ArticlePDF Available

Mouse brain expression patterns of Spg7, Afg3l1, and Afg3l2 transcripts, encoding for the mitochondrial m-AAA protease

Authors:

Abstract and Figures

The m-AAA (ATPases Associated with a variety of cellular Activities) is an evolutionary conserved metalloprotease complex located in the internal mitochondrial membrane. In the mouse, it is a hetero-oligomer variably formed by the Spg7, Afg3l1, and Afg3l2 encoded proteins, or a homo-oligomer formed by either Afg3l1 or Afg3l2. In humans, AFG3L2 and SPG7 genes are conserved, whereas AFG3L1 became a pseudogene. Both AFG3L2 and SPG7 are involved in a neurodegenerative disease, namely the autosomal dominant spinocerebellar ataxia SCA28 and a recessive form of spastic paraplegia, respectively. Using quantitative RT-PCR, we measured the expression levels of Spg7, Afg3l1, and Afg3l2 in the mouse brain. In all regions Afg3l2 is the most abundant transcript, followed by Spg7, and Afg3l1, with a ratio of approximately 5:3:1 in whole-brain mRNA. Using in-situ hybridization, we showed that Spg7, Afg3l1 and Afg3l2 have a similar cellular pattern of expression, with high levels in mitral cells, Purkinje cells, deep cerebellar nuclei cells, neocortical and hippocampal pyramidal neurons, and brainstem motor neurons. However, in some neuronal types, differences in the level of expression of these genes were present, suggesting distinct degrees of contribution of their proteins. Neurons involved in SCA28 and hereditary spastic paraplegia display high levels of expression, but similar or even higher expression is also present in other types of neurons, not involved in these diseases, suggesting that the selective cell sensitivity should be attributed to other, still unknown, mechanisms.
Content may be subject to copyright.
A preview of the PDF is not available
... AFG3L2 mutations cause three monogenic disorders which are spinocerebellar ataxia type 28 (SCA28), spastic ataxia type 5 (SPAX5), and optic atrophy type 12 (OPA12) and have been reported for their mechanistic association with other diseases such as PD and other eye associated ataxias like ophthalmoparesis and oculomotor apraxia [9]. It is involved in steroid synthesis regulation via StAR overload response (SOR) [13][14][15][16][17][18][19][20][21][22][23]. This review discusses the multifaceted roles of AFG3L2 in mitochondrial physiology and its role primarily in spinocerebellar ataxia type 28 (SCA28) and other diseases. ...
... AFG3L2 is ubiquitously expressed. It is evident from previous studies that Afg3l2 is expressed throughout the mouse brain corroborating its essential role in the function of the neurons [19]. Further enhanced expression is observed in the large cell body containing neurons that include brainstem motor neurons, mitral cells of olfactory bulb, pyramidal cells of hippocampus and neocortex, Purkinje, and deep nuclei cells of cerebellum [19,48]. ...
... It is evident from previous studies that Afg3l2 is expressed throughout the mouse brain corroborating its essential role in the function of the neurons [19]. Further enhanced expression is observed in the large cell body containing neurons that include brainstem motor neurons, mitral cells of olfactory bulb, pyramidal cells of hippocampus and neocortex, Purkinje, and deep nuclei cells of cerebellum [19,48]. However, Afg3l2 expression patterns are not strictly related to the occurrence of SCA28 or SPAX5 development [19]. ...
Article
Full-text available
AFG3L2 is a zinc metalloprotease and an ATPase localized in an inner mitochondrial membrane involved in mitochondrial quality control of several nuclear- and mitochondrial-encoded proteins. Mutations in AFG3L2 lead to diseases like slow progressive ataxia, which is a neurological disorder. This review delineates the cellular functions of AFG3L2 and its dysfunction that leads to major clinical outcomes, which include spinocerebellar ataxia type 28, spastic ataxia type 5, and optic atrophy type 12. It summarizes all relevant AFG3L2 mutations associated with the clinical outcomes to understand the detailed mechanisms attributable to its structure-related multifaceted roles in proteostasis and quality control. We face early diagnostic challenges of ataxia and optic neuropathy due to asymptomatic parents and variable clinical manifestations due to heterozygosity/homozygosity of AFG3L2 mutations. This review intends to promote AFG3L2 as a putative prognostic or diagnostic marker. Functions, mutations, and clinical manifestations in AFG3L2, a mitochondrial AAA + ATPases.
