ArticleLiterature Review

Colland F.. The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem Soc Trans 38: 137-143

Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

Proteases play a key role in various pathological processes and several protease inhibitors are already available for treatment. DUBs (deubiquitinating enzymes) constitute one of the largest classes of human proteases and are key effectors of the ubiquitin-proteasome system. This pathway regulating cellular protein turnover has been implicated in the pathogenesis of many human diseases, including neurodegenerative disorders, viral diseases and cancer. The therapeutic efficacy of the proteasome inhibitor Velcade (bortezomib) for treating multiple myeloma and mantle cell lymphoma establishes this system as a valid target for cancer treatment. A promising alternative to targeting the proteasome itself would be to target the upstream, ubiquitin conjugation/deconjugation system, to generate more specific, less toxic anticancer agents. Advances in small molecule-based inhibitors specifically targeting DUBs are presented in this review.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

... Z tego względu, nieprawidłowe działanie szlaku ubikwityna-proteasom jest przyczyną wielu chorób. W ostatnich latach prowadzone są intensywne badania kliniczne, w których ten system proteolityczny stanowi cel działań terapeutycznych, zarówno w odniesieniu do aktywności proteasomów, jak i systemu ubikwitylacji [14,16,18,[19][20][21][22][23][24][25][26]. ...
... Ingerencja w niezwykle złożony mechanizm proteolizy ubikwityno-zależnej na końcowym etapie, jaki stanowi rozkład białek przez proteasom 26S, jest jednak wciąż mało przewidywalna, dlatego podejmowane są próby uzyskania podobnego efektu poprzez blokowanie procesów prowadzących do ubikwitylacji białka substratowego, rozpoznawania łańcucha poliubikwitynowego przez podjednostki kompleksu regulatorowego 19S, jak również poprzez hamowanie aktywności enzymów deubikwitylujących. W niektórych schorzeniach znaczenie terapeutyczne może mieć nie zahamowanie, ale zwiększenie tempa degradacji określonych białek [22,23,25,83,104]. ...
... Wiele spośród DUBs stanowi atrakcyjne cele w terapiach przeciwnowotworowych. Należą do nich zwłaszcza enzymy chroniące białka przed degradacją, poprzez usuwanie z nich łańcuchów ubikwityny, zanim zostaną rozpoznane przez proteasomy (Tab. 3) [22,23,25,83,104,113]. ...
Article
Full-text available
In Eukaryota, the majority of intracellular proteins are degraded by the ubiquitin-26S proteasome pathway. Through degradation of proteins tagged with polyubiquitin chains, the 26S proteasomes, multicatalytic proteolytic complexes, participate in regulation of key cellular processes such as cell cycle, proliferation and cell differentiation, apoptosis, transcription, signal transduction, morphogenesis, immune response, response to stress and to extracellular effectors, modulation of cell-surface receptors, antigen presentation, proteolysis of enzymes and regulatory proteins, and protein quality control in endoplasmic reticulum. Dysfunction of the ubiquitin-proteasome pathway is associated with many diseases, including cancer, neurodegeneration, autoimmune and inflammatory response, as well as infectious diseases. In recent years, besides proteasomes, the enzymes that drive ubiquitination and deubiquitination have entered clinical trials as potential therapeutic targets. Small molecular inhibitors against proteasomes have been discovered, as well as inhibitors of the ubiquitin cascade enzymes and deubiquitinating enzymes. Second generation inhibitors of proteasomes have been successfully approved for clinical application.
... Ongoing efforts to develop therapeutics targeting DUBs and proteasomal pathways are promising, emphasizing their critical roles in cellular regulation and signaling. Targeting DUBs is of particular interest because of their cell type and substrate specificities [197]. Specific inhibitors have been identified for many, including USP1, USP7, USP14, USP22, USP30, and UCHL1 [197][198][199][200]. ...
... Targeting DUBs is of particular interest because of their cell type and substrate specificities [197]. Specific inhibitors have been identified for many, including USP1, USP7, USP14, USP22, USP30, and UCHL1 [197][198][199][200]. Still, there is much to be learned to fully understand the consequences of pharmacologically modulating DUB function. ...
Article
Full-text available
Ubiquitination refers to the conjugation of the ubiquitin protein (a small protein highly conserved among eukaryotes) to itself or to other proteins through differential use of ubiquitin’s seven internal linkage sites or the amino-terminal amino group. By creating different chain lengths, an enormous proteomic diversity may be formed. This creates a signaling system that is central to controlling almost every conceivable protein function, from proteostasis to regulating enzyme function and everything in between. Protein ubiquitination is reversed through the activity of deubiquitinases (DUBs), enzymes that function to deconjugate ubiquitin from itself and protein substrates. DUBs are regulated through several mechanisms, from controlled subcellular localization within cells to developmental and tissue specific expression. Misregulation of DUBs has been implicated in several diseases including cancer and neurodegeneration. Here we present a brief overview of the role of DUBs in neurodegeneration, and as potential therapeutic targets.
... USP7 was initially identified as ICP0 (herpes simplex virus protein)-stabilizing protein [112]. Several studies have reported that USP7 mediates stabilization of ICP0 enzyme-inducing proteasomedependent degradation of a number of proteins, including p53 and promyelocytic leukemia protein by protecting it from auto-ubiquitination [113]. ...
... Despite progress toward the development of DUB inhibitors, a lack of specificity limits clinical application of a wide range of DUBs [112]. This limitation may be overcome by improved understanding of self-versus trans-regulation of DUBs and applying this information to inhibitor synthesis prior to applying such DUB inhibitors to preclinical and clinical research. ...
Article
Full-text available
Hematopoietic stem cells (HSCs) are responsible for the production of blood cells throughout the human lifespan. Single HSCs can give rise to at least eight distinct blood-cell lineages. Together, hematopoiesis, erythropoiesis, and angiogenesis coordinate several biological processes, i.e., cellular interactions during development and proliferation, guided migration, lineage programming, and reprogramming by transcription factors. Any dysregulation of these processes can result in hematological disorders and/or malignancies. Several studies of the molecular mechanisms governing HSC maintenance have demonstrated that protein regulation by the ubiquitin proteasomal pathway is crucial for normal HSC function. Recent studies have shown that reversal of ubiquitination by deubiquitinating enzymes (DUBs) plays an equally important role in hematopoiesis; however, information regarding the biological function of DUBs is limited. In this review, we focus on recent discoveries about the physiological roles of DUBs in hematopoiesis, erythropoiesis, and angiogenesis and discuss the DUBs associated with common hematological disorders and malignancies, which are potential therapeutic drug targets.
... Among post-translational regulators, DUBs offer several advantages as therapeutic targets due to their cell-type or substrate specificity. Although DUBs exhibit strong similarities between the active-enzyme site cysteine and histidine boxes, several DUBs demonstrate critical differences in accessibility to the catalytic pocket (Colland, 2010). Thus, developing DUB-specific inhibitors may be an attractive alternative for design of novel therapeutics to treat malignancies and neurodegenerative disorders. ...
... Thus, developing DUB-specific inhibitors may be an attractive alternative for design of novel therapeutics to treat malignancies and neurodegenerative disorders. Several specific-DUB inhibitors, including USP7 and UCH-L1, have been developed to date (Colland, 2010;Todi and Das, 2012). Moreover, inhibition of USP14 by 1-[1-(4-fluorophenyl)-2,5-dimethylpyrrol-3-yl]-2-pyrrolidin-1-ylethanone (IU1) has been found to enhance the degradation of several proteins related to neurodegenerative diseases (Lee et al., 2010). ...
Article
Full-text available
Post-translational modifications play major roles in the stability, function, and localization of target proteins involved in the nervous system. The ubiquitin-proteasome pathway uses small ubiquitin molecules to degrade neuronal proteins. Deubiquitinating enzymes (DUBs) reverse this degradation and thereby control neuronal cell fate, synaptic plasticity, axonal growth, and proper function of the nervous system. Moreover, mutations or downregulation of certain DUBs have been found in several neurodegenerative diseases, as well as gliomas and neuroblastomas. Based on emerging findings, DUBs represent an important target for therapeutic intervention in various neurological disorders. Here, we summarize advances in our understanding of the roles of DUBs related to neurobiology.
... To identify other mechanisms regulating MFN levels, we performed an RNA interference screen for deubiquitinating enzymes (DUBs) that affect steady-state levels of MFN. DUBs participate in important reversible signaling pathways (Salmena & Pandolfi, 2007) and are attractive druggable candidates ( Hussain et al, 2009;Colland, 2010). We identified USP8, an evolutionary conserved DUB whose down-regulation correlates with decreased MFN levels. ...
... It is, therefore, reasonable that inhibition of specific DUBs should induce mitophagy and that it does so by deubiquitination mitochondrial proteins. Clinical trials for specific inhibitors of the ubiquitin-proteosome system have already been approved in cancer therapy for the treatment of multiple myeloma (Colland, 2010). Moreover, highthroughput screening of small chemical libraries identified nonselective DUB inhibitors as potent inducers of apoptosis in various cancer cells ( Liu et al, 2003;Brancolini, 2008;Engels et al, 2009;Hussain et al, 2009;Py et al, 2013). ...
Article
Full-text available
Aberrant mitochondrial dynamics disrupts mitochondrial function and contributes to disease conditions. A targeted RNA interference screen for deubiquitinating enzymes (DUBs) affecting protein levels of multifunctional mitochondrial fusion protein Mitofusin (MFN) identified USP8 prominently influencing MFN levels. Genetic and pharmacological inhibition of USP8 normalized the elevated MFN protein levels observed in PINK1 and Parkin-deficient models. This correlated with improved mitochondrial function, locomotor performance and life span, and prevented dopaminergic neurons loss in Drosophila PINK1 KO flies. We identified a novel target antagonizing pathologically elevated MFN levels, mitochondrial dysfunction, and dopaminergic neuron loss of a Drosophila model of mitochondrial dysfunction.
... Given the critical roles of DUBs in a lot of cellular processes, there is a growing interest to exploit them as targets for drug development 58 . Further establishing insights into their functioning at a specific location in the cell or their activity under certain circumstances are important additional steps to couple DUB activity with therapeutic intervention. ...
Article
Full-text available
Deubiquitinating enzymes are key regulators in the ubiquitin system and an emerging class of drug targets. These proteases disassemble polyubiquitin chains and many deubiquitinases show selectivity for specific polyubiquitin linkages. However, most biochemical insights originate from studies of single diubiquitin linkages in isolation, whereas in cells all linkages coexist. To better mimick this diubiquitin substrate competition, we develop a multiplexed mass spectrometry-based deubiquitinase assay that can probe all ubiquitin linkage types simultaneously to quantify deubiquitinase activity in the presence of all potential diubiquitin substrates. For this, all eight native diubiquitins are generated and each linkage type is designed with a distinct molecular weight by incorporating neutron-encoded amino acids. Overall, 22 deubiquitinases are profiled, providing a three-dimensional overview of deubiquitinase linkage selectivity over time and enzyme concentration.
... Among the 76 amino acids of ubiquitin, there are seven lysine residues (K6, K11, K27, K29, K33, K48, and K63), which are the bridge to the target proteins. Ubiquitin is linked to the substrate through the E1-E2-E3 cascade [77,78], a process called protein ubiquitination, and can be removed by Dubs if necessary [79]. ...
Article
Full-text available
Over the past 40 years, the 5-years-overall survival rate of pediatric cancer reached 75–80%, and for acute lymphoblastic leukemia (ALL), exceeded 90%. Leukemia continues to be a major cause of mortality and morbidity for specific patient populations, including infants, adolescents, and patients with high-risk genetic abnormalities. The future of leukemia treatment needs to count better on molecular therapies as well as immune and cellular therapy. Advances in the scientific interface have led naturally to advances in the treatment of childhood cancer. These discoveries have involved the recognition of the importance of chromosomal abnormalities, the amplification of the oncogenes, the aberration of tumor suppressor genes, as well as the dysregulation of cellular signaling and cell cycle control. Lately, novel therapies that have already proven efficient on relapsed/refractory ALL in adults are being evaluated in clinical trials for young patients. Tirosine kinase inhibitors are, by now, part of the standardized treatment of Ph+ALL pediatric patients, and Blinatumomab, with promising results in clinical trials, received both FDA and EMA approval for use in children. Moreover, other targeted therapies such as aurora-kinase inhibitors, MEK-inhibitors, and proteasome-inhibitors are involved in clinical trials that include pediatric patients. This is an overview of the novel leukemia therapies that have been developed starting from the molecular discoveries and those that have been applied in pediatric populations.
... DUBs act as proteases, and cleave ubiquitin or ubiquitin-like conjugates. They regulate the fate of proteins and keep ubiquitin levels constant by many mechanisms, including the digestion of ubiquitin precursors or adducts, cleavage of ubiquitin from target proteins, and control of cellular degradation pathways and machinery (Colland, 2010). ...
Article
Full-text available
Mitochondria and mitochondria‐mediated signalling pathways are known to control synaptic signalling, as well as long‐lasting changes in neuronal structure and function. Mitochondrial impairment is linked to synaptic dysfunction in normal ageing and age‐associated neurodegenerative ailments, including Parkinson's disease (PD) and Alzheimer's disease (AD). Both proteolysis and mitophagy perform a major role in neuroprotection, by maintaining a healthy mitochondrial population during ageing. Mitophagy, a highly evolutionarily conserved cellular process, helps in the clearance of damaged mitochondria and thereby maintains the mitochondrial and metabolic balance, energy supply, neuronal survival and neuronal health. Besides the maintenance of brain homeostasis, hippocampal mitophagy also helps in synapse formation, axonal development, dopamine release and long‐term depression. In contrast, defective mitophagy contributes to ageing and age‐related neurodegeneration by promoting the accumulation of damaged mitochondria leading to cellular dysfunction. Exercise, stress management, maintaining healthy mitochondrial dynamics and administering natural or synthetic pharmacological compounds are some of the strategies used for neuroprotection during ageing and age‐related neurological diseases. The current review discusses the impact of defective mitophagy in ageing and age‐associated neurodegenerative conditions, the underlying molecular pathways and potential therapies based on recently elucidated mitophagy‐inducing strategies.
... Despite the sequencing of many parasite genomes, enzymes of the ubiquitination and deubiquitination pathways; which are conserved and, probably, important for their survival; have not been well studied to date in parasites. Several enzymes involved in the deubiquitination process in humans have been used as drug targets in different disease domains including cancer, viral diseases, and neurodegenerative disorders but the study is yet to provide a successful clinical application (Daviet and Colland, 2008;Colland, 2010;Nicholson et al., 2014;D'Arcy et al., 2015;Farshi et al., 2015;Ndubaku and Tsui, 2015;Gupta et al., 2018). However, the United States Food & Drug Administration (USFDA) approval of the anti-cancer drug bortezomib in 2003 (Velcade by Takeda Pharmaceuticals) which targets the mammalian proteasome complex (Kane et al., 2003) reveals the critical importance of UPS and DUBs as drug targets. ...
