ArticlePDF Available

Impact of Fragmentation on Carbon Uptake in Subtropical Forest Landscapes in Zhejiang Province, China

MDPI
Remote Sensing
Authors:
Jiejie Jiao
Jiejie Jiao
Jiejie Jiao
Yan Cheng
Yan Cheng
Yan Cheng
Pinghua Hong
Pinghua Hong
Pinghua Hong
Jun Ma
Jun Ma
Jun Ma

Abstract and Figures

Global changes cause widespread forest fragmentation, which, in turn, has given rise to many ecological problems; this is especially true if the forest carbon stock is profoundly impacted by fragmentation levels. However, the way in which forest carbon uptake changes with different fragmentation levels and the main pathway through which fragmentation affects forest carbon uptake are still unclear. Remote sensing data, vegetation photosynthesis models, and fragmentation models were employed to generate a time series GPP (gross primary productivity) dataset, as well as forest fragmentation levels for forest landscapes in Zhejiang province, China. We analyzed GPP variation with forest fragmentation levels and identified the relative importance of the phenology (carbon uptake period—CUP) and physiology (maximum daily GPP—GPPmax) control pathways of GPP under different fragmentation levels. The results showed that the normalized mean annual GPP data of highly fragmented forests during the period from 2000 to 2018 were significantly higher than those of other fragmentation levels, while there was almost no significant difference in the annual GPP trend of forest landscapes with all fragmentation levels. Moreover, the percentage area of the control variable, GPPmax, gradually increased with fragmentation levels; the mean GPPmax between 2000 and 2018 of high-level fragmentation was higher than that of other fragmentation levels. Our results demonstrate that the carbon uptake capacity per unit area was enhanced in highly fragmented forest areas, and the maximum photosynthetic capacity (physiology-based process) played an important role in controlling carbon uptake, especially in highly fragmented forest landscapes. Our study calls for a better and deeper understanding of the potential of forest carbon uptake, and it is necessary to explore the mechanism by which forest fragmentation changes the vegetation photosynthetic process.
Content may be subject to copyright.
RemoteSens.2024,16,2393.https://doi.org/10.3390/rs16132393www.mdpi.com/journal/remotesensing
Article
ImpactofFragmentationonCarbonUptakeinSubtropical
ForestLandscapesinZhejiangProvince,China
JiejieJiao
1,2
,YanCheng
3
,PinghuaHong
4
,JunMa
5
,LiangjinYao
2
,BoJiang
2
,XiaXu
1
andChupingWu
2,
*
1
StateKeyLaboratoryofSubtropicalSilviculture,SchoolofEnvironmentalandResourcesScience,Zhejiang
A&FUniversity,Lin’an311300,China;2023202012007@stu.zafu.edu.cn(J.J.);xuxia1982@zafu.edu.cn(X.X.)
2
ZhejiangHangzhouUrbanEcosystemResearchStation,ZhejiangAcademyofForestry,
Hangzhou310023,China;lj890caf@hotmail.com(L.Y.);jiangbo2246@hotmail.com(B.J.)
3
HangzhouImmigrationInspectionStation,Hangzhou311223,China;hxj0201@hotmail.com
4
YuhangEcologicalandEnvironmentalMonitoringStationofHangzhou,Hangzhou311100,China;
hongpinghua87@gmail.com
5
MinistryofEducationKeyLaboratoryforBiodiversityScienceandEcologicalEngineering,
SchoolofLifeSciences,FudanUniversity,Shanghai200433,China;ma_jun@fudan.edu.cn
*Correspondence:wcp1117@hotmail.com
Abstract:Globalchangescausewidespreadforestfragmentation,which,inturn,hasgivenriseto
manyecologicalproblems;thisisespeciallytrueiftheforestcarbonstockisprofoundlyimpacted
byfragmentationlevels.However,thewayinwhichforestcarbonuptakechangeswithdierent
fragmentationlevelsandthemainpathwaythroughwhichfragmentationaectsforestcarbonup-
takearestillunclear.Remotesensingdata,vegetationphotosynthesismodels,andfragmentation
modelswereemployedtogenerateatimeseriesGPP(grossprimaryproductivity)dataset,aswell
asforestfragmentationlevelsforforestlandscapesinZhejiangprovince,China.WeanalyzedGPP
variationwithforestfragmentationlevelsandidentiedtherelativeimportanceofthephenology
(carbonuptakeperiod—CUP)andphysiology(maximumdailyGPP—GPP
max
)controlpathwaysof
GPPunderdierentfragmentationlevels.Theresultsshowedthatthenormalizedmeanannual
GPPdataofhighlyfragmentedforestsduringtheperiodfrom2000to2018weresignicantlyhigher
thanthoseofotherfragmentationlevels,whiletherewasalmostnosignicantdierenceinthe
annualGPPtrendofforestlandscapeswithallfragmentationlevels.Moreover,thepercentagearea
ofthecontrolvariable,GPP
max
,graduallyincreasedwithfragmentationlevels;themeanGPP
max
between2000and2018ofhigh-levelfragmentationwashigherthanthatofotherfragmentation
levels.Ourresultsdemonstratethatthecarbonuptakecapacityperunitareawasenhancedin
highlyfragmentedforestareas,andthemaximumphotosyntheticcapacity(physiology-basedpro-
cess)playedanimportantroleincontrollingcarbonuptake,especiallyinhighlyfragmentedforest
landscapes.Ourstudycallsforabeeranddeeperunderstandingofthepotentialofforestcarbon
uptake,anditisnecessarytoexplorethemechanismbywhichforestfragmentationchangesthe
vegetationphotosyntheticprocess.
Keywords:forestcarbonsequestration;vegetationgrowth;landscapepaerns;grossprimary
productivity;phenology
1.Introduction
Forestsareakeycomponentinterrestrialecosystems[1];globally,theyplayanim-
portantroleinprovidingavarietyofecologicalservicesformankind,suchasabsorbing
andstoringcarbon,maintainingsoilandwater,andpurifyingair[2–4].However,the
world’sterrestrialbiomeshavebeensignicantlyaectedbyhuman-inducedglobal
changes[5].Theglobalforestareahasshrunkbyaboutone-thirdsincethe1850s[6],most
ofwhichwasinducedbynaturaldisturbancesandtheexpansionoftheagriculturaland
Citation:Jiao,J.;Cheng,Y.;Hong,P.;
Ma,J.;Yao , L.;Jiang,B.;Xu,X.;Wu,
C.ImpactofFragmentationon
CarbonUptakeinSubtropicalForest
LandscapesinZhejiangProvince,
China.RemoteSens.2024,16,2393.
hps://doi.org/10.3390/rs16132393
AcademicEditors:ZhixinQi,LeYu,
LeiFang,KasturiDeviKanniahand
BrianAlanJohnson
Received:22May2024
Revised:25June2024
Accepted:28June2024
Published:29June2024
Copyright:©2024bytheauthors.
LicenseeMDPI,Basel,Swierland.
Thisarticleisanopenaccessarticle
distributedunderthetermsand
conditionsoftheCreativeCommons
Aribution(CCBY)license
(hps://creativecommons.org/license
s/by/4.0/).
RemoteSens.2024,16,23932of14
urbanindustries[7].Therapidandvastlossofforestresultsinthespliingofspatially
contiguousdistributedforestlandscapeintosmallpatches,leadingtoworldwideforest
fragmentation[8].Consideringthatsomekeyfunctionsofforestscanbedamagedbyfrag-
mentationthroughthedegradationofvegetationbiomassandbiodiversity[9,10],itisnec-
essarytocomprehensivelyunderstandtheimpactsofforestfragmentationonecosystems.
Aseriesofecologicalproblems,particularlycarbonlossandtheintensicationofthe
greenhouseeect,aredirectlyinducedbyforestfragmentation[11–13].Severalstudies
haveindicatedthathumanactivitiesinducemoreforestedgeareas,aggravatingfrag-
mentationanddecreasingcarbonstorage[14,15].However,carbonuptakeisalsoproven
tobeenhancedinhighlyfragmentedforests[16,17].Thecomplexvariationincarbonup-
takeunderdierentfragmentationlevelsproposesademandforassessingtherelation-
shipandtheinuencepathwaybetweenforestfragmentationandvegetationcarbonup-
take,whichcanenhanceourinsightsintothefuturecarbonuptakepotentialofforestsin
thecontextofwidespreadforestfragmentation.Inparticular,inthecontextofintenseland
usecausedbyurbanization,forestsshowahighdegreeoffragmentation[8].Inaddition
tothedirectimpactofforestareachangeonvegetationcarbonsequestration,itisunclear
howforestdistributionpaernsaectforestcarbonsequestration;thiswillgreatlylimit
theeectivenessofurbanforestmanagementandecologicalconservationmeasures,and
willalsolimitourunderstandingofregionalcarboncycledynamics.
