ArticleLiterature Review

Mitochondrial DNA and genetic disease

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

From their very beginning to the present day, mitochondria have evolved to become a crucial organelle within the cell. The mitochondrial genome encodes only 37 genes, but its compact structure and minimal redundancy results in mutations on the mitochondrial genome being an important cause of genetic disease. In the present chapter we describe the up-to-date knowledge about mitochondrial DNA structure and function, and describe some of the consequences of defective function including disease and aging.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Mitochondrial RCDs can be caused by either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) mutations. Mutations in the mitochondrial genome could be either large-scale rearrangements or point mutations [7,8]. ...
... PCR-RFLP analysis for detection of four of the common mitochondrial mutations was negative in all patients (Figs. [5][6][7][8]. In all cases, only a band corresponding in size to that of the fragment containing the normal nucleotide was observed: a 196 bp band for the 2343A digested fragment (Fig. 5), a 172 bp band for the 3271T fragment ( Fig. 6), two bands (299 and 78 bp) for the 8344A digested fragment (Fig. 7), and a 554 bp band for the 8993T fragment (Fig. 8). ...
Article
Mitochondrial respiratory chain disorders (RCD) are a group of genetically and clini-cally heterogeneous diseases, caused due to defects of the respiratory chain. This study aimed to investigate the presence of common mtDNA point mutations in tRNALeu (UUR), tRNALys, MT-ATPase 6, MT-ND4, MT-ND1, MT-ND6 genes in eight Egyptian patients suspected to have mtDNA disease and optic atrophy. PCR-RFLP analysis was done for the detection of 3243A > G, 3271T > C, 8344A > G, and 8993T > G/C mtDNA point mutations. DNA direct sequencing was pursued for the detection of 11778G > A, 3460G > A and 14484T > C mtDNA point mutations. No point mutation of 3243A > G, 3271T > C, 8344A > G, and 8993T > G/C was detected in our group of patients. Four mtDNA polymorphisms in MT-ND1 and MT-ND4 genes (11467A > G, 11719G > A, 3348A > G and 3357G > A) were detected in three patients. Mitochondrial disorders are caused by a variety of genetic and racial factors, which differ among populations. The negative results of this study indicate that the chosen mutations might not be specific in Egyptians. Another explanation might be due to the low heteroplasmic levels of the mtDNA muta-tion. A registry for the different mtDNA mutations in Egyptian patients is highly recommended. Ó 2012 Ain Shams University. Production and hosting by Elsevier B.V. All rights reserved.
... Complementarity encompasses the length of the entire mitochondrial genome, as shown by electron microscopic analysis [24,25]. The mitochondrial DNA encodes 13 genes, 12 of which are encoded by the heavy strand and one by the light strand [26]. Under physiological circumstances, the light strand is rapidly degraded by two enzymes, polynucleotide phosphorylase (PNPase) and the helicase HSuv3 [27]. ...
Article
Full-text available
The birth of long non-coding RNAs (lncRNAs) is closely associated with the presence and activation of repetitive elements in the genome. The transcription of endogenous retroviruses as well as long and short interspersed elements is not only essential for evolving lncRNAs but is also a significant source of double-stranded RNA (dsRNA). From an lncRNA-centric point of view, the latter is a minor source of bother in the context of the entire cell; however, dsRNA is an essential threat. A viral infection is associated with cytoplasmic dsRNA, and endogenous RNA hybrids only differ from viral dsRNA by the 5′ cap structure. Hence, a multi-layered defense network is in place to protect cells from viral infections but tolerates endogenous dsRNA structures. A first line of defense is established with compartmentalization; whereas endogenous dsRNA is found predominantly confined to the nucleus and the mitochondria, exogenous dsRNA reaches the cytoplasm. Here, various sensor proteins recognize features of dsRNA including the 5′ phosphate group of viral RNAs or hybrids with a particular length but not specific nucleotide sequences. The sensors trigger cellular stress pathways and innate immunity via interferon signaling but also induce apoptosis via caspase activation. Because of its central role in viral recognition and immune activation, dsRNA sensing is implicated in autoimmune diseases and used to treat cancer.
... Deletions in the mitochondrial genome are prevalent in several genetic disorders (5,(10)(11)(12) including progressive external opthalmoplegia (PEO) (13), Pearson marrow-pancreas syndrome (PMPS) (14,15), and Kearns-Sayre syndrome (KSS) (13,16). A correlation of mtDNA deletions in cancer remains enigmatic (17). ...
Article
Full-text available
Deletions in mitochondrial DNA (mtDNA) are associated with diverse human pathologies including cancer, aging and mitochondrial disorders. Large-scale deletions span kilobases in length and the loss of these associated genes contributes to crippled oxidative phosphorylation and overall decline in mitochondrial fitness. There is not a united view for how mtDNA deletions are generated and the molecular mechanisms underlying this process are poorly understood. This review discusses the role of replication and repair in mtDNA deletion formation as well as nucleic acid motifs such as repeats, secondary structures, and DNA damage associated with deletion formation in the mitochondrial genome. We propose that while erroneous replication and repair can separately contribute to deletion formation, crosstalk between these pathways is also involved in generating deletions.
... A single human mitochondrion contains four to ten circular DNA molecules with a length of 16569 base pairs; each of which encodes 37 genes: thirteen of them coding proteins, 22 coding tRNA, and the last two rRNA. Although the mtDNA encodes part of the mitochondrial respiratory chain proteins, the nuclear genome encodes most of the proteins included in its composition [30]. ...
Article
Full-text available
Systemic lupus erythematosus is a chronic autoimmune disease connected with complex and unclear disorders of the immune system, which causes inflammation of body tissues and internal organs. It leads to the formation of anti-nuclear antibodies (ANA) and immune complexes. Numerous immune system disorders and dysfunctions in the biochemical processes can occur in the course of the disease, and a wide range of abnormalities associated with cellular respiratory processes and mitochondrial function have been documented. The following paper presents the current understanding of the contribution of these disorders to the pathogenesis of lupus.
... Mitochondrial DNA represents a small but significant segment of the total DNA of the individual. In spite of the amount from several hundred to thousands of copies, it accounts for only 0.5-1% of the total DNA (Krishnan and Turnbull, 2010). The very small amount compared to genomic DNA is the enormous problem in its successful study. ...
Article
The mitochondrial genome is an independent genetic system in each eukaryotic cell outside the nuclear genome. Mitochondrial DNA (mtDNA) appears in high copy number within one cell, unlike nuclear DNA, which exists in two copies. But nevertheless, mtDNA represent only small part of total cellular DNA what causes problematic analysis and identification of relevant mutations. While most researchers tend to overlook it because of its small size, the mitochondrial genome contains genes that are essential for cellular energetics and survival. Because of the increased awareness on the importance of metabolism and bioenergetics in a wide variety of human diseases, more and more mtDNA studies were performed. Mitochondrial genome research has established the connection between mtDNA and a wide variety of diseases such as cancer or neurodegenerative disorders. At the present time, several methods are known, that allow sequencing of mtDNA. However, genomic analysis is often complicated due to the low content of mtDNA compared to nuclear DNA. For this reason, we have designed a new approach to obtaining the genomic mitochondrial sequence. We chose RNA based sequencing. Since human mtDNA does not contain introns, the reconstruction of whole mitochondrial genome through RNA sequencing seems to be effective. Our method is based on total RNA sequencing coupled with simple ultracentrifugation protocol and de novo assembly. Following our protocol, we were able to assemble a complete mammalian mitochondrial genome with a length of 16,505 bp and an average coverage of 156. The method is a relatively simple and inexpensive which could help in the further research or diagnostics of mtDNA-based diseases.
