Article

Signaling through cAMP-Epac1 induces metabolic reprogramming to protect podocytes in glomerulonephritis

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
In this study, novel methods were developed, which allowed continuous (24/7) measurement of arterial blood pressure and renal blood flow in freely moving rats and the intermittent collection of arterial and renal venous blood to estimate kidney metabolic fluxes of O2 and metabolites. Specifically, the study determined the effects of a high salt (HS; 4.0% NaCl) diet upon whole kidney O2 consumption and arterial and renal venous plasma metabolomic profiles of normal Sprague–Dawley rats. A separate group of rats was studied to determine changes in the cortex and outer medulla tissue metabolomic and mRNAseq profiles before and following the switch from a 0.4% to 4.0% NaCl diet. In addition, targeted mRNA expression analysis of cortical segments was performed. Significant changes in the metabolomic and transcriptomic profiles occurred with feeding of the HS diet. A progressive increase of kidney O2 consumption was found despite a reduction in expression of most of the mRNA encoding enzymes of TCA cycle. A novel finding was the increased expression of glycolysis-related genes in Cx and isolated proximal tubular segments in response to an HS diet, consistent with increased release of pyruvate and lactate from the kidney to the renal venous blood. Data suggests that aerobic glycolysis (eg, Warburg effect) may contribute to energy production under these circumstances. The study provides evidence that kidney metabolism responds to an HS diet enabling enhanced energy production while protecting from oxidative stress and injury. Metabolomic and transcriptomic analysis of kidneys of Sprague-Dawley rats fed a high salt diet.
Article
Full-text available
Skeletal muscle (SM) pain and fatigue are common in Fabry disease (FD). Here, we undertook the investigation of the energetic mechanisms related to FD-SM phenotype. A reduced tolerance to aerobic activity and lactate accumulation occurred in FD-mice and patients. Accordingly, in murine FD-SM we detected an increase in fast/glycolytic fibers, mirrored by glycolysis upregulation. In FD-patients, we confirmed a high glycolytic rate and the underutilization of lipids as fuel. In the quest for a tentative mechanism, we found HIF-1 upregulated in FD-mice and patients. This finding goes with miR-17 upregulation that is responsible for metabolic remodeling and HIF-1 accumulation. Accordingly, miR-17 antagomir inhibited HIF-1 accumulation, reverting the metabolic-remodeling in FD-cells. Our findings unveil a Warburg effect in FD, an anaerobic-glycolytic switch under normoxia induced by miR-17-mediated HIF-1 upregulation. Exercise-intolerance, blood-lactate increase, and the underlying miR-17/HIF-1 pathway may become useful therapeutic targets and diagnostic/monitoring tools in FD.
Article
Full-text available
The current understanding of lactate extends from its origins as a byproduct of glycolysis to its role in tumor metabolism, as identified by studies on the Warburg effect. The lactate shuttle hypothesis suggests that lactate plays an important role as a bridging signaling molecule that coordinates signaling among different cells, organs and tissues. Lactylation is a posttranslational modification initially reported by Professor Yingming Zhao’s research group in 2019. Subsequent studies confirmed that lactylation is a vital component of lactate function and is involved in tumor proliferation, neural excitation, inflammation and other biological processes. An indispensable substance for various physiological cellular functions, lactate plays a regulatory role in different aspects of energy metabolism and signal transduction. Therefore, a comprehensive review and summary of lactate is presented to clarify the role of lactate in disease and to provide a reference and direction for future research. This review offers a systematic overview of lactate homeostasis and its roles in physiological and pathological processes, as well as a comprehensive overview of the effects of lactylation in various diseases, particularly inflammation and cancer.
Article
Full-text available
Diabetic nephropathy (DN) arises from systemic and local changes in glucose metabolism and hemodynamics. We have reported that many glycolytic and mitochondrial enzymes, such as pyruvate kinase M2 (PKM2), were elevated in renal glomeruli of DN-protected patients with type 1 and type 2 diabetes. Here, mice with PKM2 overexpression specifically in podocytes (PPKM2Tg) were generated to uncover the renal protective function of PPKM2Tg as a potential therapeutic target that prevented elevated albumin/creatinine ratio (ACR), mesangial expansion, basement membrane thickness, and podocyte foot process effacement after 7 months of streptozotocin-induced (STZ-induced) diabetes. Furthermore, diabetes-induced impairments of glycolytic rate and mitochondrial function were normalized in diabetic PPKM2Tg glomeruli, in concordance with elevated Ppargc1a and Vegf expressions. Restored VEGF expression improved glomerular maximal mitochondrial function in diabetic PPKM2Tg and WT mice. Elevated VEGF levels were observed in the glomeruli of DN-protected patients with chronic type 1 diabetes and clinically correlated with estimated glomerular filtration (GFR) — but not glycemic control. Mechanistically, the preservations of mitochondrial function and VEGF expression were dependent on tetrameric structure and enzymatic activities of PKM2 in podocytes. These findings demonstrate that PKM2 structure and enzymatic activation in podocytes can preserve the entire glomerular mitochondrial function against toxicity of hyperglycemia via paracrine factors such as VEGF and prevent DN progression.
Article
Full-text available
Background Glycolysis dysfunction is an important pathogenesis of podocyte injury in diabetic kidney disease (DKD). Foot process fusion of podocytes and increased albuminuria are markers of early DKD. Moreover, cytoskeletal remodeling has been found to be involved in the foot process fusion of podocytes. However, the connections between cytoskeletal remodeling and alterations of glycolysis in podocytes in DKD have not been clarified. Methods mRNA sequencing of glomeruli obtained from db/db and db/m mice with albuminuria was performed to analyze the expression profiling of genes in glucose metabolism. Expressions of phosphofructokinase platelet type (PFKP) in the glomeruli of DKD patients were detected. Clotrimazole (CTZ) was used to explore the renal effects of PFKP inhibition in diabetic mice. Using Pfkp siRNA or recombinant plasmid to manipulate PFKP expression, the effects of PFKP on high glucose (HG) induced podocyte damage were assessed in vitro. The levels of fructose-1,6-bisphosphate (FBP) were measured. Targeted metabolomics was performed to observe the alterations of the metabolites in glucose metabolism after HG stimulation. Furthermore, aldolase type b (Aldob) siRNA or recombinant plasmid were applied to evaluate the influence of FBP level alteration on podocytes. FBP was directly added to podocyte culture media. Db/db mice were treated with FBP to investigate its effects on their kidney. Results mRNA sequencing showed that glycolysis enzyme genes were altered, characterized by upregulation of upstream genes (Hk1, and Pfkp) and down-regulation of downstream genes of glycolysis (Pkm, and Ldha). Moreover, the expression of PFKP was increased in glomeruli of DKD patients. The CTZ group presented more severe renal damage. In vitro, the Pfkp siRNA group and ALDOB overexpression group showed much more induced cytoskeletal remodeling in podocytes, while overexpression of PFKP and suppression of ALDOB in vitro rescued podocytes from cytoskeletal remodeling through regulation of FBP levels and inhibition of the RhoA/ROCK1 pathway. Furthermore, targeted metabolomics showed FBP level was significantly increased in HG group compared with the control group. Exogenous FBP addition reduced podocyte cytoskeletal remodeling and renal damage of db/db mice. Conclusions These findings provide evidence that PFKP may be a potential target for podocyte injury in DN and provide a rationale for applying podocyte glycolysis enhancing agents in patients with DKD.
