ArticlePDF Available

Une nouvelle m??thode pour la mesure du flux de s??ve brute dans le tronc des arbres

Authors:

Abstract

La methode decrite dans cet article utilise un capteur thermique compose de deux sondes inserees radialement dans le bois d'aubier du tronc. Une de ces sondes est chauffee a puissance constante, l'autre sert de reference de temperature. Une equation simple permet de calculer le flux de seve en fonction de la difference de temperature entre les deux elements. Un etalonnage a ete effectue sur des echantillons de tronc de differentes essences. Le faible cout et la sensibilite de ce systeme doivent permettre d'aborder la mesure quantitative de la transpiration et de sa variabilite en foret
Une
nouvelle
méthode
pour
la
mesure
du
flux
de
sève
brute
dans
le
tronc
des
arbres
A.
GRANIER
Station
de
Sylviculture
et ,
LN.R.A.-C.R.F.,
Station
de
Sylviculture
et
de Production
Champenoux,
F
54280
Seichamps
Résumé
La
méthode
décrite
dans
cet
article
utilise
un
capteur
thermique
composé
de
deux
sondes
insérées
radialement
dans
le
bois d’aubier
du
tronc.
Une
de
ces
sondes
est
chauffée
à
puissance
constante,
l’autre
sert
de
référence
de
température.
Une
équation
simple
permet
de
calculer
le
flux
de
sève
en
fonction
de
la
différence
de
température
entre
les
deux
éléments.
Un
étalonnage
a
été
effectué
sur
des
échantillons
de
tronc
de
différentes
essences.
Le
faible
coût
et
la
sensibilité
de
ce
système
doivent
permettre
d’aborder
la
mesure
quantitative
de
la
transpiration
et
de
sa
variabilité
en
forêt.
La
mesure
de
la
transpiration
constitue
un
élément
essentiel
de
la
compréhension
de
la
physiologie
de
l’arbre
et
de
la
dynamique
des
transferts
d’eau
dans
les
peu-
plements
forestiers.
Dans
le
cadre
des
recherches
menées
à
la
Station
de
Sylviculture
et
de
Production
du
C.R.F.,
nous
nous
sommes
intéressés
depuis
plusieurs
années
à
la
mesure
du
flux
de
sève
brute
dans
le
tronc
des
arbres.
Il
existe
à
ce
jour
de
nombreuses
méthodes
de
mesure
du
flux
transpiratoire ;
la
méthode
des
impulsions
de
chaleur
a
eu,
depuis
BER
&
S
CHMIDT
(1937)
un
développement
très
significatif,
notamment
grâce
à
SwnNSOtv
(1962,
1974).
Nous
avons
largement
utilisé
cette
tech-
nique,
en
la
rendant
automatique,
et
en
modifiant
la
structure
du
capteur
(G
RANIER
&
G
ROSS
,
en
cours
de
publication).
Toutefois,
aucune
de
ces
méthodes
ne
présente
les
spécifications
requises
pour
permettre,
à
faible
coût,
de
procéder
à
un
échantillonnage
de
la
transpiration
des
arbres
en
peuplements
forestiers.
La
méthode
des
impulsions
de
chaleur
a
en
parti-.
culier
deux
inconvénients :
son
caractère
ponctuel
dans
le
tronc
et
son
imprécision;
en
condition
de
transpiration
faible.
Nous
proposons
ici
une
nouvelle
méthode
et
un
capteur
permettant
de
mesurer
le
flux
de
sève
suivant
un
axe
radial
dans
le
bois
d’aubier
du
tronc.
1.
Matériel
et
méthodes
1.1.
A1
atéricl
Le
capteur
(fig.
1)
se
compose
de
deux
sondes
cylindriques
de
2
mm
de
dia-
mètre
et
de
20
mm
de
longueur,
insérées
radialemcnt
dans
le
bois
d’aubier
du
tronc,
séparées
d’une
distance
de
5
cm
environ.
Unc
de
ces
sondes
est
chauffée
à
puissance
constante
au
moyen
d’un
enroulement
de
fil
de
constantan
autour
d’unc
aiguille
hypo-
dermique
en
acier
inoxydable.
La
résistance
chauffante
est
calibrée
à
10
52
et
la
tension
d’alimentation
est
délivrée
par
une
alimentation
stabilisée
réglable.
Un
thcrmo-
couple
(cuivre -
constantan)
est
disposé
à
mi-longueur
de
la
résistance
chauffante
et
une
gaine
en
aluminium
recouvre
l’ensemble
pour
en
uniformiser
la
température.