... Due to the endosymbiotic origin from α-proteobacteria, mitochondria contain their own genome, the mtDNA, which only encodes ~1% of the total mitochondrial proteome including 13 OxPhos proteins, 22 transfer RNAs and 2 ribosomal RNAs (Calvo & Mootha 2010). Multiple factors such as absence of protective histone molecules and proximity of the mtDNA to the inner mitochondrial membrane, where ROS are generated, contribute to a higher mutation rate in mtDNA, thereby promoting mitochondrial proteotoxicity and a decline in mitochondrial function (Krishnan & Turnbull 2010, Cha et al. 2015. In this context, the concerted efforts of the mitochondrial system of proteases and chaperones are pivotal in maintaining protein homeostasis or proteostasis within the mitochondria. ...
Article
Full-text available
Mitochondria perform essential roles as crucial organelles for cellular and systemic energy homeostasis, and as signaling hubs which coordinate nuclear transcriptional responses to the intra- and extra-cellular environment. Complex human diseases, including diabetes, obesity, fatty liver disease and aging-related degenerative diseases are associated with alterations in mitochondrial oxidative phosphorylation (OxPhos) function. However, a recent series of studies in animal models have revealed that an integrated response to tolerable mitochondrial stress appears to render cells less susceptible to subsequent aging processes and metabolic stresses, which is a key feature of mitohormesis. The mitochondrial unfolded protein response (UPRmt) is a central part of the mitohormetic response, and is a retrograde signaling pathway which utilizes the mitochondria-to-nucleus communication network. Our understanding of the UPRmt has contributed to elucidating the role of mitochondria in metabolic adaptation and lifespan regulation. In this review, we discuss and integrate recent data from the literature on the present status of mitochondrial OxPhos function in the development of metabolic diseases, relying on evidence from human and other animal studies which points to alterations in mitochondrial function as a key factor in the regulation of metabolic diseases, and conclude with a discussion on the specific roles of UPRmt and mitohormesis as a novel therapeutic strategy for the treatment of obesity and insulin resistance.
... Mitochondria have long been considered as crucial organelles, since they contain their own DNA (9). Prior research shows that mitochondria have a variety of roles in energy metabolism and cellular homeostasis, including ATP production, reactive oxygen species (ROS) production, metabolic homeostasis and apoptosis (10,11). ...
Article
Full-text available
Although the role of nuclear-encoded gene alterations has been well documented in brain tumor development, the involvement of the mitochondrial genome in brain tumorigenesis has not yet been fully elucidated and remains controversial. The present study aimed to identify mutations in the mitochondrial DNA (mtDNA) control region D-loop in patients with brain tumors in Malaysia. A mutation analysis was performed in which DNA was extracted from paired tumor tissue and blood samples obtained from 49 patients with brain tumors. The D-loop region DNA was amplified using the PCR technique, and genetic data from DNA sequencing analyses were compared with the published revised Cambridge sequence to identify somatic mutations. Among the 49 brain tumor tissue samples evaluated, 25 cases (51%) had somatic mutations of the mtDNA D-loop, with a total of 48 mutations. Novel mutations that had not previously been identified in the D-loop region (176 A-deletion, 476 C>A, 566 C>A and 16405 A-deletion) were also classified. No significant associations between the D-loop mutation status and the clinicopathological parameters were observed. To the best of our knowledge, the current study presents the first evidence of alterations in the mtDNA D-loop regions in the brain tumors of Malaysian patients. These results may provide an overview and data regarding the incidence of mitochondrial genome alterations in Malaysian patients with brain tumors. In addition to nuclear genome aberrations, these specific mitochondrial genome alterations may also be considered as potential cancer biomarkers for the diagnosis and staging of brain cancers.
... Due to the endosymbiotic origin from proteobacteria, mitochondria contain a separate genome, or mitochondrial DNA (mtDNA) [1,2]. The proximity of mtDNA to mitochondrial ROS, less robust repair mechanisms compared to nuclear DNA, and lack of histones make mtDNA highly susceptible to genetic mutations [3,4]. However, recent evidence also suggests that mtDNA repair mechanisms are more developed than initially perceived [5]. ...
Article
The mitochondrial role in carcinogenesis and cancer progression is an area of active research, with many unresolved questions. Various aspects of altered mitochondrial function have been implicated in tumorigenesis and tumor progression, including mitochondrial dysfunction, a metabolic switch to aerobic glycolysis, and dysregulation of mitophagy. Mitophagy is a highly specific quality control process which eliminates dysfunctional mitochondria and promotes mitochondrial turnover, and is involved in the adaptation to nutrient stress by controlling mitochondrial mass. The dysregulation of mitochondrial turnover has both a positive and negative role in cancer. This review will begin with a basic overview of the molecular mechanisms of mitophagy, and highlight recent trends in mitophagy from cancer studies. We will conclude this review by discussing areas of research in normal mitophagy that have yet to be explored in the context of cancer such as mitochondrial proteases, the mitochondrial unfolded protein response, and mitokine action. This article is part of a Special Issue entitled Respiratory complex I, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
... The 9-bp (CCCCCTCTA) common deletion in the small non-coding segment located between the CO2 and tRNA Lys gene had been used as a genetic marker to trace descent from people of East Asian origin (Yao et al., 2000). This deletion has also been suggested to be associated with several other diseases including cancer (Krishnan and Turnbull, 2010;Zhuo et al., 2010;Komandur et al., 2011). Due to its specific location, the 9-bp deletion may have the potential to alter downstream and upstream gene expression. ...
Article
Mutations in the mitochondrial genome have been found to be associated with essential hypertension. Here, we report the clinical and molecular characterization of a three-generation Han Chinese family with maternally inherited hypertension. Most strikingly, this pedigree exhibited a high penetrance of hypertension. Sequence analysis of the mitochondrial genome showed the presence of a homoplasmic T16189C mutation in the D-loop and the intergenic CO2/tRNA(Lys) 9-bp common deletion, as well as a set of polymorphisms belonging to the East Asia haplogroup B5b1. The well-known T16189C mutation, which is in the first hypervariable segment of the mitochondrial control region, is implicated to be associated with a wide range of clinical disorders. Moreover, the genetic polymorphism 9-bp common deletion is found to be associated with hepatocellular carcinoma in the Han Chinese population. Thus, the combination of T16189C mutation and the 9-bp deletion may have caused mitochondrial dysfunction and contributed to the development of essential hypertension in this Chinese family.
... As one of the phylogenetic markers, the 9-bp deletion polymorphism has been widely used to study evolutionary trends and migration of populations (Soodyall et al., 1996; Yao et al., 2000). However, this polymorphism has also been suggested to be associated with several diseases including cancer (Krishnan and Turnbull, 2010; Zhuo et al., 2010; Komandur et al., 2011). Considering its specific location, the 9-bp deletion polymorphism may have the potential to alter downstream and/or upstream gene expression . ...