Article
Full-text available
Exchange proteins directly activated by cAMP (Epacs) are abundantly expressed in the renal tubules. We used genetic and pharmacological tools in combination with balance, electrophysiological and biochemical approaches to examine the role of Epac1 and Epac2 in renal sodium handling. We demonstrate that Epac1-/- and Epac2-/- mice exhibit a delayed anti-natriuresis to dietary sodium restriction despite augmented aldosterone levels. This was associated with a significantly lower response to the epithelial Na+ channel (ENaC) blocker amiloride, reduced ENaC activity in split-opened collecting ducts, and defective posttranslational processing of α and γENaC subunits in the knockout mice fed with Na+ deficient diet. Concomitant deletion of both isoforms led to a marginally greater natriuresis but further increased aldosterone levels. Epac2 blocker, ESI-05 and Epac1&2 blocker, ESI-09 decreased ENaC activity in EpacWT mice kept on Na+ deficient diet but not on the regular diet. ESI-09 injections led to natriuresis in EpacWT mice on Na+ deficient diet, which was caused by ENaC inhibition. In summary, our results demonstrate non-redundant actions of Epac1 and Epac2 in stimulation of ENaC activity during variations in dietary salt intake. We speculate that inhibition of Epac signaling could be instrumental in treatment of hypertensive states associated with ENaC over-activation.
Article
Full-text available
Diabetic Nephropathy (DN) is the leading cause of kidney failure, with an increasing incidence worldwide. Mitochondrial dysfunction is known to occur in DN and has been implicated in the underlying pathogenesis of disease. These complex organelles have an array of important cellular functions and involvement in signalling pathways; and understanding the intricacies of these responses in health, as well as how they are damaged in disease, is likely to highlight novel therapeutic avenues. A key cell type damaged early in DN is the podocyte and increasing studies have focused on investigating the role of mitochondria in podocyte injury. This review will summarise what is known about podocyte mitochondrial dynamics in DN, with a particular focus on bioenergetic pathways, highlighting key studies in this field and potential opportunities to target, enhance or protect podocyte mitochondrial function in the treatment of DN.
Article
Full-text available
Cyclic adenosine monophosphate (cAMP) is a master regulator of mitochondrial metabolism but its precise mechanism of action yet remains unclear. Here, we found that a dietary saturated fatty acid (FA), palmitate increased intracellular cAMP synthesis through the palmitoylation of soluble adenylyl cyclase in cardiomyocytes. cAMP further induced exchange protein directly activated by cyclic AMP 1 (Epac1) activation, which was upregulated in the myocardium of obese patients. Epac1 enhanced the activity of a key enzyme regulating mitochondrial FA uptake, carnitine palmitoyltransferase 1. Consistently, pharmacological or genetic Epac1 inhibition prevented lipid overload, increased FA oxidation (FAO), and protected against mitochondrial dysfunction in cardiomyocytes. In addition, analysis of Epac1 phosphoproteome led us to identify two key mitochondrial enzymes of the the β-oxidation cycle as targets of Epac1, the long-chain FA acyl-CoA dehydrogenase (ACADL) and the 3-ketoacyl-CoA thiolase (3-KAT). Epac1 formed molecular complexes with the Ca ²⁺ /calmodulin-dependent protein kinase II (CaMKII), which phosphorylated ACADL and 3-KAT at specific amino acid residues to decrease lipid oxidation. The Epac1-CaMKII axis also interacted with the α subunit of ATP synthase, thereby further impairing mitochondrial energetics. Altogether, these findings indicate that Epac1 disrupts the balance between mitochondrial FA uptake and oxidation leading to lipid accumulation and mitochondrial dysfunction, and ultimately cardiomyocyte death.
Article
Full-text available
The molecular mechanisms underlying chronic kidney disease (CKD) are poorly understood and treatment options are limited, a situation underpinning the need for elucidating the causative molecular mechanisms and for identifying innovative treatment options. It is emerging that cyclic 3′,5′‐adenosine monophosphate (cAMP) signalling occurs in defined cellular compartments within nanometer dimensions in processes whose dysregulation is associated with CKD. cAMP compartmentalisation is tightly controlled by a specific set of proteins, including A‐kinase anchoring proteins (AKAPs) and phosphodiesterases (PDEs). AKAPs such as AKAP18, AKAP220, AKAP‐Lbc and STUB1, and PDE4 coordinate arginine‐vasopressin (AVP)‐induced water reabsorption by collecting duct principal cells. However, hyperactivation of the AVP system is associated with kidney damage and CKD. Podocyte injury involves aberrant AKAP signalling. cAMP signalling in immune cells can be local and slow the progression of inflammatory processes typical for CKD. A major risk factor of CKD is hypertension. cAMP directs the release of the blood pressure regulator, renin, from juxtaglomerular cells, and plays a role in Na⁺ reabsorption through ENaC, NKCC2 and NCC in the kidney. Mutations in the cAMP hydrolysing PDE3A that cause lowering of cAMP lead to hypertension. Another major risk factor of CKD is diabetes mellitus. AKAP18 and AKAP150 and several PDEs are involved in insulin release. Despite the increasing amount of data, an understanding of functions of compartmentalised cAMP signalling with relevance for CKD is fragmentary. Uncovering functions will improve the understanding of physiological processes and identification of disease‐relevant aberrations may guide towards new therapeutic concepts for the treatment of CKD.
Article
Full-text available
Aerobic glycolysis, or preferential fermentation of glucose-derived pyruvate to lactate despite available oxygen, is associated with proliferation across many organisms and conditions. To better understand that association, we examined the metabolic consequence of activating the pyruvate dehydrogenase complex (PDH) to increase pyruvate oxidation at the expense of fermentation. We find that increasing PDH activity impairs cell proliferation by reducing the NAD⁺/NADH ratio. This change in NAD⁺/NADH is caused by increased mitochondrial membrane potential that impairs mitochondrial electron transport and NAD⁺ regeneration. Uncoupling respiration from ATP synthesis or increasing ATP hydrolysis restores NAD⁺/NADH homeostasis and proliferation even when glucose oxidation is increased. These data suggest that when demand for NAD⁺ to support oxidation reactions exceeds the rate of ATP turnover in cells, NAD⁺ regeneration by mitochondrial respiration becomes constrained, promoting fermentation, despite available oxygen. This argues that cells engage in aerobic glycolysis when the demand for NAD⁺ is in excess of the demand for ATP.
Article
Full-text available
The “Warburg effect” describes the reprogramming of glucose metabolism away from oxidative phosphorylation toward aerobic glycolysis, and it is one of the hallmarks of cancer cells. Several factors can be involved in this process, but in this review, the roles of non-coding RNAs (ncRNAs) are highlighted in several types of human cancer. ncRNAs, including microRNAs, long non-coding RNAs, and circular RNAs, can all affect metabolic enzymes and transcription factors to promote glycolysis and modulate glucose metabolism to enhance the progression of tumors. In particular, the 5′-AMP-activated protein kinase (AMPK) and the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathways are associated with alterations in ncRNAs. A better understanding of the roles of ncRNAs in the Warburg effect could ultimately lead to new therapeutic approaches for suppressing cancer.
Article
Full-text available
Mitochondrial metabolism must constantly adapt to stress conditions in order to maintain bioenergetic levels related to cellular functions. This absence of proper adaptation can be seen in a wide array of conditions, including cancer. Metabolic adaptation calls on mitochondrial function and draws on the mitochondrial reserve to meet increasing needs. Among mitochondrial respiratory parameters, the spare respiratory capacity (SRC) represents a particularly robust functional parameter to evaluate mitochondrial reserve. We provide an overview of potential SRC mechanisms and regulation with a focus on its particular significance in cancer cells.