... In animal models, SPG7 is intensely expressed in Purkinje cells and moderately in the striatum, suggesting possible involvement of nigrostriatal pathways in patients with SPG7 mutations [67]. Furthermore, the clinical spectrum of SPG7 continues to broaden, and recent years have seen a connection between SPG7 mutations and parkinsonism [68]. ...
Article
Full-text available
Parkinsonism is a syndrome characterized by bradykinesia in combination with either rest tremor, rigidity, or both. These features are the cardinal manifestations of Parkinson’s disease, the most common cause of parkinsonism, and atypical parkinsonian disorders. However, parkinsonism can be a manifestation of complex neurological and neurodegenerative genetically determined disorders, which have a vast and heterogeneous motor and non-motor phenotypic features. Hereditary dementias, adult-onset ataxias and spastic paraplegias represent only few of this vast group of neurogenetic diseases. This review will provide an overview of parkinsonism’s clinical features within adult-onset neurogenetic diseases which a neurologist could face with. Understanding parkinsonism and its characteristics in the context of the aforementioned neurological conditions may provide insights into pathophysiological mechanisms and have important clinical implications, including diagnostic and therapeutic aspects.
... An additional gene in this region, Spastic Paraplegia 7 (SPG7), affects mitochondrial function. Variants in SFG7 in humans are known to affect muscle ATP production, eye movement and Purkinje neurons of the cerebellum, critical for motor coordination and balance 45,46 . ...
Article
Full-text available
During breed development, domestic dogs have undergone genetic bottlenecks and sustained selective pressures, as a result distinctive genomic diversity occurs to varying degrees within and between breed groups. This diversity can be identified using standard methods or combinations of these methods. This study explored the application of a combined selection index, composite selection signals (CSS), derived from multiple methods to an existing genotype dataset from three breed groups developed in distinct regions of Asia: Qinghai-Tibet plateau dogs (adapted to living at altitude), Xi dogs (with superior running ability) and Mountain hounds (used for hunting ability). The CSS analysis confirmed top ranked genomic regions on CFA10 and CFA21 in Qinghai-Tibet plateau dogs, CFA1 in Xi dogs and CFA5 in Mountain hounds. CSS analysis identified additional significant genomic regions in each group, defined by a total of 1,397, 1,475 and 1,675 significant SNPs in the Qinghai-Tibetan Plateau dogs, Xi dogs and Mountain hounds, respectively. Chitinase 3 Like 1 (CHI3L1) and Leucine Rich Repeat Containing G Protein-Coupled Receptor 6 (LGR6) genes were located in the top ranked region on CFA7 (0.02-1 Mb) in the Qinghai-Tibetan Plateau dogs. Both genes have been associated with hypoxia responses or altitude adaptation in humans. For the Xi dogs, the top ranked region on CFA25 contained the Transient Receptor Potential Cation Channel Subfamily C Member 4 (TRPC4) gene. This calcium channel is important for optimal muscle performance during exercise. The outstanding signals in the Mountain dogs were on CFA5 with 213 significant SNPs that spanned genes involved in cardiac development, sight and generation of biochemical energy. These findings support the use of the combined index approach for identifying novel regions of genome diversity in dogs. As with other methods, the results do not prove causal links between these regions and phenotypes, but they may assist in focusing future studies that seek to identify functional pathways that contribute to breed diversity. The development of modern dog breeds from ancestral populations is a good model for understanding domes-tication and genetic diversification 1. The first domestication events created genetic bottlenecks that have since been exacerbated by further selective pressures in the creation of specific breeds. Around 500 distinct breeds are currently recognized by breed clubs, such as the American Kennel Club (https:// www. akc. org/) 2,3 , Australian National Kennel Council (https:// dogsa ustra lia. org. au/) 4,5 or The Kennel Club (UK, https:// www. theke nnelc lub. org. uk/) 6,7. Each breed is classified by a standard, which includes morphological criteria, behavioural traits and coat color 8,9. These guidelines were applied during the development of modern pure-breed dogs, consequently phenotypic and genetic heterogeneity has been substantially reduced within breeds while maintaining diversity across breeds. Previous studies of genomic diversity in dogs have used summary statistics to measure locus specific divergence in allele frequencies, for example F st , XP-EHH and di 10-15. Akey et al. 12 demonstrated that, combined with high density SNP markers, the F st statistic was a powerful tool to scan the canine genome for selection signatures, and developed a modified pairwise statistic (di) based on F st to detect locus specific deviation between breeds 10. The other widely used statistical test to identify regions of interest is Cross Population EHH (XP-EHH) 16,17. Using long-range haplotype information, XP-EHH measures whether a selected allele has risen in frequency in one population but not in a second reference population 16. The use of a single methodology may be enhanced by combining signals across different tests 18-20. One such composite method, named composite selection signals (CSS), has been developed in domesticate species (cattle and sheep) for application to genomic data where a detailed individual phenotypic or population history is not available 21,22. Application of the CSS method to cattle breeds and across species (cattle and sheep) have detected signals throughout the genome with a high degree of sensitivity.