Article
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Although molecular biology of carcinogenesis and tumor progression of HCC has been increasingly understood with intense research in recent years, the molecular and cellular mechanisms of HCC pathogenesis are still poorly understood. In the present study, a case-control study including 390 HCC patients and 431 healthy controls was conducted to investigate the association of HCC susceptibility with the mitochondrial DNA (mtDNA) 9-bp deletion polymorphism in Chinese population. Chi-square testing showed that frequencies of 9-bp one repeat or two repeats were significantly different between HCC and control groups. Carriage of 9-bp one repeat fragment was associated with a significantly increased risk of developing HCC (odds ratio=1.48, 95% confidence interval: 1.03-2.14, p=0.027). Stratification analysis further showed that the differences between cases and controls were more obvious in drinkers than nondrinkers. Computational modeling of the 9-bp deletion polymorphism suggests that the mtDNA sequence without the 9-bp deletion polymorphism lies within a predicted binding site (seed region) for hsa-miR-519c-5p and hsa-miR-526a. Our data suggested that the 9-bp deletion polymorphism in mitochondria may influence HCC risk, likely through specific microRNA-mediated regulation, which was possibly involved in the pathogenesis of HCC. The replication of our studies in other populations with larger sample size is warranted.
... Mitochondrial DNA (mtDNA) is, however, particularly vulnerable to endogenous oxidation. Mitochondria contain multiple copies of a 16.5 kb circular DNA encoding 13 polypeptides which are essential for oxidative phosphorylation (reviewed in [9,10]). Electron leakage during oxidative phosphorylation is the major source of cellular ROS [11] to which mtDNA is particularly vulnerable [12] owing to its proximity to the electron transport chain and the absence of protective histones. ...
Article
Full-text available
The anticancer and immunosuppressant thiopurines cause 6-thioguanine (6-TG) to accumulate in nuclear DNA. We report that 6-TG is also readily incorporated into mitochondrial DNA (mtDNA) where it is rapidly oxidized. The oxidized forms of mtDNA 6-TG inhibit replication by DNA Pol-γ. Accumulation of oxidized 6-TG is associated with reduced mtDNA transcription, a decline in mitochondrial protein levels, and loss of mitochondrial function. Ultraviolet A radiation (UVA) also oxidizes mtDNA 6-TG. Cells without mtDNA are less sensitive to killing by a combination of 6-TG and UVA than their mtDNA-containing counterparts, indicating that photochemical mtDNA 6-TG oxidation contributes to 6-TG-mediated UVA photosensitization.
... The mitochondrial genome differs from the nuclear genome in a variety of different respects, most notably in terms of its high copy number (with the consequent potential for heteroplasmy), matrilineal inheritance, a 10-to 17-fold higher mutation rate despite having its own DNA repair system [Liu and Demple, 2010], active exposure to reactive oxygen species [Sedelnikova et al., 2010], a unique mode of DNA replication [Wanrooij and Falkenberg, 2010], and the virtual lack of any recombination [Krishnan and Turnbull, 2010]. A wealth of knowledge has now accumulated with respect to the spectrum of germline mitochondrial genome mutations that are responsible for heritable mitochondrial disease [Neiman and Taylor, 2009;Taylor and Turnbull, 2005;Wallace, 2010]. ...
Article
Full-text available
Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher order features of the genomic architecture. The human genome is now recognized to contain "pervasive architectural flaws" in that certain DNA sequences are inherently mutation prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here, we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of noncanonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair and may serve to increase mutation frequencies in generalized fashion (i.e., both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease.
Chapter
Double-stranded RNA (dsRNA) within cells indicates viral infection and triggers a robust innate immune response. Counterintuitively, cells also produce endogenous dsRNA from repetitive sequences and antisense transcription in the nucleus as well as bi-directional transcription of the mitochondrial genome. Under physiological conditions, dsRNA is prevented from entering the cytoplasm, though in situations of disease or stress these barriers may be breached. In the cytoplasm, dsRNA binds to various sensor proteins that recognise features such as unmodified 5′ ends and long perfect dsRNA helices. Upon binding to the sugar-phosphate backbone, the sensors oligomerize and trigger various downstream pathways that promote immune signalling or apoptosis. The overwhelming majority of dsRNA derives from repetitive regions of the genome, inverted Alu repeats in particular, but also from long interspersed repeats and endogenous retroviruses. The interplay between these elements and the dsRNA sensors with specific binding preferences helps to shape innate immunity. Natural antisense transcripts have the potential to form dsRNA with co-expressed sense transcripts. Such RNA hybrids may contribute to breaching protective mechanisms and causing immune diseases. In specialized tissues such as testis or early embryos, sense-antisense RNA hybrids may play key roles in the timing of gene expression during development. Alternatively, the dsRNA may be an essential intermediate of a molecular mechanism to scan the male germ cell genome for deleterious mutations.
Article
Full-text available
Having its genome makes the mitochondrion a unique and semiautonomous organelle within cells. Mammalian mitochondrial DNA (mtDNA) is a double-stranded closed circular molecule of about 16 kb coding for 37 genes. Mutations, including deletions in the mitochondrial genome, can culminate in different human diseases. Mapping the deletion junctions suggests that the breakpoints are generally seen at hotspots. '9-bp deletion' (8271-8281), seen in the intergenic region of cytochrome c oxidase II/tRNA Lys , is the most common mitochondrial deletion. While it is associated with several diseases like myopathy, dystonia, and hepatocellular carcinoma, it has also been used as an evolutionary marker. However, the mechanism responsible for its fragility is unclear. In the current study, we show that Endonuclease G, a mitochondrial nuclease responsible for nonspecific cleavage of nuclear DNA during apoptosis, can induce breaks at sequences associated with '9-bp deletion' when it is present on a plasmid or in the mitochondrial genome. Through a series of in vitro and intracellular studies, we show that Endonuclease G binds to G-quadruplex structures formed at the hotspot and induces DNA breaks. Therefore, we uncover a new role for Endonuclease G in generating mtDNA deletions, which depends on the formation of G4 DNA within the mitochondrial genome. In summary, we identify a novel property of Endonuclease G, besides its role in apoptosis and the recently described elimination of paternal mitochondria during fertilisation.
Article
The COII/tRNALys intergenic 9-bp deletion is one of the most commonly studied human mitochondrial DNA (mtDNA) polymorphisms. It consists of the loss of one of two tandemly repeated copies of the sequence CCCCCTCTA from a non-coding region located between cytochrome oxidase II (COII) and tRNALys gene. Most recently, case-control studies have shown a positive association between this deletion with hepatocellular cancer. In this study, we first performed a detailed analysis between this deletion and clinical diseases; moreover, we took the phylogenetic approach to examine the pathogenicity status of 9-bp deletion.
Article
Full-text available
Mitochondria are found in all eukaryotic cells and contain their own genome (mitochondrial DNA or mtDNA). Unlike the nuclear genome, which is derived from both the egg and sperm at fertilization, the mtDNA in the embryo is derived almost exclusively from the egg; that is, it is of maternal origin. Mutations in mtDNA contribute to a diverse range of currently incurable human diseases and disorders. To establish preclinical models for new therapeutic approaches, we demonstrate here that the mitochondrial genome can be efficiently replaced in mature non-human primate oocytes (Macaca mulatta) by spindle–chromosomal complex transfer from one egg to an enucleated, mitochondrial-replete egg. The reconstructed oocytes with the mitochondrial replacement were capable of supporting normal fertilization, embryo development and produced healthy offspring. Genetic analysis confirmed that nuclear DNA in the three infants born so far originated from the spindle donors whereas mtDNA came from the cytoplast donors. No contribution of spindle donor mtDNA was detected in offspring. Spindle replacement is shown here as an efficient protocol replacing the full complement of mitochondria in newly generated embryonic stem cell lines. This approach may offer a reproductive option to prevent mtDNA disease transmission in affected families.