Article
Full-text available
The compartmentation of signaling processes is accomplished by the assembly of protein complexes called signalosomes. These signaling platforms colocalize enzymes, substrates, and anchoring proteins into specific subcellular compartments. Exchange protein directly activated by cAMP 1 (EPAC1) is an effector of the second messenger, 3′,5′-cyclic adenosine monophosphate (cAMP) that is associated with multiple roles in several pathologies including cardiac diseases. Both EPAC1 intracellular localization and molecular partners are key players in the regulation of cell fate, which may have important therapeutic potential. In this review, we summarize the recent findings on EPAC1 structure, regulation, and pharmacology. We describe the importance of EPAC1 subcellular distribution in its biological action, paying special attention to its nuclear localization and mechanism of action leading to cardiomyocyte hypertrophy. In addition, we discuss the role of mitochondrial EPAC1 in the regulation of cell death. Depending on the cell type and stress condition, we present evidence that supports either a protective or detrimental role of EPAC1 activation.
Article
Full-text available
Podocytes, a type of highly specialized epithelial cells, require substantial levels of energy to maintain glomerular integrity and function, but little is known on the regulation of podocytes’ energetics. Lack of metabolic analysis during podocyte development led us to explore the distribution of mitochondrial oxidative phosphorylation and glycolysis, the two major pathways of cell metabolism, in cultured podocytes during in vitro differentiation. Unexpectedly, we observed a stronger glycolytic profile, accompanied by an increased mitochondrial complexity in differentiated podocytes, indicating that mature podocytes boost both glycolysis and mitochondrial metabolism to meet their augmented energy demands. In addition, we found a shift of predominant energy source from anaerobic glycolysis in immature podocyte to oxidative phosphorylation during the differentiation process. Furthermore, we identified a crucial metabolic regulator for podocyte development, pyruvate kinase M2. Pkm2-knockdown podocytes showed dramatic reduction of energy metabolism, resulting in defects of cell differentiation. Meanwhile, podocyte-specific Pkm2-knockout (KO) mice developed worse albuminuria and podocyte injury after adriamycin treatment. We identified mammalian target of rapamycin (mTOR) as a critical regulator of PKM2 during podocyte development. Pharmacological inhibition of mTOR potently abrogated PKM2 expression and disrupted cell differentiation, indicating the existence of metabolic checkpoint that need to be satisfied in order to allow podocyte differentiation.
Article
Full-text available
The second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) is one of the most important signalling molecules in the heart as it regulates many physiological and pathophysiological processes. In addition to the classical protein kinase A (PKA) signalling route, the exchange proteins directly activated by cAMP (Epac) mediate the intracellular functions of cAMP and are now emerging as a new key cAMP effector in cardiac pathophysiology. In this review, we provide a perspective on recent advances in the discovery of new chemical entities targeting the Epac1 isoform and illustrate their use to study the Epac1 signalosome and functional characterisation in cardiac cells. We summarize the role of Epac1 in different subcompartments of the cardiomyocyte and discuss how cAMP–Epac1 specific signalling networks may contribute to the development of cardiac diseases. We also highlight ongoing work on the therapeutic potential of Epac1-selective small molecules for the treatment of cardiac disorders.
Article
Full-text available
The cellular responses induced by mitochondrial dysfunction remain elusive. Intrigued by the lack of almost any glomerular phenotype in patients with profound renal ischemia, we comprehensively investigated the primary sources of energy of glomerular podocytes. Combining functional measurements of oxygen consumption rates, glomerular metabolite analysis, and determination of mitochondrial density of podocytes in vivo, we demonstrate that anaerobic glycolysis and fermentation of glucose to lactate represent the key energy source of podocytes. Under physiological conditions, we could detect neither a developmental nor late-onset pathological phenotype in podocytes with impaired mitochondrial biogenesis machinery, defective mitochondrial fusion-fission apparatus, or reduced mtDNA stability and transcription caused by podocyte-specific deletion of Pgc-1α, Drp1, or Tfam, respectively. Anaerobic glycolysis represents the predominant metabolic pathway of podocytes. These findings offer a strategy to therapeutically interfere with the enhanced podocyte metabolism in various progressive kidney diseases, such as diabetic nephropathy or focal segmental glomerulosclerosis (FSGS). : Glomerular podocytes form the third and most outer layer of the kidney filtration barrier responsible for restricting the passage of proteins into the urine. Brinkkoetter et al. show that podocyte metabolism primarily relies on anaerobic glycolysis and the fermentation of glucose to lactate. Keywords: glomerular filtration barrier, podocytes, anaerobic glycolysis, metabolomics
Article
Full-text available
cAMP is a universal second messenger regulating a plethora of processes in the kidney. Two downstream effectors of cAMP are PKA and exchange protein directly activated by cAMP (Epac), which, unlike PKA, is often linked to elevation of [Ca²⁺]i. While both Epac isoforms (Epac1 and Epac2) are expressed along the nephron, their relevance in the kidney remains obscure. We combined ratiometric calcium imaging with quantitative immunoblotting, immunofluorescent confocal microscopy, and balance studies in mice lacking Epac1 or Epac2 to determine the role of Epac in renal water‐solute handling. Epac1−/− and Epac2−/− mice developed polyuria despite elevated arginine vasopressin levels. We did not detect major deficiencies in arginine vasopressin [Ca²⁺]i signaling in split‐opened collecting ducts or decreases in aquaporin water channel type 2 levels. Instead, sodium‐hydrogen exchanger type 3 levels in the proximal tubule were dramatically reduced in Epac1−/− and Epac2−/− mice. Water deprivation revealed persisting polyuria, impaired urinary concentration ability, and augmented urinary excretion of Na⁺ and urea in both mutant mice. In summary, we report a nonredundant contribution of Epac isoforms to renal function. Deletion of Epac1 and Epac2 decreases sodium–hydrogen exchanger type 3 expression in the proximal tubule, leading to polyuria and osmotic diuresis.—Cherezova, A., Tomilin, V., Buncha, V., Zaika, O., Ortiz, P. A., Mei, F., Cheng, X., Mamenko, M., Pochynyuk, O. Urinary concentrating defect in mice lacking Epac1 or Epac2. FASEB J. 33, 2156–2170 (2019). www.fasebj.org
Article
Full-text available
Mammalian tissues are fuelled by circulating nutrients, including glucose, amino acids, and various intermediary metabolites. Under aerobic conditions, glucose is generally assumed to be burned fully by tissues via the tricarboxylic acid cycle (TCA cycle) to carbon dioxide. Alternatively, glucose can be catabolized anaerobically via glycolysis to lactate, which is itself also a potential nutrient for tissues and tumours. The quantitative relevance of circulating lactate or other metabolic intermediates as fuels remains unclear. Here we systematically examine the fluxes of circulating metabolites in mice, and find that lactate can be a primary source of carbon for the TCA cycle and thus of energy. Intravenous infusions of (13)C-labelled nutrients reveal that, on a molar basis, the circulatory turnover flux of lactate is the highest of all metabolites and exceeds that of glucose by 1.1-fold in fed mice and 2.5-fold in fasting mice; lactate is made primarily from glucose but also from other sources. In both fed and fasted mice, (13)C-lactate extensively labels TCA cycle intermediates in all tissues. Quantitative analysis reveals that during the fasted state, the contribution of glucose to tissue TCA metabolism is primarily indirect (via circulating lactate) in all tissues except the brain. In genetically engineered lung and pancreatic cancer tumours in fasted mice, the contribution of circulating lactate to TCA cycle intermediates exceeds that of glucose, with glutamine making a larger contribution than lactate in pancreatic cancer. Thus, glycolysis and the TCA cycle are uncoupled at the level of lactate, which is a primary circulating TCA substrate in most tissues and tumours.
