PreprintPDF Available

Arthropods associated with a dioecious bromeliad, Catopsis minimiflora Matuda (Bromeliaceae), in a shade coffee plantation (Coffea arabica L.) in the southeast of Mexico

Authors:
  • El Colegio de la Frontera Sur, Unidad Tapachula, Chiapas, México
Preprints and early-stage research may not have been peer reviewed yet.

Abstract and Figures

Shade coffee plantations are considered reservoirs of local flora and fauna. Epiphytic bromeliads are an important component of flora that inhabit not only shade trees but also coffee bushes in southeast of Mexico. At the same time, in these plants inhabit a diversity of arthropods poorly documented. We chose Catopsis minimiflora as the studied species because this bromeliad is abundant in coffee plantations and has a specialized reproductive system (dioecy). We counted the number of individuals of C. minimiflora growing over coffee bushes and shade trees and collected 58 bromeliads in two seasons (dry and rainy). We registered 2,048 arthropods (including 21 orders and 71 families) inhabited these plants. Based on hill numbers, no significant difference was found in richness between seasons; however, species dominance was higher in the rainy season. We estimated 27,215.5 arthropods/ha in the dry season and 31,227 arthropods/ha in the rainy season inhabited C. minimiflora that grow over coffee bushes. This arthropod community associated with C. minimiflora could provide ecosystem services such as pollination or depredation in a coffee agroecosystem. Epiphyte removal could have a negative effect on the abundance of this plant species, and in turn, it may have an impact on arthropods associated with them.
Content may be subject to copyright.
Page 1/10
Arthropods associated with a dioecious bromeliad, Catopsis minimiora
Matuda (Bromeliaceae), in a shade coffee plantation (Coffea arabica L.) in the
southeast of Mexico
Diego A. Jiménez-Garza
El Colegio de la Frontera Sur
Lislie Solís-Montero
El Colegio de la Frontera Sur https://orcid.org/0000-0002-5793-3376
Eduardo R. Chamé-Vázquez
El Colegio de la Frontera Sur
Nancy Martínez-Correa
Orquidiario y Jardin Botánico Comitán
Research Article
Keywords: arthropod diversity, epiphytic bromeliad, southeast Mexico, shade coffee plantation
Posted Date: April 29th, 2024
DOI: https://doi.org/10.21203/rs.3.rs-4092425/v1
License: This work is licensed under a Creative Commons Attribution 4.0 International License.  Read Full License
Page 2/10
Abstract
Shade coffee plantations are considered reservoirs of local ora and fauna. Epiphytic bromeliads are an important component of ora that inhabit not only
shade trees but also coffee bushes in southeast of Mexico. At the same time, in these plants inhabit a diversity of arthropods poorly documented. We chose
Catopsis minimiora
as the studied species because this bromeliad is abundant in coffee plantations and has a specialized reproductive system (dioecy). We
counted the number of individuals of
C. minimiora
growing over coffee bushes and shade trees and collected 58 bromeliads in two seasons (dry and rainy).
We registered 2,048 arthropods (including 21 orders and 71 families) inhabited these plants. Based on hill numbers, no signicant difference was found in
richness between seasons; however, species dominance was higher in the rainy season. We estimated 27,215.5 arthropods/ha in the dry season and 31,227
arthropods/ha in the rainy season inhabited
C. minimiora
that grow over coffee bushes. This arthropod community associated with
C. minimiora
could
provide ecosystem services such as pollination or depredation in a coffee agroecosystem. Epiphyte removal could have a negative effect on the abundance of
this plant species, and in turn, it may have an impact on arthropods associated with them.
Introduction
The agroecosystems, mainly coffee plantations, are reservoirs of biodiversity (Hietz 2005; Hylander and Nemomissa 2008; Philpott et al. 2008; Solís-Montero
et al. 2019). Coffee plantations are mostly established in montane tropical rainforests, ecosystems with a high level of endemism that supply environmental
services such as water and nutrient recycling (Agudelo et al. 2012; Clark et al. 2014). Despite their biological and environmental importance of rainforests,
where coffee beans are grown, are suffering of deforestation. Forest fragmentation and slow recovery from perturbation are also associated to high
deforestation rates (Toledo-Aceves et al. 2012; Yepes-Quintero et al. 2011). Epiphytic orchids (Orchidaceae) and bromeliads (Bromeliaceae) found in
rainforests and coffee plantations are considered important to biodiversity (Hietz 2005). These epiphytes contribute to increasing canopy complexity and
provide resources to fauna that inhabit these ecosystems (García-Franco and Toledo-Aceves 2008).