Article
Full-text available
The complete sequence of the 16,569-base pair human mitochondrial genome is presented. The genes for the 12S and 16S rRNAs, 22 tRNAs, cytochrome c oxidase subunits I, II and III, ATPase subunit 6, cytochrome b and eight other predicted protein coding genes have been located. The sequence shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.
Article
Full-text available
The MTERF family is a wide protein family, identified in Metazoa and plants, which consists of 4 subfamilies named MTERF1-4. Proteins belonging to this family are localized in mitochondria and show a modular architecture based on repetitions of a 30 amino acid module, the mTERF motif, containing leucine zipper-like heptads. The MTERF family includes the characterized transcription termination factors human mTERF, sea urchin mtDBP and Drosophila DmTTF. In vitro and in vivo studies show that these factors play different roles which are not restricted to transcription termination, but concern also transcription initiation and the control of mtDNA replication. The multiplicity of functions could be related to the differences in the gene organization of the mitochondrial genomes. Studies on the function of human and Drosophila MTERF3 factor showed that the protein acts as negative regulator of mitochondrial transcription, possibly in cooperation with other still unknown factors. The complete elucidation of the role of the MTERF family members will contribute to the unraveling of the molecular mechanisms of mtDNA transcription and replication.
Article
Full-text available
Mitochondrial DNA (mtDNA) mutations are a major cause of genetic disease, but their prevalence in the general population is not known. We determined the frequency of ten mitochondrial point mutations in 3168 neonatal-cord-blood samples from sequential live births, analyzing matched maternal-blood samples to estimate the de novo mutation rate. mtDNA mutations were detected in 15 offspring (0.54%, 95% CI = 0.30-0.89%). Of these live births, 0.00107% (95% CI = 0.00087-0.0127) harbored a mutation not detected in the mother's blood, providing an estimate of the de novo mutation rate. The most common mutation was m.3243A-->G. m.14484T-->C was only found on sub-branches of mtDNA haplogroup J. In conclusion, at least one in 200 healthy humans harbors a pathogenic mtDNA mutation that potentially causes disease in the offspring of female carriers. The exclusive detection of m.14484T-->C on haplogroup J implicates the background mtDNA haplotype in mutagenesis. These findings emphasize the importance of developing new approaches to prevent transmission.
Article
Full-text available
We have examined the role of somatic mitochondrial DNA (mtDNA) mutations in human ageing by quantitating the accumulation of the common 4977 nucleotide pair (np) deletion (mtDNA4977) in the cortex, putamen and cerebellum. A significant increase in the mtDNA4977 deletion was seen in elderly individuals. In the cortex, the deleted to total mtDNA ratio ranged from 0.00023 to 0.012 in 67-77 year old brains and up to 0.034 in subjects over 80. In the putamen, the deletion level ranged from 0.0016 to 0.010 in 67 to 77 years old up to 0.12 in individuals over the age of 80. The cerebellum remained relatively devoid of mtDNA deletions. Similar changes were observed with a different 7436 np deletion. These changes suggest that somatic mtDNA deletions might contribute to the neurological impairment often associated with ageing.
Article
Full-text available
The DNA binding properties of ABF2, an abundant protein found in the mitochondria of the yeast Saccharomyces cerevisiae have been examined in detail. ABF2 is closely related to the vertebrate high mobility group protein HMG1 and like HMG1, ABF2 will introduce negative supercoils into a relaxed, double-stranded circular DNA molecule in cooperation with a DNA topoisomerase. Additionally, ABF2 binds approximately 5-10 times more tightly to negatively supercoiled DNA than to relaxed circular or linear DNA. Although ABF2 binds to most random double-stranded sequences with roughly equal affinity, its binding within certain key regulatory regions is qualitatively quite different. First, ABF2 binding induces a distinct pattern of DNA bending within the chromosomal origin of DNA replication, ARS1. Second, ABF2 binding to all nuclear replication origins tested, in addition to a critical mitochondrial promoter and replication origin, is clearly nonrandom as visualized by DNase1 footprinting. Analysis of the sequences found within these regions as well as competition experiments with synthetic DNA molecules suggest that site-specific DNA binding may be accomplished by the phased distribution of short stretches of poly(dA), which exclude ABF2 binding. These patterns of ABF2 DNA binding suggest a role for the protein in genome organization and site-specific regulation of transcription or DNA replication.
Article
Full-text available
Recently, we presented evidence for conventional, strand-coupled replication of mammalian mitochondrial DNA. Partially single-stranded replication intermediates detected in the same DNA preparations were assumed to derive from the previously described, strand-asymmetric mode of mitochondrial DNA replication. Here, we show that bona fide replication intermediates from highly purified mitochondria are essentially duplex throughout their length, but contain widespread regions of RNA:DNA hybrid, as a result of the incorporation of ribonucleotides on the light strand which are subsequently converted to DNA. Ribonucleotide-rich regions can be degraded to generate partially single-stranded molecules by RNase H treatment in vitro or during DNA extraction from crude mitochondria. Mammalian mitochondrial DNA replication thus proceeds mainly, or exclusively, by a strand-coupled mechanism.
Article
Full-text available
Mitochondrial DNA (mtDNA) defects cause debilitating metabolic disorders for which there is no effective treatment. Patients suffering from these diseases often harbour both a wild-type and a mutated subpopulation of mtDNA, a situation termed heteroplasmy. Understanding mtDNA repair mechanisms could facilitate the development of novel therapies to combat these diseases. In particular, mismatch repair activity could potentially be used to repair pathogenic mtDNA mutations existing in the heteroplasmic state if heteroduplexes could be generated. To date, however, there has been no compelling evidence for such a repair activity in mammalian mitochondria. We now report evidence consistent with a mismatch repair capability in mammalian mitochondria that exhibits some characteristics of the nuclear pathway. A repair assay utilising a nicked heteroduplex substrate with a GT or a GG mismatch in the beta-galactosidase reporter gene was used to test the repair potential of different lysates. A low level repair activity was identified in rat liver mitochondrial lysate that showed no strand bias. The activity was mismatch-selective, bi-directional, ATP-dependent and EDTA-sensitive. Western analysis using antibody to MSH2, a key nuclear mismatch repair system (MMR) protein, showed no cross-reacting species in mitochondrial lysate. A hypothesis to explain the molecular mechanism of mitochondrial MMR in the light of these observations is discussed.
Article
Full-text available
Mutations in mitochondrial DNA (mtDNA) accumulate in tissues of mammalian species and have been hypothesized to contribute to aging. We show that mice expressing a proofreading-deficient version of the mitochondrial DNA polymerase g (POLG) accumulate mtDNA mutations and display features of accelerated aging. Accumulation of mtDNA mutations was not associated with increased markers of oxidative stress or a defect in cellular proliferation, but was correlated with the induction of apoptotic markers, particularly in tissues characterized by rapid cellular turnover. The levels of apoptotic markers were also found to increase during aging in normal mice. Thus, accumulation of mtDNA mutations that promote apoptosis may be a central mechanism driving mammalian aging.