Article
Full-text available
After more than 80 years from the revolutionary discoveries of Otto Warburg, who observed high glucose dependency, with increased glycolysis and lactate production regardless of oxygen availability in most cancer cells, the ‘Warburg effect’ returns to the fore in neuronal cells affected by Alzheimer’s disease (AD). Indeed, it seems that, in the mild phase of AD, neuronal cells “prefer” to use the energetically inefficient method of burning glucose by glycolysis, as in cancer, proving to become resistant to β-amyloid (Aβ)-dependent apoptosis. However, in the late phase, while most AD brain cells die in response to Aβ toxicity, only small populations of neurons, exhibiting increased glucose uptake and glycolytic flux, are able to survive as they are resistant to Aβ. Here we draw an overview on the metabolic shift for glucose utilization from oxidative phosphorylation to glycolysis, focusing on the hypothesis that, as extreme attempt to oppose the impending death, mitochondria—whose dysfunction and central role in Aβ toxicity is an AD hallmark—are sent into quiescence, this likely contributing to activate mechanisms of resistance to Aβ-dependent apoptosis. Finally, the attempt turns out fruitless since the loss of the adaptive advantage afforded by elevated aerobic glycolysis exacerbates the pathophysiological processes associated with AD, making the brain susceptible to Aβ-induced neurotoxicity and leading to cell death and dementia. The understanding of how certain nerve cells become resistant to Aβ toxicity, while the majority dies, is an attractive challenge toward the identification of novel possible targets for AD therapy.
Article
Full-text available
Differentiated podocytes, a type of renal glomerular cells, require substantial levels of energy to maintain glomerular physiology. Mitochondria and glycolysis are two major producers of ATP, but the precise roles of each in podocytes remain unknown. This study evaluated the roles of mitochondria and glycolysis in differentiated and differentiating podocytes. Mitochondria in differentiated podocytes are located in the central part of cell body while blocking mitochondria had minor effects on cell shape and migratory ability. In contrast, blocking glycolysis significantly reduced the formation of lamellipodia, a cortical area of these cells, decreased the cell migratory ability and induced the apoptosis. Consistently, the local ATP production in lamellipodia was predominantly regulated by glycolysis. In turn, synaptopodin expression was ameliorated by blocking either mitochondrial respiration or glycolysis. Similar to differentiated podocytes, the differentiating podocytes utilized the glycolysis for regulating apoptosis and lamellipodia formation while synaptopodin expression was likely involved in both mitochondrial OXPHOS and glycolysis. Finally, adult mouse podocytes have most of mitochondria predominantly in the center of the cytosol whereas phosphofructokinase, a rate limiting enzyme for glycolysis, was expressed in foot processes. These data suggest that mitochondria and glycolysis play parallel but distinct roles in differentiated and differentiating podocytes.
Article
Full-text available
Chronic kidney disease (CKD) is associated with significant morbidity and mortality, impacted not alone by progression to end-stage kidney disease, but also by the high associated incidence of cardiovascular events and related mortality. Despite our current understanding of the pathogenesis of CKD and the treatments available, the reported incidence of CKD continues to rise worldwide, and is often referred to as the silent public healthcare epidemic. The significant cost to patient wellbeing and to the economy of managing the later stages of CKD have prompted efforts to develop interventions to delay the development and progression of this syndrome. In this article, we review established and novel agents that may aid in delaying the progression of CKD and improve patient outcomes.
Article
Full-text available
Recent studies have highlighted the renoprotective effect of sirtuin1 (SIRT1), a deacetylase that contributes to cellular regulation. However, the pathophysiologic role of SIRT1 in podocytes remains unclear. Here, we investigated the function of SIRT1 in podocytes. We first established podocyte-specific Sirt1 knockout (SIRT1(pod-/-)) mice. We then induced glomerular disease by nephrotoxic serum injection. The increase in urinary albumin excretion and BUN and the severity of glomerular injury were all significantly greater in SIRT1(pod-/-) mice than in wild-type mice. Western blot analysis and immunofluorescence showed a significant decrease in podocyte-specific proteins in SIRT1(pod-/-) mice, and electron microscopy showed marked exacerbation of podocyte injury, including actin cytoskeleton derangement in SIRT1(pod-/-) mice compared with wild-type mice. Protamine sulfate-induced podocyte injury was also exacerbated by podocyte-specific SIRT1 deficiency. In vitro, actin cytoskeleton derangement in H2O2-treated podocytes became prominent when the cells were pretreated with SIRT1 inhibitors. Conversely, this H2O2-induced derangement was ameliorated by SIRT1 activation. Furthermore, SIRT1 activation deacetylated the actin-binding and -polymerizing protein cortactin in the nucleus and facilitated deacetylated cortactin localization in the cytoplasm. Cortactin knockdown or inhibition of the nuclear export of cortactin induced actin cytoskeleton derangement and dissociation of cortactin from F-actin, suggesting the necessity of cytoplasmic cortactin for maintenance of the actin cytoskeleton. Taken together, these findings indicate that SIRT1 protects podocytes and prevents glomerular injury by deacetylating cortactin and thereby, maintaining actin cytoskeleton integrity. Copyright © 2014 by the American Society of Nephrology.
Article
Full-text available
Aims : Stimulation of β-adrenergic receptors (β-AR) increases cAMP production and contributes to the pathogenesis of cardiac hypertrophy and failure through poorly understood mechanisms. We previously demonstrated that Exchange protein directly activated by cAMP 1 (Epac1) induced hypertrophy in primary cardiomyocytes. Among the mechanisms triggered by cardiac stress, autophagy has been highlighted as a protective or harmful response. Here, we investigate whether Epac1 promotes cardiac autophagy and how altered autophagy has an impact on Epac1-induced cardiomyocyte hypertrophy. Methods and Results : We reported that direct stimulation of Epac1 with the agonist, Sp-8-(4-chlorophenylthio)-2′-O-methyl-cAMP (Sp-8-pCPT) promoted autophagy activation in neonatal cardiomyocytes. Stimulation of β-adrenergic receptor (β-AR) with isoprenaline (ISO) mimicked the effect of Epac1 on autophagy markers. Conversely, the induction of autophagy flux following ISO treatment was prevented in cardiomyocytes pre-treated with a selective inhibitor of Epac1, CE3F4. Importantly, we found that Epac1 deletion in mice protected against β-AR induced cardiac remodeling and prevented the induction of autophagy. The signalling mechanisms underlying Epac1-induced autophagy involved a Ca2+/calmodulin-dependent kinase kinase β (CaMKKβ)/AMP-dependent protein kinase (AMPK) pathway. Finally, we provided evidence that pharmacological inhibition of autophagy using 3-methyladenine (3-MA) or down-regulation of autophagy-related protein 5 (Atg5) significantly potentiated Epac1-promoted cardiomyocyte hypertrophy. Conclusion : Altogether, these findings demonstrate that autophagy is an adaptive response to antagonize Epac1-promoted cardiomyocyte hypertrophy.