La
deuxième
sonde,
située
dans
le
tronc
au-dessous
de
la
précédente,
renferme
un
thermo-
couple
identique
et
monté
en
opposition
avec
celui
de
l’élément
chauffant.
Le
système
permet
ainsi
de
mesurer
l’écart
de
température
entre
les
deux
sondes.
Un
amplificateur
opérationnel
de
type
OP
27
PMI
permet
d’augmenter
le
signal
des
thermocouples
(avec
un
gain
de
1 000).
1.?.
Théorie
En
condition
de
régime
thermique
établi
entre
l’élément
chauffant
et
le
milieu
(bois
+
sève),
et
pour
un
flux
de
sève
constant,
nous
supposerons
que
l’apport
de
chaleur
par
effet
Joule
est
égal
à
la
quantité
de
chaleur
dissipée
au
niveau
de
la
paroi
du
capteur.
Nous
posons
donc :
h S (T - T__) = R 1
2
(I)
>
avcc :
h
= coefficient
de
transfert
de
la
chaleur
(W .
m ! . &dquo;C
1
),
S
= aire de
la
surface
d’échange
(m!),
T
=
température
du
cylindre (&dquo;C),
T 00 =
température
du
matériau
bois
en
l’absence
de
chauffage
(&dquo;C),
R
= résistance
électrique
(S2),
i
= intensité
du
courant
électrique
(A).
Le
coefficient
h
est
supposé
dépendre
du
débit
de
la
sève
u
(m .
s.
1)
sous
la
forme :
h - h,, (1 + (t . u)
(2)
ho
est
le
coefficient
d’échange
lorsque
u
=
0
(transpiration
nulle),
qu’il
est
possible
de
calculer
d’après
(1) :
:
R
i-’
,
, !B
T,,
désigne
la
température
à
flux
de
sève
nul
(u =
0)
Lorsque
u
est
constant
et
non
nul,
il
vient :
1
TM
-
T
ÏM
——T
Le
rapport
est
un
nombre
sans
dimension,
que
nous
appellerons
index
T-T
de
flux
K,
proportionnel
à
u.
2.
Résultats
2.1.
Etalonnage
Le
capteur
a
été
testé
et
étalonné
sur
des
fragments
de
troncs
de
diamètre
compris
entre
40
et
50
mm.
Nous
avons
fait
circuler
de
l’eau
sous
pression
dans
ces
échan-
tillons,
et
mesuré
simultanément
le
débit
de
l’eau
par
pesée
de
l’exsudat
et
le
signal
AT
T
T
’L0
,!.
o ! .
*
a0
0
0.5
<!*&dquo; o
.j’
o
*
a
. -
0
.1
li
e
o
V
i
I
!
n n
I
0
’10
50
’100
’130
U
10-
6 m
s-
1
0
Pseudotsuga
menziesü
o
Pinus nigra
+
Quercus
peduncuLata
Fic.
2
Relation
entre
le
rapport
K
(voir
texte
1.2)
et
le
flux
d’eau
par
unité
de
section
de
bois
d’aubier
pour
différentes
essences.
Relationship
between
K
(see
text
§ 1.2)
and
the
water
flux
per
unit
nf
sapwood
area,
for
dif/erent
species.
délivré
par
le
capteur
thermique.
Le
débit
pouvait
être
modifié
en
ajustant
la
pression
de
feau.
Après
les
mesures,
chaque
échantillon
était
sectionné
pour
mesurer
la
section
du
bois
d’aubier
au
niveau de
l’élément
chauffant.
L’étalonnage
a
porté
sur
trois
essen-
ces
différentes :
douglas,
pin
noir,
et
chêne
pédonculé.
La
figure
2
représente
les
résultats
obtenus,
avec
en
abscisse
le
flux
d’eau
par
unité
de
surface
u
(en
m .
s-’)
et
en
ordonnée
le
rapport
K.
Le
calcul
de
K
s’effectue
d’après
la
relation
(4)
en
connaissant
pour
chaque
échantillon
la
température
T
st
atteinte
lorsque
le
flux
d’eau
est
nul.
Il
est
intéressant
de
constater
que
la
relation
entre
K
et
u
est
la
même
pour
les
trois
espèces ;
le
coefficient
<x
de
l’équation
(4)
semble
donc,
dans
les
conditions
expérimentales,
indépendant
de
l’essence.
Un
ajustement
non
linéaire
a
conduit
à
la
relation
expérimentale :
K
=
0.0206
UO,
H124
(5)
r2
= 0.96
n =
53
points
u
est
exprimé
en
10
li
m . s-
1.