Article
Full-text available
Before the discovery of the proteasome complex, the lysosomes with acidic proteases and caspases in apoptotic pathways were thought to be the only pathways for the degradation of damaged, unfolded, and aged proteins. However, the discovery of 26S and 20S proteasome complexes in eukaryotes and microbes, respectively, established that the degradation of most proteins is a highly regulated ATP-dependent pathway that is significantly conserved across each domain of life. The proteasome is part of the ubiquitin-proteasome system (UPS), where the covalent tagging of a small molecule called ubiquitin (Ub) on the proteins marks its proteasomal degradation. The type and chain length of ubiquitination further determine whether a protein is designated for further roles in multi-cellular processes like DNA repair, trafficking, signal transduction, etc., or whether it will be degraded by the proteasome to recycle the peptides and amino acids. Deubiquitination, on the contrary, is the removal of ubiquitin from its substrate molecule or the conversion of polyubiquitin chains into monoubiquitin as a precursor to ubiquitin. Therefore, deubiquitylating enzymes (DUBs) can maintain the dynamic state of cellular ubiquitination by releasing conjugated ubiquitin from proteins and controlling many cellular pathways that are essential for their survival. Many DUBs are well characterized in the human system with potential drug targets in different cancers. Although, proteasome complex and UPS of parasites, like plasmodium and leishmania, were recently coined as multi-stage drug targets the role of DUBs is completely unexplored even though structural domains and functions of many of these parasite DUBs are conserved having high similarity even with its eukaryotic counterpart. This review summarizes the identification & characterization of different parasite DUBs based on in silico and a few functional studies among different phylogenetic classes of parasites including Metazoan (Schistosoma, Trichinella), Apicomplexan protozoans (Plasmodium, Toxoplasma, Eimeria, Cryptosporidium), Kinetoplastidie (Leishmania, Trypanosoma) and Microsporidia (Nosema). The identification of different homologs of parasite DUBs with structurally similar domains with eukaryotes, and the role of these DUBs alone or in combination with the 20S proteosome complex in regulating the parasite survival/death is further elaborated. We propose that small molecules/inhibitors of human DUBs can be potential antiparasitic agents due to their significant structural conservation.
... Furthermore, the observations can be exploited to design targeted therapeutic strategies to enhance the efficacy of melatonin, which has been experimentally validated. With the increasing appreciation of the tumor-promoting effects of human DUBs and the susceptibility of these cysteine proteases to pharmacological interference, USP8 holds potential to serve as a leading paradigm from the DUB family proteases as a therapeutic target in cancer treatment [31,45,46]. ...
Article
Full-text available
Introduction The human genome encodes two melatonin receptors (MT1 and MT2) that relay melatonin signals to cellular interior. Accumulating evidence has linked melatonin to multiple health benefits, among which its anticancer effects have become well-established. However, the implications of its receptors in lung adenocarcinoma have so far remained incompletely understood. Objectives This study aims to investigate the response of the MT1 receptor to melatonin treatment and its dynamic regulation by ubiquitin-specific protease 8 (USP8) in lung adenocarcinoma. Methods The mRNA levels of MT1 and MT2 receptors were analyzed with sequencing data. The expression and localization of the MT1 receptor with melatonin treatment were investigated by immunoblotting, immunofluorescence and confocal microscopy assays. Endocytic deubiquitylases were screened to identify MT1 association. The effects of USP8 were assessed with shRNA-mediated knockdown and small molecule inhibitor. The combined efficacy of melatonin and USP8 suppression was also evaluated using xenograft animal models. Results Bioinformatic analysis revealed increased expression of the MT1 receptor in lung adenocarcinoma tissues. Melatonin treatment leads to the downregulation of the MT1 receptor in lung adenocarcinoma cells, which is attributed to receptor endocytosis and lysosomal degradation via the canonical endo-lysosomal route. USP8 negatively regulates the endocytic degradation of the MT1 receptor incurred by melatonin exposure and thus protects lung adenocarcinoma cell growth. USP8 suppression by knockdown or pharmacological inhibition effectively deters cancer cell proliferation and sensitizes lung adenocarcinoma cells to melatonin in vitro. Furthermore, USP8 silencing significantly potentiates the anticancer effects of melatonin in xenograft tumor models. Conclusion The MT1 receptor responds to melatonin treatment and is endocytosed for lysosomal degradation that is counteracted by USP8. The inhibition of USP8 demonstrates tumor-suppressive effects and thus can be exploited as potential therapeutic strategy either as monotherapy or combined therapy with melatonin.
... Since the polyubiquitin chain targets protein substrates to the 26S proteasome, most DUBs are natural antagonists of the proteasome. Because of the large number of potential DUB substrates and the exquisite specificity that some individual DUBs exhibit, the study of these enzymes as drug targets for therapeutic intervention has often been challenging [36,37,54,58,184,185]. ...
Article
Full-text available
The ubiquitin–proteasome system (UPS) is the major non-lysosomal pathway responsible for regulated degradation of intracellular proteins in eukaryotes. As the principal proteolytic pathway in the cytosol and the nucleus, the UPS serves two main functions: the quality control function (i.e., removal of damaged, misfolded, and functionally incompetent proteins) and a major regulatory function (i.e., targeted degradation of a variety of short-lived regulatory proteins involved in cell cycle control, signal transduction cascades, and regulation of gene expression and metabolic pathways). Aberrations in the UPS are implicated in numerous human pathologies such as cancer, neurodegenerative disorders, autoimmunity, inflammation, or infectious diseases. Therefore, the UPS has become an attractive target for drug discovery and development. For the past two decades, much research has been focused on identifying and developing compounds that target specific components of the UPS. Considerable effort has been devoted to the development of both second-generation proteasome inhibitors and inhibitors of ubiquitinating/deubiquitinating enzymes. With the feature of unique structure and bioactivity, secondary metabolites (natural products) serve as the lead compounds in the development of new therapeutic drugs. This review, for the first time, summarizes fungal secondary metabolites found to act as inhibitors of the UPS components.
... Hence, nuclear speckle-localized USP42 is likely implicated in multiple steps of RNA biogenesis, which warrants further investigation. As a cysteine protease, USP42 holds the potential to serve as a therapeutic target in cancer treatment [57,58]. With its DUB activity providing an accessible handle to interfere with the phase separation of nuclear speckle components, USP42 could represent a leading paradigm to shed light on the development of LLPS-targeted therapies. ...
Article
Full-text available
Liquid–liquid phase separation is considered a generic approach to organize membrane-less compartments, enabling the dynamic regulation of phase-separated assemblies to be investigated and pivotal roles of protein posttranslational modifications to be demonstrated. By surveying the subcellular localizations of human deubiquitylases, USP42 was identified to form nuclear punctate structures that are associated with phase separation properties. Bioinformatic analysis demonstrated that the USP42 C-terminal sequence was intrinsically disordered, which was further experimentally confirmed to confer phase separation features. USP42 is distributed to SC35-positive nuclear speckles in a positively charged C-terminal residue- and enzymatic activity-dependent manner. Notably, USP42 directs the integration of the spliceosome component PLRG1 into nuclear speckles, and its depletion interferes with the conformation of SC35 foci. Functionally, USP42 downregulation deregulates multiple mRNA splicing events and leads to deterred cancer cell growth, which is consistent with the impact of PLRG1 repression. Finally, USP42 expression is strongly correlated with that of PLRG1 in non-small-cell lung cancer samples and predicts adverse prognosis in overall survival. As a deubiquitylase capable of dynamically guiding nuclear speckle phase separation and mRNA splicing, USP42 inhibition presents a novel anticancer strategy by targeting phase separation.
... However, the ubiquitination process could be counteracted by deubiquitination. The DUBs (Deubiquitinases) function to cleave the ubiquitin chains from the substrate proteins and modulate protein stability or activity in several biological processes [13]. ...
Article
Full-text available
Breast cancer is one of the most common malignancies worldwide, while the luminal types (ERα positive) accounts for two third of all breast cancer cases. Although ERα positive breast cancer could be effective controlled by endocrine therapy, most of the patients will develop endocrine resistance, which becomes a headache clinical issue for breast cancer field. Endocrine resistance could be caused by multiple pathway disorders, the dys-regulation of ERα signaling might be a critical factor, which makes it urgent and important to reveal the potential molecular mechanism of ERα signaling. In our current study, we identified a new deubiquitination enzyme USP1 through screening the whole DUB (Deubiquitinases) siRNA library. The expression of USP1 is elevated in human breast cancer compared with normal mammary tissues. Importantly, USP1 expression levels are specially correlated with poor survival in ERα positive patients. USP1 depletion inhibited breast cancer cell progression and ERα signaling activity. Immuno-precipitation assays indicate that USP1 associates with ERα and promotes its stability possibly via inhibiting ERα K48-linked poly-ubiquitination. In conclusion, our data implicate a non-genomic mechanism by USP1 via stabilizing ERα protein controls ERα target gene expression linked to breast cancer progression.
... The advances in this sense have drove to the evaluation of some of them in humans. Moreover, some of these are available for human administration, albeit if its probed action is on some types of neoplasia [20][21][22]. Its administration on humans with virus infection have yield attractive results; such as blocking of Severe fever with thrombocytopenia syndrome virus or inhibition of influenza virus growth [23,24]. ...
Preprint
The aim of the present docking study was to explore the putative role of boronic moieties in molecules interacting on the binding site of the SARS-CoV-2 main protease. The methodology was based on the conventional docking procedure by means of AutoDock software by assaying boron-free and boron-containing compounds on the recent reported crystal structure of SARS-CoV-2 main protease (PDB code: 6LU7). The most of tested compounds share contact with key residues and poses on the cleavage pocket. Those compounds with a boron atom in its structure often were estimated with higher affinity than boron-free analogues. Interactions and affinity of boron-containing peptidomimetics on the binding site let us to propose the potent inhibition of these compounds on targeted protease. These advances may be relevant for drug designing, but also to suggest the testing of available boron-containing drugs in patients with severe symptoms of COVID19 infection.
... Deubiquitinase inhibitors alter a range of cellular functions with therapeutic potential (Colland 2010), as anticipated from the range of processes employing ubiquitin adduction. The general deubiquitinase inhibitor PR619 (Altun, Kramer et al. 2011) promotes autophagy, protein aggregation, and the unfolded protein response in nucleated cells (Seiberlich, Goldbaum et al. 2012;Seiberlich, Borchert et al. 2013). ...
Thesis
Full-text available
Atherothrombotic diseases are responsible for more than 25% of all deaths worldwide. Anti-platelet drugs are the mainstay treatment because of the direct involvement of platelets in the initiation and propagation of thrombosis. However, the currently available anti-platelet drugs, such as antagonists of platelet receptors or of effector systems participating in platelet activation, have their own limitations. A new mode of affecting platelet reactivity may prove to offer unique advantages in a host of clinical settings.
... USP7 was initially identified as ICP0 (Herpes Simplex Virus protein)stabilizing protein [92]. Several studies have reported USP7 mediates stabilization of ICP0 enzyme-inducing proteasome-dependent degradation of a number of proteins, including p53 and promyelocytic leukemia protein (PML) [93]. ...
Preprint
Hematopoietic stem cells (HSCs) are responsible for the production of blood cells throughout the human life span. Single HSCs can give rise to at least eight distinct blood cell lineages. Together, hematopoiesis, erythropoiesis and angiogenesis coordinate several biological processes, such as cellular interactions in development and proliferation, guided migration, lineage programming and reprogramming by transcription factors. Any dysregulation of these processes may result in hematological disorders and/or malignancies. Several studies of the molecular mechanisms governing HSC maintenance have demonstrated that protein regulation by the ubiquitin proteasomal pathway is crucial for normal HSC function. Recent studies have shown that the reversal of ubiquitination by deubiquitinating enzymes (DUBs) plays an equally important role in hematopoiesis; however, there is only limited additional information regarding the biological function of DUBs. In this review, we focus on recent discoveries that have led to a better understanding of the physiological roles of DUBs in hematopoiesis, erythropoiesis and angiogenesis. In addition, we discuss the DUBs associated with common hematological disorders and malignancies, which may potentially be therapeutic drug targets.
... DUBs are antagonists of E3 ubiquitin ligases. These recognize ubiquitinated proteins and remove their ubiquitin tags by the protease activity [81]. Schwickart et al. demonstrated that DUB ubiquitin-specific-processing protease (Usp) 9x is highly expressed in MM cells and is involved in anti-apoptotic protein, Mcl-1 stabilization [82]. ...
Article
Full-text available
Use of proteasome inhibitors (PIs) has been the therapeutic backbone of myeloma treatment over the past decade. Many PIs are being developed and evaluated in the preclinical and clinical setting. The first-in-class PI, bortezomib, was approved by the US food and drug administration in 2003. Carfilzomib is a next-generation PI, which selectively and irreversibly inhibits proteasome enzymatic activities in a dose-dependent manner. Ixazomib was the first oral PI to be developed and has a robust efficacy and favorable safety profile in patients with multiple myeloma. These PIs, together with other agents, including alkylators, immunomodulatory drugs, and monoclonal antibodies, have been incorporated into several regimens. This review summarizes the biological effects and the results of clinical trials investigating PI-based combination regimens and novel investigational inhibitors and discusses the future perspective in the treatment of multiple myeloma.
... Inhibitors to DUBs, such as USP7, USP9X and USP14, have also been considered as molecular targets for some cancers [161]. USP7 has been shown to regulate the nuclear localization of PTEN [165], so the activity of PTEN could, theoretically, be upregulated by inhibiting the catalytic activity of USP7 using small molecules [166], making USP7 a possible therapeutic target for patients with loss of function mutations of PTEN. Additionally, small molecules that interrupt the protein-protein interactions of E3 ligases, such as HDM2, SCF/Skp2, and CRBN, have also been the target of cancer treatments [161]. ...
Article
Full-text available
Intellectual disability (ID) and autism spectrum disorder (ASD) are two of the most common neurodevelopmental disorders. Both disorders are extremely heterogenous, and only ~ 40% of reported cases have so far been attributed to genetic mutations. Of the many cellular processes that are affected, the ubiquitin system (UbS) is of particular relevance in that it can rapidly regulate multiple signaling cascades simultaneously. The UbS is a post-translational modification process that revolves around the covalent attachment of a ubiquitin moiety to a substrate, thereby influencing different elements of protein biology, including trafficking, signal transduction, and degradation. Importantly, the UbS has been implicated in regulating multiple pathophysiological pathways related to ASD and ID. This review will discuss how the UbS acts as major signaling hub in the pathogenesis of ASD and ID, raising the prospect of treating broader patient cohorts by targeting the UbS as a common point of convergence of various mutations.