... Spg7 must be processed at two cleavage sites to activate its protease activity, the latter being dependent on Afg3l2/Afg3l1 (Koppen et al. 2009). By electron microscopy, sciatic nerves of Afg3l2 M665R/+ mice show swollen mitochondria with disrupted cristae, corroborating the idea that the Afg3l2-paraplegin complex, highly represented in the peripheral nervous system, is also affected in our knock-in model Sacco et al. 2010). ...
Preprint
Full-text available
Spinocerebellar ataxia 28 is an autosomal dominant neurodegenerative disorder caused by missense mutations affecting the proteolytic domain of AFG3L2, a major component of the mitochondrial m-AAA protease. However, little is known of the underlying pathogenetic mechanisms or how to treat patients with SCA28. Currently available Afg3l2 mutant mice harbour deletions that lead to severe, early-onset neurological phenotypes that do not faithfully reproduce the late-onset and slowly progressing SCA28 phenotype. Here we describe production and detailed analysis of a new knock-in murine model harbouring an Afg3l2 allele carrying the p.Met665Arg patient-derived mutation. Heterozygous mutant mice developed normally but signs of ataxia were detectable by beam test at 18 months. Cerebellar pathology was negative; electrophysiological analysis showed increased spontaneous firing in Purkinje cells from heterozygous mutants with respect to wild-type controls, although not statistically significant. As homozygous mutants died perinatally with evidence of cardiac atrophy, for each genotype we generated mouse embryonic fibroblasts (MEFs) to investigate mitochondrial function. MEFs from mutant mice showed altered mitochondrial bioenergetics, with decreased basal oxygen consumption rate, ATP synthesis and mitochondrial membrane potential. Mitochondrial network formation and morphology was also altered, in line with greatly reduced expression of Opa1 fusogenic protein L-isoforms. The mitochondrial alterations observed in MEFs were also detected in cerebella of 18-month-old heterozygous mutants, suggesting they may be a hallmark of disease. Pharmacological inhibition of de novo mitochondrial protein translation with chloramphenicol caused reversal of mitochondrial morphology in homozygous mutant MEFs, supporting the relevance of mitochondrial proteotoxicity for SCA28 pathogenesis and therapy development.
... These proteins is located within the inner membrane of the mitochondria., As paraplegin is highly expressed in Purkinje neurons which are involved in movement coordination, thus it explains the manifestation of ataxic feature in Case 1 with SPG 7 mutation [30]. Mutations in SPG7 are responsible for 1.5-4.5% of autosomal recessive HSP cases with both, pure and complicated phenotypes [31]. ...
Article
Full-text available
Hereditary Spastic Paraplegias (HSPs) are a group of heritable conditions resulting from neuro-degeneration of the cortico-spinal tracts. It can exist as "pure form" characterized by advanced spasticity, weakness of hind limbs, bladder dysfunctioning and mild somatosensory deficits, or as "complex form" where other neurological and systemic abnormalities are present.
... Low levels of mtDNA have been detected in Parkinson's disease (PD) patients [22]. Animal model studies show an intense SPG7 expression in the Purkinje cells, although only a moderate expression has been found in the striatum cells [23]. For these reasons, we suggest a possible involvement of the nigrostriatal pathways in patients with SPG7 mutations. ...