Signalons
enfin
que
nous
avons
fixé
l’intensité
du
courant
dans
la
résistance
chauffante
à
une
valeur
de
0,141
A,
ce
qui
est
un
compromis
entre
la
sensibilité
du
capteur
(qui
augmente
avec
l’intensité
appliquée)
et
le
risque
d’un
échauffement
de
la
sonde
de
référence
de
la
température
(1
).
2.2.
Mesures
sur
des
arbres
Durant
l’été
et
l’automne
1983,
nous
avons
effectué
des
enregistrements
journa-
liers
de
flux
de
transpiration
sur
des
douglas
de
la
forêt
domaniale
d’Amance
15
km
à
l’est
de
Nancy).
Nous
avons
choisi
des
arbres
placés
dans
des
situations
différentes :
des
arbres
de
plein
découvert,
d’une
hauteur
de
5
m,
et
des
arbres
d’une
plantation
régulière
âgée
de
20
ans,
pour
une
hauteur
moyenne
de
15
m.
Quatre
arbres
(deux
dans
chacune
des
situations)
ont
été
équipés
chacun
d’un
capteur
ther-
mique
inséré
radialement
dans
leur
bois
d’aubier.
Le
coefficient
K
repose
sur
l’évaluation
de
T
st
(voir
équation
(4)
au
1.2).
Nous
avons
supposé
que
cette
température
d’équilibre
à
flux
de
sève
nul
pouvait
être
me-
surée
lors
de
séquences
nocturnes
l’humidité
de
l’air
est
voisine
de
la
saturation.
La
figure
3
reporte
pour
une
journée
(le
16-8-1983)
la
variation
du
coefficient
K,
observée
pour
un
arbre
de
chaque
traitement,
ainsi
que
l’évolution
de
l’évapotrans-
piration
potentielle
(E.T.P.)
calculée
par
la
formule
de
Penman.
Nous
avons
choisi
une
journée
présentant
des
passages
nuageux
qui
permettent
de
mettre
en
évidence
la
réponse
des
capteurs.
Les
deux
arbres
suivent
une
évolution
similaire,
en
parti-
culier
au
niveau
des
maximas
et
des
minimas.
Le
retard
important
de
K
par
rapport
à
l’E.T.P.
le
matin
correspond
à
une
phase
d’évaporation
de
la
rosée
sur
les
aiguilles.
Après
cette
phase,
le
facteur
K
des
deux
arbres
suit
la
variation
de
l’E.T.P.
Il
est
à
noter
que
la
chute
brutale
de
l’E.T.P.
intervenant
en
milieu
de
journée
(passages
nuageux)
se
manifeste
de
façon
plus
accentuée
pour
l’arbre
situé
en
plein
découvert.
L’arbre
de
peuplement
semble
ainsi
mieux
tamponner
les
variations
de
l’E.T.P.
En
fin
de
journée,
si
les
deux
arbres
voient
diminuer
K
en
même
temps
que
l’E.T.P.,
un
retard
se
manifeste
pour
le
douglas
du
peuplement.
(1)
D’après
nos
mesures,
le
coefficient
a
des
relations
(2)
et
(4)
est
dépendant
de
la
quantité
de
chaleur
apportée.
Un
nombre
important
de
journées
a
ainsi
été
étudié :
nous
avons
représenté
sur
la
figure
4,
pour
l’ensemble
des
journées,
la
valeur
du
coefficient
K
zi
de
l’arbre
en
peuplement,
en
fonction
de
fE.T.P.
journalière
exprimée
en
mm.
Le
coefficient
K
:!+
est
égal
à
la
moyenne
journalière
de
K
défini
d’après
l’équation
(4).
Pendant
la
durée
de
ces
mesures,
l’arbre
étudié
a
été
en
permanence
bien
alimenté
en
cau ;
la
transpiration
et
donc
le
coefficient
K:
!I
sont
donc
sensiblement
proportionnels
à
l’E.T.P.
Nous
avons
aussi
fait
figurer
les
journées
présentant
des
épi-
sodes
pluvieux
diurnes,
quelles
que
soient
leur
durée
et
leur
intensité.
Certaines
de
ces
journées
s’écartent
du
nuage
de
points :
l’interception
de
l’eau
par
le
feuillage
provoque
un
blocage
de
la
transpiration ;
l’énergie
incidente
est
alors
utilisée
pour
évaporer
l’eau
interceptée.
3.