... Deubiquitinating enzymes (DUBs) catalyze the removal of ubiquitin (Ub) from target substrates and affect a wide variety of cellular processes by influencing the localization, stability and function of their substrates [1,2]. Inhibition of DUB activity has emerged as a promising therapeutic strategy to treat several diseases including various cancers and neurodegenerative diseases [7,8,9]. Despite this, there is a paucity 0022-2836/Crown Copyright © 2019 Published by Elsevier Ltd. ...
Article
We applied a yeast-two-hybrid (Y2H) analysis to screen for ubiquitin variant (UbV) inhibitors of a human deubiquitinase (DUB), ubiquitin-specific protease 2 (USP2). The Y2H screen used USP2 as the bait and a prey library consisting of UbVs randomized at four specific positions, which were known to interact with USP2 from phage display analysis. The screen yielded numerous UbVs that bound to USP2 both as a Y2H interaction in vivo and as purified proteins in vitro. The Y2H-derived UbVs inhibited the catalytic activity of USP2 in vitro with nanomolar-range potencies, and they bound and inhibited USP2 in human cells. Mutational and structural analysis showed that potent and selective inhibition could be achieved by just two substitutions in a UbV, which exhibited improved hydrophobic and hydrophilic contacts compared to the wild-type ubiquitin interaction with USP2. Our results establish Y2H as an effective platform for the development of UbV inhibitors of DUBs in vivo, providing an alternative strategy for the analysis of DUBs that are recalcitrant to phage display and other in vitro methods.
... 14 DUBs have also emerged as potential targets for the treatment of neurodegeneration, immunosuppression and infection. [15][16][17] However, like other cysteine proteases, DUBs are challenging targets for drug discovery. As yet only a handful of selective DUB inhibitors have been reported, mainly for USP7. ...
Article
Promiscuous inhibitors of tyrosine protein kinases, proteases and phosphatases are useful reagents for probing regulatory pathways and stabilizing lysates as well as starting points for the design of more selective agents. Ubiquitination regulates many critical cellular processes, and promiscuous inhibitors of deubiquitinases (DUBs) would be similarly valuable. The currently available promiscuous DUB inhibitors are highly reactive electrophilic compounds that can crosslink proteins. Herein we introduce diarylcarbonate esters as a novel class of promiscuous DUB inhibitors that do not have the liabilities associated with the previously reported compounds. Diarylcarbonates stabilize the high molecular weight ubiquitin pools in cells and lysates. They also elicit cellular phenotypes associated with DUB inhibition, demonstrating their utility in ubiquitin discovery. Diarylcarbonates may also be a useful scaffold for the development of specific DUB inhibitors.
... Notably, ubiquitination is a reversible modi- fication, and deubiquitinating enzymes (DUBs) preserve protein expression through the removal of ubiquitin from their substrates. Recently, DUBs have emerged as potential targets for pharmacological intervention of various diseases including neurological disorders, infec- tious diseases, and cancer [15][16][17]. However, the role of DUBs during the induction and pro- gression of renal fibrosis remains to be elucidated. ...
Article
Full-text available
Deubiquitinating enzymes (DUBs) remove ubiquitin from their substrates and, together with ubiquitin ligases, play an important role in the regulation of protein expression. Although transforming growth factor (TGF)-β1-Smad signaling is a central pathway of renal fibrosis, the role of DUBs in the expression of TGF-β receptors and Smads during the development of renal fibrosis remains unknown. In this study, we investigated whether PR-619, a pan-DUB inhibitor, suppresses fibrosis in mice with unilateral ureteral obstruction (UUO) and TGF-β1-stimulated normal rat kidney (NRK)-49F cells, a rat renal fibroblast cell line. Either the vehicle (dimethyl sulfoxide) or PR-619 (100 μg) was intraperitoneally administered to mice after UUO induction once a day for 7 days. Administration of PR-619 attenuated renal fibrosis with downregulation of mesenchymal markers, extracellular matrix proteins, matrix metalloproteinases, apoptosis, macrophage infiltration, and the TGF-β1 mRNA level in UUO mice. Although type I TGF-β receptor (TGF-βRI), Smad2, Smad3, and Smad4 protein expression levels were markedly increased in mice with UUO, administration of PR-619 suppressed only Smad4 expression but not TGF-βRI, Smad2, or Smad3 expression. PR-619 also had an inhibitory effect on TGF-β1-induced α-smooth muscle actin expression and reduced Smad4 levels in NRK-49F cells. Our results indicate that PR-619 ameliorates renal fibrosis, which is accompanied by the reduction of Smad4 expression.
... Scientists propose that the effects of NSC112200, and NSC267309 compounds on cell growth are likely due to inhibition of deubiquitylase activity [162]. Although some DUB inhibitors have been reported, such inhibitors are in pre-clinical phases only [163]. Ritorto et al., developed a method which is sensitive and fast to quantify in vitro DUB enzyme activity by using matrix-assisted laser desorption/ ionization time-of-flight (MALDI-TOF) mass spectrometry. ...
Article
The focus of basic and applied research on core stem cell transcription factors has paved the way to initial delineation of their characteristics, their regulatory mechanisms, and the applicability of their regulatory proteins for protein-induced pluripotent stem cells (protein-IPSC) generation and in further clinical settings. Striking parallels have been observed between cancer stem cells (CSCs) and stem cells. For the maintenance of stem cells and CSC pluripotency and differentiation, post translational modifications (i.e., ubiquitylation and deubiquitylation) are tightly regulated, as these modifications result in a variety of stem cell fates. The identification of deubiquitylating enzymes (DUBs) involved in the regulation of core stem cell transcription factors and CSC-related proteins might contribute to providing novel insights into the implications of DUB regulatory mechanisms for governing cellular reprogramming and carcinogenesis. Moreover, we propose the novel possibility of applying DUBs coupled with core transcription factors to improve protein-iPSC generation efficiency. Additionally, this review article further illustrates the potential of applying DUB inhibitors as a novel therapeutic intervention for targeting CSCs. Thus, defining DUBs as core pharmacological targets implies that future endeavors to develop their inhibitors may revolutionize our ability to regulate stem cell maintenance and differentiation, somatic cell reprogramming, and cancer stem cells.
... Furthermore, the DUB crystal structure provides evidence of their potential use in the treatment of diseases [51]. Although progress has been made in the development of DUB inhibitors, these inhibitors lack specificity and inhibit a wide range of DUBs [68]. To overcome this problem, extensive research on self-or trans-regulation of DUBs might significantly contribute to the understanding of the regulation of DUB expression and activity that can be modulated pharmacologically prior to inhibitor synthesis in order to apply DUBs in clinical applications. ...
Article
Full-text available
Deubiquitylating enzymes (DUBs) reverse the ubiquitylation of target proteins, thereby regulating diverse cellular functions. In contrast to the plethora of research being conducted on the ability of DUBs to counter the degradation of cellular proteins or auto-ubiquitylated E3 ligases, very little is known about the mechanisms of DUB regulation. In this review paper, we summarize a novel possible mechanism of DUB deubiquitylation by other DUBs. The available data suggest the need for further experiments to validate and characterize this notion of ‘Dubbing DUBs’. The current studies indicate that the idea of deubiquitylation of DUBs by other DUBs is still in its infancy. Nevertheless, future research holds the promise of validation of this concept.
... Recently a few inhibitors have been developed to specifically target USP7 with promising results in different cancer models [17,[44][45][46][47][48][49][50]. USP7 inhibitor P5091 was shown to exhibit impressive properties for the treatment of Multiple Myeloma (MM) [17]. ...
Article
Full-text available
Chronic Lymphocytic Leukemia (CLL) is a lymphoproliferative disorder with either indolent or aggressive clinical course. Current treatment regiments have significantly improved the overall outcomes even if higher risk subgroups - those harboring TP53 mutations or deletions of the short arm of chromosome 17 (del17p) - remain highly challenging. In the present work, we identified USP7, a known de-ubiquitinase with multiple roles in cellular homeostasis, as a potential therapeutic target in CLL. We demonstrated that in primary CLL samples and in CLL cell lines USP7 is: i) over-expressed through a mechanism involving miR-338-3p and miR-181b deregulation; ii) functionally activated by Casein Kinase 2 (CK2), an upstream interactor known to be deregulated in CLL; iii) effectively targeted by the USP7 inhibitor P5091. Treatment of primary CLL samples and cell lines with P5091 induces cell growth arrest and apoptosis, through the restoration of PTEN nuclear pool, both in TP53-wild type and -null environment. Importantly, PTEN acts as the main tumor suppressive mediator along the USP7-PTEN axis in a p53 dispensable manner. In conclusion, we propose USP7 as a new druggable target in CLL.
... USP7 is also implicated in modulating tumor growth and apoptosis in a colon carcinoma xenograft model [37]. Several USP7 inhibitors have shown potent efficacy against tumor cells [38]. Therefore, USP7 is an attractive drug target for cancer therapy. ...
Article
Full-text available
Deubiquitinating enzyme USP7 has been involved in the pathogenesis and progression of several cancers. Targeting USP7 is becoming an attractive strategy for cancer therapy. In this study, we identified synthetic triterpenoid C-28 methyl ester of 2-cyano-3, 12-dioxoolen-1, 9-dien-28-oic acid (CDDO-Me) as a novel inhibitor of USP7 but not of other cysteine proteases such as cathepsin B and cathepsin D. CDDO-Me inhibits USP7 activity via a mechanism that is independent of the presence of α, β-unsaturated ketones. Molecular docking studies showed that CDDO-Me fits well in the ubiquitin carboxyl terminus-binding pocket on USP7. Given that CDDO-Me is known to be effective against ovarian cancer cells, we speculated that CDDO-Me may target USP7 in ovarian cancer cells. We demonstrated that ovarian cancer cells have higher USP7 expression than their normal counterparts. Knockdown of USP7 inhibits the proliferation of ovarian cancer cells both in vitro and in vivo. Using the cellular thermal shift assay and the drug affinity responsive target stability assay, we further demonstrated that CDDO-Me directly binds to USP7 in cells, which leads to the decrease of its substrates such as MDM2, MDMX and UHRF1. CDDO-Me suppresses ovarian cancer tumor growth in an xenograft model. In conclusion, we demonstrate that USP7 is a novel target of ovarian cancer cells; targeting USP7 may contribute to the anti-cancer effect of CDDO-Me. The development of novel USP7 selective compounds based on the CDDO-Me-scaffold warrants further investigation.
... Recent studies have indicated that many human diseases are associated with dysfunction of ubiquitin ligases and/or DUBs, suggesting that inhibitors of ubiquitylating or DUB enzymes represent a potential therapeutic strategy (Colland, 2010;Reverdy et al., 2012). This method would be mainly focused on targeting enzymes that modulate ubiquitin conjugation/deconjugation in degradation of substrate proteins. ...
Article
Ubiquitin-specific protease 14, a deubiquitinating enzyme, has been implicated in the tumorigenesis and progression of several cancers, but its role in oral squamous cell carcinoma remains to be elucidated. The aim of this study was to explore the expression pattern and roles of Ubiquitin-specific protease 14 in the occurrence and development of oral squamous cell carcinoma. Interestingly, Ubiquitin-specific protease 14 was overexpressed in oral cancer tissues and cell lines at both mRNA and protein levels. b-AP15, a specific inhibitor of Ubiquitin-specific protease 14, significantly inhibited the growth of cancer cells and increased cell apoptosis in a dose-dependent manner. Moreover, knockdown of Ubiquitin-specific protease 14 by shRNA significantly inhibited the proliferation and migration of cancer cells in vitro. Finally, using a xenograft mouse model of oral squamous cell carcinoma, knockdown of Ubiquitin-specific protease 14 markedly inhibited tumor growth and triggered the cancer cell apoptosis in vivo, supporting previous results. In conclusion, for the first time we have demonstrated the expression pattern of Ubiquitin-specific protease 14 in oral squamous cell carcinoma and verified a relationship with tumor growth and metastasis. These results may highlight new therapeutic strategies for tumor treatment, application of Ubiquitin-specific protease 14 selective inhibitor, such as b-AP15, or knockdown by shRNA. Collectively, Ubiquitin-specific protease 14 could be a potential therapeutic target for oral squamous cell carcinoma patients.
... Many studies have implicated DUBs in the pathogenesis of several human diseases such as neurological disorders, cancer, and infectious diseases. 80,81 Thus, DUBs are a key alternative target upstream of the proteasome ubiquitin conjugation/deconjugation system that can potentially generate more reliable, specific, and less toxic anticancer agents. In addition, recent advances in small-molecule-based inhibitors specifically targeting DUBs also make DUBs attractive therapeutic targets for antiviral and anticancer agents. ...
Article
Full-text available
Post-translational modifications (PTMs) of stemness-related proteins are essential for stem cell maintenance and differentiation. In stem cell self-renewal and differentiation, PTM of stemness-related proteins is tightly regulated because the modified proteins execute various stem cell fate choices. Ubiquitination and deubiquitination, which regulate protein turnover of several stemness-related proteins, must be carefully coordinated to ensure optimal embryonic stem cell maintenance and differentiation. Deubiquitinating enzymes (DUBs), which specifically disassemble ubiquitin chains, are a central component in the ubiquitin-proteasome pathway. These enzymes often control the balance between ubiquitination and deubiquitination. To maintain stemness and achieve efficient differentiation, the ubiquitination and deubiquitination molecular switches must operate in a balanced manner. Here we summarize the current information on DUBs, with a focus on their regulation of stem cell fate determination and deubiquitinase inhibition as a therapeutic strategy. Furthermore, we discuss the possibility of using DUBs with defined stem cell transcription factors to enhance cellular reprogramming efficiency and cell fate conversion. Our review provides new insight into DUB activity by emphasizing their cellular role in regulating stem cell fate. This role paves the way for future research focused on specific DUBs or deubiquitinated substrates as key regulators of pluripotency and stem cell differentiation.
... USP and UCH are the best characterized DUBs. USPs constitutes the largest family that contains more than 60 members, and the amino acid sequences of USPs exhibit a lower level of conservation than those of UCHs (Colland, 2010). UCHs principally participate in the processing and recycling of ubiquitin, but their specific functions remain largely unknown. ...