Article
Full-text available
Background Spastic Paraplegia type 7 (SPG7) is one of the most common autosomal recessive Hereditary Spastic Paraplegias (HSP); Spastic Paraplegias (SPGs) can present as hereditary ataxias. However, ataxia is frequently the symptom of presentation of many other hereditary/sporadic disorders, such as Multiple system atrophy type C (MSA-C), an α-synuclein sporadic neurodegenerative disorder, in which cerebellar ataxia is one of the main clinical features. Dopamine Transporter imaging (DAT-SCAN), associated with clinical features, can be a helpful tool in order to distinguish MSA-C from other causes of ataxia. Case-presentation We present the case of a 70-year-old man with gait difficulties over a period of 3 years and frequent backward/lateral falls. He also reported urinary urge incontinence, but no symptoms that are compatible with orthostatic hypotension. On neurological examination he showed ataxic gait, spasticity in the left lower limb and trunk and limb ataxia, especially on the left side. Mild hypokinesia was found in all 4 limbs, especially in the left foot. MRI revealed atrophy of the cerebellar hemispheres and vermis. DAT-SCAN imaging revealed bilateral nigro-striatal degeneration, which was compatible with a diagnosis of possible MSA-C. Considering the atypical disease course (the patient walked without any support after 3 years), we carried out a genetic investigation for Ataxia, and a mutation in SPG7 was found. Conclusions DAT-SCAN imaging, evaluated together with the clinical findings, can be useful for differentiating MSA from other possible causes of adult-onset Ataxia. Indeed, patients with MSA-C generally show a decreased uptake of dopamine transporters in DAT-SCAN imaging. Ours is the first case reported in the literature of a patient with SPG7 mutation with nigrostriatal degeneration and a clinical presentation of a possible MSA-C. Performing genetic investigations in patients with an atypical disease course is important to avoid MSA-mimicries. Identifying the correct diagnosis is important not only for prognostic reasons, but also for possible future genetic therapies.
... Total RNA from cell cultures was extracted with the Directzol RNA Miniprep kit (Zymo Research, Irvine, United States), and reverse transcribed to cDNA with the High-Capacity cDNA Archive kit (Thermo Fisher Scientific, Waltham, United States). Quantitative Real Time RT-PCR was performed as described in Sacco et al. (2010), with the pre-developed Taqman assay #Rn01446631_m1 (Thermo Fisher Scientific, Waltham, United States). A relative quantification approach was used, according to the 2-ddCT method. ...
Article
Full-text available
ELOVL5 (Elongase of Very-Long Fatty Acid 5) gene encodes for an enzyme that elongates long chain fatty acids, with a marked preference for polyunsaturated molecules. In particular, it plays an essential role in the elongation of omega-3 and omega-6 fatty acids, precursors for long-chain polyunsaturated fatty acids (PUFAs). Mutations of ELOVL5 cause the spino-cerebellar ataxia type 38 (SCA38), a rare autosomal neurological disease characterized by gait abnormality, dysarthria, dysphagia, hyposmia and peripheral neuropathy, conditions well represented by a mouse model with a targeted deletion of this gene (Elovl5–/– mice). However, the expression pattern of this enzyme in neuronal and glial cells of the central nervous system (CNS) is still uninvestigated. This work is aimed at filling this gap of knowledge by taking advantage of an Elovl5-reporter mouse line and immunofluorescence analyses on adult mouse CNS sections and glial cell primary cultures. Notably, Elovl5 appears expressed in a region- and cell type-specific manner. Abundant Elovl5-positive cells were found in the cerebellum, brainstem, and primary and accessory olfactory regions, where mitral cells show the most prominent expression. Hippocampal pyramidal cells of CA2/CA3 where also moderately labeled, while in the rest of the telencephalon Elovl5 expression was high in regions related to motor control. Analysis of primary glial cell cultures revealed Elovl5 expression in oligodendroglial cells at various maturation steps and in microglia, while astrocytes showed a heterogeneous in vivo expression of Elovl5. The elucidation of Elovl5 CNS distribution provides relevant information to understand the physiological functions of this enzyme and its PUFA products, whose unbalance is known to be involved in many pathological conditions.
... Total RNA from MACS-sorted OPCs was extracted with the Direct-zol RNA Miniprep kit (Zymo Research, Irevine, USA), and reverse transcribed to cDNA with the High-Capacity cDNA Archive kit (Applied Biosystems, Thermofisher, Waltham, USA). Quantitative Real Time RT-PCR was performed as described in 85 www.nature.com/scientificreports/ or by combining the RealTime Ready Universal Probe Library (UPL, Roche Diagnostics, Monza, Italy) with the primers indicated in Suppl. ...