Anumberofmethodshavebeenusedtomeasureforestfragmentationlevels,with
thepatchorclasslevel’sfragmentation-relatedlandscapepaernmetricsbeingadopted
bymoststudiestoquantifythelevelsofforestfragmentation[12,16,18].However,these
approacheshaveneglectedthefactthatforestfragmentationisalandscape-scaleissue
containingcomplexspatialprocesses[19].Althoughtherearesomehierarchicalap-
proaches,whicharebasedonspatialprocesses,tomeasuringthelevelsofforestfragmen-
tation[20–22],theseweremainlyusedtoestimatethestatusofforestfragmentation,and
haverarelybeenusedtostudytheimpactsoffragmentationonecologicalfunctionsdue
tothedicultyofaccessingeldobservationdataforrelevantfragmentationlevels.In
reality,theclassicationresultsofthefragmentationlevelsfromthesemethodsmayhave
greatpotentialinstudiesinvestigatingtheecologicaleectsofforestfragmentation,par-
ticularlythosewiththeassistanceoftheremotesensingapproach,toestimateecological
functionindicatorsatlargespatialscales.
Theprocessesofforestcarbonuptakecanbesimplysummarizedastheabsorption
ofatmosphericcarbondioxidebyplantsthroughphotosynthesis[23];grossprimary
productivity(GPP),adirectmeasurementofthetotalamountofcarbonassimilatedby
vegetation,isgenerallyconsideredasareectionofvegetationcarbonuptake.Inaddition,
thevegetationcarbonstockishighlyrelatedtotheaccumulationofannualGPPovera
longperiod,whichismainlycontrolledbytwofactors—thecarbonuptakeperiod(CUP)
andthemaximumdailyGPP(GPPmax),whichareassociatedwithvegetationphenology
andphysiology,respectively[24,25].Bothofthesefactorsareaectedbytheclimateand
soilnutrientchangecausedbyforestfragmentation[26–28];therefore,detectingthevari-
ationinCUPandGPPmaxunderdierentfragmentationlevelsiscrucialforexplainingthe
pathwayorthemechanismoftheimpactoffragmentationonforestcarbonuptake.
Inthisstudy,forestlandscapesinZhejiangprovince,China,wereselectedasthe
studyareainwhichtoexaminetherelationshipbetweenforestfragmentationandGPP.
Multiplesourcesofremotesensingdatawereappliedtocalculateforestfragmentation
levelsandtosimulatevegetationGPP.WehaveproposedabasicassumptionthattheGPP
anditstwocomponents—CUPandGPPmax—varybetweenforestfragmentationlevels.
BasedontheanalysisofthevariationinGPP,CUP,andGPPmaxwithfragmentationlevels,
wewouldliketoanswerthefollowingtwoscienticquestions:(1)Howdoesforestcarbon
uptakechangewithdierentfragmentationlevels?(2)Whatisthemainpathwayaecting
forestcarbonuptakeunderdierentfragmentationlevels?

RemoteSens.2024,16,23933of14
2.MaterialsandMethods
2.1.StudyArea
Zhejiangprovince,China,whichextendsacross27.03°–31.18°Nand118.02°–
123.17°E,wasselectedasthestudyarea(Figure1).TheforestcoverageofZhejiangprov-
inceisabout59.4%,mostofwhichisdistributedinthemountainsandhills.Thesubtrop-
icalmonsoonclimateisthedominantclimateofZhejiangprovince;ithashot,rainysum-
mersandcold,drywinters,andhasobviouscharacteristicsofseasonalchange.Themean
annualtemperatureofZhejiangisbetween15and18°C,whiletheaverageannualpre-
cipitationrangesbetween980and2000mm.ThegrowingseasonusuallystartsinMarch
andendsinOctober.Theevergreenbroadleafforestsandmixedconiferous–broadleaffor-
estsarethemainvegetationtypesofthestudyarea(Figure1);therearemorethanthirty
treespeciesintheforestlandscapesofZhejiangprovince.
Inthisstudy,thetropicalforestlandscapesofZhejiangwereselectedasthestudy
areaprimarilyforthefollowingreasons:ontheonehand,Zhejianghasadevelopedecon-
omy,wherebyurbanizationandotherhumanactivitiesinZhejianghavecauseddrastic
landusechanges.Inaddition,Zhejianghasalargeforestareaandahighforestcoverage;
thesetwofactorsresultinthedistributionpaernofsubtropicalforestsinZhejiangcon-
tainingalltypesofforestfragmentation,aswellashavingtypicalgradientsofforestfrag-
mentation.Ontheotherhand,Zhejianghasturnedtothestageofecosystemprotection
afteritsearlydevelopment;thechangeinforestcoverafter2000isquitelimitedcompared
tothatofitsneighboringregions,whichmakesitconvenientforthisstudytocomparethe
productivityanditstrendamongstaticfragmentationtypes.
Figure1.Location,foresttypedistribution,andclassiedforestfragmentationlevelsofforestland-
scapesinZhejiang,China.(a)ThelocationofZhejiang,China.(b)Distributionofmainforesttypes
inZhejiang.(c)ForestfragmentationlevelsinZhejiang.UNC:unclassiedforest,PAT:patchforest,
TRA:transitionalforest,PER:perforatedforest,UND:undeterminedforest,EDG:edgeforest,INT:
interiorforest.TheforesttypedatawerederivedfromtheMODISMCD12Q1landcoverproduct
(from2010),whilethemapoffragmentationlevelswascalculatedusingtheforestfragmentation
model(seeSection2.2)inthisstudy.
RemoteSens.2024,16,23934of14
2.2.ForestMapDataandFragmentationLevelsClassication
Consideringthefactthatforestcoverchangemayaltertheforestfragmentationcat-
egorieswithtime,thisstudyrequiresatemporalstablestatusofforestcover.Inorderto
excludetheinuencefromforestcoveragechangeontheaccuracyoftheclassicationof
forestfragmentationlevels,ourstudyonlyfocusedontheforestareasinZhejiangprov-
incethathavenotchangedsince2000.Weusedgridsof500minsizetocalculatethe
proportionofforestlossbetween2000and2018(theratiooftotalforestlosspixelstototal
pixelsina500mgrid)basedontheGlobalForestChangedataset[29];thegridswitha
forestlossproportionoflessthan5%wereretainedandwererepresentativeofunchanged
forestlandscapes.Moreover,a50mresolutionforestmapfrom2010,generatedusing
ALOSPAL SAR- 2,MODIS,andLandsat-7/8satellitedata[30],wasselectedasthebasic
forestcoverdatatoconductaclassicationofforestfragmentationlevelsbasedonthe
retainedgrids(unchangedforestlandscapes).
Aforestfragmentationmodel[20,21]thatiswidelyusedtoestimatethestatusof
forestfragmentationbasedonsatellite-derivedforestmapswasemployedinthisstudyto
classifyforestfragmentationlevels.Thisfragmentationmodelwasdevelopedbasedon
theconsiderationofcausingforestlossasaresultofspatialdisturbances;ithasbeen
widelyappliedtoestimateforestfragmentationbyanalyzingforestdistributionmaps
[31,32].Additionally,forestareadensity(Pf)andforestconnectivity(P)aretwokeyindi-
catorsinthismodelfordeningthefragmentationtypeofagiven“window”or“land-
scape”basedonaforest/non-forestbinarymap[20].Thesizeofthe“window”reects
dierentspatialscalesintheestimationofforestfragmentation.PfandParecalculated
usingthefollowingequations:
𝑃
 (1)
𝑃
 𝐷

𝐷
(2)
wherePfistheproportionofforestpixelsinagivenwindow,calculatedbydividingthe
numberofforestpixels(Nf)bythetotalnumberofpixels(Nw)inthewindow;Pisthe
forestconnectivity,calculatedbydividingthepixelpairnumberthatincludesatleastone
forestpixel(D)bythepixelpairnumberthatincludestwoforestpixelsincardinaldirec-
tions(Df).
Alook-uptable(Table1)containingthecriteriaofthetwoindicators(DandDf)was
usedtoconducttheclassicationofforestfragmentationlevels.Sixfragmentationtypes,
includingpatch(PAT),transitional(TRA),perforated(PER),undetermined(UND),edge
(EDG),andinterior(INT),wereobtained.Thefragmentationlevelsofthesesixtypesare
shownasPAT>TRA>PER>UND>EDG>INT.However,UNDwasexcludedfromour
studyduetothefactthatitonlyexistsinextremecases.Inaddition,inordertomatchthe
resolution(~500m)oftheGPPdata,a9×9size“window”wasadoptedinthisstudy.
Tab l e1.Classicationcriteria,area,andareapercentageofeachforestfragmentationlevelofthe
forestfragmentationmodelinforestlandscapesinZhejiang,China.PAT:patchforest,TRA:transi-
tionalforest,PER:perforatedforest,UND:undetermined,EDG:edgeforest,andINT:interiorforest.