Article
The Schizosaccharomyces pombe sdu1^ gene, belonging to the PPPDE superfamily of deubiquitinating enzyme (DUB) genes, was previously shown to encode a protein with ubiquitin C-terminal hydrolase (UCH) activity and to participate in the response against oxidative and nitrosative stresses. This work focused on the reactive oxygen species (ROS)-dependent regulation of the S. pombe sdu1^ gene. UCH activities, encoded by the sdu1^ gene, were attenuated in the S. pombe cells exposed to H_2O_2, superoxide radical-generating menadione (MD), and nitric oxide (NO)-generating sodium nitroprusside (SNP). Reduced glutathione (GSH) and its precursor N-acetylcysteine (NAC) were able to significantly enhance the UCH activities in the absence or presence of H_2O_2. However, the influences of both GSH and NAC on the ROS levels in the absence or presence of H_2O_2 were opposite to their effects on the UCH activities under the same conditions. The UCH activities in the Sdu1-overexpressing S. pombe cells were also diminished under exposure to H_2O_2, MD and SNP, but still remained to be higher than those in the vector control cells. In brief, it is proposed that the S. pombe sdu1^ gene is regulated by ROS in a negative manner, the meaning of which largely remains elusive.
... Taken together, our results show that site 2 is important for the recognition of Ubvs and Ub substrates, and thus this region may be an attractive alternative target for the design of small molecules that inhibit USP function with higher specificity than has been possible with inhibitors targeting the highly conserved active site (37)(38)(39). Indeed, site 2 on the USPs and the core functional epitope on the Ubvs conform to the hot spot model of protein-protein interactions, in which a subset of side chains on each side of an interface form contiguous patches that interact with one another and contribute a large fraction of the binding energy (16,19,26). ...
Article
Full-text available
Significance Although ubiquitin (Ub) interactions are essential to cell physiology, there is a paucity of functional data on how Ub recognizes the diverse enzymes in the Ub proteasome system. We subjected two high-affinity Ub variants (Ubvs) to saturation scanning analysis to obtain comprehensive information on how they interact with Ub-specific proteases (USPs). Our data reveal the molecular details of how individual Ubv side chains mediate weak but specific interactions with these proteases. We find that the enzymes are recognized by similar functional epitopes on the Ubvs, and that these epitopes interact with a region that is conserved across the human USP family, suggesting that Ub may interact with many USPs by using a common core functional epitope.
... Many studies have implicated DUBs in the pathogenesis of several human diseases such as neurological disorders, cancer, and infectious diseases. 80,81 Thus, DUBs are a key alternative target upstream of the proteasome ubiquitin conjugation/deconjugation system that can potentially generate more reliable, specific, and less toxic anticancer agents. In addition, recent advances in small-molecule-based inhibitors specifically targeting DUBs also make DUBs attractive therapeutic targets for antiviral and anticancer agents. ...
Article
Full-text available
Post-translational modifications (PTMs) of stemness-related proteins are essential for stem cell maintenance and differentiation. In stem cell self-renewal and differentiation, PTM of stemness-related proteins is tightly regulated because the modified proteins execute various stem cell fate choices. Ubiquitination and deubiquitination, which regulate protein turnover of several stemness-related proteins, must be carefully coordinated to ensure optimal embryonic stem cell maintenance and differentiation. Deubiquitinating enzymes (DUBs), which specifically disassemble ubiquitin chains, are a central component in the ubiquitin-proteasome pathway. These enzymes often control the balance between ubiquitination and deubiquitination. To maintain stemness and achieve efficient differentiation, the ubiquitination and deubiquitination molecular switches must operate in a balanced manner. Here we summarize the current information on DUBs, with a focus on their regulation of stem cell fate determination and deubiquitinase inhibition as a therapeutic strategy. Furthermore, we discuss the possibility of using DUBs with defined stem cell transcription factors to enhance cellular reprogramming efficiency and cell fate conversion. Our review provides new insight into DUB activity by emphasizing their cellular role in regulating stem cell fate. This role paves the way for future research focused on specific DUBs or deubiquitinated substrates as key regulators of pluripotency and stem cell differentiation.Cell Death and Differentiation advance online publication, 10 June 2016; doi:10.1038/cdd.2016.53.
... Knockdown of USP9X in breast cancer cell lines was suggested to inhibit growth by apoptosis induction. Therapeutic control of oncogenic signalling pathways by small molecule inhibitors of USPs may add to the armamentarium of drugs against breast cancer [84,85]. ...
Article
Breast cancer is the most common cancer and the most frequent cause of cancer death among women worldwide. Breast cancer is a complex, heterogeneous disease classified into hormone-receptor-positive, human epidermal growth factor receptor-2 overexpressing (HER2+) and triple-negative breast cancer (TNBC) based on histological features. Endocrine therapy, the mainstay of treatment for hormone-responsive breast cancer involves use of selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs) and aromatase inhibitors (AIs). Agents that target estrogen receptor (ER) and HER2 such as tamoxifen and trastuzumab have been the most extensively used therapeutics for breast cancer. Crosstalk between ER and other signalling networks as well as epigenetic mechanisms have been envisaged to contribute to endocrine therapy resistance. TNBC, a complex, heterogeneous, aggressive form of breast cancer in which the cells do not express ER, progesterone receptor or HER2 is refractory to therapy. Several molecular targets are being explored to target TNBC including androgen receptor, epidermal growth factor receptor (EGFR), poly(ADP-ribose) polymerase (PARP), and vascular endothelial growth factor (VEGF). Receptors, protein tyrosine kinases, phosphatases, proteases, PI3K/Akt signalling pathway, microRNAs (miRs) and long noncoding RNAs (lnRNAs) are potential therapeutic targets. miR-based therapeutic approaches include inhibition of oncomiRs by antisense oligonucleotides, restoration of tumour suppressors using miR mimics, and chemical modification of miRs. The lnRNA HOTAIR, a new player in tumour development and prognosis may have theranostic applications in breast cancer. Integration of nucleic acid sequencing studies with mass spectrometry-based peptide sequencing and posttranslational modifications will provide a more comprehensive understanding of the pathophysiology of breast cancer and help in evolving therapeutic strategies.
... Among the latter DUBs, USP7 inhibitors are expected to become new drugs for the treatment of cancer. 46) Mdm2, one of the E3s for p53, is autopolyubiquitinated by itself and degraded by the proteasome. Upon USP7 binding to Mdm2, it functions to deubiquitinate the autopolyubiquitinated Mdm2, resulting in the rescue of Mdm2 from proteasome-mediated degradation. ...
Article
Since the approval of the proteasome inhibitor, Velcade®, by the Food and Drug Administration (FDA) for the treatment of relapsed multiple myeloma, inhibitors of the ubiquitin–proteasome system have been attracting increasing attention as promising drug leads for cancer therapy. While the development of drugs for diseases related to this proteolytic system has mainly been achieved by searching libraries of synthetic small molecules or chemical modifications to drug leads, limited searches have been conducted on natural sources. We have been searching natural sources for inhibitors that target this proteolytic system through in-house screening. Our recent studies on the search for natural inhibitors of the ubiquitin–proteasome system, particularly, inhibitors against the proteasome, E1 enzyme (Uba1), E2 enzyme (Ubc13–Uev1A heterodimer), and E3 enzyme (Hdm2), and also those against deubiquitinating enzyme (USP7), are reviewed here.
... The ubiquitination process can be reversed by a group of proteases called DUBs, which recognize ubiquitinated proteins and remove their ubiqtuitin tags by cleavage of the isopeptide bond at the C-terminus of ubiquitin [138]. At the moment, 79 functional DUBs with 5 different subfamilies have been identified in the human genome. ...
Article
Full-text available
Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of plasma cells in the bone marrow (BM). The success of the proteasome inhibitor bortezomib in the treatment of MM highlights the importance of the ubiquitin proteasome system (UPS) in this particular cancer. Despite the prolonged survival of MM patients, a significant amount of patients relapse or become resistant to therapy. This underlines the importance of the development and investigation of novel targets to improve MM therapy. The UPS plays an important role in different cellular processes by targeted destruction of proteins. The ubiquitination process consists of enzymes that transfer ubiquitin to proteins targeting them for proteasomal degradation. An emerging and promising approach is to target more disease specific components of the UPS to reduce side effects and overcome resistance. In this review, we will focus on different components of the UPS such as the ubiquitin activating enzyme E1, the ubiquitin conjugating enzyme E2, the E3 ubiquitin ligases, the deubiquitinating enzymes (DUBs) and the proteasome. We will discuss their role in MM and the implications in drug discovery for the treatment of MM.
... The Ub-AMC assay allows for high-throughput screening. Since USPs are promising therapeutic targets [10,11] and USP7 is a key regulator in important cellular 2057 Other Families in Clan CA | 464. Ubiquitin-Specific Protease USP7 processes, USP7 is actively pursued as a drug target by both industry and academia. ...
Article
The third edition of the Handbook of Proteolytic Enzymes aims to be a comprehensive reference work for the enzymes that cleave proteins and peptides, and contains over 800 chapters. Each chapter is organized into sections describing the name and history, activity and specificity, structural chemistry, preparation, biological aspects, and distinguishing features for a specific peptidase. The subject of chapter 463 is Ubiquitin-Specific Protease USP7.
... The cysteine cathepsins are lysosomal proteases that are part of clan CA, which contains several families of cysteine proteases that are structurally similar to the papaya cysteine protease papain (Rawlings et al. 2010). Other families in clan CA that have been implicated in cancer include a number of cytosolic proteases: calpains [for review, see ( Storr et al. 2011)], autophagins (Marino et al. 2007) and a variety of deubiquitinating enzymes or DUBs (Colland 2010;Fang et al. 2010;Harhaj and Dixit 2011;Hymowitz and Wertz 2010;Sacco et al. 2010;Sun 2010), e.g., A20, BAP1, CYLD, USP28. The DUB family [for review, see ( Komander et al. 2009;Reyes-Turcu et al. 2009)], which currently has 95 members, is intriguing as it consists of 80 clan CA cysteine proteases and 15 metalloproteases and in addition provides a link to the threonine proteases of the proteasome. ...
Chapter
There is an extensive body of literature documenting the association of proteases with cancer. Indeed, a search of PubMed for the phrase proteases in cancer brings up a list of ~73,000 papers, including >7,200 reviews. Nonetheless, the protease community still has not identified and validated all of the proteases and proteolytic pathways that play causal roles in neoplastic progression, nor determined which proteases would be appropriate therapeutic targets in pre-malignant lesions as compared to end-stage cancers or in any one type of cancer. Furthermore, more than one catalytic type of protease has been implicated in the progression of human tumors, as have interactions among proteases of more than one catalytic type. How vast a repertoire of proteases has been implicated in cancer is evident from a recent comprehensive tome on the many proteases that comprise the cancer degradome (Edwards et al. 2008b).
... DUBS, like other cysteine proteases, are challenging targets for drug discovery because potent inhibition usually requires the presence of electrophillic "warheads" that can react nonspecifically with other proteins (46). Many DUB inhibitors fall into this category. ...
Article
The anticancer properties of cruciferous vegetables are well known and attributed to an abundance of isothiocyanates (ITCs) such as benzyl ITC (BITC) and phenethyl ITC (PEITC). While many potential targets of ITCs have been proposed, a full understanding of the mechanisms underlying their anticancer activity has remained elusive. Here we report that BITC and PEITC effectively inhibit deubiquitinating enzymes (DUBs), including the enzymes USP9x and UCH37, which are associated with tumorigenesis, at physiologically relevant concentrations and time scales. USP9x protects the anti-apoptotic protein Mcl-1 from degradation, and cells dependent on Mcl-1 were especially sensitive to BITC and PEITC. These ITCs increased Mcl-1 ubiquitination and either ITC treatment or RNAi-mediated silencing of USP9x decreased Mcl-1 levels, consistent with the notion that USP9x is a primary target of ITC activity. These ITCs also increased ubiquitination of the oncogenic fusion protein Bcr-Abl, resulting in degradation under low ITC concentrations and aggregation under high ITC concentrations. USP9x inhibition paralleled the decrease in Bcr-Abl levels induced by ITC treatment, and USP9x silencing was sufficient to decrease Bcr-Abl levels, further suggesting that Bcr-Abl is a USP9x substrate. Overall, our findings suggest that USP9x targeting is critical to the mechanism underpinning the well established anticancer activity of ITC. We propose that the ITC-induced inhibition of DUB may also explain how ITCs affect inflammatory and DNA repair processes, thus offering a unifying theme in understanding the function and useful application of ITCs to treat cancer as well as a variety of other pathological conditions.
Article
Ubiquitin-specific proteases represent a family of enzymes that catalyze the cleavage of ubiquitin from specific substrate proteins to regulate their activity. USP48 is a rarely studied USP, which has recently been linked to inflammatory signaling via regulation of the transcription factor nuclear factor kappa B. Nonetheless, a crystal structure of USP48 has not yet been resolved and potent inhibitors are not known. We screened a set of 14 commercially available USP inhibitors for their activity against USP48 and identified the USP2 inhibitor "ML364" as a candidate for further optimization. Using a ligand-based approach, we derived and synthesized a series of ML364 analogs. The IC50 concentrations of the new compounds to inhibit USP48 were determined in a deubiquitinylase activity assay by measuring the fluorescence intensity using tetra-ubiquitin rhodamine110 as substrate. A compound containing a carboxylic acid functionalization (17e) inhibited USP48 activity toward tetra-ubiquitin rhodamine110 with an IC50 of 12.6 µM. Further structure-based refinements are required to improve the inhibition activity and specificity.
Article
PurposeThe epidermal growth factor receptor (EGFR) represents a top therapeutic target in the treatment of non-small cell lung cancer. EGFR expression is intricately modulated by receptor endocytosis, during which EGFR ubiquitylation and deubiquitylation play fundamental roles to govern receptor fate. This study aims to uncover novel aspects of the endocytic regulation of EGFR trafficking by deubiquitylases.Methods The expression and ubiquitylation of EGFR in non-small cell lung cancer cells treated with deubiquitylase inhibitors were assessed by immunoblotting, immunoprecipitation and mass spectrometry analyses. The intracellular EGFR distribution was investigated using immunofluorescence and confocal microscopy assays, and colocalizations with endocytic compartments were examined using GFP-tagged Rab proteins as markers. The influence of the proteasomal deubiquitylase inhibitor b-AP15 on EGF- and HSP90 inhibitor-induced EGFR downregulation was evaluated by immunoblotting. The anticancer effects of b-AP15 were assessed by cell proliferation, colony formation and flow cytometry assays, as well as xenograft animal models.ResultsWe found that b-AP15 caused a dramatically enhanced ubiquitylation of EGFR in lung cancer cells. Treatment with b-AP15 decreased cell surface EGFR levels and accumulated EGFR on recycling endosomes marked with Rab4A and Rab11A. b-AP15 effectively repressed EGF- and HSP90 inhibitor-induced EGFR degradation. Lung cancer cells exposed to b-AP15 showed markedly reduced cell propagation and significantly increased cell apoptosis. Furthermore, b-AP15 effectively inhibited tumor xenograft growth in nude mice.Conclusion Proteasomal USP14 and UCHL5 act collectively to promote cell surface recovery of EGFR. Inhibition of proteasomal deubiquitylase activity induces increased EGFR ubiquitylation and retention on recycling endosomes. The USP14 and UCHL5 dual inhibitor b-AP15 elicits potent tumor-suppressive effects to deter cell proliferation and induce apoptotic cell death in lung cancer.
