weathering fluxes, the PROFILE
model [20] was applied on French soil conditions.
It uses experimental kinetic laws to calculate min-
eral dissolution at the steady state, according to soil
properties, in a multi-layer soil. Soil mineral com-
position was determined with normative calculations
using the chemical composition of forest soils from
the Vosges Mountains, the Ardennes and 12 sites from
the RENECOFOR network, representative of the acid
sensitive area [12]. From these results, a relationship
between soil clay content and weathering rate was
determined for the 20–40 cm horizon of these soils
(Eq. (15))[12]:
(15)
BCweath =0.1666(AS2040)(n=12,R
2=0.94)
S2040 is the sum of the base cations (mequiv/100 g) in
this horizon and BCweath is the base-cation weathering
rate.
After calibration on 102 sites of the RENECO-
FOR network, weathering rates were thus extrapo-
lated using the French soil clay content at the national
scale [12].
2.1.5. Nitrogen immobilisation (Nimm)
Nitrogen immobilisation in the soils was set up
for plain and mountain areas, respectively to 150 and
300 equivha1yr1[15], regarding French environ-
mental conditions.
Table 1
Description of the five selected ecosystems. Input data and critical loads for S and N for the five selected ecosystems. All fluxes are in
equiv ha1yr1
Tableau 1
Description des cinq écosystèmes sélectionnés. Données d’entrée et charges critiques en S et N pour les cinq écosystèmes sélectionnés. Tous
les flux sont exprimés en equiv ha1yr1
Ecosystem No. 12 3 4 5
Location Massif Central Massif Central Paris Basin Vosges Mountains Landes
Bedrock Volcanic rocks Granite Tertiary sands Sandstone Eolian sand
Soil Andosol Dystric cambisol Podzoluvisol Podzol Podzol
Vegetation Fagus sylvatica
L. Quercus humilis
Miller Carpinus betulus
L. & Quercus
Fagus
sylvatica L. Pinus pinaster
Aiton
Q(myr
1) 0.6 0.4 0.125 0.275 0.35
BC
dep 1011 1507 210 815 600
BCuptake 320 319 171 697 500
BCweath 2000 250 30 30 30
Ni300 150 150 150 150
Nuptake 346 139 152 755 423
BCdep +BCweath BCuptake 2691 1438 69 148 130
ANCle,crit [Al/BC] 4994 2688 155 335 321
CLmax(S) with ANCle,crit [Al/BC] 7685 4126 224 483 451
CLmax(N) with ANCle,crit [Al/BC] 8331 4415 526 1388 1024
2.2. Ecosystem classification and choice of five
representative sites
Existing ecosystem classifications, mainly based on
vegetation data, are not adapted to critical-load cal-
culation, which mostly depends on the soil buffering
capacity [12]. To estimate critical loads, a new ecosys-
tem classification, which combines soil, bedrock, and
vegetation data must be defined at the national scale.
The soil map, which represents 21 types of soils, was
combined with the parent material map, composed of
31 types of bedrock, using a Geographic Information
System [7,12]. Thirty-one combinations between soils
and bedrocks were distinguished. A potential vegeta-
tion map (representing the steady-state long term veg-
etation cover), which is composedof 18 types of vege-
tation [12], is then overlaid with the soil-bedrock map.
The resulting map is further combined with the current
land use map. Forest polygons or polygons with more
than 85% grassland, considered as ‘natural’ ecosys-
tems, are finally kept. This new classification consists
of 241 ecosystem types. The ‘natural ecosystem’ area
represents 179429 km2, i.e., 33% of the French terri-
tory. Among these types, in the present study,five dif-
ferent non-calcareous ecosystems were chosen to rep-
resent critical load calculation on French acid sensitive
areas (Table 1). Site 1 presents high weathering and
high non-marine base-cation atmospheric deposition.
Site 2 is characterized by high non-marine base-cation
deposition. Site 3 is characterized by low weather-
ing rate, low drainage and low non-marine base-cation
deposition. Site 4 exhibits low weathering rate, high
non-marine base-cation deposition and high vegeta-
tion uptake. Site 5 is characterized by low weathering
rate, high marine base-cation deposition, and high veg-
etation uptake.
3. Results and discussion
Results of the detailed calculation of critical loads
for the five selected sites are described in Table 1.
The critical loads for French forest and grassland
ecosystem classification are presented in Fig. 1.Ac-
cording to the guidance manual [6], five sensitiv-
ity classes are defined: 0–200 equiv ha1yr1; 200–
500 equivha1yr1; 500–1000 equiv ha1yr1;
1000–2000 equiv ha1yr1, and the less sensitive,
class 5, is >2000 equivha1yr1.
Fig. 1. Critical loads of sulphur for French forest and grassland ecosystems. Location of the five selected sites.
Fig. 1. Charges critiques de soufre pour les écosystèmes forestiers et prairiaux français. Localisation des cinq sites sélectionnés.
3.1. Weathering rates (BCweath,Eq.(7))
For French soils, BCweath ranges between 30 and
30 ×103equivha1yr1. For calcareous ecosystems
(46% of forests and grasslands), BCweath exceeds
2000 equivha1yr1, because of the high percent-
age of calcium carbonate in soils. With such a nat-
ural buffering capacity, these sites are not sensitive to
acidification. Volcanic soils developed on basalt (Ta-
ble 1, site 1), granodiorite, gabbro or diorite (2.5% of
the studied area) present also high weathering rates
(1500–2000 equivha1yr1). The presence of ap-
atite (>1%), of volcanic glasses, and the high per-
cent of anorthite (>25%) in the volcanic soils ex-
plain their efficient buffering capacity against acidi-
fication. The other ecosystems are more sensitive to
acidification: 51.5% of the French forests and grass-
lands, i.e., 92 405 km2. The most sensitive ecosystems
(BCweath <200 equivha1yr1) are located on acid
sands, Tertiary sands and sandstone (Table 1, sites 3,
4, and 5), with a high percentage of unweatheredmin-
erals (80–95% of quartz). BCweath ranges between 200
and 500 equivha1yr1on granite (Table 1, site 2),
schists or quartzites. High concentrations of orthose
(K-feldspar), Na or Ca plagioclases, and traces of
other minerals (such as apatite) slightly increase the
base-cation weathering rate. Detrital formations in the
central part of France present intermediate weathering
rate (500–1000 equivha1yr1). BCweath is the first
indicator of soil buffering capacity against acidifica-
tion in the long term.