Article
Full-text available
During Central Nervous System ontogenesis, myelinating oligodendrocytes (OLs) arise from highly ramified and proliferative precursors called oligodendrocyte progenitor cells (OPCs). OPC architecture, proliferation and oligodendro-/myelino-genesis are finely regulated by the interplay of cell-intrinsic and extrinsic factors. A variety of extrinsic cues converge on the extracellular signal-regulated kinase/mitogen activated protein kinase (ERK/MAPK) pathway. Here we found that the germinal ablation of the MAPK c-Jun N-Terminal Kinase isoform 1 (JNK1) results in a significant reduction of myelin in the cerebral cortex and corpus callosum at both postnatal and adult stages. Myelin alterations are accompanied by higher OPC density and proliferation during the first weeks of life, consistent with a transient alteration of mechanisms regulating OPC self-renewal and differentiation. JNK1 KO OPCs also show smaller occupancy territories and a less complex branching architecture in vivo. Notably, these latter phenotypes are recapitulated in pure cultures of JNK1 KO OPCs and of WT OPCs treated with the JNK inhibitor D-JNKI-1. Moreover, JNK1 KO and WT D-JNKI-1 treated OLs, while not showing overt alterations of differentiation in vitro, display a reduced surface compared to controls. Our results unveil a novel player in the complex regulation of OPC biology, on the one hand showing that JNK1 ablation cell-autonomously determines alterations of OPC proliferation and branching architecture and, on the other hand, suggesting that JNK1 signaling in OLs participates in myelination in vivo.
Article
Full-text available
In the developing mouse forebrain, temporally distinct waves of oligodendrocyte progenitor cells (OPCs) arise from different germinal zones and eventually populate either dorsal or ventral regions, where they present as transcriptionally and functionally equivalent cells. Despite that, developmental heterogeneity influences adult OPC responses upon demyelination. Here we show that accumulation of DNA damage due to ablation of citron-kinase or cisplatin treatment cell-autonomously disrupts OPC fate, resulting in cell death and senescence in the dorsal and ventral subsets, respectively. Such alternative fates are associated with distinct developmental origins of OPCs, and with a different activation of NRF2-mediated anti-oxidant responses. These data indicate that, upon injury, dorsal and ventral OPC subsets show functional and molecular diversity that can make them differentially vulnerable to pathological conditions associated with DNA damage.
Article
Background: Although the typical inheritance of spastic paraplegia 7 is recessive, several reports have suggested that SPG7 variants may also cause autosomal dominant hereditary spastic paraplegia (HSP). Objectives: We aimed to conduct an exome-wide genetic analysis on a large Canadian cohort of HSP patients and controls to examine the association of SPG7 and HSP. Methods: We analyzed 585 HSP patients from 372 families and 1175 controls, including 580 unrelated individuals. Whole-exome sequencing was performed on 400 HSP patients (291 index cases) and all 1175 controls. Results: The frequency of heterozygous pathogenic/likely pathogenic SPG7 variants (4.8%) among unrelated HSP patients was higher than among unrelated controls (1.7%; OR 2.88, 95% CI 1.24-6.66, P = 0.009). The heterozygous SPG7 p.(Ala510Val) variant was found in 3.7% of index patients versus 0.85% in unrelated controls (OR 4.42, 95% CI 1.49-13.07, P = 0.005). Similar results were obtained after including only genetically-undiagnosed patients. We identified four heterozygous SPG7 variant carriers with an additional pathogenic variant in known HSP genes, compared to zero in controls (OR 19.58, 95% CI 1.05-365.13, P = 0.0031), indicating potential digenic inheritance. We further identified four families with heterozygous variants in SPG7 and SPG7-interacting genes (CACNA1A, AFG3L2, and MORC2). Of these, there is especially compelling evidence for epistasis between SPG7 and AFG3L2. The p.(Ile705Thr) variant in AFG3L2 is located at the interface between hexamer subunits, in a hotspot of mutations associated with spinocerebellar ataxia type 28 that affect its proteolytic function. Conclusions: Our results provide evidence for complex inheritance in SPG7-associated HSP, which may include recessive and possibly dominant and digenic/epistasis forms of inheritance.