Article
The INO80 chromatin remodeling complex plays an essential role in the regulation of gene transcription, which participate in a variety of important biological processes in cells including DNA repair and DNA replication. Difference from the yeast INO80 complex, metazoan INO80 complex have the specific subunit G, which is known as nuclear factor related to kappaB binding protein (NFRKB). Recently, NFRKB has been received much attention in many aspects, such as DNA repair, cell pluripotency, telomere protection, and protein activity regulation. To dig the new function of metazoan INO80 complex, a better understanding of the role of NFRKB is required. In this review, we provide an overview of the structure and function of NFRKB and discuss its potential role in cancer treatment and telomere regulation. Overall, this review provides an important reference for further research of the INO80 complex and NFRKB.
Article
Full-text available
Among many of the pathogens, virus is the main cause of diseases in livestock and poultry. A host infected with the virus triggers a series of innate and adaptive immunity. The realization of innate immune responses involves the participation of a series of protein molecules in host cells, including receptors, signal molecules and antiviral molecules. Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular or viral deubiquitinases (DUBs). DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. In this review, we briefly introduce the mechanisms of ubiquitination and deubiquitination, present antiviral innate immune response and its regulation by ubiquitin, and summarize the prevalence of DUBs encoded by viruses (Arteriviridae, Asfarviridae, Nairoviridae, Coronaviridae, Herpesviridae, and Picornaviridae) infecting domestic animals and poultry. It is found that these DUBs suppress the innate immune responses mainly by affecting the production of type I interferon (IFN), which causes immune evasion of the viruses and promotes their replication. These findings have important reference significance for understanding the virulence and immune evasion mechanisms of the relevant viruses, and thus for the development of more effective prevention and treatment measures.
Article
Full-text available
Background: Treatment of the COVID19 pandemic requires drug development. Boron-containing compounds are attractive chemical agents, some of them act as proteases inhibitors. Objective: The present study explores the role of boronic moieties in molecules interacting on the binding site of the SARS-CoV-2 main protease. Methods: Conventional docking procedure was applied by assaying boron-free and boron-containing compounds on the recently reported crystal structure of SARS-CoV-2 main protease (PDB code: 6LU7). The set of 150 ligands includes bortezomib and inhibitors of coronavirus proteases. Results: Most of the tested compounds share contact with key residues and pose on the cleavage pocket. The compounds with a boron atom in their structure are often estimated to have higher affinity than boron-free analogues. Conclusion: Interactions and the affinity of boron-containing peptidomimetics strongly suggest that boron-moieties increase affinity on the main protease, which is tested by in vitro assays. A Bis-boron-containing compound previously tested active on SARS-virus protease and bortezomib were identified as potent li-gands. These advances may be relevant to drug designing, in addition to testing available boron-containing drugs in patients with COVID19 infection.
Article
Redox homeostasis is important for the maintenance of cell survival. Under physiological conditions, redox system works in a balance and involves activation of many signaling molecules. Regulation of redox balance via signaling molecules is achieved by different pathways and proteasomal system is a key pathway in this process. Importance of proteasomal system on signaling pathways has been investigated for many years. In this direction, many proteasome targeting molecules have been developed. Some of them are already in the clinic for cancer treatment and some are still under investigation to highlight underlying mechanisms. Although there are many studies done, molecular mechanisms of proteasome inhibitors and related signaling pathways need more detailed explanations. This review aims to discuss redox status and proteasomal system related signaling pathways. In addition, cancer therapies targeting proteasomal system and their effects on redox-related pathways have been summarized.
Chapter
Basidiomycetes, a major class of higher fungi adapted to many different climates, habitats, and substrates, have developed a rich and very diverse secondary metabolism. Its products differ in biogenetic origin and structure remarkably from the metabolites of ascomycetes or other prolific producers of secondary metabolites like actinomycetes or myxobacteria. There are, however, some similarities to the products of plants, especially with regard to some polyketides, acetylenes, and sesquiterpenoids. It is noteworthy that many basidiomycete metabolites exhibit interesting biological activities, which in some cases led to the development of very successful plant protectants or antibiotics for human and veterinary uses.
Article
Three new furanosesterterpene tetronic acids, sulawesins A–C (1–3), were isolated from a Psammocinia sp. marine sponge, along with the known compounds ircinins-1 (4) and -2 (5). Although ircinins-1 and -2 were previously isolated as (+)- or (−)-enantiomers from marine sponges, we isolated them as enantiomeric mixtures. Sulawesins A and B possess a new carbon skeleton with a 5-(furan-3-yl)-4-hydroxycyclopent-2-enone moiety and were also found to be diastereomeric mixtures of four isomers by an HPLC analysis with a chiral-phase column. Sulawesin C has a dimeric structure of ircinin-1 and is the first dimer in this family. USP7, a deubiquitinating enzyme, is an emergent target of cancer therapy, and the isolated compounds inhibited USP7 with IC50 values in the range of 2.7–4.6 μM.
Article
We isolated 16 new xestoquinone derivatives, including two trimers, six dimers, and four monomers with containing thiomorpholine 1,1-dioxide and pyrrolidine-2,4-diol moieties, from the marine sponge Petrosia alfiani and determined their structures including the absolute configurations using computational methods. They exhibited potent inhibitory activities against USP7 with IC50 values in the range of 0.13–2.0 μM.
Article
Multiple myeloma (MM) is a malignant plasma cell disorder, clinically characterized by osteolytic lesions, immunodeficiency, and renal disease. Over the past decade, MM therapy is significantly improved by the introduction of novel therapeutics such as immunomodulatory agents (thalidomide, lenalidomide, and pomalidomide), proteasome inhibitors (bortezomib, carfilzomib, and ixazomib), monoclonal antibodies (daratumumab and elotuzumab), histone deacetylase (HDAC) inhibitors (Panobinostat). The clinical success of these agents has clearly identified vulnerabilities intrinsic to the MM cell- as well as targets that emanate from the tumor microenvironment. Despite these significant improvements, MM remains incurable due to the development of drug resistance. This perspective will discuss more recent strategies which take advantage of multiple targets within the proteome recycling pathway, chromatin remodeling, and disruption of nuclear export. In addition, we will review the development of strategies designed to block opportunistic survival signaling that occurs between the MM cell and the tumor microenvironment including strategies for inhibiting myeloma-induced immune suppression. It has become clear that MM tumors continue to evolve on therapy leading to drug resistance. It will be important to understand the mechanism and additional vulnerabilities that occur due to the development of clinical resistance. This article is protected by copyright. All rights reserved.
Chapter
Most ubiquitinated proteins can be recognized and degraded by the 26S proteasome. In the meantime, protein deubiquitination by various deubiquitinating enzymes (DUBs) regulates protein stability within cells, and it can counterbalance intracellular homeostasis mediated by ubiquitination. Numerous reports have demonstrated that an aberrant process of the ubiquitin-proteasome pathway (UPP) regulated by the ubiquitination and deubiquitination systems results in failure of balancing between protein stability and degradation, and this failure can lead to tumorigenesis in various organs and tissues of mammals. The identification of molecular properties for various DUBs is very critical to understand cancer development and tumorigenesis. Therefore, knowledge of DUBs and their association with cancer and diseases is indispensible for developing effective inhibitors for DUBs. This chapter describes various features and functions of cancer-related DUBs. In addition, we summarize several inhibitors that specifically target certain DUBs in cancer and suggest that DUBs may be one of the most ideal and attractive therapeutic targets.
Article
Full-text available
Ubiquitination is a key posttranslational modification, which affects numerous biological processes and is reversed by a class of enzymes known as deubiquitinases (DUBs). This family of enzymes cleaves mono-ubiquitin or poly-ubiquitin chains from a target protein through different mechanisms and mode of interactions with their substrates. Studying the role of DUBs in health and diseases has been a major goal for many laboratories both in academia and in industry. However, the field has been challenged by the difficulties in obtaining native substrates and novel reagents using traditional enzymatic and molecular biology approaches. Recent advancements in the synthesis and semisynthesis of proteins made it possible to prepare several unique ubiquitin conjugates to study various aspects of DUBs such as their specificities and structures. Moreover, these approaches enable the preparation of novel activity based probes and assays to monitor DUB activities in vitro and in cellular contexts. Efforts made to bring new chemical entities for the selective inhibition of DUBs based on these tools are also highlighted with selected examples.
Chapter
As the major route by which activated Receptor Tyrosine Kinases are degraded, the endolysosomal pathway may be seen as a tumour suppressor pathway. The appendage of ubiquitin chains to activated receptors provides a sorting signal for sorting into multivesicular bodies which go on to fuse directly with lysosomes. Deubiquitylating (DUB) activities, such as the endosome-localised AMSH and USP8, can favour recycling of receptors by reducing this active sorting into MVBs. These enzymes have an overlapping set of binding partners at the endosome, which include both early- and late-acting components of the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. The exact interplay between these enzymes is still under debate. The consequences of depletion can be complex and need to be interpreted with care. Generically endosomal DUBs can influence receptor trafficking by direct deubiquitylation of receptors or associated proteins, by stabilisation of sorting factors or by contributing to free ubiquitin homeostasis by recycling ubiquitin once a MVB cargo molecule has been committed to degradation. We propose that a single endosomal DUB may carry out multiple functions depending on the suite of interactions being employed. Recent studies have provided further examples of DUBs which may associate with endosomes in a transient manner to influence the sorting of RTKs but also other types of receptors, such as GPCRs and various channels. © 2013 Springer Science+Business Media New York. All rights are reserved.
Article
The concept of molecular machines in biology has transformed the medical field in a profound way. Many essential processes that occur in the cell, including transcription, translation, protein folding and protein degradation, are all carried out by molecular machines. This volume focuses on important molecular machines whose architecture is known and whose functional principles have been established by tools of biophysical imaging (X-ray crystallography and cryo-electron microscopy) and fluorescence probing (single-molecule FRET). This edited volume includes contributions from prominent scientists and researchers who understand and have explored the structure and functions of these machines. This book is essential for students and professionals in the medical field who want to learn more about molecular machines.
Article
Full-text available
FOXO (Forkhead box O) transcription factors are important regulators of cellular metabolism, cell-cycle progression and cell death. FOXO activity is regulated by multiple post-translational modifications, including phosphorylation, acetylation and polyubiquitination. Here, we show that FOXO becomes monoubiquitinated in response to increased cellular oxidative stress, resulting in its re-localization to the nucleus and an increase in its transcriptional activity. Deubiquitination of FOXO requires the deubiquitinating enzyme USP7/HAUSP (herpesvirus-associated ubiquitin-specific protease), which interacts with and deubiquitinates FOXO in response to oxidative stress. Oxidative stress-induced ubiquitination and deubiquitination by USP7 do not influence FOXO protein half-life. However, USP7 does negatively regulate FOXO transcriptional activity towards endogenous promoters. Our results demonstrate a novel mechanism of FOXO regulation and indicate that USP7 has an important role in regulating FOXO-mediated stress responses.
Article
Full-text available
Deregulation of the ubiquitin/proteasome system has been implicated in the pathogenesis of many human diseases, including cancer. Ubiquitin-specific proteases (USP) are cysteine proteases involved in the deubiquitination of protein substrates. Functional connections between USP7 and essential viral proteins and oncogenic pathways, such as the p53/Mdm2 and phosphatidylinositol 3-kinase/protein kinase B networks, strongly suggest that the targeting of USP7 with small-molecule inhibitors may be useful for the treatment of cancers and viral diseases. Using high-throughput screening, we have discovered HBX 41,108, a small-molecule compound that inhibits USP7 deubiquitinating activity with an IC(50) in the submicromolar range. Kinetics data indicate an uncompetitive reversible inhibition mechanism. HBX 41,108 was shown to affect USP7-mediated p53 deubiquitination in vitro and in cells. As RNA interference-mediated USP7 silencing in cancer cells, HBX 41,108 treatment stabilized p53, activated the transcription of a p53 target gene without inducing genotoxic stress, and inhibited cancer cell growth. Finally, HBX 41,108 induced p53-dependent apoptosis as shown in p53 wild-type and null isogenic cancer cell lines. We thus report the identification of the first lead-like inhibitor against USP7, providing a structural basis for the development of new anticancer drugs.
Article
Full-text available
USP25m is the muscle isoform of the deubiquitinating (DUB) enzyme USP25. Similarly to most DUBs, data on USP25 regulation and substrate recognition is scarce. In silico analysis predicted three ubiquitin binding domains (UBDs) at the N-terminus: one ubiquitin-associated domain (UBA) and two ubiquitin-interacting motifs (UIMs), whereas no clear structural homology at the extended C-terminal region outside the catalytic domains were detected. In order to asses the contribution of the UBDs and the C-terminus to the regulation of USP25m catalytic activity, ubiquitination state and substrate interaction, serial and combinatorial deletions were generated. Our results showed that USP25m catalytic activity did not strictly depend on the UBDs, but required a coiled-coil stretch between amino acids 679 to 769. USP25 oligomerized but this interaction did not require either the UBDs or the C-terminus. Besides, USP25 was monoubiquitinated and able to autodeubiquitinate in a possible loop of autoregulation. UBDs favored the monoubiquitination of USP25m at the preferential site lysine 99 (K99). This residue had been previously shown to be a target for SUMO and this modification inhibited USP25 activity. We showed that mutation of K99 clearly diminished USP25-dependent rescue of the specific substrate MyBPC1 from proteasome degradation, thereby supporting a new mechanistic model, in which USP25m is regulated through alternative conjugation of ubiquitin (activating) or SUMO (inhibiting) to the same lysine residue (K99), which may promote the interaction with distinct intramolecular regulatory domains.
Article
Full-text available
Deubiquitinating enzymes (DUBs) control the ubiquitination status of proteins in various cellular pathways. Regulation of the activity of DUBs, which is critically important to cellular homoeostasis, can be achieved at the level of gene expression, protein complex formation, or degradation. Here, we report that ubiquitination also directly regulates the activity of a DUB, ataxin-3, a polyglutamine disease protein implicated in protein quality control pathways. Ubiquitination enhances ubiquitin (Ub) chain cleavage by ataxin-3, but does not alter its preference for K63-linked Ub chains. In cells, ubiquitination of endogenous ataxin-3 increases when the proteasome is inhibited, when excess Ub is present, or when the unfolded protein response is induced, suggesting that the cellular functions of ataxin-3 in protein quality control are modulated through ubiquitination. Ataxin-3 is the first reported DUB in which ubiquitination directly regulates catalytic activity. We propose a new function for protein ubiquitination in regulating the activity of certain DUBs and perhaps other enzymes.