Conclusion
La
méthode
que
nous
avons
décrite
présente
un
certain
nombre
d’avantages.
qui
devraient
permettre
d’obtenir
des
résultats
fiables,
à
deux
nivcaux :
-
au
niveau
du
fonctionnement
hydrique
de
l’arbre,
par
l.’étude
fine
des
varia-
tions
journalières
du
flux
de
sève,
particulièrement
en
période
de
stress
hydrique ;
-
au
niveau
du
fonctionnement
hydrique
des
peuplements
forestiers,
sachant
que
la
simplicité
de
mise
en
oeuvre
et
le
faible
coût
(2)
de
cette
technique
permettent
d’aborder
la
mesure
quantitative
de
la
transpiration
et
de
sa
variabilité
spatiale
en
forêt.
(2)
Un
capteur
(deux
sondes)
revient
à
environ
30
FF,
le
système
d’amplification
à
80
FF
par
capteur.
L’utilisation
de
cette
méthode
suppose,
lorsqu’on
désire
calculer le
flux
total,
de
connaître
la
section
du
bois
d’aubier
au
niveau
du
point
de
mesure.
Selon
le
type
d’essence
et
la
précision
souhaitée,
on
pourra
estimer
la
section
du
bois
d’aubier
grâce
à
un
ou
plusieurs
sondages
à
la
tarière
de
Pressler
ou
la
mesurer
directement
après
abattage
de
l’arbre.
Summary
A
aew
method
of
.sap
flow
mensurement
in
tree
stetiis
The
method
described
in
this
paper
is
based
on
a
thermal
sensor
composed
of
two
probes
radially
inserted
in
the
sapwood
of the
trunk.
One
of
those
probes
is
heated
at
a
constant
energy
and
the
other
considered
as
a
temperature
reference.
A
simple
equation
enables
us
to
calculate
the
sapflow
as
a
function
of
the
difference
of
the
temperature
between
the
two
elements.
A
calibration
has
been
made
on
pieces
of
trunk
of
different
species.
Owing
to
its
sensitivity
and
its
low
cost,
this
system
may
fit
for
the
quantitative
measure-
ment
of
forests
transpiration.
Références
bibliographiques
CRANTER
A.,
GR
oss
P.,
1984.
Mesure
du
flux
de
sève
brute
chez
le
Douglas
(P.!t«7!.!;<gf!
menziesü
Mirb.
Franco)
par
la
méthode
thermo-étectrique
automatisée
paraître).
BER
B.,S
CHMID
-l’
E.,
1937.
Eine
Kompensationsmethode
zur
thermoelecktrischen
Messung
langsamer
Stafstiëme.
l3er.
dl
sch.
Bot.
Cf.y
.,
55,
514-529.
S
WANSON
R.H.,
1962.
An
instrument
for
detecting
sap
movement
in
woody
plants.
Sta.
Pap.
Rocky
Mt.
For.
Range
Exp.
Sta.
n&dquo;
68.
S
WANSON
R.H.,
1974.
Velocitiy
distribution
patterns
in
ascending
xylem
sap
during
transpiration.
In :
Flow
its
Measuremcnt
and
control
in
Science
and
Industry.
Et.
Rodger
and
Dowdell.
Instrument
Society
of
America.
Vol.
],
1425-30.
... Sap flow can be defined in terms of the sap flow rate (g or L h −1 or equivalent) or sap flux density (sap flow rate per sapwood area) [157]. Flo et al. split the methods into four groups depending on their physical principle [157]: (1) dissipation [158,159], (2) pulse [88,[160][161][162][163][164][165][166], (3) field [167], and (4) balance [38,168]. Such methods are briefly described in the following table (Table 1): Table 1. ...
... (1) Dissipation It measures heat dissipation from a heated probe inserted in the sapwood compared to a non-heated reference probe Thermal dissipation TD The upper probe is constantly heated, and the measured temperature difference decreases with increasing sap flow density [158] Transient thermal dissipation TTD It works under transient conditions by introducing a relatively short heating and cooling cycle [159] (2) Pulse It applies heat intermittently and monitor changes in sapwood temperature induced by thermal convection and conduction ...
... Their popularity likely stems from their reliability, simplicity, and cost-effectiveness, as well as the ease of construction of handmade probes [169]. In 1985, Granier developed a thermal sensor consisting of two needle-shaped probes inserted radially into the sapwood [158]. One of these probes is heated at constant power, while the other serves as a temperature reference. ...