3.2. Base-cation atmospheric deposition (BC
dep,
Eq. (7))
For French ecosystems, BC
dep ranges between
112 equivha1yr1and 2181 equivha1yr1.In
the hard acid sedimentary and metamorphic rocks of
the Alps, the granite of the Massif Central (Table 1,
site 2) and the Vosges Mountains (Table 1, site 4), at-
mospheric deposition represents more than 80% of the
base-cation input in the mass balance. In the Vosges
mountains, BC
dep (800–1500 equiv ha1yr1) mostly
originates long-range transport of emissions from the
nearby industrial areas in France and Germany. In
these areas, the increase of sulphur deposition is often
accompanied with an increase of base-cation deposi-
tion, which contributes to the soil buffering capacity
[17]. In the southern part of the Massif Central and
the Alp mountains, Ca is supposed to originate the
calcareous dust from the close Mediterranean ecosys-
tems and the high Ca concentrations in the Saharan
air masses [2]. In the central part of France (Table 1,
site 3), low atmospheric base-cation deposition does
not increase the buffering capacity of poor weathered
soils.
3.3. Vegetation uptake (BCuptake,Eq.(7))
BCuptake ranges between 67 and 1222 equiv ha1·
yr1.N
uptake ranges between 57 and 1324 equivha1·
yr1. High removal of base cations and nitrogen (Ta-
ble 1, site 4 and 5) has to do with the important bio-
mass productivity of beech forests (Fagus sylvatica L.)
in northeastern France and pine forests (Pinus pinaster
Aiton) in the coastal Atlantic area. At the national
scale, species associated with high BCuptake are Pinus
pinaster Aiton, Picea excelsa L. (for coniferous), Fa-
gus sylvatica L. and the Quercus genus (for deciduous
trees). On the opposite, grasslands, marshes, and other
non-forest areas exhibit low productivity. It is impor-
tant to notice that, in the long-term, the flux of element
uptake must only be considered for harvested forests.
On the other sites, at steady state, uptake by vegetation
tends towards zero, i.e. uptake theoretically equals de-
position by inner forest cycle. The influence of tree
species and forest management on ecosystem sensitiv-
ity to acidification is therefore not negligible on acid
sensitive sites.
3.4. French critical load map (Fig. 1)
The most sensitive areas to S deposition (CLmax(S)
<1000 equiv ha1yr1) are located in the Landes for-
est and marshes, schists of Brittany and Normandy,
detrital formations and Tertiary sands in Centre-North
of France, sandstone in the Vosges mountains and
granite in the Northeast of the Massif Central. The
areas where critical loads are rather low (1000 <
CLmax(S) <2000 equiv ha1yr1) are located in the
granitic region of the Massif Central and the Vos-
ges mountains, in the metamorphic bedrocks of the
Alps and the Pyrenees. The critical load of the nitro-
gen map [18] reflects the same sensitive areas, mainly
in the Landes forest, in Brittany, in the Centre-North
of France and in the Vosges Mountains. The Massif
Central, the Ardennes, and the Vosges Mountains are
less sensitive to acid deposition by comparison with
the previous maps of critical loads [13,14], because
the high non-marine atmospheric deposition of base
cations has been taken into account. On the other hand,
the maritime area is now more sensitive, because at-
mospheric inputs are mostly originating marine salts.
3.5. Exceedances
The current open-field deposition of sulphur
(SO42) in France ranges between 200 and 750 equiv
ha1yr1[2]. As already explained, throughfall base-
cation deposition data were used for critical load cal-
culation. In the same way, to calculate the exceedances
of critical loads, throughfall S deposition data should
ideally be considered. Nevertheless, because these
data are lacking, no throughfall deposition map can
be used. Thus, as a first approximation,the difference
between current sulphur open-field deposition and
critical load of sulphur can be reasonably calculated.
The highest exceedances are estimated for the Atlantic
coast (Landes and Atlantic Pyrenees), the sandstones
in the Vosges Mountains, the schist of Brittany and
Normandy. Other areas, where exceedances may oc-
cur are granite in the North of the Massif Central
(Limousin and Beaujolais), and in the Vosges moun-
tains. However,one must keep in mind that these data
must be considered as the minima exceedances, since
the considered sulphur deposition is underestimated.
4. Conclusion
A new French ecosystem classification was set up
to calculate critical loads. It reflects the large diversity
of French soils, bedrock types, and vegetation. Two
hundred and forty-one ecosystem types have been de-
fined for the French territory.
Critical load values were calculated by taking into
account the base cations fluxes for critical limit calcu-
lation in leachate water. Weathering rate controls the
soil-buffering capacity against acidification. Soils with
high weathering rate, developed on calcareous or vol-
canic rocks, are protected against acidification. On the
other hand, poor weathered soils are the most sensi-
tive to acidification: sandstones in the Vosges Moun-
tains, aeolian sands in the Landes of Gascogne, acid
granite and schist in Brittany, Vendée, and Normandy,
detrital formations and Tertiary sands in the central
part of France. Nevertheless, one important result of
this study is that the high atmospheric deposition of
non-marine cations on sensitive areas increases the
ecosystem-buffering capacity. In the Vosges Moun-
tains, the crystalline part of the Alp Mountains and
the Southeast of the Massif Central, base-cation at-
mospheric deposition produces 80% of the total input
of base cations to the soil.