Article
Full-text available
A balance between ubiquitination and deubiquitination regulates numerous cellular processes and pathways, and specific deubiquitinating enzymes often play the decisive role of controlling this balance. We recently reported that the USP1 deubiquitinating enzyme, which regulates the Fanconi anemia pathway by deubiquitinating the central player of the pathway, FANCD2, is activated by the WD40-repeat containing UAF1 protein through formation of a stable USP1/UAF1 protein complex. Here we present the isolation of two novel multisubunit deubiquitinating enzyme complexes containing USP12 and USP46, respectively. Both complexes contain the UAF1 protein as a bona fide subunit. Interestingly, UAF1 regulates the enzymatic activity of both enzyme complexes, suggesting that this activator protein may regulate a subclass of human deubiquitinating enzymes. We postulate that additional WD40-containing proteins may also form complexes with other human deubiquitinating enzymes and thereby regulate their activity and substrate specificity.
Article
Full-text available
Pattern recognition receptors represent the first line of defense against invading pathogens. Herpes simplex virus (HSV) encodes multiple ligands detected by these receptors, yet persists in the majority of infected individuals indicating a breakdown in host defense against the virus. Here we identify a novel mechanism through which HSV immediate-early protein ICP0 inhibits TLR-dependent inflammatory response by blocking NF-kappaB and JNK activation downstream of TLR signal activation. This process depends on ICP0-mediated translocation of USP7 (HAUSP) from the nucleus to cytoplasm. We show that nuclear USP7 migrates to the cytoplasm in response to TLR engagement, a process that contributes to termination of TLR response. Cytoplasmic USP7 binds to and deubiquitinates TRAF6 and IKKgamma, thus terminating TLR-mediated NF-kappaB and JNK activation. These findings suggest that USP7 is part of a negative feedback loop regulating TLR signaling and that ICP0 exploits this physiologic process to attenuate innate response to HSV. ICP0 inhibition of the TLR response serves to uncouple the innate and adaptive immune response, thereby playing a key role in HSV pathogenesis and persistence.
Article
Full-text available
We report the discovery and optimization of a potent inhibitor against the papain-like protease (PLpro) from the coronavirus that causes severe acute respiratory syndrome (SARS-CoV). This unique protease is not only responsible for processing the viral polyprotein into its functional units but is also capable of cleaving ubiquitin and ISG15 conjugates and plays a significant role in helping SARS-CoV evade the human immune system. We screened a structurally diverse library of 50,080 compounds for inhibitors of PLpro and discovered a noncovalent lead inhibitor with an IC50 value of 20 μM, which was improved to 600 nM via synthetic optimization. The resulting compound, GRL0617, inhibited SARS-CoV viral replication in Vero E6 cells with an EC50 of 15 μM and had no associated cytotoxicity. The X-ray structure of PLpro in complex with GRL0617 indicates that the compound has a unique mode of inhibition whereby it binds within the S4-S3 subsites of the enzyme and induces a loop closure that shuts down catalysis at the active site. These findings provide proof-of-principle that PLpro is a viable target for development of antivirals directed against SARS-CoV, and that potent noncovalent cysteine protease inhibitors can be developed with specificity directed toward pathogenic deubiquitinating enzymes without inhibiting host DUBs. • ubiquitin-specific protease • noncovalent cysteine protease inhibitor • severe acute respiratory syndrome antiviral • X-ray structure
Article
Full-text available
Nuclear exclusion of the PTEN (phosphatase and tensin homologue deleted in chromosome 10) tumour suppressor has been associated with cancer progression. However, the mechanisms leading to this aberrant PTEN localization in human cancers are currently unknown. We have previously reported that ubiquitinylation of PTEN at specific lysine residues regulates its nuclear-cytoplasmic partitioning. Here we show that functional promyelocytic leukaemia protein (PML) nuclear bodies co-ordinate PTEN localization by opposing the action of a previously unknown PTEN-deubiquitinylating enzyme, herpesvirus-associated ubiquitin-specific protease (HAUSP, also known as USP7), and that the integrity of this molecular framework is required for PTEN to be able to enter the nucleus. We find that PTEN is aberrantly localized in acute promyelocytic leukaemia, in which PML function is disrupted by the PML-RARalpha fusion oncoprotein. Remarkably, treatment with drugs that trigger PML-RARalpha degradation, such as all-trans retinoic acid or arsenic trioxide, restore nuclear PTEN. We demonstrate that PML opposes the activity of HAUSP towards PTEN through a mechanism involving the adaptor protein DAXX (death domain-associated protein). In support of this paradigm, we show that HAUSP is overexpressed in human prostate cancer and is associated with PTEN nuclear exclusion. Thus, our results delineate a previously unknown PML-DAXX-HAUSP molecular network controlling PTEN deubiquitinylation and trafficking, which is perturbed by oncogenic cues in human cancer, in turn defining a new deubiquitinylation-dependent model for PTEN subcellular compartmentalization.
Article
Full-text available
Herpes simplex virus type 1 immediate-early protein Vmw110 is a non-specific activator of gene expression and is required for efficient initiation of the viral lytic cycle. Since Vmw110-deficient viruses reactivate inefficiently in mouse latency models it has been suggested that Vmw110 plays a role in the balance between the latent and lytic states of the virus. The mechanisms by which Vmw110 achieves these functions are poorly understood. Vmw110 migrates to discrete nuclear structures (ND10) which contain the cellular PML protein, and in consequence PML and other constituent proteins are dispersed. In addition, Vmw110 binds to a cellular protein of approximately 135 kDa, and its interactions with the 135 kDa protein and ND10 contribute to its ability to stimulate gene expression and viral lytic growth. In this report we identify the 135 kDa protein as a novel member of the ubiquitin-specific protease family. The protease is distributed in the nucleus in a micropunctate pattern with a limited number of larger discrete foci, some of which co-localize with PML in ND10. At early times of virus infection, the presence of Vmw110 increases the proportion of ND10 which contain the ubiquitin-specific protease. These results identify a novel, transitory component of ND10 and implicate a previously uncharacterized ubiquitin-dependent pathway in the control of viral gene expression.
Article
Full-text available
Ubiquitin C-terminal hydrolases catalyze the removal of adducts from the C-terminus of ubiquitin. We have determined the crystal structure of the recombinant human Ubiquitin C-terminal Hydrolase (UCH-L3) by X-ray crystallography at 1.8 A resolution. The structure is comprised of a central antiparallel beta-sheet flanked on both sides by alpha-helices. The beta-sheet and one of the helices resemble the well-known papain-like cysteine proteases, with the greatest similarity to cathepsin B. This similarity includes the UCH-L3 active site catalytic triad of Cys95, His169 and Asp184, and the oxyanion hole residue Gln89. Papain and UCH-L3 differ, however, in strand and helix connectivity, which in the UCH-L3 structure includes a disordered 20 residue loop (residues 147-166) that is positioned over the active site and may function in the definition of substrate specificity. Based upon analogy with inhibitor complexes of the papain-like enzymes, we propose a model describing the binding of ubiquitin to UCH-L3. The UCH-L3 active site cleft appears to be masked in the unliganded structure by two different segments of the enzyme (residues 9-12 and 90-94), thus implying a conformational change upon substrate binding and suggesting a mechanism to limit non-specific hydrolysis.
Article
Full-text available
An astounding number of important regulatory and structural proteins are subject to modification by the attachment of ubiquitin or ubiquitin-like proteins. This modification acts as a targeting signal, delivering the modified protein to different locations in the cell and modifying its activity, macromolecular interactions, or half-life. Deubiquitination, or the removal of this modification, is being recognized as an important regulatory strategy. This reaction is catalyzed by processing proteases known as deubiquitinating enzymes (DUBs). More than 60 DUBs are already known, although little is known about their biological roles. This review concentrates on recent findings and new insights into this fascinating class of enzymes.
Article
Full-text available
Degradation of cellular proteins through ubiquitination is a fundamental strategy for regulating biological pathways. De-ubiquitination, i.e. the removal of ubiquitin from proteins and peptides to which ubiquitin is attached, is catalyzed by processing proteases known as de-ubiquitinating enzymes. We are studying the biology of a family of de-ubiquitinating enzymes, the mammalian ubiquitin-specific proteases (USPs), some of which appear to play a role in growth control. Given the fact that the modes of regulation of USPs and of their substrate specificity are poorly understood, we decided to attempt the identification of USP interacting proteins. Using the yeast two-hybrid system (2HS), we have isolated a cDNA clone whose product specifically interacts with USP10 but not with other USP baits tested. The isolated clone encodes a protein known to interact with the Ras-GTPase activating protein (G3BP). This interaction was further confirmed by performing a 2HS with G3BP, which led to the isolation of USP10 encoding cDNAs. We validated the interaction between the two proteins by performing in vitro binding assays and immunoprecipitations in human cells. G3BP does not appear to be a substrate of USP10; it rather inhibits the ability of USP10 to disassemble ubiquitin chains. The USP10/G3BP complex appears to co-immunoprecipitate with ubiquitinated species that could be substrates of USP10.
Article
Full-text available
The homeostasis for a number of cellular proteins is regulated by not only phosphorylation and dephosphorylation, but also ubiquitination and deubiquitination. A number of proteins involved in the degradation of polypeptides have been isolated in various eukaryotic organisms from Saccharomyces cerevisiae to human. Recently, several deubiquitinating enzymes, classified into either the Ub C-terminal hydrolase (UCH) or the Ub-specific processing protease (UBP), have been reported. It has been shown that they contain conserved domains including Cys, His, and Asp residues throughout the enzyme. These proteins have been demonstrated that Cys and His domains are critical for deubiquitinating enzymatic activity. Recently, we have shown that the Asp domain localized between Cys and His domains is also essential for cleaving the ubiquitin from protein substrates. Mouse deubiquitinating enzymes including DUB-1, DUB-2, and DUB-2A have been isolated and they showed the expression specificity. Of these, DUB- 1 and DUB-2 are expressed in lymphocytes depending on the presence of cytokines (interleukin-3 in B-lymphocytes and interleukin-2 in T- lymphocytes, respectively), indicating that they are involved in cytokine signaling pathways. Isolation of all putative DUBs will help to identify their substrates and to regulate the homeostasis of cellular proteins, especially in proliferative cells.
Article
Full-text available
Ubiquitylation, the modification of cellular proteins by the covalent attachment of ubiquitin, is critical for diverse biological processes including cell cycle progression, signal transduction and stress response. This process can be reversed and regulated by a group of proteases called deubiquitylating enzymes (DUBs). Otubains are a recently identified family of DUBs that belong to the ovarian tumour (OTU) superfamily of proteins. Here, we report the first crystal structure of an OTU superfamily protein, otubain 2, at 2.1 A resolution and propose a model for otubain-ubiquitin binding on the basis of other DUB structures. Although otubain 2 is a member of the cysteine protease superfamily of folds, its crystal structure shows a novel fold for DUBs. Moreover, the active-site cleft is sterically occluded by a novel loop conformation resulting in an oxyanion hole, which consists uniquely of backbone amides, rather than the composite backbone/side-chain substructures seen in other DUBs and cysteine proteases. Furthermore, the residues that orient and stabilize the active-site histidine of otubain 2 are different from other cysteine proteases. This reorganization of the active-site topology provides a possible explanation for the low turnover and substrate specificity of the otubains.
Article
Full-text available
Herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 stimulates lytic infection and the reactivation of quiescent viral genomes. These roles of ICP0 require its RING finger E3 ubiquitin ligase domain, which induces the degradation of several cellular proteins, including components of promyelocytic leukemia nuclear bodies and centromeres. ICP0 also interacts very strongly with the cellular ubiquitin-specific protease USP7 (also known as HAUSP). We have shown previously that ICP0 induces its own ubiquitination and degradation in a RING finger-dependent manner, and that its interaction with USP7 regulates this process. In the course of these studies we found and report here that ICP0 also targets USP7 for ubiquitination and proteasome-dependent degradation. The reciprocal activities of the two proteins reveal an intriguing situation that poses the question of the balance of the two processes during productive HSV-1 infection. Based on a thorough analysis of the properties of an HSV-1 mutant virus that expresses forms of ICP0 that are unable to bind to USP7, we conclude that USP7-mediated stabilization of ICP0 is dominant over ICP0-induced degradation of USP7 during productive HSV-1 infection. We propose that the biological significance of the ICP0-USP7 interaction may be most pronounced in natural infection situations, in which limited amounts of ICP0 are expressed.
Article
Full-text available
The ubiquitin-specific processing protease (UBP) family of deubiquitinating enzymes plays an essential role in numerous cellular processes. Mammalian USP14 (Ubp6 in yeast) is unique among known UBP enzymes in that it is activated catalytically upon specific association with the 26S proteasome. Here, we report the crystal structures of the 45-kDa catalytic domain of USP14 in isolation and in a complex with ubiquitin aldehyde, which reveal distinct structural features. In the absence of ubiquitin binding, the catalytic cleft leading to the active site of USP14 is blocked by two surface loops. Binding by ubiquitin induces a significant conformational change that translocates the two surface loops thereby allowing access of the ubiquitin C-terminus to the active site. These structural observations, in conjunction with biochemical characterization, identify important regulatory mechanisms for USP14.
Article
Full-text available
The tumour suppressor p53 induces apoptosis or cell-cycle arrest in response to genotoxic and other stresses. In unstressed cells, the anti-proliferative effects of p53 are restrained by mouse double minute 2 (Mdm2), a ubiquitin ligase (E3) that promotes p53 ubiquitination and degradation. Mdm2 also mediates its own degradation through auto-ubiquitination. It is unclear how the cis- and trans-E3 activities of Mdm2, which have opposing effects on cell fate, are differentially regulated. Here, we show that death domain-associated protein (Daxx) is required for Mdm2 stability. Downregulation of Daxx decreases Mdm2 levels, whereas overexpression of Daxx strongly stabilizes Mdm2. Daxx simultaneously binds to Mdm2 and the deubiquitinase Hausp, and it mediates the stabilizing effect of Hausp on Mdm2. In addition, Daxx enhances the intrinsic E3 activity of Mdm2 towards p53. On DNA damage, Daxx dissociates from Mdm2, which correlates with Mdm2 self-degradation. These findings reveal that Daxx modulates the function of Mdm2 at multiple levels and suggest that the disruption of the Mdm2-Daxx interaction may be important for p53 activation in response to DNA damage.