Article
Full-text available
Podocyte injury and loss critically contribute to the pathogenesis of proteinuric kidney diseases including diabetic nephropathy. Deregulated lipid metabolism with disturbed free fatty acid (FFA) metabolism is a characteristic of metabolically unhealthy obesity and type 2 diabetes and likely contributes to end-stage kidney disease irrespective of the underlying kidney disease. In the current review, we summarize recent findings related to FFAs and altered renal FFA metabolism with a special focus on podocytes. We will outline the opposing effects of saturated and monounsaturated FFAs and a particular emphasis will be given to the underlying molecular mechanisms involving insulin resistance and endoplasmic reticulum homeostasis. Finally, recent data suggesting a critical role of renal FFA metabolism to adapt to an altered lipid environment will be discussed.
Article
Full-text available
Activation of Rap1 by exchange protein activated by cAMP (Epac) promotes cell adhesion and actin cytoskeletal polarization. Pharmacologic activation of Epac-Rap signaling by the Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP during ischemia-reperfusion (IR) injury reduces renal failure and application of 8-pCPT-2'-O-Me-cAMP promotes renal cell survival during exposure to the nephrotoxicant cisplatin. Here, we found that activation of Epac by 8-pCPT-2'-O-Me-cAMP reduced production of reactive oxygen species during reoxygenation after hypoxia by decreasing mitochondrial superoxide production. Epac activation prevented disruption of tubular morphology during diethyl maleate-induced oxidative stress in an organotypic three-dimensional culture assay. In vivo renal targeting of 8-pCPT-2'-O-Me-cAMP to proximal tubules using a kidney-selective drug carrier approach resulted in prolonged activation of Rap1 compared with nonconjugated 8-pCPT-2'-O-Me-cAMP. Activation of Epac reduced antioxidant signaling during IR injury and prevented tubular epithelial injury, apoptosis, and renal failure. Our data suggest that Epac1 decreases reactive oxygen species production by preventing mitochondrial superoxide formation during IR injury, thus limiting the degree of oxidative stress. These findings indicate a new role for activation of Epac as a therapeutic application in renal injury associated with oxidative stress.
Article
Full-text available
Metabolic activities in normal cells rely primarily on mitochondrial oxidative phosphorylation (OXPHOS) to generate ATP for energy. Unlike in normal cells, glycolysis is enhanced and OXPHOS capacity is reduced in various cancer cells. It has long been believed that the glycolytic phenotype in cancer is due to a permanent impairment of mitochondrial OXPHOS, as proposed by Otto Warburg. This view is challenged by recent investigations which find that the function of mitochondrial OXPHOS in most cancers is intact. Aerobic glycolysis in many cancers is the combined result of various factors such as oncogenes, tumor suppressors, a hypoxic microenvironment, mtDNA mutations, genetic background and others. Understanding the features and complexity of the cancer energy metabolism will help to develop new approaches in early diagnosis and effectively target therapy of cancer.
Article
Full-text available
This study investigated the role of discoidin domain receptor 1 (DDR1), a collagen receptor that displays tyrosine-kinase activity, in the development of glomerulonephritis. Crescentic glomerulonephritis was induced in DDR1-deficient mice and their wild-type (WT) littermates as controls, by injection of alloimmune sheep nephrotoxic serum (NTS). Histological, functional and transcriptomic studies were performed. Glomerulonephritis produced a 17-fold increase of DDR1 expression, predominantly in glomeruli. DDR1 deletion protected NTS-treated mice against glomerular disease (proteinuria/creatininuria 5.5±1.1 vs. 13.2±0.8 g/mmol in WT, crescents 12±2 vs. 24±2% of glomeruli, urea 16±2 vs. 28±5 mM), hypertension (123±11 vs. 157±8 mmHg), and premature death (70 vs. 10% survival) (all P<0.05). Reciprocal stimulation between DDR1 and interleukin-1b expression in vivo and in cultured podocytes suggested a positive feed-back loop between DDR1 and inflammation. In NTS-treated WT mice, administration of DDR1-specific antisense oligodeoxynucleotides decreased DDR1 expression (-56%) and protected renal function and structure, including nephrin expression (4.2±1.4 vs. 0.9±0.4 arbitrary units, P<0.05), compared to control mice receiving scrambled oligodeoxynucleotides. The therapeutic potential of this approach was reinforced by the observation of increased DDR1 expression in glomeruli of patients with lupus nephritis and Goodpasture's syndrome. These results prompt further interest in DDR1 blockade strategies, especially in the treatment of glomerulonephritis.-Kerroch, M., Guerrot, D., Vandermeersch, S., Placier, S., Mesnard, L., Jouanneau, C., Rondeau, E., Ronco, P., Boffa, J.-J., Chatziantoniou, C., Dussaule, J.-C. Genetic inhibition of discoidin domain receptor 1 protects mice against crescentic glomerulonephritis.
Article
Full-text available
Renal ischemia-reperfusion injury is associated with the loss of tubular epithelial cell-cell and cell-matrix interactions which contribute to renal failure. The Epac-Rap signaling pathway is a potent regulator of cell-cell and cell-matrix adhesion. The cyclic AMP analogue 8-pCPT-2'-O-Me-cAMP has been shown to selectively activate Epac, whereas the addition of an acetoxymethyl (AM) ester to 8-pCPT-2'-O-Me-cAMP enhanced in vitro cellular uptake. Here we demonstrate that pharmacological activation of Epac-Rap signaling using acetoxymethyl-8-pCPT-2'-O-Me-cAMP preserves cell adhesions during hypoxia in vitro, maintaining the barrier function of the epithelial monolayer. Intrarenal administration in vivo of 8-pCPT-2'-O-Me-cAMP also reduced renal failure in a mouse model for ischemia-reperfusion injury. This was accompanied by decreased expression of the tubular cell stress marker clusterin-α, and lateral expression of β-catenin after ischemia indicative of sustained tubular barrier function. Our study emphasizes the undervalued importance of maintaining tubular epithelial cell adhesion in renal ischemia and demonstrates the potential of pharmacological modulation of cell adhesion as a new therapeutic strategy to reduce the extent of injury in kidney disease and transplantation.
Article
Full-text available
Urea plays a critical role in the concentration of urine, thereby regulating water balance. Vasopressin, acting through cAMP, stimulates urea transport across rat terminal inner medullary collecting ducts (IMCD) by increasing the phosphorylation and accumulation at the apical plasma membrane of UT-A1. In addition to acting through protein kinase A (PKA), cAMP also activates Epac (exchange protein activated by cAMP). In this study, we tested whether the regulation of urea transport and UT-A1 transporter activity involve Epac in rat IMCD. Functional analysis showed that an Epac activator significantly increased urea permeability in isolated, perfused rat terminal IMCD. Similarly, stimulating Epac by adding forskolin and an inhibitor of PKA significantly increased urea permeability. Incubation of rat IMCD suspensions with the Epac activator significantly increased UT-A1 phosphorylation and its accumulation in the plasma membrane. Furthermore, forskolin-stimulated cAMP significantly increased ERK 1/2 phosphorylation, which was not prevented by inhibiting PKA, indicating that Epac mediated this phosphorylation of ERK 1/2. Inhibition of MEK 1/2 phosphorylation decreased the forskolin-stimulated UT-A1 phosphorylation. Taken together, activation of Epac increases urea transport, accumulation of UT-A1 at the plasma membrane, and UT-A1 phosphorylation, the latter of which is mediated by the MEK-ERK pathway.