Article
Full-text available
Autosomal dominant spinocerebellar ataxias (SCAs) are genetically heterogeneous neurological disorders characterized by cerebellar dysfunction mostly due to Purkinje cell degeneration. Here we show that AFG3L2 mutations cause SCA type 28. Along with paraplegin, which causes recessive spastic paraplegia, AFG3L2 is a component of the conserved m-AAA metalloprotease complex involved in the maintenance of the mitochondrial proteome. We identified heterozygous missense mutations in five unrelated SCA families and found that AFG3L2 is highly and selectively expressed in human cerebellar Purkinje cells. m-AAA-deficient yeast cells expressing human mutated AFG3L2 homocomplex show respiratory deficiency, proteolytic impairment and deficiency of respiratory chain complex IV. Structure homology modeling indicates that the mutations may affect AFG3L2 substrate handling. This work identifies AFG3L2 as a novel cause of dominant neurodegenerative disease and indicates a previously unknown role for this component of the mitochondrial protein quality control machinery in protecting the human cerebellum against neurodegeneration.
Article
Full-text available
Paraplegin is an m-AAA protease of the mitochondrial inner membrane that is linked to hereditary spastic paraplegias. The gene encodes an FtsH-homology protease domain in tandem with an AAA+ homology ATPase domain. The protein is believed to form a hexamer that uses ATPase-driven conformational changes in its AAA-domain to deliver substrate peptides to its protease domain. We present the crystal structure of the AAA-domain of human paraplegin bound to ADP at 2.2 Å. This enables assignment of the roles of specific side chains within the catalytic cycle, and provides the structural basis for understanding the mechanism of disease mutations. Enhanced version This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.
Article
Full-text available
Paraplegin and AFG3L2 are ubiquitous nuclear-encoded mitochondrial proteins that form hetero-oligomeric paraplegin-AFG3L2 and homo-oligomeric AFG3L2 complexes in the inner mitochondrial membrane, named m-AAA proteases. These complexes ensure protein quality control in the inner membrane, jointly with a chaperone-like activity on the respiratory chain complexes. Despite coassembling in the same complex, mutations of either paraplegin or AFG3L2 cause two different neurodegenerative disorders. Indeed, mutations of paraplegin are responsible for a recessive form of hereditary spastic paraplegia, whereas mutations of AFG3L2 have been recently associated to a dominant form of spinocerebellar ataxia (SCA28). In this work, we report that the mouse model haploinsufficient for Afg3l2 recapitulates important pathophysiological features of the human disease, thus representing the first SCA28 model. Furthermore, we propose a pathogenetic mechanism in which respiratory chain dysfunction and increased reactive oxygen species production caused by Afg3l2 haploinsufficiency lead to dark degeneration of Purkinje cells and cerebellar dysfunction.
Article
Full-text available
The mitochondrial m-AAA protease has a crucial role in axonal development and maintenance. Human mitochondria possess two m-AAA protease isoenzymes: a hetero-oligomeric complex, composed of paraplegin and AFG3L2 (Afg3 like 2), and a homo-oligomeric AFG3L2 complex. Loss of function of paraplegin (encoded by the SPG7 gene) causes hereditary spastic paraplegia, a disease characterized by retrograde degeneration of cortical motor axons. Spg7−/− mice show a late-onset degeneration of long spinal and peripheral axons with accumulation of abnormal mitochondria. In contrast, Afg3l2Emv66/Emv66 mutant mice, lacking the AFG3L2 protein, are affected by a severe neuromuscular phenotype, due to defects in motor axon development. The role of the homo-oligomeric m-AAA protease and the extent of cooperation and redundancy between the two isoenzymes in adult neurons are still unclear. Here we report an early-onset severe neurological phenotype in Spg7−/− Afg3l2Emv66/+ mice, characterized by loss of balance, tremor and ataxia. Spg7−/− Afg3l2Emv66/+ mice display acceleration and worsening of the axonopathy observed in paraplegin-deficient mice. In addition, they show prominent cerebellar degeneration with loss of Purkinje cells and parallel fibers, and reactive astrogliosis. Mitochondria from affected tissues are prone to lose mt-DNA and have unstable respiratory complexes. At late stages, neurons contain structural abnormal mitochondria defective in COX-SDH reaction. Our data demonstrate genetic interaction between the m-AAA isoenzymes and suggest that different neuronal populations have variable thresholds of susceptibility to reduced levels of the m-AAA protease. Moreover, they implicate impaired mitochondrial proteolysis as a novel pathway in cerebellar degeneration.