Article
Full-text available
Climate change poses significant challenges to agricultural productivity, making the efficient management of water resources essential for sustainable crop production. The assessment of plant water status is crucial for understanding plant physiological responses to water stress and optimizing water management practices in agriculture. Proximal and remote sensing techniques have emerged as powerful tools for the non-destructive, efficient, and spatially extensive monitoring of plant water status. This review aims to examine the recent advancements in proximal and remote sensing methodologies utilized for assessing the water status, consumption, and irrigation needs of fruit tree crops. Several proximal sensing tools have proved useful in the continuous estimation of tree water status but have strong limitations in terms of spatial variability. On the contrary, remote sensing technologies, although less precise in terms of water status estimates, can easily cover from medium to large areas with drone or satellite images. The integration of proximal and remote sensing would definitely improve plant water status assessment, resulting in higher accuracy by integrating temporal and spatial scales. This paper consists of three parts: the first part covers current plant-based proximal sensing tools, the second part covers remote sensing techniques, and the third part includes an update on the on the combined use of the two methodologies.
... Although there are other methodologies for measurement and estimation of the sap flow, mostly, there is still a complexity in the accuracy of results, in addition to the high costs of experiments, limiting the number of studies in this area (Beslity et al., 2022). In this work, the MFS developed by Granier (1985), developed by Granier (1985) due to their cost-effectiveness and resources, backed by results satisfactory in previous surveys (Delgado-Rojas et al., 2006;Gentil, 2010;Beslity et al., 2022). Considering the climate change context global, it is essential to understand the relationship between sweating and factors which influence the species of trees and predict changes in water use through of modeling (Wang et al. 2022). ...
... Although there are other methodologies for measurement and estimation of the sap flow, mostly, there is still a complexity in the accuracy of results, in addition to the high costs of experiments, limiting the number of studies in this area (Beslity et al., 2022). In this work, the MFS developed by Granier (1985), developed by Granier (1985) due to their cost-effectiveness and resources, backed by results satisfactory in previous surveys (Delgado-Rojas et al., 2006;Gentil, 2010;Beslity et al., 2022). Considering the climate change context global, it is essential to understand the relationship between sweating and factors which influence the species of trees and predict changes in water use through of modeling (Wang et al. 2022). ...
Article
Full-text available
Granier’s sap flow method proved to be an important tool for estimating transpiration in woody plants. The present work aimed to estimate the transpiration of two clones (VCC0865 and CO1407) of a hybrid of the eucalyptus species Eucalyptus grandis × Eucalyptus urophylla, in order to understand the efficiency and patterns of water use in the forest ecosystem. The experiment was carried out on a eucalyptus farm in the municipality of Porto Seguro, located in the extreme south of Bahia. The spacing between trees was 3.60 m × 2.50 m. Sap flow measurements were performed daily, between February and December 2022, using 10 sensors installed in tree trunks, according to Granier’s thermal dissipation method. Data were recorded in the datalogger model CR10X system. For the systematization and analysis of the data, the R programming language was used. The results obtained indicated that the beginning of the transpiration period of the clones occurred around 07:00. On rainy days, less transpiration was observed in both clones. There were no significant changes in sap flow between dry and rainy seasons. It was also found for clone VCC0865 a transpiration rate of 43% higher in the daily average compared to clone CO1407. The present work is an important tool to contribute with information about transpiration in eucalyptus cultivation in the extreme south of Bahia, since there are few studies on the subject and given the importance of the activity in the region.
... Although thermometric sapflow methods were first developed in the 1930s (Huber 1932), instrumentation to measure the flow were developed in the 1980s and subsequently modified (e.g. Granier 1985Granier , 1987. They have greatly helped to measure the water flux through the xylem in several species of trees and shrubs during the last couple of decades in several geographical locations of the world (Fig. 3.7). ...
Book
Full-text available
Recent research has shed light on the crucial role of wood density, a fundamental physical property, as a functional trait. This means wood density isn't just about how much a piece of wood weighs, but how it influences a plant's entire strategy for survival and growth. While variations exist between individual species, a surprising trend has emerged: the majority of this variation can be traced back to a plant's genus or even family. This strong phylogenetic signal indicates that wood density is a deeply ingrained characteristic, shaped by a plant's evolutionary history. This newfound understanding allows us to leverage wood density as a taxon-based functional trait. By considering the typical wood density of a plant group (like a genus or family), we can improve models and predictions related to various ecological and functional aspects in forests and plantations. Over the past couple of decades, scientists have been actively exploring the connections between wood density and a wide range of plant functions. Denser wood is often linked to slower growth rates, delayed reproduction, and increased mechanical strength. It also influences a plant's ability to transport water, resist death (mortality rate), and manage internal water balance (water potential). Additionally, wood density is closely tied to physiological aspects such as gas exchange and xylem hydraulic conductance, which are crucial for nutrient and water movement. Wood density is also an important parameter to determine the carbon sequestration capacity of a tree or vegetation, thus important in climate change research. This proposed book will delve into these fascinating connections, highlighting how wood density acts as a key player in shaping the lives of plants and the overall health of forest ecosystems.