Epiphytic bromeliads present crassulacean acid metabolism photosynthesis (CAM) (Crayn et al. 2004; Givnish et al. 2011; Givnish et al. 2014). Bromeliad
leaves form a cavity called tank, leaves have trichomes that absorb water and minerals (Crayn et al. 2004; Frank and Lounibos 2009; Quezada and Gianoli
2011; Katayama et al. 2020; Popp et al. 2003). Water and nutrients resulting from detritus decomposition and fecal matter of animals, or phytotelma, are
stored in bromeliad tanks (Marino et al. 2011; Wittman 2000). This makes bromeliads capable to maintain trophic nets that involve different organisms
including arthropods (Brouard et al. 2012; Cogliatti-Carvalho et al. 2010).
Arthropods, in particular insects, account for 90% of species found in the tropics (Nielsen 2011; Pimentel et al. 1992; Urbaneja et al. 2005) and may play
different roles in agroecosystems such as coffee plantations (Armbrech and Perfecto 2001). When the population abundance of these insects
increases, they are regarded as pests that damage the productivity of some crops (Guzmán-Mendoza et al. 2016). Yet, an increase in arthropod diversity does
not always represent an increment in pests (Armbrech and Perfecto 2001). For example, some insects can recycle nutrients through the decomposition of
other dead organisms to incorporate nutrients into the soil (Liria-Salazar 2006; Mavárez-Cardoza et al. 2005; Vergara-Pineda et al. 2020). Other insects
transport pollen grains from anthers to the stigma of plants to reach ovules and fertilize them (Armijo et al. 2020; Sheldon and Nadkarni 2015; Stefanescu et
al. 2018). And, other entomophagous insects help to control pests in different crops (Aguilar-Astudillo et al. 2019).
In coffee plantations located in Mexico is common to remove the epiphytes that grow over shade trees and coffee bushes. The rst option is known as
“destenche” and the second option as “desmusgue” (Cruz-Angón and Greenberg 2005; García-González et al. 2017; Solís- Montero et al. 2019). The
“desmusgue” usually takes place during the rainy season in Soconusco region (García-González et al. 2017; Solís-Montero et al. 2019). This agricultural
practice negatively affects the diversity of epiphytes that inhabit the coffee plantations (Solís-Montero et al. 2019). However, the diversity of arthropods
associated with abundant epiphytic bromeliads remains unknown.
This study aims to know the arthropod diversity associated with a dioecious bromeliad (
Catopsis minimiora
Matuda), which inhabits coffee plantations in
the Soconusco region, and the possible impact of removing epiphyte on arthropod diversity. We sought to answer the following questions: (a) Which is the
richness and abundance of arthropods associated with
C. minimiora
?; (b) What is the relation between morphologic characteristics of
C. minimiora
, and the
richness and abundance of arthropods?; (c) Which is the sex ratio and abundance of
C. minimiora
?; (d) Which is the possible impact of
desmusgue
over
population of
C. minimiora
and arthropods associated to this bromeliad?
Materials and methods
Studysite:Thisresearchwasconductedinashadecoffeeplantation(
Coffeaarabica
L.)locatedinBenito Juárez El Plan, Cacahoatán Municipality, Chiapas,
Mexico (15° 05’ 21.779’’ N, 92° 08’50.766’’W,1441m asl).Thissitewasselectedbecause“desmusgue”isnotpracticedhere. Four 10 x 30 m transects (300
m2 each transect) were established for a total of 1,200 m2. In eachsampling, we recorded temperature and humidity using a Data Logger, Elitech, RC-51H.
Thesamplingswereconductedduringthedryandrainyseasons(MarchandJuneof2022,CONAGUA 2022).