Nowadays, atmospheric deposition of sulphur is
decreasing, while nitrogen deposition is rather con-
stant. Areas where acid deposition exceeds or has ex-
ceeded critical load will begin to recover. Neverthe-
less, non-marine base-cation atmospheric deposition,
which originates pollution, will also reduce along with
the sites buffering capacity. On these sites, the recov-
ery time will thus depend on the ecosystem properties
(soil, bedrock, vegetation, climate), but also on the
atmospheric deposition trends. The next step of this
study will therefore be a dynamic modelling [18] to
predict recovery times for acidified ecosystems, tak-
ing all the fluxes into account.
Acknowledgements
The authors particularly thank the ADEME (‘Agen-
ce de l’environnement et de la maîtrise de l’énergie’,
France) for supporting our works and the RENECO-
FOR/ONF Staff for providing open-field atmospheric
deposition data.
References
[1] Centre interprofessionnel technique d’études de la pollution
atmosphérique (CITEPA), Émissions dans l’air en France.
Métropole. Substances impliquées dans les phénomènes
d’acidification, d’eutrophisation et de photochimie. Mise à
jour du 14 mai 2003, 17 p, website: http://www.citepa.org/
pollution/index.htm.
[2] L. Croisé, E. Ulrich, P. Duplat, O. Jaquet, Deux approches
indépendantes pour l’estimation des dépôts atmosphériques to-
taux hors couvert forestier sur le territoire français, Office na-
tional des forêts, département Recherche et Développement,
ISBN 2-84207-258-8, 2002, 102 p.
[3] E. Dambrine, A. Probst, J.-P.Party, Détermination et cartogra-
phie des charges critiques de polluants atmosphériques pour
les écosystèmes naturels, en particulier forestiers, Pollut. At-
mos. (nspécial ‘Charges critiques’) (1993) 21–28.
[4] G.P.J. Draaijers, E.P. Van Leeuwen, P.G.H. De Jong, J.W. Eris-
man, Base-cation deposition in Europe. Part II. Acid neutral-
ization capacity and contribution to forest nutrition, Atmos.
Environ. 31 (24) (1997) 4159–4168.
[5] J.W. Erisman, P. Grennfelt, M. Sutton, The European per-
spective on nitrogen emission and deposition, Environ. Int. 29
(2003) 311–325.
[6] J.P. Hettelingh, W. De Vries, W. Schöpp, R.J. Downing, P.A.M.
De Smet, in: J.P. Hettelingh, R.J. Downing, P.A.M. De Smet
(Eds.), CEC Tech. Rep. 1, National Institute of Public Health
and Environmental Protection, Bilthoven, 1991, pp. 1–86.
[7] INRA, Carte pédologique de la France (format numérique ver-
sion 3.2), 1998.
[8] Inventaire forestier national (IFN), Synthèse par département,
website: http://www.ifn.fr/pages/index-fr.html, 2002.
[9] G. Landmann, M. Bonneau (Eds.), Forest decline and at-
mospheric deposition effects in the French mountains, Sprin-
ger-Verlag/Heidelberg, Berlin/New York, ISBN 3-540-58874-
4, 1995.
[10] J.-C. Massabuau, B. Friz, B. Burtin, Mise en évidence de ruis-
seaux acides (pH 5) dans les Vosges, C. R. Geoscience 305
(1987) 121–124.
[11] J. Nilsson, P. Grennfelt, Critical loads for nitrogen and sulphur,
Miljorapport 11, Nordic Council of Ministers, Copenhagen,
1988.
[12] J.-P. Party, Acidification des sols et des eaux de surface des
écosystèmes forestiers français : facteurs, mécanismes et ten-
dances. Taux d’altération sur petits bassins versants silicatés.
Application au calcul des charges critiques d’acidité, thèse,
université Louis-Pasteur, Strasbourg, 1999.
[13] J.-P. Party, A. Probst, French National Focal Center report,
in: M. Posch, P.A.M. De Smet, J.P. Hettelingh, R.J. Down-
ing (Eds.), Calculation and Mapping of Critical Thresholds in
Europe, Status report 1999, Coordination Center for Effects,
RIVM, Bilthoven, 1999, pp. 86–90.
[14] J.-P. Party, A. Probst, E. Dambrine, French National Focal
Center report, in: M. Posch, P.A.M. De Smet, J.P. Hettel-
ingh, R.J. Downing (Eds.), Calculation and Mapping of Crit-
ical Thresholds in Europe, Status report 1995, Coordination
Center for Effects, RIVM, Bilthoven, 1995, pp. 115–122.
[15] J.-P. Party, A. Probst, A.L. Thomas, E. Dambrine, Critical
loads for nutrient nitrogen: calculations and mapping by em-
pirical method for France, Pollut. Atmos. 172 (2001) 531–544.
[16] A. Probst, E. Dambrine, D. Viville, B. Fritz, Influence of acid
atmospheric inputs on surface water chemistry and mineral
fluxes in a declining spruce stand within a small granitic catch-
ment (Vosges Massif, France), J. Hydrol. 116 (1990) 101–124.
[17] A. Probst, D. Viville, B. Fritz, B. Ambroise, E. Dambrine, Hy-
drochemical budgets of a small forested granitic catchment
exposed to acidic deposition: the Strengbach catchment case
study (Vosges massif, France), Water Air Soil Pollut. 62 (1992)
337–347.