Article
Full-text available
Invariant natural killer T (iNKT) cells represent a particular subset of T lymphocytes capable of producing several cytokines, which exert regulatory or effector functions, following stimulation of the T cell receptor. In this study, we investigated the influence of iNKT cells on the development of experimental anti-glomerular basement membrane glomerulonephritis (anti-GBM GN). After injection of anti-GBM serum, the number of kidney iNKT cells rapidly increased. iNKT cell-deficient mice (Jalpha18-/-) injected with anti-GBM serum demonstrated worse renal function, increased proteinuria, and greater glomerular and tubular injury compared with similarly treated wild-type mice. We did not detect significant differences in Th1/Th2 polarization in renal tissue that might have explained the severity of disease in Jalpha18-/- mice. Interestingly, expression of both TGF-beta and TGF-beta-induced (TGFBI) mRNA was higher in wild-type kidneys compared with Jalpha18-/- kidneys, suggesting a possible protective role for TGF-beta in anti-GBM GN. Administration of an anti-TGF-beta neutralizing antibody significantly enhanced the severity of disease in wild-type, but not Jalpha18-/-, mice. In conclusion, in experimental anti-GBM GN, iNKT cells attenuate disease severity and TGF-beta has a renoprotective role.
Article
Full-text available
Rap1 is a small, Ras-like GTPase that was first identified as a protein that could suppress the oncogenic transformation of cells by Ras. Rap1 is activated by several extracellular stimuli and may be involved in cellular processes such as cell proliferation, cell differentiation, T-cell anergy and platelet activation. At least three different second messengers, namely diacylglycerol, calcium and cyclic AMP, are able to activate Rap1 by promoting its release of the guanine nucleotide GDP and its binding to GTP. Here we report that activation of Rap1 by forskolin and cAMP occurs independently of protein kinase A (also known as cAMP-activated protein kinase). We have cloned the gene encoding a guanine-nucleotide-exchange factor (GEF) which we have named Epac (exchange protein directly activated by cAMP). This protein contains a cAMP-binding site and a domain that is homologous to domains of known GEFs for Ras and Rap1. Epac binds cAMP in vitro and exhibits in vivo and in vitro GEF activity towards Rap1. cAMP strongly induces the GEF activity of Epac towards Rap1 both in vivo and in vitro. We conclude that Epac is a GEF for Rap1 that is regulated directly by cAMP and that Epac is a new target protein for cAMP.
Article
Full-text available
cAMP (3′,5′ cyclic adenosine monophosphate) is a second messenger that in eukaryotic cells induces physiological responses ranging from growth, differentiation, and gene expression to secretion and neurotransmission. Most of these effects have been attributed to the binding of cAMP to cAMP-dependent protein kinase A (PKA). Here, a family of cAMP-binding proteins that are differentially distributed in the mammalian brain and body organs and that exhibit both cAMP-binding and guanine nucleotide exchange factor (GEF) domains is reported. These cAMP-regulated GEFs (cAMP-GEFs) bind cAMP and selectively activate the Ras superfamily guanine nucleotide binding protein Rap1A in a cAMP-dependent but PKA-independent manner. Our findings suggest the need to reformulate concepts of cAMP-mediated signaling to include direct coupling to Ras superfamily signaling.
Article
Full-text available
Diabetic nephropathy is the most common cause of end-stage renal disease in the U.S. Recent studies demonstrate that loss of podocytes is an early feature of diabetic nephropathy that predicts its progressive course. Cause and consequences of podocyte loss during early diabetic nephropathy remain poorly understood. Here, we demonstrate that podocyte apoptosis increased sharply with onset of hyperglycemia in Ins2(Akita) (Akita) mice with type 1 diabetes and Lepr(db/db) (db/db) mice with obesity and type 2 diabetes. Podocyte apoptosis coincided with the onset of urinary albumin excretion (UAE) and preceded significant losses of podocytes in Akita (37% reduction) and db/db (27% reduction) mice. Increased extracellular glucose (30 mmol/l) rapidly stimulated generation of intracellular reactive oxygen species (ROS) through NADPH oxidase and mitochondrial pathways and led to activation of proapoptotic p38 mitogen-activated protein kinase and caspase 3 and to apoptosis of conditionally immortalized podocytes in vitro. Chronic inhibition of NADPH oxidase prevented podocyte apoptosis and ameliorated podocyte depletion, UAE, and mesangial matrix expansion in db/db mice. In conclusion, our results demonstrate for the first time that glucose-induced ROS production initiates podocyte apoptosis and podocyte depletion in vitro and in vivo and suggest that podocyte apoptosis/depletion represents a novel early pathomechanism(s) leading to diabetic nephropathy in murine type 1 and type 2 diabetic models.
Article
‘Glomerulonephritis’ (GN) is a term used to describe a group of heterogeneous immune-mediated disorders characterized by inflammation of the filtration units of the kidney (the glomeruli). These disorders are currently classified largely on the basis of histopathological lesion patterns, but these patterns do not align well with their diverse pathological mechanisms and hence do not inform optimal therapy. Instead, we propose grouping GN disorders into five categories according to their immunopathogenesis: infection-related GN, autoimmune GN, alloimmune GN, autoinflammatory GN and monoclonal gammopathy-related GN. This categorization can inform the appropriate treatment; for example, infection control for infection-related GN, suppression of adaptive immunity for autoimmune GN and alloimmune GN, inhibition of single cytokines or complement factors for autoinflammatory GN arising from inborn errors in innate immunity, and plasma cell clone-directed or B cell clone-directed therapy for monoclonal gammopathies. Here we present the immunopathogenesis of GN and immunotherapies in use and in development and discuss how an immunopathogenesis-based GN classification can focus research, and improve patient management and teaching.
Article
Nephritis remains the most common severe manifestation of systemic lupus erythematosus in which auto-antibodies mediate chronic inflammation and kidney damage. cAMP-phosphodiesterases regulate sodium excretion and inflammation in various tissues. How cAMP elevation can reduce systemic inflammation and suppress kidney inflammation and damage remains elusive. PDE4 signaling and cAMP metabolism were investigated along immune complex depositions in target tissues and kidney damage (histology). SLE disease progression is associated with changes in kidney PDE4 activity and expression. Moreover, lupus prone mice exhibit low kidney cAMP level which is associated to induction and relocation of nuclear and cytoskeleton PDE4 isoforms. Auto-antibodies-induced kidney damage was attested by mesangial proliferation and cellular infiltration. Interestingly, we reported that NCS 613 treatment decreases systemic auto-antibody secretion and their corresponding immune complex deposition in target tissues. Furthermore, NCS 613 is able to increase cAMP levels in the kidney; hence this compound rescues kidney PDE4 alterations in treated mice. NCS 613 overcomes disease progression in lupus prone mice by improving wellbeing and decreasing inflammation in treated mice. The PDE4 inhibitor, NCS 613, is a new anti-inflammatory compound that is believed to be a leading drug candidate for the treatment of inflammatory diseases such as lupus nephritis.