... Sap flow is essential for the maintenance of the hydraulic continuum from the soil to plant to atmosphere; thus, monitoring this process can yield important information about the hydraulic function or dysfunction of the plant [131]. Various methods for estimating the sap flow rate have been developed, including thermal dissipation probes and the steam heat balance method [132][133][134]. Both are based on the concept of measuring the difference between a heated element and a non-heated reference element; as the sap flow rate increases, the temperature difference between the two elements decreases. ...
Article
Full-text available
More than half of global water use can be attributed to crop irrigation, and as the human population grows, so will the water requirements of agriculture. Improved irrigation will be critical to mitigating the impact of increased requirements. An ideal irrigation system is informed by measurements of water demand—a combination of water use and water status signals—and delivers water to plants based on this demand. In this review, examples of methods for monitoring water status are reviewed, along with details on stem and trunk water potential measurements. Then, methods for monitoring evapotranspiration (ET), or water use, are described. These methods are broken into coarse- and fine-scale categories, with a 10 m spatial resolution threshold between them. Fourteen crop ET technologies are presented, including examples of a successful estimation of ET in research and field settings, as well as limitations. The focus then shifts to water distribution technologies, with an emphasis on the challenges associated with the development of systems that achieve dynamic single plant resolution. Some attention is given to the process of choosing ET and water status sensing methods as well as water delivery system design given site characteristics and agronomic goals. This review concludes with a short discussion on the future directions of ET research and the importance of translating findings into useful tools for growers.
... Nine, nine, and three tree samples were selected, and the minimum, maximum, and mean diameter at breast height (DBH) values of the selected sampled tree traits in the MMP, HMP, and YMP are shown in Table 1. The sap flux densities (Js, g cm -2 s -1 ) were measured using Granier-type thermal dissipation probes [43] in the MMP and HMP. Each sensor consisted of a pair of probes, 20-mm long and 2 mm in diameter, and a copper-constantan thermocouple, which were inserted into the sapwood (on the north-facing side of the sampled trees, into the tree trunk at a height of 1.3 m above the ground) [44]. ...
Preprint
Full-text available
Seasonal precipitation variance significantly alters soil water content, potentially inducing water stress and affecting plant transpiration in semiarid deserts. This study explored the effects of environmental variables and hydraulic conductance on whole-tree transpiration (ET) in Mongolian pines (Pinus sylvestris var. mongolica) across different forest stages in the semiarid deserts of northern China. We measured ET using sap flow in mature (MMP), half-mature (HMP), and young (YMP) Mongolian pine plantations. Measurements included soil-leaf water potential difference (ΔΨ), atmospheric conditions, and soil moisture contents on sunny days, both in dry and wet periods. Seasonally variable rainfall distinctly affected soil moisture, correlating ET with photosynthetically active radiation (PAR) and vapor pressure deficit (VPD). Notable nocturnal sap flow occurred during the growing season. During the dry periods, both stomatal and hydraulic conductance influenced ET, whereas during the wet periods, stomatal conductance primarily regulated it. Discrepancies between predicted and measured ET were noticed: compared to the predicted ET, measured ET was lower during dry periods while higher during wet periods. Hydraulic conductance (KT) increased with tree height (H) and ΔΨ, although tall trees exhibited lower KT rates, suggesting that hydraulic compensation had occurred. This compensation, observed between 11:00 and 13:00, aligned with increased hydraulic resistance during dry periods. Decreasing hydraulic conductance intensified leaf water stress in dry periods, especially during the time when PAR and VPD were heightened, potentially increasing stomatal sensitivity to drought, promoting water conservation and plant survival. A linear relationship between predawn and midday leaf water potentials was noticed, indicating extreme anisohydric behavior across forest stages during both dry and wet periods. Although both stomatal and hydraulic conductance influenced ET during the dry period, MMP and YMP were more susceptible to drought conditions. Understanding these dynamics could help evaluate semiarid desert ecological functions for water conservation amidst uneven seasonal precipitation in Northern China.