Article
Full-text available
Diseases arising from mitochondrial DNA (mtDNA) mutations are usually serious pleiotropic disorders with maternal inheritance. Owing to the high recurrence risk in the progeny of carrier females, "at-risk" couples often ask for prenatal diagnosis. However, reliability of such practices remains under debate. Preimplantation diagnosis (PGD), a theoretical alternative to conventional prenatal diagnosis, requires that the mutant load measured in a single cell from an eight cell embryo accurately reflects the overall heteroplasmy of the whole embryo, but this is not known to be the case. To investigate the segregation of an mtDNA length polymorphism in blastomeres of 15 control embryos from four unrelated couples, the NARP mutation in blastomeres of three embryos from a carrier of this mutation. Variability of the mtDNA polymorphism heteroplasmy among blastomeres from each embryo was limited, ranging from zero to 19%, with a mean of 7%. PGD for the neurogenic ataxia retinitis pigmentosa (NARP) mtDNA mutation (8993T-->G) was therefore carried out in the carrier mother of an affected child. One of three embryos was shown to carry 100% of mutant mtDNA species while the remaining two were mutation-free. These two embryos were transferred, resulting in a singleton pregnancy with delivery of a healthy child. This PGD, the first reported for a mtDNA mutation, illustrates the skewed meiotic segregation of the NARP mtDNA mutation in early human development. However, discrepancies between the segregation patterns of the NARP mutation and the HV2 polymorphism indicate that a particular mtDNA nucleotide variant might differentially influenced the mtDNA segregation, precluding any assumption on feasibility of PGD for other mtDNA mutations.
Article
Full-text available
Pathogenic mutations in mtDNAs have been shown to be responsible for expression of respiration defects and resultant expression of mitochondrial diseases. This study directly addressed the issue of gene therapy of mitochondrial diseases by using nuclear transplantation of zygotes of transmitochondria mice (mito-mice). Mito-mice expressed respiration defects and mitochondrial diseases due to accumulation of mtDNA carrying a large-scale deletion (ΔmtDNA). Second polar bodies were used as biopsy samples for diagnosis of mtDNA genotypes of mito-mouse zygotes. Nuclear transplantation was carried out from mito-mouse zygotes to enucleated normal zygotes and was shown to rescue all of the F0 progeny from expression of respiration defects throughout their lives. This procedure should be applicable to patients with mitochondrial diseases for preventing their children from developing the diseases. • mitochondrial disease • mitochondrial DNA
Article
Full-text available
Here we show that in substantia nigra neurons from both aged controls and individuals with Parkinson disease, there is a high level of deleted mitochondrial DNA (mtDNA) (controls, 43.3% +/- 9.3%; individuals with Parkinson disease, 52.3% +/- 9.3%). These mtDNA mutations are somatic, with different clonally expanded deletions in individual cells, and high levels of these mutations are associated with respiratory chain deficiency. Our studies suggest that somatic mtDNA deletions are important in the selective neuronal loss observed in brain aging and in Parkinson disease.
Article
Full-text available
Using a novel single-molecule PCR approach to quantify the total burden of mitochondrial DNA (mtDNA) molecules with deletions, we show that a high proportion of individual pigmented neurons in the aged human substantia nigra contain very high levels of mtDNA deletions. Molecules with deletions are largely clonal within each neuron; that is, they originate from a single deleted mtDNA molecule that has expanded clonally. The fraction of mtDNA deletions is significantly higher in cytochrome c oxidase (COX)-deficient neurons than in COX-positive neurons, suggesting that mtDNA deletions may be directly responsible for impaired cellular respiration.
Article
Full-text available
The maintenance of mitochondrial DNA (mtDNA) is critically dependent upon polymerase-gamma (pol-gamma), encoded by the nuclear gene POLG. Over the last 5 years, it has become clear that mutations of POLG are a major cause of human disease. Secondary mtDNA defects characterize these disorders, with mtDNA depletion, multiple mtDNA deletions or multiple point mutations of mtDNA in clinically affected tissues. The secondary mtDNA defects cause cell and tissue-specific deficiencies of mitochondrial oxidative phosphorylation, leading to organ dysfunction and human disease. Functional genetic variants of POLG are present in up to approximately 0.5% of the general population, and pathogenic mutations have been described in most exons of the gene. Clinically, POLG mutations can present from early neonatal life to late middle age, with a spectrum of phenotypes that includes common neurological disorders such as migraine, epilepsy and Parkinsonism. Transgenic mice and biochemical studies of recombinant mutated proteins are helping to unravel mechanisms of pathogenesis, and patterns are beginning to emerge relating genotype to phenotype.
Article
Full-text available
Using two-dimensional agarose gel electrophoresis, we show that mitochondrial DNA (mtDNA) replication of birds and mammals frequently entails ribonucleotide incorporation throughout the lagging strand (RITOLS). Based on a combination of two-dimensional agarose gel electrophoretic analysis and mapping of 5' ends of DNA, initiation of RITOLS replication occurs in the major non-coding region of vertebrate mtDNA and is effectively unidirectional. In some cases, conversion of nascent RNA strands to DNA starts at defined loci, the most prominent of which maps, in mammalian mtDNA, in the vicinity of the site known as the light-strand origin.
Article
Full-text available
Observations of rapid shifts in mitochondrial DNA (mtDNA) variants between generations prompted the creation of the bottleneck theory. A prevalent hypothesis is that a massive reduction in mtDNA content during early oogenesis leads to the bottleneck. To test this, we estimated the mtDNA copy number in single germline cells and in single somatic cells of early embryos in mice. Primordial germ cells (PGCs) show consistent, moderate mtDNA copy numbers across developmental stages, whereas primary oocytes demonstrate substantial mtDNA expansion during early oocyte maturation. Some somatic cells possess a very low mtDNA copy number. We also demonstrated that PGCs have more than 100 mitochondria per cell. We conclude that the mitochondrial bottleneck is not due to a drastic decline in mtDNA copy number in early oogenesis but rather to a small effective number of segregation units for mtDNA in mouse germ cells. These results provide new information for mtDNA segregation models and for understanding the recurrence risks for mtDNA diseases.
Article
Full-text available
Mitochondria contain their own genome that is expressed by nuclear-encoded factors imported into the organelle. This review provides a summary of the current state of knowledge regarding the mechanism of protein translation in human mitochondria and the factors involved in this process.
Article
Full-text available
Mitochondrial DNA (mtDNA) occurs in cells in nucleoids containing several copies of the genome. Previous studies have identified proteins associated with these large DNA structures when they are biochemically purified by sedimentation and immunoaffinity chromatography. In this study, formaldehyde cross-linking was performed to determine which nucleoid proteins are in close contact with the mtDNA. A set of core nucleoid proteins is found in both native and cross-linked nucleoids, including 13 proteins with known roles in mtDNA transactions. Several other metabolic proteins and chaperones identified in native nucleoids, including ATAD3, were not observed to cross-link to mtDNA. Additional immunofluorescence and protease susceptibility studies showed that an N-terminal domain of ATAD3 previously proposed to bind to the mtDNA D-loop is directed away from the mitochondrial matrix, so it is unlikely to interact with mtDNA in vivo. These results are discussed in relation to a model for a layered structure of mtDNA nucleoids in which replication and transcription occur in the central core, whereas translation and complex assembly may occur in the peripheral region.
Article
Full-text available
Mammalian mitochondrial DNA (mtDNA) is inherited principally down the maternal line, but the mechanisms involved are not fully understood. Females harboring a mixture of mutant and wild-type mtDNA (heteroplasmy) transmit a varying proportion of mutant mtDNA to their offspring. In humans with mtDNA disorders, the proportion of mutated mtDNA inherited from the mother correlates with disease severity. Rapid changes in allele frequency can occur in a single generation. This could be due to a marked reduction in the number of mtDNA molecules being transmitted from mother to offspring (the mitochondrial genetic bottleneck), to the partitioning of mtDNA into homoplasmic segregating units, or to the selection of a group of mtDNA molecules to re-populate the next generation. Here we show that the partitioning of mtDNA molecules into different cells before and after implantation, followed by the segregation of replicating mtDNA between proliferating primordial germ cells, is responsible for the different levels of heteroplasmy seen in the offspring of heteroplasmic female mice.