Article
Full-text available
Identification of alternative pathways of caspase activation is an important step to develop new antitumor treatments. We report here the result of a screening with a small chemical library, the Developmental Therapeutics Program-National Cancer Institute "challenge set," on cells expressing mutated caspase-9. We have identified two molecules capable of activating an apoptosome-independent apoptotic pathway. These compounds, named F6 and G5, target the ubiquitin-proteasome system by inhibiting the ubiquitin isopeptidases. We have shown that F6 and G5 induce a rather unique apoptotic pathway, which includes a Bcl-2-dependent but apoptosome-independent mitochondrial pathway with up-regulation of the BH3-only protein Noxa, stabilization of the inhibitor of apoptosis antagonist Smac, but also the involvement of the death receptor pathway. Noxa plays an important role in the induction of mitochondrial fragmentation and caspase activation, whereas the death receptor pathway becomes critical in the absence of a functional apoptosome. This study suggests that screening of chemical libraries on cancer cells with defined mutations in apoptotic key elements can lead to the identification of compounds that are useful to characterize alternative pathways of caspase activation.
Article
Full-text available
Ubiquitin-specific protease 8 (USP8) hydrolyzes mono and polyubiquitylated targets such as epidermal growth factor receptors and is involved in clathrin-mediated internalization. In 1182 residues, USP8 contains multiple domains, including coiled-coil, rhodanese, and catalytic domains. We report the first high-resolution crystal structures of these domains and discuss their implications for USP8 function. The amino-terminal domain is a homodimer with a novel fold. It is composed of two five-helix bundles, where the first helices are swapped, and carboxyl-terminal helices are extended in an antiparallel fashion. The structure of the rhodanese domain, determined in complex with the E3 ligase NRDP1, reveals the canonical rhodanese fold but with a distorted primordial active site. The USP8 recognition domain of NRDP1 has a novel protein fold that interacts with a conserved peptide loop of the rhodanese domain. A consensus sequence of this loop is found in other NRDP1 targets, suggesting a common mode of interaction. The structure of the carboxyl-terminal catalytic domain of USP8 exhibits the conserved tripartite architecture but shows unique traits. Notably, the active site, including the ubiquitin binding pocket, is in a closed conformation, incompatible with substrate binding. The presence of a zinc ribbon subdomain near the ubiquitin binding site further suggests a polyubiquitin-specific binding site and a mechanism for substrate induced conformational changes.
Article
Full-text available
The family of ubiquitin (Ub)-specific proteases (USP) removes Ub from Ub conjugates and regulates a variety of cellular processes. The human genome contains many putative USP-encoding genes, but little is known about USP tissue distribution, pattern of expression, activity, and substrate specificity. We have used a chemistry-based functional proteomics approach to identify active USPs in normal, virus-infected, and tumor-derived human cells. Depending on tissue origin and stage of activation/differentiation, different USP activity profiles were revealed. The activity of specific USPs, including USP5, -7, -9, -13, -15, and -22, was up-regulated by mitogen activation or virus infection in normal T and B lymphocytes. UCH-L1 was highly expressed in tumor cell lines of epithelial and hematopoietic cell origin but was not detected in freshly isolated and mitogen-activated cells. Up-regulation of this USP was a late event in the establishment of Epstein-Barr virus-immortalized lymphoblastoid cell lines and correlated with enhanced proliferation, suggesting a possible role in growth transformation.
Article
Full-text available
The addition of ubiquitin (Ub) and ubiquitin-like (Ubl) modifiers to proteins serves to modulate function and is a key step in protein degradation, epigenetic modification and intracellular localization. Deubiquitinating enzymes and Ubl-specific proteases, the proteins responsible for the removal of Ub and Ubls, act as an additional level of control over the ubiquitin-proteasome system. Their conservation and widespread occurrence in eukaryotes, prokaryotes and viruses shows that these proteases constitute an essential class of enzymes. Here, we discuss how chemical tools, including activity-based probes and suicide inhibitors, have enabled (i) discovery of deubiquitinating enzymes, (ii) their functional profiling, crystallographic characterization and mechanistic classification and (iii) development of molecules for therapeutic purposes.
Article
Full-text available
Deregulation of the ubiquitin proteasome system (UPS) has been implicated in the pathogenesis of many human diseases, including cancer and neurodegenerative disorders. The recent approval of the proteasome inhibitor Velcade® (bortezomib) for the treatment of multiple myeloma and mantle cell lymphoma establishes this system as a valid target for cancer treatment. We review here new patented proteasome inhibitors and patented small molecule inhibitors targeting more specific UPS components, such as E3 ubiquitin ligases and deubiquitylating enzymes. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ).
Article
Full-text available
The protease HAUSP is a critical component of the p53-Mdm2 pathway and acts as a specific deubiquitinase for both p53 and Mdm2 and thus is important for p53 regulation. In knock-down and knock-out cellular systems it was observed that ablation of HAUSP induces profound stabilization of p53 due to enhanced degradation of Mdm2. Thus, inhibiting HAUSP by small compound interference has been proposed as a rational therapeutic strategy to activate p53 in p53 wild type tumors. However, HAUSP-mediated effects in the p53-Mdm2 axis are highly complex and non-linear and to date the role of HAUSP in tumor suppression in vivo remains unexplored. Here we investigate the effect of HAUSP up and downregulation on cell proliferation, apoptosis and tumor growth in vitro and in a xenograft model in vivo, using an inducible isogenic human colon carcinoma cell system. Importantly, in the absence of stress, both HAUSP up and downregulation inhibit cell proliferation in vitro and tumor growth in vivo due to constitutively elevated p53 levels. Moreover, tumors with HAUSP up and downregulation respond to radiotherapy with further growth inhibition. However, HAUSP downregulation causes resistance to Camptothecin- and irradiation-induced apoptosis, which correlates with suppressed mitochondrial translocation of p53. Our data suggest that changes in HAUSP modulate tumor growth and apoptotic sensitivity in vivo.
Article
Full-text available
Conjugation or deconjugation of ubiquitin (Ub) or ubiquitin-like proteins (UBLs) to or from cellular proteins is a multifaceted and universal means of regulating cellular physiology, controlling the lifetime, localization, and activity of many critical proteins. Deconjugation of Ub or UBL from proteins is performed by a class of proteases called isopeptidases. Herein is described a readily quantifiable novel isopeptidase assay platform consisting of Ub or UBL fused to the reporter enzyme phospholipase A(2) (PLA(2)). Isopeptidase activity releases PLA(2), which cleaves its substrate, generating a signal that is linear with deubiquitylase (DUB) concentration and is able to discriminate DUB, deSUMOylase, deNEDDylase, and deISGylase activities. The power and sensitivity of the UBL-PLA(2) assay are demonstrated by its ability to differentiate the contrasting deISGylase and DUB activities of two coronavirus proteases: severe acute respiratory syndrome papain-like protease (SARS-CoV PLpro) and NL63 CoV papain-like protease 2 (PLP2). Furthermore, direct comparisons with the current Ub-7-amino-4-methylcoumarin (Ub-AMC) assay demonstrated that the Ub-PLA(2) assay is an effective tool for characterizing modulators of isopeptidase activity. This observation was expanded by profiling the inhibitory activity of the nonselective isopeptidase inhibitor NSC 632839 against DUBs and deSUMOylases. Taken together, these studies illustrate the utility of the reporter-based approach to measuring isopeptidase activity.
Article
Full-text available
DUBs (deubiquitinating enzymes) are a family of proteases responsible for the specific removal of ubiquitin attached to target proteins and thus control the free cellular pools of this molecule. DUB activity is usually assayed using full-length ubiquitin, and these enzymes generally show low activity towards small substrates that constitute the P4-P1 LRGG (Lys-Arg-Gly-Gly) C-terminal motif of ubiquitin. To gain insight into the C-terminal recognition region of ubiquitin by DUBs, we synthesized positional scanning libraries of fluorigenic tetrapeptides and tested them on three examples of human DUBs [OTU-1 (ovarian tumour 1), Iso-T (isopeptidase T) and UCH-L3 (ubiquitin C-terminal hydrolase L3)] and one viral ubiquitin-specific protease, namely PLpro (papain-like protease) from SARS (severe acute respiratory syndrome) virus. In most cases the results show flexibility in the P4 position, very high specificity for arginine in the P3 position and glycine in the P2 position, in accord with the sequence of the natural substrate, ubiquitin. Surprisingly, screening of the P2 position revealed that UCH-L3, in contrast with all the other tested DUBs, demonstrates substantial tolerance of alanine and valine at P2, and a parallel analysis using the appropriate mutation of the full-length ubiquitin confirms this. We have also used an optimal tetrapeptide substrate, acetyl-Lys-Arg-Gly-Gly-7-amino-4-methylcoumarin, to investigate the activation mechanism of DUBs by ubiquitin and elevated salt concentration. Together, our results reveal the importance of the dual features of (1) substrate specificity and (2) the mechanism of ubiquitin binding in determining deubiquitination by this group of proteases.
Article
Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.
Article
Ubiquitin (Ub) carboxy terminal hydrolase (UCH)-L1 and UCH-L3 are two of the deubiquitinating enzymes expressed in the brain. Both gad mice, which lack UCH-L1 expression and Uchl3 knockout mice exhibit neurodegeneration, although at distinct areas. These phenotypes indicate the importance of UCH-L1 and UCH-L3 in the regulation of the central nervous system. However, molecular substrates and the molecular regulators of UCH-L1 and UCH-L3 remain poorly identified. Here we show that Ub dimers interact non-covalently with UCH-L3 in vitro and in cells. These interactions were not observed with UCH-L1 in cells. In vitro, K48-linked Ub dimers pronouncedly inhibited the hydrolase activity of UCH-L3, while mono-Ub, a previously identified interacting protein, inhibited the hydrolase activity of UCH-L1. These results indicate that mono-Ub and Ub dimers may regulate the enzymatic functions of UCH-L1 and UCH-L3, respectively, in vivo.
Article
Deubiquitinating enzymes (DUBs) remove ubiquitin from conjugated substrates to regulate various cellular processes. The Zn2+-dependent DUBs AMSH and AMSH-LP regulate receptor trafficking by specifically cleaving Lys63-linked polyubiquitin chains from internalized receptors. Here we report the crystal structures of the human AMSH-LP DUB domain alone and in complex with a Lys63-linked di-ubiquitin at 1.2Å and 1.6Å resolutions, respectively. The AMSH-LP DUB domain consists of a Zn2+-coordinating catalytic core and two characteristic insertions, Ins-1 and Ins-2. The distal ubiquitin interacts with Ins-1 and the core, whereas the proximal ubiquitin interacts with Ins-2 and the core. The core and Ins-1 form a catalytic groove that accommodates the Lys63 side chain of the proximal ubiquitin and the isopeptide-linked carboxy-terminal tail of the distal ubiquitin. This is the first reported structure of a DUB in complex with an isopeptide-linked ubiquitin chain, which reveals the mechanism for Lys63-linkage-specific deubiquitination by AMSH family members.
Article
The conjugation of ubiquitin to other cellular proteins regulates a broad range of eukaryotic cell functions. The high efficiency and exquisite selectivity of ubiquitination reactions reflect the properties of enzymes known as ubiquitin-protein ligases or E3s. An E3 recognizes its substrates based on the presence of a specific ubiquitination signal, and catalyzes the formation of an isopeptide bond between a substrate (or ubiquitin) lysine residue and the C terminus of ubiquitin. Although a great deal is known about the molecular basis of E3 specificity, much less is known about molecular mechanisms of catalysis by E3s. Recent findings reveal that all known E3s utilize one of just two catalytic domains--a HECT domain or a RING finger--and crystal structures have provided the first detailed views of an active site of each type. The new findings shed light on many aspects of E3 structure, function, and mechanism, but also emphasize that key features of E3 catalysis remain to be elucidated.
Article
Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, considered to be a nonspecific, dead-end process. Although it was known that proteins do turn over, the large extent and high specificity of the process, whereby distinct proteins have half-lives that range from a few minutes to several days, was not appreciated. The discovery of the lysosome by Christian de Duve did not significantly change this view, because it became clear that this organelle is involved mostly in the degradation of extracellular proteins, and their proteases cannot be substrate specific. The discovery of the complex cascade of the ubiquitin pathway revolutionized the field. It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease. With the multitude of substrates targeted and the myriad processes involved, it is not surprising that aberrations in the pathway are implicated in the pathogenesis of many diseases, certain malignancies, and neurodegeneration among them. Degradation of a protein via the ubiquitin/proteasome pathway involves two successive steps: 1) conjugation of multiple ubiquitin moieties to the substrate and 2) degradation of the tagged protein by the downstream 26S proteasome complex. Despite intensive research, the unknown still exceeds what we currently know on intracellular protein degradation, and major key questions have remained unsolved. Among these are the modes of specific and timed recognition for the degradation of the many substrates and the mechanisms that underlie aberrations in the system that lead to pathogenesis of diseases.
Article
The tumor suppressor p53 is mutated in more than 50% of all cancers. Importantly, most clinically useful antineoplastic agents are less potent and efficacious in the context of mutant p53. This situation has prompted a search for agents that cause tumor cell death via molecular mechanisms independent of p53. Our recent investigations with electrophilic prostaglandins enabled us to devise a pharmacophore and mechanism of action hypothesis relevant to this problem: a cross-conjugated alpha,beta-unsaturated dienone with two sterically accessible electrophilic beta-carbons is a molecular determinant that confers activity among this class of ubiquitin isopeptidases inhibitors, and that inhibitors of ubiquitin isopeptidases cause cell death in vitro independently of p53. Here, we report the use of the National Cancer Institute's Developmental Therapeutics Database to identify compounds to test this hypothesis. Shikoccin (a diterpene), dibenzylideneacetone, and curcumin fit the pharmacophore hypothesis, inhibit cellular isopeptidases, and cause cell death independently of p53 in isogenic pairs of RKO and HCT 116 cells with differential p53 status. The sesquiterpene achillin and 2,6-diphenyl-4H-thiopyran-4-one, which have cross-conjugated dienones with sterically hindered electrophilic beta-carbons, do not inhibit isopeptidases or cause significant cell death. Furthermore, we show that a catalytic-site proteasome inhibitor causes cell death independently of p53. Combined, these data verify the p53-independence of cell death caused by inhibitors of the proteasome pathway and support the proposition that the ubiquitin-dependent proteasome pathway may contain molecular targets suitable for antineoplastic drug discovery.
Article
The ubiquitin-specific processing protease (UBP) family of deubiquitinating enzymes plays an essential role in numerous cellular processes. HAUSP, a representative UBP, specifically deubiquitinates and hence stabilizes the tumor suppressor protein p53. Here, we report the crystal structures of the 40 kDa catalytic core domain of HAUSP in isolation and in complex with ubiquitin aldehyde. These studies reveal that the UBP deubiquitinating enzymes exhibit a conserved three-domain architecture, comprising Fingers, Palm, and Thumb. The leaving ubiquitin moiety is specifically coordinated by the Fingers, with its C terminus placed in the active site between the Palm and the Thumb. Binding by ubiquitin aldehyde induces a drastic conformational change in the active site that realigns the catalytic triad residues for catalysis.