[18] A. Probst, D. Moncoulon, Y. Godderis, J.-P. Party, French
National Focal Center report, in: M. Posch, J.-P. Hettelingh,
J. Slootweg, R.J. Downing (Eds.), Modelling and Mapping of
Critical Tresholds in Europe, Status Report 2003, Coordination
Center for Effects, RIVM, Bilthoven, 2003, pp. 73–80.
[19] J.O. Reuss, D.W. Johnson, Acid deposition and the acidifica-
tion of soil and waters, Ecol. Stud. 59 (1986).
[20] H. Sverdrup, P. Warfinge, Estimating field weathering rates us-
ing laboratory kinetics, Rev. Mineral. 31 (1995) 485–541.
[21] E. Ulrich, M. Lanier, D. Combes, RENECOFOR Dépôts at-
mosphériques, concentrations dans les brouillards et dans les
solutions de sol (sous-réseau CATAENAT) Rapport scien-
tifique sur les années 1993 à 1996, Office national des forêts,
département des Recherches techniques, ISBN 2-84207-134-4,
1998, 135 p.
... La charge critique peut donc être considérée comme la valeur de référence, permettant de comparer l'état actuel de pollution d'un compartiment à un état théorique critique. Tout dépassement de la charge critique conduit à une dégradation actée ou programmée de l'écosystème (Moncoulon et al., 2004). L'échelle de temps à laquelle ces effets seront visibles dépend de la dynamique du polluant dans l'écosystème et de la capacité de ce dernier à « tamponner » les apports (Moncoulon et al., 2007). ...
... Les charges critiques d'acidification et d'eutrophisation sont généralement établies pour les écosystèmes forestiers, en raison de leur situation protégée vis-à-vis des apports anthropiques en dehors des apports atmosphériques de SO et de NH 4 + , qui contribuent à l'acidification et l'eutrophisation des sols. Certains écosystèmes terrestres peuvent relativement bien résister aux dépôts acidifiants, en raison de leur pouvoir tampon qui permet par les processus d'altération des minéraux et/ou d'échange d'ions de neutraliser l'apport de H + (Moncoulon et al., 2004). L'eutrophisation, quant à elle, correspond à un excès d'azote dans les écosystèmes. ...
... Les dépôts soufrés et azotés sont le plus souvent estimés à l'aide de modèles déterministes atmosphériques locaux ou régionaux, de type EMEP/RAINS pour les modèles régionaux (Simpson et al., 2012) ou à partir de modèles statistiques basés dur des observations, tels que celui réalisé en France par Croisé et al. (2005), plus représentatif des stations (Réseau RENECOFOR partie prenante de l'ICP Forests) et des écosystèmes nationaux. En l'état actuel des connaissances sur la base du modèle SMB appliqué sur les stations du réseau RENECOFOR extrapolées aux écosystèmes similaires (figure 4), les zones les plus sensibles au dépôt de soufre sont les Landes (Sud-Ouest), le Sud-Ouest de l'Ile de France, en bordure du Massif central et les Vosges ( figure 4) (Party, 1999 ;Moncoulon et al., 2004 ;Probst et al., 2010Probst et al., et 2015. Les zones les plus sensibles aux dépôts d'azote eutrophisants sont la Sologne (centre de la France), la partie nord du Massif-central et la zone Est méditerranéenne. ...
Article
Full-text available
Les composes atmospheriques, qu’ils soient de sources naturelles ou anthropiques, peuvent etre transformes, transportes sur de longues distances et transferes de l’atmosphere vers un autre reservoir via les retombees atmospheriques. Ces composes, bien que presents a l’etat de trace, peuvent generer des evenements de pollution, dont la prevision est utile a la protection de la sante publique, des milieux naturels et du climat. Au cours des trois dernieres decennies, des politiques de reduction des emissions polluantes ont ete mises en place en Europe et sur d’autres continents afin de limiter leurs effets. Pour un certain nombre de ces composes, l’efficacite de ces politiques peut etre evaluee par le suivi a long terme de la chimie des retombees atmospheriques, ainsi que sur la definition de charges critiques pour un ecosysteme, definies (le milieu forestier dans cet article) comme le depot anthropique maximal qui ne conduira pas a un depassement des concentrations critiques au sein du compartiment etudie, en l’etat actuel des connaissances. En France, des observatoires nationaux (MERA, RENECOFOR/CATAENAT) sont dedies a la surveillance des retombees atmospheriques depuis les annees 90. Parmi les elements majeurs inorganiques mesures depuis l’origine, les ions sulfates (SO42-), nitrates (NO3-) et ammonium (NH4+) sont particulierement suivis pour leurs impacts acidifiant et eutrophisant sur les ecosystemes. Ces ions solubilises dans l’eau sont issus de la transformation des gaz precurseurs SOX, NOX, et NH3 emis majoritairement par les activites anthropiques. La mutualisation des mesures de ces observatoires offre un jeu de donnees inedit pour etudier l’evolution de la composition chimique des retombees atmospheriques au niveau national ou europeen et permet une comparaison avec l’evolution des emissions des polluants primaires. Les variations sur les memes periodes des cartes de charges critiques et de leurs depassements permettent de constater directement les effets des politiques de reduction des emissions mises en œuvre sur les ecosystemes terrestres.
... La charge critique peut donc être considérée comme la valeur de référence, permettant de comparer l'état actuel de pollution d'un compartiment à un état théorique critique. Tout dépassement de la charge critique conduit à une dégradation actée ou programmée de l'écosystème (Moncoulon et al., 2004). L'échelle de temps à laquelle ces effets seront visibles dépend de la dynamique du polluant dans l'écosystème et de la capacité de ce dernier à « tamponner » les apports (Moncoulon et al., 2007). ...