Fragmentation
Categories
Classification
Criteria
Area
(104ha)
AreaPercentage
(%)
PATPf<0.4263.033.7
TRA0.4<Pf<0.6129.516.6
PER0.6<=Pf<1andPf>Pff226.128.9
UND0.6<=Pf<1andPf=Pff0.70.1
EDG0.6<=Pf<1andPf<Pff153.019.6
INTPff=19.01.2
RemoteSens.2024,16,23935of14
2.3.TimeSeriesGPPDataset
Asatellite-basedlight-useeciencymodel—thevegetationphotosynthesismodel
(VPM)—wasusedtosimulatedtimeseriesGPPdatasetfrom2000to2018forthestudy
area.TheVPMwasdrivenusingtheMODISMOD09A1surfacereectancedataset,the
MCD12Q1landcoverdataset,theMYD11A2landsurfacetemperaturedataset,andNCEP
reanalysisIIclimatedata.Thenal500mresolutionGPPofeach8-dayperiodduring
2000–2018wasobtained.ThedetailsofthesimulationprocessesusingtheVPMhavebeen
reportedinpreviousstudies[33,34].
Basedonthe500m8-dayperiodGPPdataset,theannualGPPforeachyearbetween
2000and2018wasobtainedbyaggregatingallthedatainarelevantyear.Inaddition,the
GPPmaxforeachyearbetween2000and2018wasobtainedbyextractingthepeakvaluefor
eachpixelineachyear.Sincethevegetationinourstudyareausuallyhasobviouschar-
acteristicsofseasonalchange,thetemporaldynamiccurveofGPPgenerallyshowsauni-
modalshape.Therefore,inthisstudy,thegrowingseasonisdenedusingarelative
thresholdmethod,assuggestedinpreviousstudies[35,36];thethresholdissetas20%of
theGPPmaxinagivenyear.Thecarbonuptakeperiod(CUP)foreachyearbetween2000
and2018wasobtainedbycountingthenumberofdaysinwhichtheGPPwashigherthan
thevalueof20%oftheGPPmaxineachyear.
2.4.DataAnalysis
2.4.1.ComparisonofGPPTrendamongDierentFragmentationLevels
Inordertoexploretheimpactofforestfragmentationonvegetationproductivity,we
comparedthemeanannualGPPandthenormalizedmeanannualGPPamongdierent
fragmentationlevelsfrom2000to2018.ThenormalizedmeanannualGPPthroughout
2000–2018wascalculatedbydividingthemeanannualGPPfrom2000to2018bythePf
foreachpixelinordertoexcludetheinuenceofforestareasonGPPvaluesforapixel.A
one-wayANOVAwasadoptedtotestthesignicanceofthedierencebetweenmeanan-
nualandmeannormalizedannualGPPdatabetween2000and2018amongforestfrag-
mentationlevels.Meanwhile,theLSDmultiplecomparisonmethodwasusedtodetect
thedierencebetweenmeanannualandnormalizedmeanannualGPPdatabetween2000
and2018undervariousfragmentationlevels.
ThelineartrendoftheannualGPPduring2000–2018foreachpixelandtheentire
Zhejiangprovincewascalculated,andtheslopevalueofthelinearregressionlinewas
representedasthemagnitudeofthetrend.TheannualGPPtrendofdierentfragmenta-
tionlevelsthroughout2000–2018wasalsocomparedusingaone-wayANOVA.
2.4.2.DetectingtheRelativeImportanceoftheControlPathwaysofGPP
InordertoexplorethecontrolpathwaysofGPPinourstudyarea,weconducted
multiplelinearregressionbetweenGPPandeitherCUP,GPPmax,oracombinationofCUP
andGPPmaxforeachpixeloftheperiodbetween2000and2018.Ametricassessingmeth-
odinthe“relaimpo”packageintheRsoftware[37]wasemployedtoquantifytherelative
importanceofeachindividualvariableinlinearmodelsforeachpixelinthisstudy;the
variablewiththehighestrelativeimportancevaluewasregardedasthecontrolvariable
ofGPP.Therelativeimportanceofeachindividualcontrolvariablewascalculatedtore-
ectitsdegreeofcontrol,andthevalueswerenormalizedfrom0to100%.Inaddition,the
pixelnumberpercentagesofthethreecontrolvariableswerealsocalculatedandwere
statisticallycomparedforeachforestfragmentationlevel.

RemoteSens.2024,16,23936of14
2.4.3.ComparisonofGPPControlPathwaysamongDierentFragmentationLevels
Inordertoanswerthequestionofwhichpathwayofforestfragmentationaectsveg-
etationproductivity,theCUP,GPPmax,andCUP×GPPmaxwerecalculatedandcompared
amongvariousforestfragmentationlevels.Aone-wayANOVAwasadoptedtotestthe
signicanceofthedierencesinthethreecontrolvariables,andtheLSDmultiplecom-
parisonmethodwasusedtodetectthedierencebetweenthethreecontrolvariablesun-
dervariousfragmentationlevels.
2.4.4.StatisticalAnalysisandDataProcessingMethods
Therasterdataprocessing,mapping,andstatisticalanalysiswereconductedusing
ArcGIS10.3andRsoftware[38];thesignicanceleveloftheone-wayANOVAwassetto
0.05.
3.Results
3.1.GPPDynamicsofDierentFragmentationLevels
Therewasasignicant(p<0.05)dierenceinthemeanannualGPPin2000and2018
forforestlandscapeswithvariousfragmentationlevelsinZhejiang(Table2).Generally,
forestlandscapeswithfragmentationlevelsofPATandINThadthelowestandhighest
meanannualGPPvalues,respectively,whilenosignicantdierenceinthemeanannual
GPPwasidentiedbetweenTRA,PER,andEDG.Althoughasignicant(p<0.05)dier-
enceinthenormalizedmeanannualGPPfor2000and2018inZhejiangwasfoundamong
allforestfragmentationlevels(Table2),thehighestandlowestnormalizedmeanannual
GPPvaluesinforestlandscapeswererepresentedbythePATandINTfragmentationlev-
els,respectively.Similarly,therewasnosignicantdierenceinthenormalizedmeanan-
nualGPPbetweenPERandEDG.
Tab l e2.ComparisonofmeanannualGPPandmeannormalizedannualGPPamongdierentforest
fragmentationcategoriesfor2000and2018.ThemeannormalizedannualGPPwascalculatedasthe
ratioofthemeanannualGPPtotheproportionofforestpixelsinaforestlandscape.Thecharacters
indicatetheresultsofmultiplecomparisonsbetweenanytwocategories.PAT:patchforest,TRA:
transitionalforest,PER:perforatedforest,EDG:edgeforest,andINT:interiorforest.
Fragmentation
Categories
MeanAnnualGPP(gCm2)MeanNormalizedAnnualGPP(gCm2)
2000201820002018
PAT1040.4±319.1a1101.6±449.4a11,611.3±17,514.1d11,337.4±16,718.4d
TRA1268.7±256.4b1516.8±351.1b2979.0±4071.6c3505.2±4629.4c
PER1366.5±193.1bc1643.4±231.5bc1870.6±1276.2b2246.4±1487.0b
EDG1349.8±202.4bc1635.2±246.3bc2199.1±2681.0b2656.5±3158.8b
INT1421.4±197.6c1693.9±213.9c1657.0±1222.9a1972.6±1478.9a
Signicant(p<0.05)increasingtrendswerefoundinallfragmentationlevelsandall
typesofforestlandscapesinZhejiang,exceptforthePATlandscape(Figure2a).Thein-
creaseintherateofannualGPPwithregardtovariousfragmentationlevelsuctuated
from10.6gCm2year1inTRAto13.1gCm2year1inPER.Spatially,theannualGPP
trendinZhejianggenerallyshowedpositivevaluesformostpixels(Figure2b).Theannual
GPPtrendinPATwassignicantlylowerthanthoseinforestlandscapeswithotherfrag-
mentationlevels,buttherewasnosignicantdierenceintheannualGPPtrendamong
TRA,PER,EDG,andINT.Thehighervalues(>30gCm2year1)oftheannualGPPtrend
weremainlydistributedinthewestandcentralpartofZhejiang,whilethelowervalues
(<45gCm2year1)oftheannualGPPtrendweremainlydistributedinthenorthand
coastalareasofZhejiang.
RemoteSens.2024,16,23937of14
Figure2.(a)AnnualGPPdynamicsofdierentfragmentationlevelsand(b)lineartrenddistribu-
tionofannualGPPofforestlandscapesinZhejiangbetween2000and2018,andthecomparisonof
theannualGPPtrendvaluesamongdierentfragmentationlevels.Theredasteriskindicatesthe
annualGPPtrendofPATissignicantly(p<0.05)thanthatofotherfragmentationcategories.PAT:
patchforest,TRA:transitionalforest,PER:perforatedforest,EDG:edgeforest,andINT:interior
forest.
3.2.RelativeImportanceofDierentGPPControlPathways
CUP×GPP
max
wasidentiedasbeingthecontrolvariableforabout61.8%oftheen-
tireZhejiangprovince;theareapercentagesofthecontrolvariablesforCUPandGPP
max
were19.7%and18.5%,respectively(Figure3a).ThecontrolvariableforCUPwasmainly
distributedinsomepartsofwesternandcentralZhejiang,whilethecontrolvariablefor
GPP
max
wasmainlydistributedincentralandeasternZhejiang.Therelativeimportanceof
thethreecontrolvariablesrangedfrom0to82%,andmostofthemweredistributedinthe
rangeof5~35%(Figure3b).TheareapercentagesofthecontrolvariablesforCUP×GPP
max
weremaintainedatapproximately60%amongvariousfragmentationlevels(Figure3c).