Article
Full-text available
Mutations in mitochondrial DNA (mtDNA) tRNA genes can be considered functionally recessive because they result in a clinical or biochemical phenotype only when the percentage of mutant molecules exceeds a critical threshold value, in the range of 70-90%. We report a novel mtDNA mutation that contradicts this rule, since it caused a severe multisystem disorder and respiratory chain (RC) deficiency even at low levels of heteroplasmy. We studied a 13-year-old boy with clinical, radiological and biochemical evidence of a mitochondrial disorder. We detected a novel heteroplasmic C>T mutation at nucleotide 5545 of mtDNA, which was present at unusually low levels (<25%) in affected tissues. The pathogenic threshold for the mutation in cybrids was between 4 and 8%, implying a dominant mechanism of action. The mutation affects the central base of the anticodon triplet of tRNA(Trp) and it may alter the codon specificity of the affected tRNA. These findings introduce the concept of dominance in mitochondrial genetics and pose new diagnostic challenges, because such mutations may easily escape detection. Moreover, similar mutations arising stochastically and accumulating in a minority of mtDNA molecules during the aging process may severely impair RC function in cells.
Article
Full-text available
Repair of oxidative DNA damage in mitochondria was thought limited to short-patch base excision repair (SP-BER) replacing a single nucleotide. However, certain oxidative lesions cannot be processed by SP-BER. Here we report that 2-deoxyribonolactone (dL), a major type of oxidized abasic site, inhibits replication by mitochondrial DNA (mtDNA) polymerase gamma and interferes with SP-BER by covalently trapping polymerase gamma during attempted dL excision. However, repair of dL was detected in human mitochondrial extracts, and we show that this repair is via long-patch BER (LP-BER) dependent on flap endonuclease 1 (FEN1), not previously known to be present in mitochondria. FEN1 was retained in protease-treated mitochondria and detected in mitochondrial nucleoids that contain known mitochondrial replication and transcription proteins. Results of immunofluorescence and subcellular fractionation studies were also consistent with the presence of FEN1 in the mitochondria of intact cells. Immunodepletion experiments showed that the LP-BER activity of mitochondrial extracts was strongly diminished in parallel with the removal of FEN1, although some activity remained, suggesting the presence of an additional flap-removing enzyme. Biological evidence for a FEN1 role in repairing mitochondrial oxidative DNA damage was provided by RNA interference experiments, with the extent of damage greater and the recovery slower in FEN1-depleted cells than in control cells. The mitochondrial LP-BER pathway likely plays important roles in repairing dL lesions and other oxidative lesions and perhaps in normal mtDNA replication.
Article
In mammals, mitochondrial DNA (mtDNA) sequence variants are observed to segregate rapidly between generations despite the high mtDNA copy number in the oocyte. This has led to the concept of a genetic bottleneck for the transmission of mtDNA, but the mechanism remains contentious. Several studies have suggested that the bottleneck occurs during embryonic development, as a result of a marked reduction in germline mtDNA copy number. Mitotic segregation of mtDNAs during preimplantation, or during the expansion of primordial germ cells (PGCs) before they colonize the gonad, is thought to account for the increase in genotypic variance observed among mature oocytes from heteroplasmic mothers. This view has, however, been challenged by studies suggesting that the bottleneck occurs without a reduction in germline mtDNA content. To resolve this controversy, we measured mtDNA heteroplasmy and copy number in single germ cells isolated from heteroplasmic mice. By directly tracking the evolution of mtDNA genotypic variance during oogenesis, we show that the genetic bottleneck occurs during postnatal folliculogenesis and not during embryonic oogenesis.
Article
Mitochondrial DNA (mtDNA) defects cause debilitating metabolic disorders for which there is no effective treatment. Patients suffering from these diseases often harbour both a wild‐type and a mutated subpopulation of mtDNA, a situation termed heteroplasmy. Understanding mtDNA repair mechanisms could facilitate the development of novel therapies to combat these diseases. In particular, mismatch repair activity could potentially be used to repair pathogenic mtDNA mutations existing in the heteroplasmic state if heteroduplexes could be generated. To date, however, there has been no compelling evidence for such a repair activity in mammalian mitochondria. We now report evidence consistent with a mismatch repair capability in mammalian mitochondria that exhibits some characteristics of the nuclear pathway. A repair assay utilising a nicked heteroduplex substrate with a GT or a GG mismatch in the β‐galactosidase reporter gene was used to test the repair potential of different lysates. A low level repair activity was identified in rat liver mitochondrial lysate that showed no strand bias. The activity was mismatch‐selective, bi‐directional, ATP‐dependent and EDTA‐sensitive. Western analysis using antibody to MSH2, a key nuclear mismatch repair system (MMR) protein, showed no cross‐reacting species in mitochondrial lysate. A hypothesis to explain the molecular mechanism of mitochondrial MMR in the light of these observations is discussed.
Article
A small group of proteins that form core components of electron transfer complexes are consistently encoded by organellar genomes in multicellular organisms, suggesting functional constraint. These genomes are costly to maintain and vulnerable to mutation. We propose that they provide cell lineages with sensors of long-term redox damage, and of bioenergetic and genomic competence. This proposed adaptive function sets tonic retrograde signalling to the nucleus and anterograde responses influencing protective and cell death pathways. The nature of the proposed gain-of-function signalling mechanisms is unclear but could involve defective complex assembly. Organellar proteomes therefore provide cumulative feedback on bioenergetic and genomic status within cell lineages, selection of the energetically 'fittest' cells and a means of removing cells that compromise survival of the organism.
Article
The 3' end of the rRNA of the small ribosomal subunit contains two extremely highly conserved dimethylated adenines. This modification and the responsible methyltransferases are present in all three domains of life, but its function has remained elusive. We have disrupted the mouse Tfb1m gene encoding a mitochondrial protein homologous to bacterial dimethyltransferases and demonstrate here that loss of TFB1M is embryonic lethal. Disruption of Tfb1m in heart leads to complete loss of adenine dimethylation of the rRNA of the small mitochondrial ribosomal subunit, impaired assembly of the mitochondrial ribosome, and abolished mitochondrial translation. In addition, we present biochemical evidence that TFB1M does not activate or repress transcription in the presence of TFB2M. Our results thus show that TFB1M is a nonredundant dimethyltransferase in mammalian mitochondria. In addition, we provide a possible explanation for the universal conservation of adenine dimethylation of rRNA by showing a critical role in ribosome maintenance.
Article
To the Editor: Sensorineural hearing loss is the most common type of sensory impairment worldwide.1 We have found that pathogenic mitochondrial DNA (mtDNA) mutations, such as the m.3243A→G mutation associated with mitochondrial encephalopathy, lactic acidosis, and strokelike episodes (MELAS), are prevalent and can cause sensorineural hearing loss in adults of European descent.2 Polymorphisms within mtDNA can modify a patient's risk of hearing loss.3 The m.1555A→G mutation, which is located in the 12S ribosomal RNA gene of the mitochondrial genome, is known to cause hearing loss, especially after exposure to aminoglycoside antibiotics.4 We prospectively collected audiologic data and DNA from blood . . .