Article
BACKGROUND: Podocyte dysfunction is a common feature of chronic kidney disease. Understanding how these cells maintain their physiological function may be the first step in preventing podocyte injury. Nevertheless, substantial level of ATP is required to maintain podocyte structure and function, but the precise energy metabolism in these cells remains unknown. This study evaluated the roles of two ATP production systems, mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis in podocytes. METHODS: To examine the role of glycolysis in production of ATP, glycolysis was blocked by 2-deoxyglucose (2-DG) in cultured podocytes while basic mitochondrial function was preserved with pyruvate administration. In turn, the role of OXPHOS in podocytes was evaluated by Antimycin. In addition, adenoviruses carrying shRNAs for phosphofructokinase (PFK) -M or PFK-L were also used as an alternative way to examine the effects of blocking glycolysis without inhibitors. We sought a condition in which total cellular ATP under blocking glycolysis was identical to that under blocking OXPHOS. Lamellipodia length was quantified by tracing perimeters of whole-cell and the lamellipodia. Cellular migration was assessed with scratch assay. Intracellular ATP was monitored using fluorescence resonance energy transfer (FRET) - based ATP indicator (ATeam1.03). Mitochondria were visualized with Mito Tracker. In vivo study, transmission electron microscopy was used to examine mitochondrial structures and foot process morphology in mouse podocytes. The expressions of nephrin, a marker of podocyte and PFK-L, a marker of glycolysis, were examined by immunofluorescence. RESULTS: While mitochondria occupied the central part of cell body, blocking mitochondria showed only minor effects on lamellipodia and migratory ability. In contrast, blocking glycolysis significantly reduced the formation of lamellipodia and decreased the cell migratory ability. Consistently, the local ATP production in lamellipodia was predominantly regulated by glycolysis. Finally, mitochondria were predominantly located at the center of cytosol in adult mouse podocytes while no mitochondria was detected in foot processes. In contrast, phosphofructokinase was expressed in foot processes, suggesting that ATP production in foot process is predominantly regulated by glycolysis, but not mitochondria. CONCLUSIONS: This study suggests that glycolysis could be a major regulator of ATP production in cortical area of podocytes, including podocyte foot process.
Article
Lactate, perhaps the best-known metabolic waste product, was first isolated from sour milk, in which it is produced by lactobacilli. Whereas microbes also generate other fermentation products, such as ethanol or acetone, lactate dominates in mammals. Lactate production increases when the demand for ATP and oxygen exceeds supply, as occurs during intense exercise and ischaemia. The build-up of lactate in stressed muscle and ischaemic tissues has established lactate’s reputation as a deleterious waste product. In this Perspective, we summarize emerging evidence that, in mammals, lactate also serves as a major circulating carbohydrate fuel. By providing mammalian cells with both a convenient source and sink for three-carbon compounds, circulating lactate enables the uncoupling of carbohydrate-driven mitochondrial energy generation from glycolysis. Lactate and pyruvate together serve as a circulating redox buffer that equilibrates the NADH/NAD ratio across cells and tissues. This reconceptualization of lactate as a fuel—analogous to how Hans Christian Andersen’s ugly duckling is actually a beautiful swan—has the potential to reshape the field of energy metabolism.
Article
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Article
Aim: cAMP is a universal second messenger that plays an important role in intracellular signal transduction. cAMP is synthesized by adenylate cyclases (ACs) from adenosine triphosphate (ATP), and terminated by the phosphodiesterases (PDEs). In the present study, we investigated the role of the cAMP pathway in tubular epithelial cells mitochondrial biogenesis in the pathogenesis of renal fibrosis. Results: We found that the cAMP levels were decreased in fibrotic kidney tissues, and replenishing cAMP could ameliorate tubular atrophy and extracellular matrix deposition. The downregulation of cAMP was mainly attributed to the increased PDE4 expression in tubular epithelial cells. The inhibition of PDE4 by PDE4 siRNA or the specific inhibitor, Rolipram, attenuated unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis and TGF-β1-stimulated primary tubular epithelial cell damage. The Epac1/Rap1 pathway contributed to the main effect of cAMP on renal fibrosis. Rolipram could restore C/EBP-β and PGC-1α expression and protect the mitochondrial function and structure of primary tubular epithelial cells under TGF-β1 stimulation. The anti-fibrotic role of Rolipram in renal fibrosis relies on C/EBP-β and PGC-1α expression in tubular epithelial cells. Innovation&Conclusion: The results of the present study indicate that cAMP signaling regulates the mitochondrial biogenesis of tubular epithelial cells in renal fibrosis. Restoring cAMP by the phosphodiesterase 4 inhibitor Rolipram may ameliorate renal fibrosis by targeting C/EBP-β/PGC1-α and mitochondrial biogenesis.
Article
Signalling pathways involving the vital second messanger, cAMP, impact on most significant physiological processes. Unsurprisingly therefore, the activation and regulation of cAMP signalling is tightly controlled within the cell by processes including phosphorylation, the scaffolding of protein signalling complexes and sub-cellular compartmentalisation. This inherent complexity, along with the highly conserved structure of the catalytic sites among the nine membrane-bound adenylyl cyclases, presents significant challenges for efficient inhibition of cAMP signalling. Here, we will describe the biochemistry and cell biology of the family of membrane-bound adenylyl cyclases, their organisation within the cell, and the nature of the cAMP signals that they produce, as a prelude to considering how cAMP signalling might be perturbed. We describe the limitations associated with direct inhibition of adenylyl cyclase activity, and evaluate alternative strategies for more specific targeting of adenylyl cyclase signalling. The inherent complexity in the activation and organisation of adenylyl cyclase activity may actually provide unique opportunities for selectively targeting discrete adenylyl cyclase functions in disease.
Article
Rationale: Although the second messenger cyclic AMP (cAMP) is physiologically beneficial in the heart, it largely contributes to cardiac disease progression when dysregulated. Current evidence suggests that cAMP is produced within mitochondria. However, mitochondrial cAMP signaling and its involvement in cardiac pathophysiology are far from being understood. Objective: To investigate the role of mitochondrial exchange protein directly activated by cAMP 1 (MitEpac1) in ischemia/reperfusion (I/R) injury. Methods and results: We show that Epac1 genetic ablation (Epac1(-/-)) protects against experimental myocardial I/R injury with reduced infarct size and cardiomyocyte apoptosis. As observed in vivo, Epac1 inhibition prevents hypoxia/reoxygenation (HX+R)- induced adult cardiomyocyte apoptosis. Interestingly, a deleted form of Epac1 in its mitochondrial-targeting sequence protects against HX+R- induced cell death. Mechanistically, Epac1 favors Ca(2+) exchange between the endoplasmic reticulum and the mitochondrion, by increasing interaction with a macromolecular complex composed of the voltage-dependent anion channel 1 (VDAC1), the chaperone glucose-regulated protein 75 (GRP75), and the inositol-1,4,5-triphosphate receptor 1 (IP3R1) leading to mitochondrial Ca(2+) overload and opening of the mitochondrial permeability transition pore (MPTP). In addition, our findings demonstrate that MitEpac1 inhibits isocitrate dehydrogenase 2 (IDH2) via the mitochondrial recruitment of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), which decreases nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) synthesis, thereby reducing the antioxidant capabilities of the cardiomyocyte. Conclusions: Our results reveal the existence, within mitochondria, of different cAMP-Epac1 microdomains that control myocardial cell death. In addition, our findings suggest Epac1 as a promising target for the treatment of ischemia- induced myocardial damage.