However,thecontrolvariableforCUP(13.2~27.8%)andGPP
max
(11.1~25.0%)stillac-
countedforacertainproportionofareaamongvariousfragmentationlevels.Therewas
nosignicant(p>0.05)dierenceintherelativeimportancebetweenanytwofragmenta-
tionlevels,andthemeanrelativeimportanceofvariousfragmentationlevelsrangedbe-
tween25%and28%(Figure3d).
RemoteSens.2024,16,23938of14
Figure3.Distributionofdierentcontrolvariablesandtheirrelativeimportance.(a)Spatialdistri-
butionofdierentcontrolvariables,(b)spatialdistributionoftheirrelativeimportanceonannual
GPPduring2000–2018,(c)comparisonofrelativeimportanceamongthreecontrolvariables,and
(d)pixelnumberpercentagesofthreecontrolvariablesfordierentfragmentationlevels.PAT:patch
forest,TRA:transitionalforest,PER:perforatedforest,EDG:edgeforest,andINT:interiorforest.
RemoteSens.2024,16,23939of14
3.3.GPPControlPathwaysofDierentFragmentationLevels
Asignicant(p<0.05)dierenceinthemeanCUPofforestlandscapesinZhejiang
during2000–2018wasdetectedamongallfragmentationlevels(Table3).Thehighestand
lowestmeanCUPwererepresentedbytheINTandPATforestlandscapes,respectively,
andtherewasnosignicant(p>0.05)dierenceinthemeanCUPbetweenTRA,PER,
EDG,andINT.Moreover,themeanGPP
max
ofINTforestlandscapeswassignicantly(p
<0.05)higherthanthatforthePATandTRAlandscapes;nosignicant(p>0.05)dierence
inthemeanGPP
max
existedinforestlandscapesinZhejiangbetweenTRA,PER,andEDG,
orbetweenPER,EDG,andINT.Similarly,asignicant(p<0.05)dierenceinthemean
CUP×GPP
max
offorestlandscapesinZhejiangduring2000–2018wasdetectedamongall
forestfragmentationlevels(Table3).ThehighestandlowestmeanCUP×GPP
max
values
existedintheINTandPATlandscapes,respectively,andtherewasnosignicant(p>0.05)
dierenceinthemeanCUP×GPP
max
betweenPERandEDG.
Spatially,themeanvaluesofCUPandGPP
max
intheforestlandscapesofZhejiang
during2000–2018bothhavehighheterogeneities.ThehighermeanCUPvalues(>330
days)weregenerallyfoundinthesouthandeastpartsofZhejiang,whilethelowermean
CUPvalues(<210days)weregenerallyfoundinthenorthpartofZhejiang(Figure4a).
Amongtheregionswithahighforestcoverage,therewasliledierenceinthemean
CUPthroughout2000–2018,butthemeanGPP
max
during2000–2018presentedobvious
spatialvariations.Inparticular,thehighestvalues(>12.5gCday
1
)ofthemeanGPP
max
during2000–2018wereconcentratedindenseforestlandscapesintheeastandnorthwest
partsofZhejiang(Figure4b);however,thevaluesofmeanGPP
max
during2000–2018were
generallylessthan10gCday
1
inthesouthdenseforestlandscapesinZhejiang.
Figure4.Spatialdistributionofthemeanvaluesofcarbonuptakeperiod(CUP)andmaximumdaily
GPP(GPP
max
)forsubtropicalforestlandscapesinZhejiangProvinceduring2000–2018.(a)Thespa-
tialmapofthemeanCUPduring2000–2018.(b)ThespatialmapofthemeanGPP
max
during2000–
2018.
RemoteSens.2024,16,239310of14
Tab l e3.ComparisonsofmeanCUP,meanGPPmax,andmeanCUP×GPPmaxofforestlandscapesin
Zhejiangamongdierentfragmentationcategoriesduring2000–2018.Thecharactersindicatethe
resultsofmultiplecomparisonsbetweenanytwocategories.PAT:patchforest,TRA:transitional
forest,PER:perforatedforest,EDG:edgeforest,andINT:interiorforest.
Fragmentation
Categories
CUP(days)GPPmax(gCm2day1)CUP×GPPmax
PAT256.1±73.4a8.7±2.2a2339.4±949.7a
TRA310.7±49.7b9.6±1.6b3041.2±737.1b
PER329.8±28.5b10.2±1.3bc3369.1±548.5c
EDG327.8±30.3b10.1±1.3bc3320.6±551.2bc
INT332.9±28.1b10.7±1.5c3547.7±524.7d
4.Discussion
4.1.ImpactsofForestFragmentationonCarbonUptake
ThemeanannualGPPthroughout2000–2018generallydeclinedfromINTtoPAT
forestlandscapes(Table2);thisisinlinewithpreviousstudies,whichsuggestthatcarbon
lossinforestsisaggravatedbyfragmentationlevel[39–41].Thecarbonlossisdirectly
aributedtotheforestlossunderforestfragmentation,whichmaybemainlycausedby
naturalandhumandisturbances,suchaslogging,re,andagricultureandurbanexpan-
sion[5,27,42].However,ourresultsalsoshowedthatthenormalizedmeanannualGPPof
PATforestlandscapesduring2000–2018wassignicantlyhigherthanthatofotherfrag-
mentationlevels(Table2),whichimpliesthatthecarbonuptakeofhigherfragmented
forestareaswasenhancedwhenexcludingtheinuenceofforestareadensity.Asimilar
resultwasfoundinatemperatebroadleafforestofnorthAmerica[16],wheretheforest
growthratedecreasedwiththedistancefromforestedge.Thevariationsinlightavaila-
bility[43]andthesensitivitytoclimate[44,45]oftheforestswithdierentfragmentation
levelsarelikelytoberesponsiblefortheirdierencesincarbonuptake.
Inthisstudy,exceptforthePATforestlandscapes,therewasnosignicantdierence
intheannualGPPtrendthroughout2000–2018amongfragmentationlevels(Figure3);
thiscouldbeaributedtotwopossiblereasons.Ontheonehand,forestlandscapeswith
ahighfragmentationlevelaremorelikelytobedistributednearurbanareas,andthe
changedenvironmentwithahighertemperatureandCO2concentrationandbeerhu-
manmanagementandprotection(e.g.,articialirrigation)hadapositiveinuenceonfor-
estcarbonuptake.Ontheotherhand,forestlandscapeswithdierentforestfragmenta-
tionlevels(exceptPAT)wereevenlydistributedinZhejiang(Figure1),whichledtopar-
allelforestagestructuresexistingindierentfragmentationlevels;thisresultsuggests
thattheimpactofforestfragmentationonthechangerateofvegetationproductivityis
verylimited.
4.2.ImpactsofForestFragmentationonControlPathwaysofCarbonUptake
Sincevegetationcarbonuptakeprocessescanbedividedintophenologicalandphys-
iologicalfactors,thecontrolpathwayofGPPiseitherphenological,physiological,orboth.
OurresultsshowedthatCUP×GPPmaxwasthemostwidespreadcontrolvariableofGPP,
atmostlymorethan60%,during2000–2018forallfragmentationlevels(Figure3),which
isconsistentwithapreviousstudythatreportedthatGPPwasjointlycontrolledbyphe-
nologyandphysiologyprocesses[24].However,theindividualCUPorGPPmaxstillcon-
trolledtheGPPinsomeforestlandscapesinZhejiang.Forexample,forestcarbonuptake
wasmainlycontrolledbytheCUPinmountainareas,whilethecontrollingroleofGPPmax
onGPPusuallyoccurredinthecentralandcoastalareaswithaatterrain(Figure3).Our
studyindicatesthatthedominantpathwaysofforestcarbonuptakearecloselyrelatedto
topographicconditions.
Moreover,ourresultsshowedthatthepercentageareaoftheGPPmaxcontrolvariable
graduallyincreaseswithfragmentationlevel;themeanGPPmaxofPATduring2000–2018
RemoteSens.2024,16,239311of14
wasfoundtobehigherthanthatofotherfragmentationlevels(Table3).Thismeansthat
themaximumphotosyntheticcapacityofvegetation,mainlyreectedbyGPPmax,isim-
portantincontrollingcarbonuptakeinhighlyfragmentedforestlandscapes.Thefactors
oflessinter-individualcompetition[46,47]andmorecarbondioxidefertilization[48,49]
arelikelypossibledriversoftheobservedimportanceofGPPmaxathigherfragmentation
levels.
Inaddition,thecontrolvariablesoftheCUPandCUP×GPPmaxofINTforestland-
scapeswereobviouslyhigherthanthoseofotherfragmentationlevels.Thissuggeststhat
phenology-basedprocessesbenetfromlessfragmentedforestlandscapesandaremost
likelytobeaributedtothewarmingconditionscausedbytheedgeeect[50]inhighly
fragmentedforests.