... Sap flow sensors provide accurate estimates of daily transpiration rates, responding quickly to changes in both environmental and drought levels (Benyahia et al. 2023). Sap flow sensors are promising tools for detecting water stress in olives and optimizing irrigation management in olive groves, as outlined in prior agricultural literature (Granier 1985;Granier and Gross 1987a, b;Molina et al. 2019). ...
Article
Full-text available
The olive tree (Olea europaea L.) is culturally and economically vital in Morocco. However, its sustainability is threatened by aridity and water scarcity. Studying its response to different irrigation strategies is crucial for sustainable cultivation and improved water use efficiency in the face of future drought events. This work aimed to study the responses of sap flow rate, physiological, and agronomic parameters of the Moroccan olive cultivar ‘Menara’ to Regulated Deficit Irrigation (RDI) and Sustained Deficit Irrigation (SDI) strategies. Seven irrigation regimes were studied based on the sensitivity of phenological phases to water stress, distinguished as (SP) ‘Sensitive Period’ and (NP) ‘Normal Period’. SP involves flowering (SP1) and oil synthesis to harvest (SP2), while NP relates to pit hardening. ‘Menara’ olive trees were subjected to four RDI treatments: T1 (SP 100- NP 70% ETc), T2 (SP 100- NP 60% ETc), T3 (SP 80- NP 70% ETc), and T4 (SP 80- NP 60% ETc), and two SDI treatments: T5 (70% ETc) and T6 (60% ETc), compared with control (T0) trees under full irrigation (100% ETc). In comparison to the control T0, the deficit irrigation treatments exhibited lower sap flow rates. Specifically, T1 and T2 experienced reductions of 10% and 19% in sap flow rates, respectively, attributed to a decrease in water application of 11% and 14% compared to T0. Despite this decline, T1 and T2 demonstrated fruit yields comparable to T0. Conversely, T4, which received 28% less irrigation, displayed a yield reduction of approximately 23% compared to T0 in 2022. Moreover, adverse effects were observed in Menara olive trees treated with T4 after two consecutive seasons of deficit irrigation in 2023, indicating that prolonged stress effects could be detrimental in subsequent years. T3, under RDI, showed resilience with a 13% reduction in production despite a 37% decrease in sap flow rate and a 24% water restriction. Conversely, T5 and T6, employing SDI, experienced significant yield declines of 50%, with reductions in water application of 30% and 40% and sap flow rate of 51% and 80%, respectively, in 2022. The alternate bearing pattern significantly impacts Menara olive production, as evidenced by reduced sap flow and yield in the “off” year of 2023, regardless of irrigation strategies. A strong correlation (R² = 0.84) between sap flow and yield indicates that well-irrigated olive trees tend to transpire more, leading to higher yields. Stomatal conductance (gs) notably decreases with increased water deficit, with reductions of 8%, 12%, and 23% observed in T4, T5, and T6, respectively. Furthermore, a significant reduction in FV/FM, indicative of water stress, was observed with a 40% decrease in water supply in the T6 treatment group during both irrigation seasons in 2022 and 2023, with Fv/Fm reaching approximately 0.7. In general, Menara olive trees subjected to deficit irrigation, particularly under the T3 RDI treatment, showed the ability to adapt and cope with low water supply over time. However, the cumulative water shortage effect of the SDI treatment T6 resulted in a decline in both the agronomic and physiological performance of this cultivar.
Article
Full-text available
Miniaturized silicon thermal probes for plant’s sap flow measurement, or micro sap flow sensors, have advantages in minimum invasiveness, low power consumption, and fast responses. Practical applications in sap flow measurement has been demonstrated with the single-probe silicon micro sensors. However, the sensors could not detect flow directions and require estimating zero sap flow output that leads to significant source of uncertainty. Furthermore, silicon-needles would break easily during the insertion into plants. We present the first three-element micro thermal sap flow sensor packaged on a durable printed circuit board needle that can measure bidirectional flows with improved dynamics and precision. The performance of the newly designed calorimetric flow sensor was confirmed through precision calibration and field test on tomato stems. A calibration curve for a tomato stem was obtained with a sensitivity of 0.299 K/(µL mm⁻² s⁻¹) under the maximum temperature increase of 4.61 K. Results from the field test for one month revealed a correlation between the measured sap flux density and related conditions such as solar radiation, vapor pressure deficit, sunshade and irrigation. The developed sensor will contribute to practical long-term sap flow monitoring for small and delicate plants with minimal physical invasion.