... Les charges critiques d'acidification et d'eutrophisation sont généralement établies pour les écosystèmes forestiers, en raison de leur situation protégée vis-à-vis des apports anthropiques en dehors des apports atmosphériques de SO et de NH 4 + , qui contribuent à l'acidification et l'eutrophisation des sols. Certains écosystèmes terrestres peuvent relativement bien résister aux dépôts acidifiants, en raison de leur pouvoir tampon qui permet par les processus d'altération des minéraux et/ou d'échange d'ions de neutraliser l'apport de H + (Moncoulon et al., 2004). L'eutrophisation, quant à elle, correspond à un excès d'azote dans les écosystèmes. ...
... Les dépôts soufrés et azotés sont le plus souvent estimés à l'aide de modèles déterministes atmosphériques locaux ou régionaux, de type EMEP/RAINS pour les modèles régionaux (Simpson et al., 2012) ou à partir de modèles statistiques basés dur des observations, tels que celui réalisé en France par Croisé et al. (2005), plus représentatif des stations (Réseau RENECOFOR partie prenante de l'ICP Forests) et des écosystèmes nationaux. En l'état actuel des connaissances sur la base du modèle SMB appliqué sur les stations du réseau RENECOFOR extrapolées aux écosystèmes similaires (figure 4), les zones les plus sensibles au dépôt de soufre sont les Landes (Sud-Ouest), le Sud-Ouest de l'Ile de France, en bordure du Massif central et les Vosges ( figure 4) (Party, 1999 ;Moncoulon et al., 2004 ;Probst et al., et 2015. Les zones les plus sensibles aux dépôts d'azote eutrophisants sont la Sologne (centre de la France), la partie nord du Massif-central et la zone Est méditerranéenne. ...
Article
Full-text available
The atmospheric compounds which are emitted by natural or anthropogenic sources, can be transformed, transported on long range and transferred towards the ecosystems under the atmospheric deposition process. These compounds can generate pollution events which forecast is useful for public health and natural ecosystems protection. During the last three decades, the policies of reduction of polluting emissions were organized in Europe and on other continents to limit their effects on the human health, the ecosystems and the climate. The efficiency of these policies can be estimated by the follow-up at long-term of the chemistry of the atmospheric deposition and in regards to critical loads defined for an ecosystem as "the highest load that will not cause chemical changes leading to long-term harmful effects in the most sensitive ecological systems", in the present state of the knowledge. In France, national monitoring networks (MERA, RENECOFOR/CATAENAT) were implemented to the monitoring of the atmospheric deposition from the beginning of the 90s. Among the inorganic major elements measured since the origin, the sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) ions are particularly followed for their acidifying and eutrophying impacts on the terrestrial ecosystems. These solubilized ions arise from the transformation of precursor gases SOx, NOx, and NH3 be mainly emitted by the anthropogenic activities. The combined measurements of these two monitoring networks offer a set of data to study the evolution of the chemical composition of the atmospheric deposition at the national or European level and allow a comparison with the evolution of the emissions of primary pollutants. The variations over the same periods of the maps of critical loads and their exceedances allow to estimate the effects of the emissions reduction policies.
... Cook et al. (1991) traced the alkaline geochemistry of groundwater to dissolution of secondary vein calcite and to hydrolysis of silicate minerals. Moncoulon et al. (2004) concluded that the weathering rate in a catchment plays the most important part in soil buffering capacity. Weathering processes can be enhanced by acidic atmospheric inputs, as shown by Åberg et al. (1989), Likens et al. ( , 2002 and Probst et al. (1999). ...
... Weathering processes can be enhanced by acidic atmospheric inputs, as shown by Åberg et al. (1989), Likens et al. ( , 2002 and Probst et al. (1999). In addition, atmospheric cation inputs might add to the geological source of buffer capacity (Moncoulon et al., 2004;. ...
Thesis
From a biogeochemical perspective, catchments can be regarded as reactors that transform the input of various substances via precipitation, deposition, or human activities as they pass through soils and aquifers towards receiving streams. Understanding and modeling the variability of solute concentration in catchment waters require the identification of prevailing processes, determining their respective contributions to the observed transformation of substances, their interplay with hydrological processes, and the determination of anthropogenic impacts. However, numerous biogeochemical processes often interact in a highly non-linear way and vary on temporal and spatial scales, resulting in temporally and spatially varying water chemistry in catchments. This is particularly true for riparian wetlands. Processes in this catchment area often superimpose the influence of the hill slope (and largest) area of the catchment on surface water quality. Accordingly, the first part of this thesis (Study 1 and 2), focuses on the temporal and spatial variability of biogeochemical processes at the catchment scale. Therefore, the first aim was to identify the prevailing biogeochemical processes which affect the quality of catchment waters in two forested granitic catchments. Based on these results, (i) the long-term behavior of these processes was determined (Study 1) and (ii) hot spots of these processes at the catchment scale along different flow paths were identified (Study 2). The second part (Study 3) focuses on the interplay between hydrological and biogeochemical processes in a riparian wetland, with the aim of systematically tracing back the temporal patterns of stream water chemistry to different biogeochemical processes and antecedent hydrological boundary conditions in the wetland. The third part (Study 4 and 5) focuses on weathering processes with the goal (i) of identifying the mineralogical sources of the groundwater’s buffer capacity against acid atmospheric deposition in a forested granitic catchment and (ii) determining the mineralogical sources of the high cation loads in surface water, induced by intensive agricultural activities in two agricultural granitic catchments. To reach these aims, multivariate statistical methods of dimensionality reduction (linear Principal Component Analysis, non-linear Isometric Feature Mapping), a low-pass filtering of time-series, a Cluster analysis, and major and trace element ratios and strontium isotopes were used. A small number of biogeochemical process bundles explained 94% and 89% of the variance of the data set in Study 1 and 2, respectively. In Study 1, redox and topsoil processes, road salt and sulfate contamination