4.3.InsightsonLocalForestManagementunderForestFragmentation
Historically,forestsinZhejiang,China,haveexperiencedsevereloggingdisturb-
ances,causingagrimstatusofforestfragmentation.However,theresultsofthisstudy
maystillprovideusefulinsightsintolocalforestmanagement.Firstly,ahighercarbon
uptakecapacityperunitareaexistsinhighlyfragmentedforestlandscapes,remindingus
toexplorethepotentialofforestcarbonuptakeinthecontextofthewidespreadexistence
offorestfragmentation.Inparticular,asoneofthemostdevelopedregionsinChina,
Zhejiangissubjecttointensehumanactivities,suchasrapidurbanizationandeconomic
development,whichhavesignicantlyaectedthedistributionpaernofnaturalecosys-
tems,suchasforests.Thepositiverelationshipbetweenforestfragmentationandcarbon
sequestrationprovidesanopportunityforZhejiangtobalancedevelopmentandecologi-
calprotection.Secondly,althoughtheforestcarbonuptakemaybeenhancedunderfrag-
mentation,thereisstillagreatneedtoprotecttheforestsduetothefacthatanylossof
forestcoveragewillleadtoafurtherlossofcarbonstock.Finally,thisrelationshipisalso
basedontheimplicationthattheincreaseinthemaximumphotosyntheticcapacitymay
inducetheenhancementofcarbonuptakeinhighlyfragmentedforestlandscapes.There-
fore,itisnecessarytoexplorethemechanismbywhichforestfragmentationchangesthe
vegetationphotosyntheticprocess,whichwillplayanimportantroleinformulatingforest
managementmeasures.Inaddition,althoughsubtropicalforestsinZhejiangProvince
wereselectedasbeingrepresentativeinthisstudy,consideringtheuniversalityofre-
searchapproachesandthewidespreadavailabilityofresearchobjects,ourresultshave
greatpotentialvaluesforunderstandinghowthecarbonuptakeofsubtropicalforestsre-
spondstoforestfragmentationinothersubtropicalregions.
4.4.ResearchUncertaintiesandProspects
Inthisstudy,weexploredhowforestcarbonuptakechangeswithdierentfragmen-
tationlevelsandwhatthemainpathwayisinwhichfragmentationaectedforestcarbon
uptakethroughout2000–2018inforestlandscapesinZhejiang,China.Someuncertainties
mayexistinourstudy.Firstly,althoughforestprotectionandsuspendedloggingdisturb-
anceshavebeenimplementedsince2000inthestudyarea[51,52],weassumedthatthe
forestcoveragewaskeptstablewhentheforestlossproportionwaslessthan5%inthe
periodbetween2000and2018;thismaystillinducesomeuncertainties,sincethesucces-
sionofforeststhemselvesmayhavecausedsomechangesinforestcover[53].Secondly,
thedatasetsofforestcoverandGPPwereproducedonalargescale(thewholeofChina)
andhaveahighaccuracy.However,weonlyusedsomepartsofthedatasets,inducing
uncertaintiesintheaccuracyofthedatasets.Lastly,althoughtheforestfragmentation
levelclassicationandGPPestimationwereobtainedbasedoncertiedmethods
[20,29,54],theaccuracyofthesedatamayalsohavesomeimpactsonthestudyresults.
RemoteSens.2024,16,239312of14
5.Conclusions
Comparedtopreviousstudies,thisstudyhasrevealedthevariationincarbonuptake
withforestfragmentationlevelsatbothlandscapeandregionalscales,andtheforestland-
scapepaernwasfoundtohavecertainimpactsonforestproductivity.Inaddition,the
controlpathwaysofcarbonuptakeunderforestfragmentationwerealsoidentied.These
ndingshaveenhancedtheunderstandingofvegetationcarbonuptakeprocessesinthe
contextofwidespreadforestfragmentation.
Ourresultsdemonstratethatcarbonuptakecapacityperunitareawasenhancedin
highlyfragmentedforestlandscapes.However,therewasalmostnosignicantdierence
intheannualGPPtrendthroughout2000–2018amongforestlandscapeswithdierent
fragmentationlevels.Additionally,althoughforestcarbonuptakewasjointlycontrolled
byphenology-andphysiology-basedprocesses,themaximumphotosyntheticcapacityof
vegetation—thephysiology-basedprocess—playedanimportantroleincontrollingcar-
bonuptake,particularlyinhighlyfragmentedforestlandscapes.Hence,theresultsand
ndingsfromthisstudycallforabeeranddeeperunderstandingofthepotentialof
forestcarbonuptakeinconnectiontofragmentation.Thereisanemergingneedtopay
seriousaentiontosustainableforestconservationandprotectioninthecontextofthe
widespreadexistenceofforestfragmentation.Moreover,inordertoformulateappropri-
ateforestmanagementandplanningactivities,itisnecessarytoexplorethemechanism
inwhichforestfragmentationchangesthevegetationphotosyntheticprocessinconnec-
tiontocarbonuptakeandrelease.
Aut horContributions:Conceptualization,J.J.,J.M.andC.W.;methodology,J.J.,P.H.,andJ.M.;for-
malanalysis,J.J.,Y.C.,P.H.,B.J.andC.W.;datacuration,J.J.,Y.C.,P.H.,B.J.andC.W.;writing—
originaldraftpreparation,J.J.;writing—reviewandediting,Y.C.,P.H.,J.M.,L.Y.,B.J.,X.X.andC.W.;
visualization,J.J.andY.C.;fundingacquisition,C.W.andJ.M.Allauthorshavereadandagreedto
thepublishedversionofthemanuscript.
Funding:.ThisresearchwassupportedbytheresearchinstitutesupportprojectofZhejiangProv-
ince(2024F1065-1),“Pioneer”and“LeadingGoose”R&DProgramofZhejiang(2024C03227),Nat-
uralScienceFoundationofChina(32271659),andscienticresearchprogramofShanghaiscience
andtechnologycommission(23DZ1204504).
DataAvailabilityStatement:.ThetimeseriesGPPdatasetwasdownloadedfromhps://doi.pan-
gaea.de/10.1594/PANGAEA.879558?format=html#download.Theforestcovermapisavailableon
requestfromDr.YuanweiQinfromtheUniversityofOklahoma.TheCUP,GPPmax,andforestfrag-
mentationcategoriesmapareavailableonrequestfromthecorrespondingauthors.
Acknowledgments:WethanksYuanweiQinfromtheUniversityofOklahomaforhisshareofthe
forestcovermapofChina.WealsothankJijiaLiufromFudanUniversityforhisparticipateinthe
discussionofthisstudy.
ConictsofInterest:Theauthorsdeclarenoconictsofinterest.
References
1. Pan,Y.;Birdsey,R.A.;Fang,J.;Houghton,R.;Kauppi,P.E.;Kurz,W.A.;Phillips,O.L.;Shvidenko,A.;Lewis,S.L.;Canadell,J.G.;
etal.ALargeandPersistentCarbonSinkintheWorld’sForests.Science2011,333,988–993.hps://doi.org/10.1126/sci-
ence.1201609.
2. Canadell,J.G.;Raupach,M.R.Managingforestsforclimatechangemitigation.Science2008,320,1456–1457.
hps://doi.org/10.1126/science.1155458.
3. Fang,J.Y.;Guo,Z.D.;Hu,H.F.;Kato,T.;Muraoka,H.;Son,Y.ForestbiomasscarbonsinksinEastAsia,withspecialreference
totherelativecontributionsofforestexpansionandforestgrowth.Glob.ChangeBiol.2014,20,2019–2030.
hps://doi.org/10.1111/gcb.12512.
4. Kumar,P.;Pirjola,L.;Keel,M.;Harrison,R.M.Nanoparticleemissionsfrom11non-vehicleexhaustsources—Areview.Atmos.
Environ.2013,67,252–277.hps://doi.org/10.1016/j.atmosenv.2012.11.011.
5. Hansen,M.C.;Stehman,S.V.;Potapov,P.V.Quanticationofglobalgrossforestcoverloss.Proc.Natl.Acad.Sci.USA2010,107,
8650–8655.hps://doi.org/10.1073/pnas.0912668107.
6. Arora,V.K.;Boer,G.J.Uncertaintiesinthe20thcenturycarbonbudgetassociatedwithlandusechange.Glob.ChangeBiol.2010,
16,3327–3348.hps://doi.org/10.1111/j.1365-2486.2010.02202.x.
RemoteSens.2024,16,239313of14
7. Curtis,P.G.;Slay,C.M.;Harris,N.L.;Tyukavina,A.;Hansen,M.C.Classifyingdriversofglobalforestloss.Science2018,361,
1108–1111.hps://doi.org/10.1126/science.aau3445.