Article
To the Editor: Aminoglycoside antibiotics are used worldwide to treat gram-negative sepsis. Since these drugs are ototoxic and nephrotoxic, drug levels are closely monitored. However, their effect on patients with the mitochondrial DNA mutation m.1555A→G is dramatic. Carriers of this mutation have permanent, profound hearing loss after receiving aminoglycosides, even when drug levels are within the therapeutic range.1,2 A review of previous studies indicates that after aminoglycoside exposure, penetrance of deafness in this population is close to 100%.3 Estimates of the prevalence of the m.1555A→G mutation have been hampered because of the small numbers of patients in such studies, . . .
Article
tRNAs are synthesized as immature precursors, and on their way to functional maturity, extra nucleotides at their 5' ends are removed by an endonuclease called RNase P. All RNase P enzymes characterized so far are composed of an RNA plus one or more proteins, and tRNA 5' end maturation is considered a universal ribozyme-catalyzed process. Using a combinatorial purification/proteomics approach, we identified the components of human mitochondrial RNase P and reconstituted the enzymatic activity from three recombinant proteins. We thereby demonstrate that human mitochondrial RNase P is a protein enzyme that does not require a trans-acting RNA component for catalysis. Moreover, the mitochondrial enzyme turns out to be an unexpected type of patchwork enzyme, composed of a tRNA methyltransferase, a short-chain dehydrogenase/reductase-family member, and a protein of hitherto unknown functional and evolutionary origin, possibly representing the enzyme's metallonuclease moiety. Apparently, animal mitochondria lost the seemingly ubiquitous RNA world remnant after reinventing RNase P from preexisting components.
Article
This chapter explores how animal mitochondrial DNA (mtDNA) is expressed and replicated. The mtDNA contain only one significant stretch of nucleotide sequence that does not code for RNA or a protein molecule. This region is the displacement-loop (Dloop) portion, which is a signature feature of vertebrate mtDNA. The essential major cis-acting elements necessary for transcriptional initiation are located within the confines of the D-loop region, which is defined explicitly as that sequence bounded by the genes for transfer RNA (tRNA)-phenylalanine and tRNA-proline. The D-loop region also contains all of the required template information necessary for the initiation of nascent heavy (H)-strand DNA synthesis, which marks the beginning of a round of DNA replication in this system. Human mtDNA promoters include a short region encompassing the transcriptional start sites that has important sequence requirements, as evidenced by the fact that mutations in these start sites have serious consequences for promoter function. Efficient transcription requires the presence and action of the only identified trans-acting factor in vertebrate mitochondrial transcription. This factor, termed “mtTFl,” functions by binding immediately upstream of the transcriptional start sites from positions –10 to –40 at each promoter.
Article
The evolution of the mitochondrial genome towards the compact organization found in the higher eukaryotes is discussed. It is suggested that the machinery for co-translational protein export across the endoplasmic reticulum membrane sets strict limits on the kinds of protein-coding genes that can be successfully transferred from the mitochondrial to the nuclear genome. This hypothesis is in perfect agreement with the pattern of mitochondrially vs nuclearly encoded mitochondrial proteins found in species such as man, mouse, and Xenopus.
Article
We have investigated whether mammalian cells can repair pyrimidine dimers in their mitochondrial DNA which have been induced by ultraviolet light. The assay system is based upon the ability of the phage T4 UV endonuclease to nick covalently closed circular mitochondrial DNA that contain pyrimidine dimers. Our results show that dimers are not removed from the mitochondrial DNA of mouse L cells or human KB and HeLa cells. There is also no evidence for photoreactivation of mitochondrial DNA. Analyses of ethidium bromide-cesium chloride equilibrium density gradients of mitochondrial DNA isotopically labeled before and after exposure to ultraviolet light show that the total amount of DNA replication is depressed after exposure. In addition, an increase in the frequency of molecules banding at a position expected for intermediate replicating forms and open circular daughter molecules suggests that the rate of replication is slower (or arrested) in molecules with pyrimidine dimers. The absence of a significant amount of mixing of label incorporated before and after ultraviolet-irradiation is evidence against the occurrence of a large amount of genetic exchange between mitochondrial DNA molecules under these conditions.
Article
The synthesis rates and half-lives of the individual mitochondrial ribosomal ribonucleic acid (RNA) and polyadenylic acid-containing RNA species in HeLa cells have been determined by analyzing their kinetics of labeling with [5-3H]-uridine and the changes in specific activity of the mitochondrial nucleotide precursor pools. In one experiment, a novel method for determining the nucleotide precursor pool specific activities, using nascent RNA chains, has been utilized. All mitochondrial RNA species analyzed were found to be metabolically unstable, with half-lives of 2.5 to 3.5 h for the two ribosomal RNA components and between 25 and 90 min for the various putative messenger RNAs. A cordycepin "chase" experiment yielded half-life values for the messenger RNA species which were, in general, larger by a factor of 1.5 to 2.5 than those estimated in the labeling kinetics experiments. On the basis of previous observations, a model is proposed whereby the rate of mitochondrial RNA decay is under feedback control by some mechanism linked to RNA synthesis or processing. A short half-life was determined for five large polyadenylated RNAs, which are probably precursors of mature species. A rate of synthesis of one to two molecules per minute per cell was estimated for the various H-strand-coded messenger RNA species, and a rate of synthesis 50 to 100 times higher was estimated for the ribosomal RNA species. These data indicate that the major portion of the H-strand in each mitochondrial deoxyribonucleic acid molecule is transcribed very infrequently, possibly as rarely as once or twice per cell generation. Furthermore, these results are consistent with a previously proposed model of H-strand transcription in the form of a single polycistronic molecule.
Article
The Human Genome Project, from one perspective, began in 1981 with the publication1 of the complete sequence of human mitochondrial DNA (mtDNA). The Cambridge reference sequence (CRS), as it is now designated, continues to be indispensable for studies of human evolution, population genetics and mitochondrial diseases. It has been recognized for some time, however, that the CRS differs at several sites from the mtDNA sequences obtained by other investigators2, 3. These discrepancies may reflect either true errors in the original sequencing analysis or rare polymorphisms in the CRS mtDNA. A further complication is that the original mtDNA sequence was principally derived from a single individual of European descent, although it also contained some sequences from both HeLa and bovine mtDNA (1). To resolve these uncertainties, we have completely resequenced the original placental mtDNA sample.
Article
Analysis of mammalian mtDNA by two-dimensional agarose gel electrophoresis revealed two classes of replication intermediate. One was resistant to single-strand nuclease digestion and displayed the mobility properties of coupled leading- and lagging- strand replication products. Intermediates of coupled, unidirectional mtDNA replication were found in mouse liver and human placenta and were the predominant species in cultured cells recovering from transient mtDNA replication. Replication intermediates sensitive to single-strand nuclease were most abundant in untreated cultured cells. These are presumed to derive from the orthodox, strand-asynchronous mode of mtDNA replication. These findings indicate that two modes of mtDNA replication operate in mammalian cells and that changes in mtDNA copy number involve an alteration in the mode of mtDNA replication.