were identified as predominating processes influencing water chemistry in the respective catchments. Low-pass filtered time series of component scores revealed a different long-term behavior at different sampling sites in both catchments, which could be traced back to the fraction of wetland area in the respective subcatchments as well as by the varying thickness of the regolith. Study 2 revealed that the upper 1 m topsoil layer could be considered as a biogeochemical hot spot for redox processes, acid-induced podsolization, and weathering processes along different flow paths. Up to 97% of the biogeochemical transformation of the chemical composition of soil solution, groundwater and stream water in the Lehstenbach catchment was restricted to this soil layer representing less than 2% of the catchment’s regolith. Wetland stream water, mobilized in the topsoil layer being considered a biogeochemical hot spot, showed a highly dynamic temporal pattern of component scores. Study 3 revealed four different types of wetland stream water chemical status, depending on the interplay between discharge dynamics, biological activity, and the water table position in the wetland. The sequence of different stream water types roughly followed a seasonal pattern, albeit being heavily modified by the respective hydrological boundary conditions for different years. Extended periods of low groundwater level in the second half of the growing season drastically changed the chemical boundary conditions, becoming evident in a drastic reoxidation of reduced species like sulfides and corresponding effects. Weathering processes are one of the predominating biogeochemical process bundles influencing water chemistry in forested catchments. Study 4 showed that the mineralogical sources of the groundwater’s buffer capacity against acid atmospheric deposition were dominated by the release of base cations from apatite dissolution, preferential cation release from feldspars and biotite, and feldspars weathering. In Study 5, determining the mineralogical sources of the high cation loads in surface water induced by intensive agricultural activities revealed a dominant manure contribution in the topsoil, and enhanced mineral dissolution (plagioclase and biotite) by fertilizer application in subsoils, becoming the unique source of base cations in the saprolite. Stream water chemistry differed from that of soil water, suggesting that stream water chemistry was dominated by elements issued from enhanced mineral and rock weathering. Soil acidification induced by agriculture allows the mobilization of cations stored in soil layers, enhances the rock weathering and accelerates plagioclase dissolution, which can highly influence stream water quality. Numerous biogeochemical, hydrological, and anthropogenic processes were found to interact with each other, mostly with non-linear patterns, influencing catchment water chemistry. The integral approach used in this thesis would be a useful prerequisite to develop accurate and parsimonious models commonly used for water management purposes by distinguishing between short- term and long-term shifts, reducing the number of processes to the predominating ones ultimately to be included in the model, focusing on hot spots and including spatial patterns where necessary and appropriate.
... The French ecosystem classification and map was updated in 2003 for calculation and mapping of the critical loads of acidity and nutrient nitrogen (Probst et al., 2003;Moncoulon et al., 2004). The map of potential vegetation was synthesised for the French territory by Party (1999) from various vegetation maps (Dupias and Rey, 1985;Houzard, 1986;Ozenda and Lucas, 1987). ...
Book
Working group on effects of the convention on long-rangr transboundary air pollution
... The French ecosystem classification and map was updated in 2003 for calculation and mapping of the critical loads of acidity and nutrient nitrogen (Probst et al., 2003 ;Moncoulon et al., 2004). The map of potential vegetation was synthesised for the French territory by Party (1999) from various vegetation maps (Dupias and Rey, 1985;Houzard, 1986;Ozenda and Lucas, 1987). ...
... Such a resilience might be less obvious or efficient elsewhere in case of lower buffering capacity by silicate weathering or much higher strong acid inputs and sulfate storage in soils, like in the "Black Triangle" (Marx et al., 2017) or in other sites of Europe . In France, this was the case in more sensitive critical zones, where critical loads have been exceeded (Party et al., 1995;Probst et al., 1995d;Février et al., 1999;Moncoulon et al., 2004Moncoulon et al., , 2007. The capacity of resilience against nitrogen acid deposition, whose impact is nowadays largely spread over remote areas also (Rogora et al., 2006), still needs to be assessed. ...
Article
Full-text available
The chemistry of precipitations and stream waters in the critical zone of a small granitic catchment mainly covered by grassland has been investigated backward (period 1990-1997). Major elements concentrations, fluxes and budgets at annual and seasonal scales allowed evaluating the catchment response to variation trends in atmospheric deposition and hydrological patterns. Acid precipitation was efficiently buffered by soil cations exchange and mineral weathering processes, as attested by the dominance of Ca and HCO3 in stream waters. A decrease of sulfate acidity in precipitation following clean air measures was accompanied by an increase of alkalinity and a decrease of sulfate in stream waters. Waters of short residence time from water-saturated areas in the valley bottom and rapid shallow circulations within slopes were a very effective diluted weathering end-member contributing to stream outlet in high flow conditions, whereas evapotranspiration from saturated areas and/or deep waters with long residence time influenced the stream water concentration pattern in low flow conditions. Water discharge controlled the variations of the annual and seasonal budgets of major elements, except for nitrate and sulfate, mainly stored during summer. Soil legacy sulfate was mainly released during the first autumn stormflows, with high peak concentrations decreasing rapidly from 1990 to 1992 and disappearing afterwards. The output water flux was the main driver of the weathering rate in the acidification recovery period 1993-97, contrary to the first period 1990-92 when acidification was still under way, as attested by the weathering plateau (constant Si/BC ratio). At that time, the intense weathering testifies the disturbance caused by acidification process. However, this critical zone was resilient enough to allow rapid and significant recovery over a few years following sulfur atmospheric abatement. For the future, the atmospheric nitrogen deposition pressure remains still challenging in a global change context, which argues for the necessity of long-term observatories.