8. Ma,J.;Li,J.;Wu,W.;Liu,J.Globalforestfragmentationchangefrom2000to2020.Nat.Commun.2023,14,3752.
9. Haddad,N.M.;Brudvig,L.A.;Clobert,J.;Davies,K.F.;Gonzalez,A.;Holt,R.D.;Lovejoy,T.E.;Sexton,J.O.;Aus tin ,M.P.;Collins,
C.D.;etal.HabitatfragmentationanditslastingimpactonEarth’secosystems.Sci.Adv.2015,1,e1500052.
hps://doi.org/10.1126/sciadv.1500052.
10. Collins,C.D.;Banks-Leite,C.;Brudvig,L.A.;Foster,B.L.;Cook,W.M.;Damschen,E.I.;Andrade,A.;Aust in,M.;Camargo,J.L.;
Driscoll,D.A.;etal.Fragmentationaectsplantcommunitycompositionovertime.Ecography2017,40,119–130.
hps://doi.org/10.1111/ecog.02607.
11. Bello,C.;Galei,M.;Pizo,M.A.;Magnago,L.F.S.;Rocha,M.F.;Lima,R.A.F.;Peres,C.A.;Ovaskainen,O.;Jordano,P.De-
faunationaectscarbonstorageintropicalforests.Sci.Adv.2015,1,e1501105.hps://doi.org/10.1126/sciadv.1501105.
12. Ma,L.;Shen,C.;Lou,D.;Fu,S.;Guan,D.Ecosystemcarbonstorageinforestfragmentsofdieringpatchsize.Sci.Rep.2017,7,
13173.hps://doi.org/10.1038/s41598-017-13598-4.
13. Smith,I.A.;Hutyra,L.R.;Reinmann,A.B.;Marrs,J.K.;Thompson,J.R.Piecingtogetherthefragments:Elucidatingedgeeects
onforestcarbondynamics.Front.Ecol.Environ.2018,16,213–221.hps://doi.org/10.1002/fee.1793.
14. Chaplin-Kramer,R.;Ramler,I.;Sharp,R.;Haddad,N.M.;Gerber,J.S.;Wes t,P.C.;Mandle,L.;Engstrom,P.;Baccini,A.;Sim,S.;
etal.Degradationincarbonstocksneartropicalforestedges.Nat.Commun.2015,6,10158.hps://doi.org/10.1038/ncomms10158.
15. Ordway,E.M.;Asner,G.P.Carbondeclinesalongtropicalforestedgescorrespondtoheterogeneouseectsoncanopystructure
andfunction.Proc.Natl.Acad.Sci.USA2020,117,7863–7870.hps://doi.org/10.1073/pnas.1914420117.
16. Reinmann,A.B.;Hutyra,L.R.Edgeeectsenhancecarbonuptakeanditsvulnerabilitytoclimatechangeintemperatebroadleaf
forests.Proc.Natl.Acad.Sci.USA2017,114,107–112.hps://doi.org/10.1073/pnas.1612369114.
17. Morreale,L.L.;Thompson,J.R.;Tang ,X.;Reinmann,A.B.;Hutyra,L.R.Elevatedgrowthandbiomassalongtemperateforest
edges.Nat.Commun.2021,12,7181.hps://doi.org/10.1038/s41467-021-27373-7.
18. Remy,E.;Wuyts,K.;Boeckx,P.;Ginzburg,S.;Gundersen,P.;Demey,A.;Van DenBulcke,J.;Van Acker,J.;Verheyen,K.Strong
gradientsinnitrogenandcarbonstocksattemperateforestedges.For.Ecol.Manag.2016,376,45–58.
hps://doi.org/10.1016/j.foreco.2016.05.040.
19. Fahrig,L.Eectsofhabitatfragmentationonbiodiversity.Annu.Rev.Ecol.Evol.Syst.2003,34,487–515.
hps://doi.org/10.1146/annurev.ecolsys.34.011802.132419.
20. Riiers,K.;Wickham,J.;O’Neill,R.;Jones,B.;Smith,E.Global-scalepaernsofforestfragmentation.Conserv.Ecol.2000,4,30.
21. Riiers,K.H.;Wickham,J.D.;O’Neill,R.V.;Jones,K.B.;Smith,E.R.;Coulston,J.W.;Wade,T.G.;Smith,J.H.Fragmentationof
continentalUnitedStatesforests.Ecosystems2002,5,815–822.hps://doi.org/10.1007/s10021002-0209-2.
22. Hermosilla,T.;Wulder,M.A.;White,J.C.;Coops,N.C.;Pickell,P.D.;Bolton,D.K.Impactoftimeoninterpretationsofforest
fragmentation:Three-decadesoffragmentationdynamicsoverCanada.RemoteSens.Environ.2019,222,65–77.
hps://doi.org/10.1016/j.rse.2018.12.027.
23. Monteith,J.L.Solar-radiationandproductivityintropicalecosystems.J.Appl.Ecol.1972,9,747–766.
hps://doi.org/10.2307/2401901.
24. Xia,J.;Niu,S.;Ciais,P.;Janssens,I.A.;Chen,J.;Ammann,C.;Arain,A.;Blanken,P.D.;Cescai,A.;Bonal,D.;etal.Jointcontrol
ofterrestrialgrossprimaryproductivitybyplantphenologyandphysiology.Proc.Natl.Acad.Sci.USA2015,112,2788–2793.
hps://doi.org/10.1073/pnas.1413090112.
25. Zhou,S.;Zhang,Y.;Ciais,P.;Xiao,X.;Luo,Y.;Caylor,K.K.;Huang,Y.;Wang, G.Dominantroleofplantphysiologyintrend
andvariabilityofgrossprimaryproductivityinNorthAmerica.Sci.Rep.2017,7,41366.hps://doi.org/10.1038/srep41366.
26. Keenan,T.F.;Gray,J.;Friedl,M.A.;Toomey,M.;Bohrer,G.;Hollinger,D.Y.;Munger,J.W.;O’Keefe,J.;Schmid,H.P.;SueWing,
I.;etal.Netcarbonuptakehasincreasedthroughwarming-inducedchangesintemperateforestphenology.Nat.Clim.Change
2014,4,598–604.hps://doi.org/10.1038/nclimate2253.
27. Arroyo-Rodriguez,V.;Melo,F.P.L.;Martinez-Ramos,M.;Bongers,F.;Chazdon,R.L.;Meave,J.A.;Norden,N.;Santos,B.A.;
Leal,I.R.;Tabarelli,M.Multiplesuccessionalpathwaysinhuman-modiedtropicallandscapes:Newinsightsfromforestsuc-
cession,forestfragmentationandlandscapeecologyresearch.Biol.Rev.2017,92,326–340.hps://doi.org/10.1111/brv.12231.
28. Grilli,G.;Urcelay,C.;Galeo,L.Forestfragmentsizeandnutrientavailability:Complexresponsesofmycorrhizalfungiin
native-exotichosts.PlantEcol.2012,213,155–165.hps://doi.org/10.1007/s11258-011-9966-3.
29. Hansen,M.C.;Potapov,P.V.;Moore,R.;Hancher,M.;Turuban ova,S.A.;Tyukavina,A.;Thau,D.;Stehman,S.V.;Goe,S.J.;
Loveland,T.R.;etal.High-ResolutionGlobalMapsof21st-CenturyForestCoverChange.Science2013,342,850–853.
hps://doi.org/10.1126/science.1244693.
30. Qin,Y.W.;Xiao,X.M.;Dong,J.W.;Zhang,G.L.;Shimada,M.;Liu,J.Y.;Li,C.G.;Kou,W.L.;Moore,B.ForestcovermapsofChina
in2010frommultipleapproachesanddatasources:PALSAR,Landsat,MODIS,FRA,andNFI.ISPRSJ.Photogramm.Remote
Sens.2015,109,1–16.hps://doi.org/10.1016/j.isprsjprs.2015.08.010.
31. Dong,J.;Xiao,X.;Sheldon,S.;Biradar,C.;Zhang,G.;NguyenDinh,D.;Hazarika,M.;Wikantika,K.;Takeu hci, W.;Moore,B.,
III.A50-mForestCoverMapinSoutheastAsiafromALOS/PALSARandItsApplicationonForestFragmentationAssessment.
PLoSONE2014,9,e85801.hps://doi.org/10.1371/journal.pone.0085801.
32. Li,Y.;Xiao,X.;Li,X.;Ma,J.;Chen,B.;Qin,Y.;Dong,J.;Zhao,B.Multi-scaleassessmentsofforestfragmentationinChina.
Biodiversity2017,25,372–381.(InChinese)
RemoteSens.2024,16,239314of14
33. Ma,J.;Xiao,X.M.;Zhang,Y.;Doughty,R.;Chen,B.Q.;Zhao,B.Spatial-temporalconsistencybetweengrossprimaryproductiv-
ityandsolar-inducedchlorophylluorescenceofvegetationinChinaduring2007-2014.Sci.TotalEnviron.2018,639,1241–1253.
34. Zhang,Y.;Xiao,X.M.;Wu,X.C.;Zhou,S.;Zhang,G.L.;Qin,Y.W.;Dong,J.W.DataDescriptor:Aglobalmoderateresolution
datasetofgrossprimaryproductionofvegetationfor2000-2016.Sci.Data2017,4,13.hps://doi.org/10.1038/sdata.2017.165.