Article
Neuronal ubiquitin C-terminal hydrolase (UCH-L1) has been linked to Parkinson's disease (PD), the progression of certain nonneuronal tumors, and neuropathic pain. Certain lung tumor-derived cell lines express UCH-L1 but it is not expressed in normal lung tissue, suggesting that this enzyme plays a role in tumor progression, either as a trigger or as a response. Small-molecule inhibitors of UCH-L1 would be helpful in distinguishing between these scenarios. By utilizing high-throughput screening (HTS) to find inhibitors and traditional medicinal chemistry to optimize their affinity and specificity, we have identified a class of isatin O-acyl oximes that selectively inhibit UCH-L1 as compared to its systemic isoform, UCH-L3. Three representatives of this class (30, 50, 51) have IC(50) values of 0.80-0.94 micro M for UCH-L1 and 17-25 micro M for UCH-L3. The K(i) of 30 toward UCH-L1 is 0.40 micro M and inhibition is reversible, competitive, and active site directed. Two isatin oxime inhibitors increased proliferation of the H1299 lung tumor cell line but had no effect on a lung tumor line that does not express UCH-L1. Inhibition of UCH-L1 expression in the H1299 cell line using RNAi had a similar proproliferative effect, suggesting that the UCH-L1 enzymatic activity is antiproliferative and that UCH-L1 expression may be a response to tumor growth. The molecular mechanism of this response remains to be determined.
Article
Two papers published in 1984 by the Varshavsky laboratory revealed that the ubiquitin/proteasome pathway is the principal system for degradation of short-lived proteins in mammalian cells, setting the stage for future demonstrations of this pathway's many regulatory roles. This perspective discusses the impact of those papers and highlights some of the subsequent insights that have led to our current appreciation of the breadth of ubiquitin-mediated signaling.
Article
Our previous study showed that ubiquitination of p53 is reversible and that the ubiquitin hydrolase HAUSP can stabilize p53 by deubiquitination. Here, we found that partial reduction of endogenous HAUSP levels by RNAi indeed destabilizes endogenous p53; surprisingly, however, nearly complete ablation of HAUSP stabilizes and activates p53. We further show that this phenomenon occurs because HAUSP stabilizes Mdm2 in a p53-independent manner, providing an interesting feedback loop in p53 regulation. Notably, HAUSP is required for Mdm2 stability in normal cells; in HAUSP-ablated cells, self-ubiquitinated-Mdm2 becomes extremely unstable, leading to indirect p53 activation. Furthermore, this feedback regulation is specific to Mdm2; in HeLa cells, where p53 is preferentially degraded by viral E6-dependent ubiquitination, depletion of HAUSP fails to activate p53. This study provides an example of an ubiquitin ligase (Mdm2) that is directly regulated by a deubiquitinase (HAUSP) and also reveals a dynamic role of HAUSP in the p53-Mdm2 pathway.
Article
Arising from: Li, M. et al. Nature 416, 648–653 (2002)Ubiquitination of p53 is the principal mechanism through which p53 concentrations in the cell are regulated1, 2 in order to maintain its effects on tumori-genesis and normal cell growth. The protein HAUSP (also known as USP7) is a ubiquitin-specific protease (deubiquitinase)3, 4 that has been shown by Li et al. to bind to p53 (ref. 5); in overexpression experiments, Li et al. showed that p53 could be stabilized as a result of deubiquitination by HAUSP and suggested that HAUSP may thereby act as a tumour suppressor5, 6. Here we use a different approach to investigate the relationship between HAUSP and p53 stability, in which we disrupt the HAUSP gene in human cells by targeted homologous recombination. Instead of the expected increase in ubiquitinated p53 and destabilization of p53, we find that disruption of HAUSP results in the opposite phenotype, leading to stabilization and functional activation of p53 in our system. It may be that HAUSP can deubiquitinate other proteins such as MDM2, another regulator of p53, and that the balance between the deubiquitination of the different targets of HAUSP determines the steady-state level of p53.
Article
To investigate molecular mechanisms linking inflammation with neurodegeneration, we treated neuronal cultures with prostaglandins (PGs), which are mediators of inflammation. PGA1, D2, J2, and Delta12-PGJ2, but not PGE2, reduced the viability and raised the levels of ubiquitinated proteins in the neuronal cells. PGJ2 and its metabolite, Delta12-PGJ2, were the most potent of the four neurotoxic PGs tested in inducing both effects. To address the mechanism by which these agents lead to the accumulation of ubiquitinated proteins, we tested their effects on neuronal ubiquitin hydrolases UCH-L1 and UCH-L3 as well as on proteasome activity. Notably, Delta12-PGJ2 inhibited the activities of UCH-L1 (K(i) approximately 3.5 microM) and UCH-L3 (K(i) approximately 8.1 microM) without affecting proteasome activity. Intracellular aggregates containing ubiquitinated proteins were detected in Delta12-PGJ2-treated cells, indicating that these aggregates can form independently of proteasome inhibition. In conclusion, impairment of ubiquitin hydrolase activity, such as triggered by Delta12-PGJ2, may be an important contributor to neurodegeneration associated with accumulation of ubiquitinated proteins and inflammation.
Article
USP7 (also called HAUSP) is a de-ubiquitinating enzyme recently identified as a key regulator of the p53-mdm2 pathway, which stabilizes both p53 and mdm2. We have discovered that the Epstein-Barr nuclear antigen 1 protein of Epstein-Barr virus binds with high affinity to USP7 and disrupts the USP7-p53 interaction. The results have important implications for the role of Epstein-Barr nuclear antigen 1 in the cellular immortalization that is typical of an Epstein-Barr virus latent infection.
Article
The packaging of eukaryotic genomic DNA into chromatin is modulated through a range of posttranslational histone modifications. Among these, the role of histone ubiquitylation remains poorly understood. Here, we show that the essential Drosophila ubiquitin-specific protease 7 (USP7) contributes to epigenetic silencing of homeotic genes by Polycomb (Pc). We purified USP7 from embryo nuclear extracts as a stable heteromeric complex with guanosine 5'-monophosphate synthetase (GMPS). The USP7-GMPS complex catalyzed the selective deubiquitylation of histone H2B, but not H2A. Biochemical assays confirmed the tight association between USP7 and GMPS in Drosophila embryo extracts. Similar to USP7, mutations in GMPS acted as enhancers of Pc in vivo. USP7 binding to GMPS was required for histone H2B deubiquitylation and strongly augmented deubiquitylation of the human tumor suppressor p53. Thus, GMPS can regulate the activity of a ubiquitin protease. Collectively, these results implicate a biosynthetic enzyme in chromatin control via ubiquitin regulation.
Article
Posttranslational modification of proteins by the small molecule ubiquitin is a key regulatory event, and the enzymes catalyzing these modifications have been the focus of many studies. Deubiquitinating enzymes, which mediate the removal and processing of ubiquitin, may be functionally as important but are less well understood. Here, we present an inventory of the deubiquitinating enzymes encoded in the human genome. In addition, we review the literature concerning these enzymes, with particular emphasis on their function, specificity, and the regulation of their activity.
Article
Ubiquitin binding proteins regulate the stability, function, and/or localization of ubiquitinated proteins. Here we report the crystal structures of the zinc-finger ubiquitin binding domain (ZnF UBP) from the deubiquitinating enzyme isopeptidase T (IsoT, or USP5) alone and in complex with ubiquitin. Unlike other ubiquitin binding domains, this domain contains a deep binding pocket where the C-terminal diglycine motif of ubiquitin is inserted, thus explaining the specificity of IsoT for an unmodified C terminus on the proximal subunit of polyubiquitin. Mutations in the domain demonstrate that it is required for optimal catalytic activation of IsoT. This domain is present in several other protein families, and the ZnF UBP domain from an E3 ligase also requires the C terminus of ubiquitin for binding. These data suggest that binding the ubiquitin C terminus may be necessary for the function of other proteins.
Article
Replication of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) requires proteolytic processing of the replicase polyprotein by two viral cysteine proteases, a chymotrypsin-like protease (3CLpro) and a papain-like protease (PLpro). These proteases are important targets for development of antiviral drugs that would inhibit viral replication and reduce mortality associated with outbreaks of SARS-CoV. In this work, we describe the 1.85-Å crystal structure of the catalytic core of SARS-CoV PLpro and show that the overall architecture adopts a fold closely resembling that of known deubiquitinating enzymes. Key features, however, distinguish PLpro from characterized deubiquitinating enzymes, including an intact zinc-binding motif, an unobstructed catalytically competent active site, and the presence of an intriguing, ubiquitin-like N-terminal domain. To gain insight into the active-site recognition of the C-terminal tail of ubiquitin and the related LXGG motif, we propose a model of PLpro in complex with ubiquitin–aldehyde that reveals well defined sites within the catalytic cleft that help to account for strict substrate-recognition motifs. • membrane-associated protease • ubiquitin-like domain
Article
Deubiquitinating proteases reverse protein ubiquitination and rescue their target proteins from destruction by the proteasome. USP2, a cysteine protease and a member of the ubiquitin specific protease family, is overexpressed in prostate cancer and stabilizes fatty acid synthase, which has been associated with the malignancy of some aggressive prostate cancers. Here, we report the structure of the human USP2 catalytic domain in complex with ubiquitin. Ubiquitin uses two major sites for the interaction with the protease. Both sites are required simultaneously, as shown by USP2 inhibition assays with peptides and ubiquitin mutants. In addition, a layer of ordered water molecules mediates key interactions between ubiquitin and USP2. As several of those molecules are found at identical positions in the previously solved USP7/ubiquitin-aldehyde complex structure, we suggest a general mechanism of water-mediated ubiquitin recognition by USPs.
Article
3-Amino-2-keto-7H-thieno[2,3-b]pyridin-6-one derivatives were discovered as moderately potent inhibitors of ubiquitin C-terminal hydrolase-L1 (UCH-L1) utilizing an assay that measures hydrolysis of the fluorogenic substrate Ub-AMC. SAR studies revealed that both the carboxylate at the 5-position and the 6-pyridone ring were critical for inhibitory activity. Furthermore, activity was dependent on the nature of the ketone substituent at the 2-position, with 4-Me-Ph and 2-naphthyl being best. Kinetic mechanism studies revealed that these compounds were uncompetitive inhibitors of UCH-L1, binding only to the Michaelis-complex and not to free enzyme. The active compounds were selective for UCH-L1, exhibiting neither inhibition of other cysteine hydrolases (e.g., UCH-L3, papain, isopeptidase T, caspase-3, and tissue transglutaminase) nor cytotoxicity in N2A cells.
Article
UCH-L3 (ubiquitin C-terminal hydrolase-L3) is a de-ubiquitinating enzyme that is a component of the ubiquitin-proteasome system and known to be involved in programmed cell death. A previous study of high-throughput drug screening identified an isatin derivative as a UCH-L3 inhibitor. In this study, we attempted to identify a novel inhibitor with a different structural basis. We performed in silico structure-based drug design (SBDD) using human UCH-L3 crystal structure data (PDB code; 1XD3) and the virtual compound library (ChemBridge CNS-Set), which includes 32,799 chemicals. By a two-step virtual screening method using DOCK software (first screening) and GOLD software (second screening), we identified 10 compounds with GOLD scores of over 60. To address whether these compounds exhibit an inhibitory effect on the de-ubiquitinating activity of UCH-L3, we performed an enzymatic assay using ubiquitin-7-amido-4-methylcoumarin (Ub-AMC) as the substrate. As a result, we identified three compounds with similar basic dihydro-pyrrole skeletons as UCH-L3 inhibitors. These novel compounds may be useful for the research of UCH-L3 function, and in drug development for UCH-L3-associated diseases.
Article
Deregulation of the ubiquitin-proteasome system has been implicated in the pathogenesis of many human diseases, including cancer, neurodegenerative disorders and viral diseases. The recent approval of the proteasome inhibitor bortezomib (Velcade) for the treatment of multiple myeloma and mantle cell lymphoma establishes this system as a valid target for cancer treatment. A promising alternative to targeting the proteasome itself would be to interact at the level of the upstream, ubiquitin conjugation/deconjugation system to generate more specific, less toxic anticancer agents. Ubiquitin specific proteases (USP) are de-ubiquitinating enzymes which remove ubiquitin from specific protein substrates and allow protein salvage from proteasome degradation, regulation of protein localization or activation. Due to their protease activity and their involvement in several pathologies, USPs are emerging as potential target sites for pharmacological interference in the ubiquitin regulatory machinery. We will review here this class of enzymes from target validation to small molecule drug discovery.
Article
The tumor suppressor CYLD antagonizes NF-kappaB and JNK signaling by disassembly of Lys63-linked ubiquitin chains synthesized in response to cytokine stimulation. Here we describe the crystal structure of the CYLD USP domain, revealing a distinctive architecture that provides molecular insights into its specificity toward Lys63-linked polyubiquitin. We identify regions of the USP domain responsible for this specificity and demonstrate endodeubiquitinase activity toward such chains. Pathogenic truncations of the CYLD C terminus, associated with the hypertrophic skin tumor cylindromatosis, disrupt the USP domain, accounting for loss of CYLD catalytic activity. A small zinc-binding B box domain, similar in structure to other crossbrace Zn-binding folds--including the RING domain found in E3 ubiquitin ligases--is inserted within the globular core of the USP domain. Biochemical and functional characterization of the B box suggests a role as a protein-interaction module that contributes to determining the subcellular localization of CYLD.
Article
Vertebrates express two distinct families of SUMO proteins (SUMO1 and SUMO2/3) that serve distinct functions as posttranslational modifiers. Many proteins are modified specifically with SUMO1 or SUMO2/3, but the mechanisms for paralog selectivity are poorly understood. In a screen for SUMO2/3 binding proteins, we identified Ubiquitin Specific Protease 25 (USP25). USP25 turned out to also be a target for sumoylation, being more efficient with SUMO2/3. Sumoylation takes place within USP25's two ubiquitin interaction motifs (UIMs) that are required for efficient hydrolysis of ubiquitin chains. USP25 sumoylation impairs binding to and hydrolysis of ubiquitin chains. Both SUMO2/3-specific binding and sumoylation depend on a SUMO interaction motif (SIM/SBM). Seven amino acids in the SIM of USP25 are sufficient for SUMO2/3-specific binding and conjugation, even when taken out of structural context. One mechanism for paralog-specific sumoylation may, thus, involve SIM-dependent recruitment of SUMO1 or SUMO2/3 thioester-charged Ubc9 to targets.