... Since the beginning of the twentieth century, the atmospheric concentration of acidifying gases, such as SO 2 , NO x and NH 3 , which result from industrial activity, coal burning and other activities, increased steadily (Moncoulon et al., 2004;Majer et al., 2005;Oulehle et al., 2016). Consequently, there were large amounts of atmospheric acid deposition in the areas of Europe, North America and SW China. ...
Article
Carbonate weathering by CO2 is considered to play an important role in the global carbon cycle. In acid rain-affected areas, the carbon cycle can be impacted by acid rain weathering. When previous studies have considered all possible weathering processes including H2SO4 in rainfall, sulfide oxidation and agricultural activities, this study proposed a geochemical method to specifically calculate the extent of carbonate weathering by acid rain using hydrogeochemical data from karstic spring and rainfall. This method has considered the H concentration and nitrification of NH4 in rain during recharge, and provided the upper limit of the weathering amount. Seasonal sampling for spring (wet and dry season) was conducted from a typical carbonate area in Jiaoshi, Chongqing, SW China, with annual rain pH values ranging from 3.94 to 4.70. The major hydrogeochemistry types of spring are HCO3–Ca and HCO3–Ca·Mg. The average proportion of carbonate weathering by acid rain is estimated to be 36 ± 15%. The quantitative geochemical method provided in this study is important for understanding the hydrogeochemical processes in acid rain areas and for calculating CO2 sources & sinks of carbonate weathering.
... The atmospheric concentration of acidifying gases such as SO 2 , NO x and NH 3 increased steadily from the beginning of the twentieth century and originated from increasing industrial activity, agriculture, traffic and burning of soft coal (Majer et al., 2005;Moncoulon et al., 2004;Oulehle et al., 2016). Consequences in large areas of Europe and North America were large amounts of acid atmospheric deposition (also referred to as "acid rain"). ...
Article
The granitic Uhlirska headwater catchment with a size of 1.78 km2 is located in the Jizera Mountains in the northern Czech Republic and received among the highest inputs of anthropogenic acid depositions in Europe. An anal- ysis of sulphate (SO24–) distribution in deposition, soil water, stream water and groundwater compartments allowed to establish a SO24– mass-balance (deposition input minus surface water export) and helped to evaluate which changes occurred since the last evaluation of the catchment in 1997. The determined SO24– concentrations decreased in the following order: wetland groundwater N groundwater from 20 m below ground level (bgl) N groundwater from 30 m bgl N stream water N groundwater from10 m bgl N hillslope soil water N wetland soil water N bulk deposition with median values of 0.24, 0.21, 0.17, 0.15, 0.11, 0.07, 0.03 and 0.01 mmol L−1, respectively. Our results show that average deposition reductions of 62% did not result in equal changes of the sulphate mass-balance, which changed by only 47%. This difference occurs because sulphate originates from internal sources such as the groundwater and soil water. The Uhlirska catchment is subject to delayed recovery from anthropogenic acid depositions and remains a net source of stored sulphur even after three decades of declining inputs. The wetland groundwater and soil water provide environmental memories of legacy pollutant sulphate.
Article
We analysed precipitation and river water samples from the Lijiang River basin with the aim of understanding the important role of acid rain components, especially NH4, in chemical weathering of karst areas. First, analysis of the hydrochemical characteristics revealed the following: In the precipitation samples, the volume-weighted mean pH was 4.91, and the acid rain rate was 65%. The major ion composition was characterized by a dominance of NH4, Ca, SO4 and NO3, accounting for 40.0%, 35.3%, 46.3% and 30.5%, respectively, of the total cation and anion concentrations. In the river water samples, the pH ranged from 6.75 to 9.16, with an average of 7.55. The major hydrogeochemical species in the river water samples were Ca–HCO3 and Mg–HCO3. Second, by employing chloride-normalized ratios of the other major ions in precipitation, we estimated that the contributions of SO4 and NO3 from the atmosphere to the river were53.6% and 35.0%, respectively. Third, combining the hydrochemical index with the value of δ¹³CDIC and using the hydrochemical composition method showed that the proportion of carbonate weathered (R) by NH4, H2SO4 and HNO3 from acid rain accounted for 9.3%, 9.4% and 3.1% of the total weathering rate, respectively, and the proportions in the upper reaches were significantly higher than those in the lower reaches of the river. The average values of the carbonate weathering proportion (R) and the carbonate weathering rate (CWR) due to acid rain were approximately 22.0% and 2.1 t/km²/yr, respectively. Taken together, our results revealed that carbonate weathering by acid rain can significantly increase the carbonate weathering rate, which is essential information for accurate estimation of the carbon cycle (namely, inorganic carbon sources and sinks).