Article
We have recently mapped the spinocerebellar ataxia type 28 (SCA28) locus on chromosome 18p11.22 in a four-generation Italian family. The clinical phenotype in affected individuals of this family was characterized by juvenile onset, slowly progressive gait and limb ataxia, dysarthria, hyperreflexia at lower limbs, nystagmus, and ophthalmoparesis. The mean age at onset was 19.5 years, and no evidence of anticipation between generations was observed. The disease locus on chromosome 18p11.22-q11.2 was found to span a region of 7.9 Mb of genomic DNA. Direct sequencing of candidate genes within the critical interval led to the identification of a heterozygous point mutation in one of them. The mutation was located in a highly conserved domain with proposed functional properties in the protein product of the SCA28 gene, and segregated with the disease phenotype in all affected members of this family. Thereafter we have screened 105 patients with autosomal dominant spinocerebellar ataxia who had resulted negative for mutations in known SCA genes. Genetic screening allowed the identification in a second Italian family of a distinct missense mutation located in the very same functional domain of the protein. The affected members of this second family exhibited a neurological phenotype similar to that of the original family. Both mutations, not found in more than 500 chromosomes, are associated with amino acid changes (Glu-->Lys and Ser-->Leu, respectively) in evolutionarily conserved residues of the alleged SCA28 gene. Our data point to a putative pathogenic role of these mutations, and indicate SCA28 as the sixth recognized SCA genotype caused by point mutations.
Article
The mitochondrial members of the highly conserved AAA family, Yta10p and Yta12p, constitute a membrane-embedded complex of about 850 kDa. As an ATP dependent metallopeptidase (AAA protease), the YTA10-12 complex mediates the degradation of nonassembled inner membrane proteins. In contrast to nucleotide-dependent complex formation and substrate binding, proteolysis of bound polypeptides depends on the hydrolysis of ATP and the metallopeptidase activity of both subunits. Independent of its proteolytic function, the chaperone-like activity of the YTA10-12 complex is required for assembly of the membrane-associated ATP synthase. We propose that proteolytic and chaperone-like activities in the YTA10-12 complex mediate assembly and degradation processes of membrane protein complexes and thereby exert key functions in the maintenance of membrane integrity.
Article
Hereditary spastic paraplegia (HSP) is characterized by progressive weakness and spasticity of the lower limbs due to degeneration of corticospinal axons. We found that patients from a chromosome 16q24.3-linked HSP family are homozygous for a 9.5 kb deletion involving a gene encoding a novel protein, named Paraplegin. Two additional Paraplegin mutations, both resulting in a frameshift, were found in a complicated and in a pure form of HSP. Paraplegin is highly homologous to the yeast mitochondrial ATPases, AFG3, RCA1, and YME1, which have both proteolytic and chaperon-like activities at the inner mitochondrial membrane. Immunofluorescence analysis and import experiments showed that Paraplegin localizes to mitochondria. Analysis of muscle biopsies from two patients carrying Paraplegin mutations showed typical signs of mitochondrial OXPHOS defects, thus suggesting a mechanism for neurodegeneration in HSP-type disorders.
Article
Yta10p (Afg3p) and Yta12p (Rcal1p), members of the conserved AAA family of ATPases, are subunits of the mitochondrial m-AAA protease, an inner membrane ATP-dependent metallopeptidase. Deletion of YTA10 or YTA12 impairs degradation of non-assembled inner membrane proteins and assembly of respiratory chain complexes. Mutations of the proteolytic sites in either YTA10 or YTA12 have been shown to inhibit proteolysis of membrane-integrated polypeptides but not the respiratory competence of the cells, suggesting additional activities of Yta10p and Yta12p. Here we demonstrate essential proteolytic functions of the m-AAA protease in the biogenesis of the respiratory chain. Cells harbouring proteolytically inactive forms of both Yta10p and Yta12p are respiratory deficient and exhibit a pleiotropic phenotype similar to Deltayta10 and Deltayta12 cells. They show deficiencies in expression of the intron-containing mitochondrial genes COX1 and COB. Splicing of COX1 and COB transcripts is impaired in mitochondria lacking m-AAA protease, whilst transcription and translation can proceed in the absence of Yta10p or Yta12p. The function of the m-AAA protease appears to be confined to introns encoding mRNA maturases. Our results reveal an overlapping substrate specificity of the subunits of the m-AAA protease and explain the impaired assembly of respiratory chain complexes by defects in expression of intron-containing genes in mitochondria lacking m-AAA protease.