35. Zhao,J.-J.;Liu,L.-Y.ExtractionoftemperatevegetationphenologythresholdsinNorthAmericabasedonuxtowerobservation
data.Chin.J.Appl.Ecol.2013,24,311–318.
36. White,M.A.;Thornton,P.E.;Running,S.W.Acontinentalphenologymodelformonitoringvegetationresponsestointerannual
climaticvariability.Glob.Biogeochem.Cycles1997,11,217–234.hps://doi.org/10.1029/97gb00330.
37. Groemping,U.RelativeimportanceforlinearregressioninR:Thepackagerelaimpo.J.Stat.Softw.2006,17,1–27.
38. RDevelopmentCoreTeam.R:ALanguageandEnvironmentforStatisticalComputing;RFoundationforStatisticalComputing:
Vienna,Austr ia, 2013.
39. Berenguer,E.;Ferreira,J.;Gardner,T.A.;Aragao,L.;DeCamargo,P.B.;Cerri,C.E.;Durigan,M.;DeOliveira,R.C.;Vieira,I.C.G.;
Barlow,J.Alarge-scaleeldassessmentofcarbonstocksinhuman-modiedtropicalforests.Glob.ChangeBiol.2014,20,3713–
3726.hps://doi.org/10.1111/gcb.12627.
40. Silverio,D.V.;Brando,P.M.;Bustamante,M.M.C.;Pu,F.E.;Marra,D.M.;Levick,S.R.;Trumbore,S.E.Fire,fragmentation,and
windstorms:Arecipefortropicalforestdegradation.J.Ecol.2019,107,656–667.hps://doi.org/10.1111/1365-2745.13076.
41. Zeng,Z.Z.;Gower,D.B.;Wood,E.F.AcceleratingforestlossinSoutheastAsianMassifinthe21stcentury:AcasestudyinNan
Province,Thailand.Glob.ChangeBiol.2018,24,4682–4695.hps://doi.org/10.1111/gcb.14366.
42. Barber,C.P.;Cochrane,M.A.;Souza,C.M.;Laurance,W.F.Roads,deforestation,andthemitigatingeectofprotectedareasin
theAmazon.Biol.Conserv.2014,177,203–209.hps://doi.org/10.1016/j.biocon.2014.07.004.
43. Briber,B.M.;Hutyra,L.R.;Reinmann,A.B.;Raciti,S.M.;Dearborn,V.K .;Holden,C.E.;Dunn,A.L.TreeProductivityEnhanced
withConversionfromForesttoUrbanLandCovers.PLoSONE2015,10,e0136237.hps://doi.org/10.1371/journal.pone.0136237.
44. Martin-Benito,D.;Pederson,N.Convergenceindroughtstress,butadivergenceofclimaticdriversacrossalatitudinalgradient
inatemperatebroadleafforest.J.Biogeogr.2015,42,925–937.hps://doi.org/10.1111/jbi.12462.
45. Tan g ,G.P.;Beckage,B.;Smith,B.;Miller,P.A.EstimatingpotentialforestNPP,biomassandtheirclimaticsensitivityinNew
Englandusingadynamicecosystemmodel.Ecosphere2010,1,1–20.hps://doi.org/10.1890/es10-00087.1.
46. Campbell,M.J.;Edwards,W.;Magrach,A.;Alamgir,M.;Porolak,G.;Mohandass,D.;Laurance,W.F.Edgedisturbancedrives
lianaabundanceincreaseandalterationofliana-hosttreeinteractionsintropicalforestfragments.Ecol.Evol.2018,8,4237–4251.
hps://doi.org/10.1002/ece3.3959.
47. Fischer,R.;Bohn,F.;dePaula,M.D.;Dislich,C.;Groeneveld,J.;Gutierrez,A.G.;Kazmierczak,M.;Knapp,N.;Lehmann,S.;
Paulick,S.;etal.Lessonslearnedfromapplyingaforestgapmodeltounderstandecosystemandcarbondynamicsofcomplex
tropicalforests.Ecol.Model.2016,326,124–133.hps://doi.org/10.1016/j.ecolmodel.2015.11.018.
48. Malhi,Y.;Aragao,L.;Galbraith,D.;Huntingford,C.;Fisher,R.;Zelazowski,P.;Sitch,S.;McSweeney,C.;Meir,P.Exploringthe
likelihoodandmechanismofaclimate-change-induceddiebackoftheAmazonrainforest.Proc.Natl.Acad.Sci.USA2009,106,
20610–20615.hps://doi.org/10.1073/pnas.0804619106.
49. Qie,L.;Lewis,S.L.;Sullivan,M.J.P.;Lopez-Gonzalez,G.;Pickavance,G.C.;Sunderland,T.;Ashton,P.;Hubau,W.;AbuSalim,
K.;Aiba,S.;etal.Long-termcarbonsinkinBorneo’sforestshaltedbydroughtandvulnerabletoedgeeects.Nat.Commun.
2017,8,1966.hps://doi.org/10.1038/s41467-017-01997-0.
50. Schmidt,M.;Jochheim,H.;Kersebaum,K.C.;Lischeid,G.;Nendel,C.Gradientsofmicroclimate,carbonandnitrogenintransi-
tionzonesoffragmentedlandscapes—Areview.Agric.For.Meteorol.2017,232,659–671.
hps://doi.org/10.1016/j.agrformet.2016.10.022.
51. Ding,L.;Lu,J.;Xu,G.;Wu,J.EectsofecologicalprotectionanddevelopmentonlandscapepaernintheThousand-Island
Lakeregion,ZhejiangProvince.Biodivers.Sci.2004,12,473.
52. Ren,G.;Youn g ,S.S.;Wan g,L.;Wan g,W.;Long,Y.;Wu,R.;Li,J.;Zhu,J.;Yu,D.W.EectivenessofChina’snationalforest
protectionprogramandnaturereserves.Conserv.Biol.2015,29,1368–1377.
53. Lu,B.;He,Y.H.SpeciesclassicationusingUnmannedAerialVehi cle (UAV)-acquiredhighspatialresolutionimageryina
heterogeneousgrassland.ISPRSJ.Photogramm.RemoteSens.2017,128,73–85.hps://doi.org/10.1016/j.isprsjprs.2017.03.011.
54. Xiao,X.M.;Hollinger,D.;Aber,J.;Gol,M.;Davidson,E.A.;Zhang,Q.Y.;Moore,B.Satellite-basedmodelingofgrossprimary
productioninanevergreenneedleleafforest.RemoteSens.Environ.2004,89,519–534.hps://doi.org/10.1016/j.rse.2003.11.008.
Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividualau-
thor(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjuryto
peopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
A comprehensive quantification of global forest fragmentation is urgently required to guide forest protection, restoration and reforestation policies. Previous efforts focused on the static distribution patterns of forest remnants, potentially neglecting dynamic changes in forest landscapes. Here, we map global distribution of forest fragments and their temporal changes between 2000 and 2020. We find that forest landscapes in the tropics were relatively intact, yet these areas experienced the most severe fragmentation over the past two decades. In contrast, 75.1% of the world’s forests experienced a decrease in fragmentation, and forest fragmentation in most fragmented temperate and subtropical regions, mainly in northern Eurasia and South China, declined between 2000 and 2020. We also identify eight modes of fragmentation that indicate different recovery or degradation states. Our findings underscore the need to curb deforestation and increase connectivity among forest fragments, especially in tropical areas.
Article
Full-text available
Fragmentation transforms the environment along forest edges. The prevailing narrative, driven by research in tropical systems, suggests that edge environments increase tree mortality and structural degradation resulting in net decreases in ecosystem productivity. We show that, in contrast to tropical systems, temperate forest edges exhibit increased forest growth and biomass with no change in total mortality relative to the forest interior. We analyze >48,000 forest inventory plots across the north-eastern US using a quasi-experimental matching design. At forest edges adjacent to anthropogenic land covers, we report increases of 36.3% and 24.1% in forest growth and biomass, respectively. Inclusion of edge impacts increases estimates of forest productivity by up to 23% in agriculture-dominated areas, 15% in the metropolitan coast, and +2% in the least-fragmented regions. We also quantify forest fragmentation globally, at 30-m resolution, showing that temperate forests contain 52% more edge forest area than tropical forests. Our analyses upend the conventional wisdom of forest edges as less productive than intact forest and call for a reassessment of the conservation value of forest fragments. Studies from tropical regions indicate that fragmented forests are less productive. Here, the authors report higher growth and biomass in temperate forest edges in North America, and show that temperate forests are more fragmented than tropical forests globally.
Article
Full-text available
Significance Tropical forests constitute the largest terrestrial component of the global carbon budget. However, rapid agricultural expansion has left these landscapes highly fragmented, calling into question their capacity to cycle and store carbon. We utilized airborne mapping approaches that revealed changes in aboveground carbon and key aspects of ecosystem structure and function in forest edges along oil palm plantations in Malaysian Borneo. We found widespread evidence of significant changes in canopy structure and foliar traits related to light capture, growth, and productivity along forest edges that corresponded to declines in aboveground carbon. These changes underpin carbon declines that varied spatially, with far-reaching implications for the conservation of forest biodiversity and carbon stocks.