Article
Full-text available
Acid rain with a relatively high concentration of ammonium and nitrate can accelerate rock weathering. However, its impact on groundwater nitrate is uncertain. This study evaluated the dual isotopic composition of nitrate ( δ¹⁵ N-NO 3⁻ and δ¹⁸ O-NO 3⁻ ) from precipitation to groundwater in a rural mountainous area affected by acid rain. The average concentration for NH 4⁺ is 1.25 mg/L and NO 3⁻ is 2.59 mg/L of acid rain. Groundwater NO 3⁻ concentrations ranged from <0.05 to 11.8 mg/L (baseline), and NH 4⁺ concentrations ranged from 0.06 to 0.28 mg/L. The results show that groundwater δ¹⁸ O-NO 3⁻ values (-4.7‰ to +4.2‰) were lower than the values of rainfall δ¹⁸ O-NO 3⁻ (+24.9‰ to +67.3‰), suggesting that rainfall NO 3⁻ contributes little to groundwater NO 3⁻ . Groundwater δ¹⁵ N-NO 3⁻ values (+0.1‰ to +7.5‰) were higher than the values of δ¹⁵ N-NO 3⁻ derived from the nitrification of rainfall NH 4⁺ (less than -4.7‰ in the study area), suggesting that nitrification of rainfall NH 4⁺ also contributes little to groundwater NO 3⁻ . This implies that rainfall NO 3⁻ and NH 4⁺ have been utilized. The dual isotopic composition of nitrate shows that baseline groundwater NO 3⁻ is derived mainly from nitrification of soil nitrogen. The denitrification process is limited in the groundwater system. This study shows that the rainfall NO 3⁻ and NH 4⁺ contribute little to groundwater NO 3⁻ , improving the understanding of the nitrogen cycle in areas with a high concentration of NH 4⁺ and NO 3⁻ in rainfall.
Article
Full-text available
The chemistry of surface waters has been studied in the Vosges mountains in relation with ecophysiology of aquatic animals. We demonstrate the existence of four acidified rivers and two sensitive lakes in the area of Cornimont-La Bresse. The chemistry of these waters is characterized by very low alkalinities and presence of strong acid anions (SO4, NO3, Cl) that dominate in the anionic charge. All the biotopes exhibit annual pH rhythms well correlated with the amount of rainfall. Following snow melt, minimum pH values of 4.7 were measured whereas towards the end of summer, pH can recover up to 6–7. In the four studied rivers, the trout Salmo trutta fario began disappearing 15–20 years ago.Today the fish population is completely lost.
Article
Full-text available
A survey ofrivers and lakes has been conducted in the Vosges mountains where up-to-date, despite large acid rain input [4], there was no evidence of acidified freshwaters ([4], [6], [7]). We found such water with complete loss of fish population in the region of Cornimont (Fig. A). The atmospheric origin of the acidity is demonstrated by (i) the presence of strong acid anions (SO 4, NO 3, Cl; Table 1) that dominate in the anionic charge, and (ii) the relationship between stream pH, pluviometry and snow melt (Fig. B). Minimum pH values of4.7 were measured at that time. Results are discussed in terms of exhaustion of the bicarbonate buffering capacity in these waters (alkalinity ~o) and compared with those from two other closely located areas where pH is either neutral (alkalinity does not virtually decreased [7]) or possibly going to be acidic (alkalinity a/ready decreased by 85 %[6]). High levels of aluminium (over 200 ~g, l-1) are reported.
Article
Full-text available
Hydrochemical budgets have been obtained for the 3-yr period 1986–89 at Strengbach, a small granitic basin in the Vosges mountains (north-eastern France). Here, the spruce forest shows both yellowing and crown thinning, symptoms of forest decline. Water amount and surface water chemistry were monitored in each ecosystem compartment. Bulk precipitation is acidic. Some pollution episodes occur in winter and early spring, but the annual bulk deposition acidity is rather low. Throughfall however, is much more concentrated, particularly for H+ and associated strong acid anions. These inputs come as occult deposits which comprise major ecosystem inputs, as confirmed by the chloride balance for the catchment. Input-output budgets for the catchment indicate a net deficit of base cations, especially calcium. Sulfate also shows a net loss while N budget is well balanced. As the soil exchange capacity is nearly exhausted for base cations, and dominated by H+ and Al, the neutralization of incident acid inputs occurs mainly in the weathered bedrock. Silicate weathering processes lead to high losses of cations and of silica. Aluminium hydroxide is precipitated; however, bicarbonate remains very low indicating poorly-buffered surface water.
Thesis
*INRA Unité de Sience du Sol de Montpellier Diffusion du document : INRA Unité de Sience du Sol de Montpellier Diplôme : Dr. d'Université
Article
Critical loads of nutrient nitrogen for France has been mapped according to the empirical method suggested by the UN/ECE. For this purpose, a phyto-ecological map is necessary. In this aim, a first numerical synthesis of the available 1/200 000 vegetation maps (published by the CNRS on paper support) for all France has been done (64 sheets). The vegetation typology presents 76 units ; 41 of these vegetation units are considered sensitive to nitrogen addition (forests, about 2/3 ; heathlands and grasslands, about 1/3). This represents 40 % of all vegetation units from the 64 studied original vegetation maps. Their sensibility to nitrogen was computed according to the recommendations of the mapping manual of UN/ECE (1996) and the RIVM guidelines. Four maps of vegetation sensibility covering the North-East, North-West, South-West and South-East of France were drawn and the critical loads of nutrient nitrogen for France at the 1/1 000 000 scale were mapped. Finally, results of this method and the SSMB method were compared and exceedances were calculated.
Article
A group of Nordic experts has tried to draw conclusions on critical loads for sulphur and nitrogen. The critical load is defined as “The highest load that will not cause chemical changes leading to long-term harmful effects on most sensitive ecological systems”. Most soils, shallow groundwaters and surface waters would probably not be significantly changed by a load of 10–20 keq H+·km2·yr−1 in areas with a low content of base cations in the deposition. The total deposition of hydrogen ions in southwestern Scandinavia is in the order of 100 keq ·km−2·yr−1. The long-term critical load for nitrogen is in the range of 10–20 kg N·ha·1-yr−1 in most forest ecosystems. In high productive sites it might be as high as 20–45 kg N·ha− yr−1 in southern Sweden, and amounts to 30–40 kg·ha−1·yr−1 and even more over large areas in central Europe. The current deposition of sulphur and nitrogen must be substantially reduced to keep the long-term changes in sensitive ecosystems within acceptable limits.