Chapter
The chapter discusses the significance of wood density (WD) in trees and its impact on various physiological and ecological aspects. It notes a consistent correlation between slow-growing trees and higher WD, while fast-growing trees exhibit lower WD. In dry forests, low WD trees demonstrate higher growth rates due to increased storage water, allowing for earlier seasonal growth. WD is inversely related to tree height rather than girth. Additionally, studies reveal associations between WD and vegetative and reproductive phenophases, with high WD species influenced by water availability and low WD species regulated by photoperiod. The text highlights the crucial role of WD in predicting tree mortality, emphasizing that higher-density species tend to have lower mortality rates. This relationship is explained by the resilience of high-density wood to environmental stressors such as drought-induced embolism, mechanical breakage, and pathogen attacks. WD significantly influences water transport efficiency, with higher WD resulting in lower water transport rates but increased resistance to cavitation or embolism. Furthermore, the passage discusses the negative correlation between WD and sapflux, indicating that while higher WD restricts water transport efficiency, it enhances cavitation resistance, allowing adaptation to drier environments. Trees with WD values in the range of 0.5–0.65 g cm−3 are considered most efficient in water transport. The conclusion emphasizes that WD is a valuable predictor of water consumption in tree species and stand water use, though certain limitations such as measurement accuracy and environmental factors must be considered in its predictive capacity.
Article
Full-text available
Terrestrial water fluxes are substantially mediated by vegetation, while the distribution, growth, health, and mortality of plants are strongly influenced by the availability of water. These interactions, playing out across multiple spatial and temporal scales, link the disciplines of plant ecophysiology and ecohydrology. Despite this connection, the disciplines have provided complementary, but largely independent, perspectives on the soil‐plant‐atmosphere continuum since their crystallization as modern scientific disciplines in the late 20th century. This review traces the development of the two disciplines, from their respective origins in engineering and ecology, their largely independent growth and maturation, and the eventual development of common conceptual and quantitative frameworks. This common ground has allowed explicit coupling of the disciplines to better understand plant function. Case studies both illuminate the limitations of the disciplines working in isolation, and reveal the exciting possibilities created by consilience between the disciplines. The histories of the two disciplines suggest opportunities for new advances will arise from sharing methodologies, working across multiple levels of complexity, and leveraging new observational technologies. Practically, these exchanges can be supported by creating shared scientific spaces. This review argues that consilience and collaboration are essential for robust and evidence‐based predictions and policy responses under global change.
Article
The ascending sap stream of trees exhibits flow properties analogous to flow in pipes. Data collected from lodgepole pine and Engelmann spruce from 1960 to 1970 suggests that the flow is laminar and its velocity distribution parabolic. In coniferous trees, sap ascends through tracheids more or less uniformly distributed across a cylindrical band of comparatively wet sapwood surrounding a cylinder of physiologically inactive dry heartwood. The diameter of the void area in individual tracheids is larger at the center of this band of sapwood than at either the bark or heartwood interphases. Thus the size of the sap conducting elements are themselves distributed in a somewhat parabolic arrangement. Whether this size distribution is a result or cause of the similar velocity distribution is not known. An important application of this finding lies in the measurement of water use by trees in forest hydrology research. Two heat pulse velocity measurements (measurements used to estimate sap flow rates) made simultaneously at specified but unequal depths are sufficient to describe both average flow velocity and the cross sectional area through which such flow occurs. Thus both the ″A″ and ″V″ of the continuity equation are described in a flow system within which the conducting cross section varies with time.
Mesure du flux de sève brute chez le Douglas (P.!t«7!.!;<gf! menziesü Mirb. Franco) par la méthode thermo-étectrique automatisée
  • Cranter A
  • P G R Oss
CRANTER A., G R oss P., 1984. Mesure du flux de sève brute chez le Douglas (P.!t«7!.!;<gf! menziesü Mirb. Franco) par la méthode thermo-étectrique automatisée (à paraître).
Eine Kompensationsmethode zur thermoelecktrischen Messung langsamer Stafstiëme. l3er. d l sch. Bot. C f .
  • B Hü Ber
  • S Chmid -L
HÜ BER B.,S CHMID -l' E., 1937. Eine Kompensationsmethode zur thermoelecktrischen Messung langsamer Stafstiëme. l3er. d l sch. Bot. C f. y., 55, 514-529.
An instrument for detecting sap movement in woody plants
  • S H Wanson R
S WANSON R.H., 1962. An instrument for detecting sap movement in woody plants. Sta. Pap. Rocky Mt. For. Range Exp. Sta. n&dquo; 68.