Article
Full-text available
Measures of forest fragmentation, and how fragmentation is changing through time, offer required information for understanding the status and dynamics of forest ecosystems, habitat conditions, and ecosystem functions. In this research, we investigate the multi-temporal characterization of forest fragmentation across the forested ecosystems of Canada (>650 million ha) and characterize the past three decades of forest fragmentation, providing useful context against which future analyses can be compared. Using 33 years of annual land cover maps produced from classified Landsat image best-available pixel composites (1984–2016), we describe and quantify the different forest patterns and dynamics that emerged in areas that were not disturbed in the analysis period, as well as following stand-replacing (i.e., wildfire, harvest) and non-stand-replacing (e.g., insects, water stress) disturbances. Baseline levels of fragmentation for each ecozone were determined by analyzing unchanged areas. Fragmentation dynamics by dominant forest disturbance showed that harvest activities generally lead to an increase in fragmentation related to the amount of forest cover (composition), while wildfires result in increasing fragmentation as a function of the spatial arrangement of the forest. The results presented herein also allow for characterization of the recovery of vegetation spatial patterns following various disturbance types, with areas dominated by fire presenting slower spatial recovery rates compared to harvest. By the end of the analysis period following disturbance events, forest fragmentation metrics in harvest-dominated landscapes were comparable to the pre-harvesting baseline, reaching 96% of mean pre-disturbance levels for mean forest patch size, and 83% for number of forest patches. In contrast, fire-dominated landscapes resulted in more event related fragmentation, with reduced forest cover (mean Thiel Sen slope = −0.13% year⁻¹), mean forest patch size (−0.22 ha year⁻¹), an increase in forest patches (0.11 year⁻¹), and forest–non-forest join counts (0.83 year⁻¹). By the end of the analysis period following disturbance events, mean forest patch size reached 52% of mean pre-disturbance levels and 68% the number of forest patches. Overall, non-stand replacing changes had no impact on the behaviour of the forest fragmentation metrics. The open access to Landsat's image archive combined with the analysis methods presented herein enable the systematic quantification and characterization of Canada-wide trends in forest fragmentation trends and post-disturbance spatial patterns over three decades. The results reported herein provide detailed information on the temporal evolution of spatial forest patterns, and illustrate that given an adequate time period, spatial patterns in areas where land use has not changed, recover to resemble pre-disturbance conditions.
Article
Full-text available
Widespread degradation of tropical forests is caused by a variety of disturbances that interact in ways that are not well understood. To explore potential synergies between edge effects, fire and windstorm damage as causes of Amazonian forest degradation, we quantified vegetation responses to a 30‐min, high‐intensity windstorm that in 2012, swept through a large‐scale fire experiment that borders an agricultural field. Our pre‐ and postwindstorm measurements include tree mortality rates and modes of death, above‐ground biomass, and airborne LiDAR‐based estimates of tree heights and canopy disturbance (i.e., number and size of gaps). The experimental area in the southeastern Amazonia includes three 50‐ha plots established in 2004 that were unburned (Control), burned annually (B1yr), or burned at 3‐year intervals (B3yr). The windstorm caused greater damage to trees (>10 cm DBH) in the burned plots (B1yr: 13 ± 9% of 785 trees; B3yr: 17 ± 13% of 433) than in the Control plot (8 ± 4% of 2,300; ± CI). It substantially reduced vegetation height by 14% in B1yr, 20% in B3yr and 12% in the Control plots, while it reduced above‐ground biomass by 18% of 77.7 Mg/ha (B1yr), 31% of 56.6 (B3yr), and 15% of 120 (Control). Tree damage was greatest near the agricultural field edge in all three plots, especially among large trees and in B3yr. Trunk snapping (70%) and uprooting (20%) were the most common modes of tree damage and mortality, with the height of trunk failure on the burned plots often corresponding with the height of historical fire scars. Of the windstorm‐damaged trees, 80% (B1yr), 90% (B3yr), and 57% (Control) were dead 4 years later. Trees that had crown damage experienced the least mortality (22%–60%), followed by those that were snapped (55%–94%) and uprooted (88%–94%). Synthesis. We demonstrate the synergistic effects of three kinds of disturbances on a tropical forest. Our results show that the effects of windstorms are exacerbated by prior degradation by fire and fragmentation. We highlight that understorey fires can produce long‐lasting effects on tropical forests not only by directly killing trees but also by increasing tree vulnerability to wind damage due to fire scars and a more open canopy.
Article
Full-text available
Mapping global deforestation patterns Forest loss is being driven by various factors, including commodity production, forestry, agriculture, wildfire, and urbanization. Curtis et al. used high-resolution Google Earth imagery to map and classify global forest loss since 2001. Just over a quarter of global forest loss is due to deforestation through permanent land use change for the production of commodities, including beef, soy, palm oil, and wood fiber. Despite regional differences and efforts by governments, conservationists, and corporations to stem the losses, the overall rate of commodity-driven deforestation has not declined since 2001. Science , this issue p. 1108
Article
Full-text available
Forest fragmentation is pervasive throughout the world's forests, impacting growing conditions and carbon (C) dynamics through edge effects that produce gradients in microclimate, biogeochemistry, and stand structure. Despite the majority of global forests being <1 km from an edge, our understanding of forest C dynamics is largely derived from intact forest systems. Edge effects on the C cycle vary by biome in their direction and magnitude, but current forest C accounting methods and ecosystem models generally fail to include edge effects. In the mesic northeastern US, large increases in C stocks and productivity are found near the temperate forest edge, with over 23% of the forest area within 30 m of an edge. Changes in the wind, fire, and moisture regimes near tropical forest edges result in decreases in C stocks and productivity. This review explores differences in C dynamics observed across biomes through a trade‐offs framework that considers edge microenvironmental changes and limiting factors to productivity.
Article
Full-text available
Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lia-nas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.
Article
Farmers are carving a new agricultural frontier from the forests in the Southeast Asian Massif (SAM) in the 21st century, triggering significant environment degradation at the local scale; however, this frontier has been missed by existing global land use and forest loss analyses. In this paper we chose Thailand's Nan Province, which is located in the geometric center of SAM, as a case study, and integrated high resolution forest cover change product with a fine‐scale land cover map to investigate land use dynamics with respect to topography in this region. Our results show that total forest loss in Nan Province during 2001‐2016 was 66,072 hectares (9.1% of the forest cover in 2000), and that the majority of this lost forest (92%) had been converted into crop (mainly corn) fields by 2017. Annual forest loss is significantly correlated with global corn price (p < 0.01), re‐confirming agricultural expansion as a key driver of forest loss in Nan Province. Along with the increasing global corn price, forest loss in Nan Province has accelerated at a rate of 2,616 ±730 hectares per decade (p < 0.01). Global corn price peaked in 2012, in which year annual forest loss also reached its peak (7,523 hectares); since then, the location of forest loss has moved to steeper land at higher elevations. Spatially, forest loss driven by this smallholder agricultural expansion emerges as many small patches that are not recognizable even at a moderate spatial resolution (e.g. 300 m). It explains how existing global land use/cover change products have missed the widespread and rapid forest loss in SAM. It also highlights the importance of high‐resolution observations to evaluate the environmental impacts of agricultural expansion and forest loss in SAM, including but not limited to the impacts on global carbon cycle, regional hydrology, and local environmental degradation. This article is protected by copyright. All rights reserved.
Article
Accurately estimating spatial-temporal patterns of gross primary production (GPP) is important for the global carbon cycle. Satellite-based light use efficiency (LUE) models are regarded as an efficient tool in simulating spatial-temporal dynamics of GPP. However, the accuracy assessment of GPP simulations from LUE models at both spatial and temporal scales remains a challenge. In this study, we simulated GPP of vegetation in China during 2007-2014 using a LUE model (Vegetation Photosynthesis Model, VPM) based on MODIS (moderate-resolution imaging spectroradiometer) images with 8-day temporal and 500-m spatial resolutions and NCEP (National Center for Environmental Prediction) climate data. Global Ozone Monitoring Instrument 2 (GOME-2) solar-induced chlorophyll fluorescence (SIF) data were used to compare with VPM simulated GPP (GPP VPM) temporally and spatially using linear correlation analysis. Significant positive linear correlations exist between monthly GPP VPM and SIF data over a single year (2010) and multiple years (2007-2014) in most areas of China. GPP VPM is also significantly positive correlated with GOME-2 SIF (R 2 N 0.43) spatially for seasonal scales. However, poor consistency was detected between GPP VPM and SIF data at yearly scale. GPP dynamic trends have high spatial-temporal variation in China during 2007-2014. Temperature, leaf area index (LAI), and precipitation are the most important factors influence GPP VPM in the regions of East Qinghai-Tibet Plateau, Loss Plateau, and Southwestern China, respectively. The results of this study indicate that GPP VPM is temporally and spatially in line with GOME-2 SIF data, and space-borne SIF data have great potential for evaluating LUE-based GPP models.