Article
The incidence and period prevalence of glomerulonephritis (GN) with resultant rates of death and end-stage renal disease (ESRD) in the United States are unknown. Therefore, we assessed the presumptive burden of GN in a 20% Medicare sample, 5,442,495 individuals, and an Optum Clinformatics Employer Group Health Plan sample of 13,712,946 individuals. GN was established using International Classification of Diseases, Ninth Revision, Clinical Modification claims-based algorithms. Outcomes were all-cause mortality and ESRD rates. Cox proportional hazards modeling was used to determine factors associated with outcomes in incident patients. For secondary (systemic immunologic disease) and primary GN, respectively, incidence rates per 100,000 patient-years were 134 (95% CI: 132-136) and 57 (56-58) in the Medicare cohort, and 10 (9-10) and 20 (19-21) in the health plan cohort. Period prevalence per 100,000 individuals was 917 (909-952) and 306 (302-311) in Medicare and 52 (51-54) and 70 (68-71) in the health plan. Death rates in incident Medicare patients were 3.9-fold higher for secondary and 2.7-fold higher for primary GN compared with no GN. ESRD rates were typically 1 to 2 orders of magnitude higher compared with no GN. In the Medicare cohort, women with incident secondary GN were less likely than men to progress to ESRD (hazard ratio: 0.70; 95% CI: 0.62-0.80) and death (0.82; 0.79-0.86). Black patients were more likely than white patients to progress to ESRD (secondary GN, 1.56; 1.31-1.85; primary GN, 1.57; 1.35-1.83), but not to death. Thus, in the United States, GN based on health claims data is associated with increased likelihood of progression to ESRD and death.
Article
cAMP is a universal second messenger that plays central roles in cardiovascular regulation influencing gene expression, cell morphology, and function. A crucial step toward a better understanding of cAMP signaling came 18 years ago with the discovery of the exchange protein directly activated by cAMP (EPAC). The 2 EPAC isoforms, EPAC1 and EPAC2, are guanine-nucleotide exchange factors for the Ras-like GTPases, Rap1 and Rap2, which they activate independently of the classical effector of cAMP, protein kinase A. With the development of EPAC pharmacological modulators, many reports in the literature have demonstrated the critical role of EPAC in the regulation of various cAMP-dependent cardiovascular functions, such as calcium handling and vascular tone. EPAC proteins are coupled to a multitude of effectors into distinct subcellular compartments because of their multidomain architecture. These novel cAMP sensors are not only at the crossroads of different physiological processes but also may represent attractive therapeutic targets for the treatment of several cardiovascular disorders, including cardiac arrhythmia and heart failure.
Article
When the problem of carcinoma is approached from the metabolic aspect, the first question which arises is: how does the metabolism of growing tissue differ from that of resting? The prospects of finding an answer to this question are good. Whether the mass of a given tissue is to remain constant, or, within a short period to increase many-fold, must be determined by the velocity of those processes which supply the driving forces for growth. Our task is to search for such processes and to compare their velocities in resting tissues and growing tissues. If this question is solved, then the further inquiry must be made as to whether the manner of arrangement of growing cells is manifested in their metabolism. Does the metabolism of tumors, growing in a disorganized manner, differ from the metabolism of orderly cells growing at the same rate. The hope of solving this question must be considered slight in general, and rightly so, if it is only the form-building forces which tumors lack. For of all problems of physiology, that of form is the least approachable. Yet it seems doubtful that only minute and unimportant differences should exist between the growth of young cells and those of tumors, instead of considerable physico-chemical differences. Progress in the carcinoma problem implies the adoption of the point of view involved by the latter alternative. This has been done and I shall try to show that it is the correct point of view.
Article
Besides glomerulus tubulo-interstitium is often concomitantly affected in certain diseases, e.g., diabetic nephropathy, and activation of renin-angiotensin system, to a certain extent, worsens its outcome because of perturbations in hemodynamics and possibly tubulo-glomerular feedback. Certain studies suggest that pathobiology of tubulo-interstitial is influenced by small GTPases, e.g., Rap1. We investigated effect of Ang II on inflammatory cytokines, while at the same time focusing on upstream effector of Rap1, i.e., Epac1, and some of the downstream tubular transport molecules, i.e., NHE3. Ang II treatment of LLC-PK1 cells decreased Rap1a GTPase activity in a time- and dose-dependent manner. While Ang II treatment led to an increased membrane translocation of NHE3, which was reduced with Epac1 and PKA activators. Ang II-induced NHE3 translocation was notably reduced with transfection of Rap1a dominant positive mutants, i.e., Rap1a-G12V or Rap1a-T35A. While transfection of cells with dominant negative Rap1a mutants, i.e., Rap1a-S17A, or with Epac1 mutant, i.e., EPAC-ΔcAMP, normalized the Ang II-induced translocation of NHE3. In addition, Ang II treatment led to an increased expression of inflammatory cytokines, i.e., IL-1β, IL-6, IL-8 and TNF-α, which was reduced with Rap1a-G12V or Rap1a-T35A transfection; while it reverted to previous comparable levels following transfection of Rap1a-S17A or EPAC-ΔcAMP. Ang II-induced expression of cytokines was reduced with the treatment of NHE3 inhibitor, S3226, or with Epac1 and PKA activators. These data suggest that this novel Epac1-Rap1a-NHE3 pathway conceivably modulates the Ang II-induced expression of inflammatory cytokines, and this information may aid in developing strategies to reduce tubulo-intertstitial inflammation in renal diseases.
Article
Mitochondria are a common target of toxicity for drugs and other chemicals and result in decreased aerobic metabolism and cell death. In contrast, mitochondrial biogenesis restores cell vitality, and there is a need for new agents to induce biogenesis. Current cell-based models of mitochondrial biogenesis or toxicity are inadequate because cultured cell lines are highly glycolytic with minimal aerobic metabolism and altered mitochondrial physiology. In addition, there are no high-throughput real-time assays that assess mitochondrial function. We adapted primary cultures of renal proximal tubular cells (RPTCs) that exhibit in vivo levels of aerobic metabolism, are not glycolytic, and retain higher levels of differentiated functions and used the Seahorse Bioscience analyzer to measure mitochondrial function in real time in multiwell plates. Using uncoupled respiration as a marker of electron transport chain (ETC) integrity, the nephrotoxicants cisplatin, HgCl(2), and gentamicin exhibited mitochondrial toxicity prior to decreases in basal respiration and cell death. Conversely, using FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone)-uncoupled respiration as a marker of maximal ETC activity, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), SRT1720, resveratrol, daidzein, and metformin produced mitochondrial biogenesis in RPTCs. The merger of the RPTC model and multiwell respirometry results in a single high-throughput assay to measure mitochondrial biogenesis and toxicity and nephrotoxic potential.
Article
This chapter discusses the analysis of experimental glomerulonephritis. There exist several animal models that closely resemble various forms of human glomerulonephritis. The resemblance includes, in most instances, morphological, immunohistological, and pathophysiological similarities. The chapter also describes different methods for producing and studying three models that cover the spectrum of fixed and planted antigens and various mediator systems. Mediators of the glomerular injury induced by such immune deposits vary widely in different models. They include the complement (C) system acting either through its terminal, membranolytic pathway or via the inflammatory action of leukocytes; antibody-directed influx of leukocytes; and antibody alone. Host species, the nature and dose of antibody, and the distribution of antigen influence which mediators will operate in the various models studied to date. The redistribution of such glomerular epithelial cell antigens follows antibody binding; subsequent shedding of the resulting complexes is thought to account for the observed subepithelial electron densities.
Article
Since the discovery in 1957 that cyclic AMP acts as a second messenger for the hormone adrenaline, interest in this molecule and its companion, cyclic GMP, has grown. Over a period of nearly 50 years, research into second messengers has provided a framework for understanding transmembrane signal transduction, receptor-effector coupling, protein-kinase cascades and downregulation of drug responsiveness. The breadth and impact of this work is reflected by five different Nobel prizes.
Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials
  • Granchi