Article
The analysis of mitochondrial DNA (mtDNA) has been a potent tool in our understanding of human evolution, owing to characteristics such as high copy number, apparent lack of recombination, high substitution rate and maternal mode of inheritance. However, almost all studies of human evolution based on mtDNA sequencing have been confined to the control region, which constitutes less than 7% of the mitochondrial genome. These studies are complicated by the extreme variation in substitution rate between sites, and the consequence of parallel mutations causing difficulties in the estimation of genetic distance and making phylogenetic inferences questionable. Most comprehensive studies of the human mitochondrial molecule have been carried out through restriction-fragment length polymorphism analysis, providing data that are ill suited to estimations of mutation rate and therefore the timing of evolutionary events. Here, to improve the information obtained from the mitochondrial molecule for studies of human evolution, we describe the global mtDNA diversity in humans based on analyses of the complete mtDNA sequence of 53 humans of diverse origins. Our mtDNA data, in comparison with those of a parallel study of the Xq13.3 region in the same individuals, provide a concurrent view on human evolution with respect to the age of modern humans.
Article
Exposure to exogenous and endogenous sources cause oxidative damage to cellular macromolecules, including DNA. This results in gradual accumulation of oxidative DNA base lesions, and in order to maintain genomic stability we must have effective systems to repair this kind of damage. The accumulation of lesions is most dramatic in the mitochondrial DNA, and this may cause dysfunction and loss of cellular energy production. Base excision DNA repair (BER) is the major pathway that removes oxidative DNA base lesions, and while we know much about its mechanism in the nuclear DNA, little is yet known about this pathway in mitochondria. While nuclear BER decreases with age, the mitochondrial DNA repair may increase with age. This increase is not enough to prevent the gradual accumulation of lesions in the mitochondrial DNA with age. Accumulation of DNA lesions with age may be the underlying cause for age-associated diseases including cancer.
Article
A significant advancement in understanding mitochondrial gene expression is the recent identification of two new human mitochondrial transcription factors, h-mtTFB1 and h-mtTFB2. Both proteins stimulate transcription in collaboration with the high-mobility group box transcription factor, h-mtTFA, and are homologous to rRNA methyltransferases. In fact, the dual-function nature of h-mtTFB1 was recently demonstrated by its ability to methylate a conserved rRNA substrate. Here, we demonstrate that h-mtTFB1 binds h-mtTFA both in HeLa cell mitochondrial extracts and in direct-binding assays via an interaction that requires the C-terminal tail of h-mtTFA, a region necessary for transcriptional activation. In addition, point mutations in conserved methyltransferase motifs of h-mtTFB1 revealed that it stimulates transcription in vitro independently of S-adenosylmethionine binding and rRNA methyltransferase activity. Furthermore, one mutation (G65A) eliminated the ability of h-mtTFB1 to bind DNA yet did not affect transcriptional activation. These results, coupled with the observation that h-mtTFB1 and human mitochondrial RNA (h-mtRNA) polymerase can also be coimmunoprecipitated, lead us to propose a model in which h-mtTFA demarcates mitochondrial promoter locations and where h-mtTFB proteins bridge an interaction between the C-terminal tail of h-mtTFA and mtRNA polymerase to facilitate specific initiation of transcription. Altogether, these data provide important new insight into the mechanism of transcription initiation in human mitochondria and indicate that the dual functions of h-mtTFB1 can be separated.
Article
Point mutations and deletions of mitochondrial DNA (mtDNA) accumulate in a variety of tissues during ageing in humans, monkeys and rodents. These mutations are unevenly distributed and can accumulate clonally in certain cells, causing a mosaic pattern of respiratory chain deficiency in tissues such as heart, skeletal muscle and brain. In terms of the ageing process, their possible causative effects have been intensely debated because of their low abundance and purely correlative connection with ageing. We have now addressed this question experimentally by creating homozygous knock-in mice that express a proof-reading-deficient version of PolgA, the nucleus-encoded catalytic subunit of mtDNA polymerase. Here we show that the knock-in mice develop an mtDNA mutator phenotype with a threefold to fivefold increase in the levels of point mutations, as well as increased amounts of deleted mtDNA. This increase in somatic mtDNA mutations is associated with reduced lifespan and premature onset of ageing-related phenotypes such as weight loss, reduced subcutaneous fat, alopecia (hair loss), kyphosis (curvature of the spine), osteoporosis, anaemia, reduced fertility and heart enlargement. Our results thus provide a causative link between mtDNA mutations and ageing phenotypes in mammals.
Article
The human mitochondrial genome is extremely small compared with the nuclear genome, and mitochondrial genetics presents unique clinical and experimental challenges. Despite the diminutive size of the mitochondrial genome, mitochondrial DNA (mtDNA) mutations are an important cause of inherited disease. Recent years have witnessed considerable progress in understanding basic mitochondrial genetics and the relationship between inherited mutations and disease phenotypes, and in identifying acquired mtDNA mutations in both ageing and cancer. However, many challenges remain, including the prevention and treatment of these diseases. This review explores the advances that have been made and the areas in which future progress is likely.
Article
The mitochondrion was originally a free-living prokaryotic organism, which explains the presence of a compact mammalian mitochondrial DNA (mtDNA) in contemporary mammalian cells. The genome encodes for key subunits of the electron transport chain and RNA components needed for mitochondrial translation. Nuclear genes encode the enzyme systems responsible for mtDNA replication and transcription. Several of the key components of these systems are related to proteins replicating and transcribing DNA in bacteriophages. This observation has led to the proposition that some genes required for DNA replication and transcription were acquired together from a phage early in the evolution of the eukaryotic cell, already at the time of the mitochondrial endosymbiosis. Recent years have seen a rapid development in our molecular understanding of these machineries, but many aspects still remain unknown.
Article
Diverse and variable clinical features, a loose genotype-phenotype relationship, and presentation to different medical specialties have all hindered attempts to gauge the epidemiological impact of mitochondrial DNA (mtDNA) disease. Nevertheless, a clear understanding of its prevalence remains an important goal, particularly about planning appropriate clinical services. Consequently, the aim of this study was to accurately define the prevalence of mtDNA disease (primary mutation occurs in mtDNA) in the working-age population of the North East of England. Adults with suspected mitochondrial disease in the North East of England were referred to a single neurology center for investigation from 1990 to 2004. Those with pathogenic mtDNA mutations were identified and pedigree analysis performed. For the midyear period of 2001, we calculated the minimum point prevalence of mtDNA disease for adults of working age (>16 and <60/65 years for female/male patients, respectively). In this population, we found that 9.2 in 100,000 people have clinically manifest mtDNA disease, making this one of the commonest inherited neuromuscular disorders. In addition, a further 16.5 in 100,000 children and adults younger than retirement age are at risk for development of mtDNA disease. Through detailed pedigree analysis and active family tracing, we have been able to provide revised minimum prevalence figures for mtDNA disease. These estimates confirm that mtDNA disease is a common cause of chronic morbidity and is more prevalent than has been previously appreciated.
Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age
  • M Corral-Debrinski
  • T Horton
  • M T Lott
  • J M Shoffner
  • M F Beal
  • D C Wallace
Corral-Debrinski, M., Horton, T., Lott, M.T., Shoffner, J.M., Beal, M.F. and Wallace, D.C. (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat. Genet. 2, 324-329
  • G C Kujoth
  • A Hiona
  • T D Pugh
  • S Someya
  • K Panzer
  • S E Wohlgemuth
  • T Hofer
  • A Y Seo
  • R Sullivan
  • W A Jobling
Kujoth, G.C., Hiona, A., Pugh, T.D., Someya, S., Panzer, K., Wohlgemuth, S.E., Hofer, T., Seo, A.Y., Sullivan, R., Jobling, W.A. et al. (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484
Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA
  • Andrews
Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age
  • Corral-Debrinski