Studied species:
Catopsis minimiora
Matuda (1975) is a dioecious bromeliad of the Tillandsioideae subfamily. It is distributed across the southeast of
Mexico (Chiapas) and Guatemala at an altitude range from 1,200 to 1,800 m asl (Espejo-Serna et al. 2017). The Bromeliaceae family presents two types of
reproduction: sexual reproduction through seeds, and asexual reproduction through stolons (Mondragón et al. 2011). Asexual reproduction of
Catopsis
genera,
produces axillar or basal new plants from the mother plant to form tillers with several rosettes (Mondragón et al. 2011). In this study, we considered this tiller
as an individual. The individuals grow as epiphytic plants over shade trees or coffee bushes, namely phorophytes (Granados-Sánchez et al. 2004).
Catopsis
minimiora
female plants have larger owers and produce longer inorescences, yet they have fewer owers compared with male plants (Martínez-Correa
2019).
Page 3/10
Density and the sex ratio of
C. minimiora
:The density was obtained by counting the numberofindividualsof
C.minimiora
pertransect. We
countedyoungindividuals(over 15 cm in length) and adult individuals growing over shade trees and coffee bushes. To determine the sex ratio,
weonlyconsideredadult individuals presenting oralbuds, owers,fruits, orremainsofthem.
Bromeliad sampling:Only adults of
C. minimiora
growing on coffee bushes were collected ineach sampled transect; we tried to collect 16 bromeliads per
transect (eight males and eightfemales). But, in transects three and four the number of samples required was not reached; thus,we used
C.
minimiora
outside the transects. Transects one and two were sampled during the dryseason,whiletransects three andfourweresampled during therainy
season.
Before collecting
C. minimiora
individuals, we measured bromeliads height
consideringcoffeebushesasthebase;eachplantwasmeasuredfromthesoiltoitsgrowthonphorophyteusing a ex meter. We also measured the volume
(using a graduated cylinder of 500 ml) and thetemperature of the phytotelma water between 9 am and 11 am (using a TAYLOR thermometer).The water was
placed in a plastic container and the plants were stored in hermetic plastic bags
asfastaspossibletoavoidthearthropodsescape.Thesampleswerestoredinafridgeat approximately 6 °C in  Laboratorio de Artrópodos, Polinizadores,
Plagas y Vectores (APPYV) at El Colegiodela FronteraSur(ECOSUR), Tapachulacampus.
Sampleprocessing:Everyoneof
C.minimiora
wasdissectedover awhiteplastictrayfollowingDiaz (2021) methodology with some modications. We took
the following morphologic variables per individual: number of rosettes; plant length from the basal (i.e., the part where leaves join androots emerged) to the
apical part (i.e., longest leaf); diameter of each rosette (i.e., the
distancebetweentheapicalpartofthetwooppositeleaves);numberofleaves;andpresenceofreproductive structures(owers orfruits).
To collect arthropods, we dissected each individual and washed each rosette with tap water
overPetridishes.Finally,weobservedthesedishesbyusingastereoscopicmicroscope(Zeiss,Modelo Stereo Discovery. V20) and the arthropods were
separated into vials with 70% alcohol and stored atapproximately 6°C until their taxonomic identication.
Taxonomical identication:Weuseddifferentresourcesforarthropodtaxonomicalidentications such as manuals, voucher specimens’ comparison and
websites searching.For example, we identied at family level insects collected using the identication manual Introduction to the Study of Insects (Triplehorn
and Johnson 2005). To identify larvae, we used the identication manual Introduction to the Aquatic Insects of North America (Merritt et al. 2008). The spiders
were identied using the identication manual Spiders of North America (Ubick et al. 2017). The          specimens were deposited in Colección de Insectos
asociados a plantas cultivadas en la Frontera Sur (ECO-TAP-E) and Colección de Arácnidos del Sureste de Mexico (ECOTAAR) in ECOSUR, Tapachula campus.
Data analyses:For everyone of
C. minimiora,
we obtained the abundance (number of individuals), richness (number of families), and diversity (number of
Hill; Jost 2006) of arthropods. The diversity and rarefaction/extrapolation curves were obtained with iNEXT package version 3.0.0 (Hsieh et al. 2016). We used
a Principal Component Analysis (PCA) to analyze the morphological variables of
C. minimiora
(number of rosettes, length, diameter, and volume of
bromeliads). The volume wascalculated by following Nielsen’s (2011) methodology and using the following formula: V=(πr2h)/3. The scores of PC1
(interpreted as size) were used as a response variable; sex and season were the explicative variables in the Analysis of Variance (ANOVA). We used two
separated Generalized Linear Models (GLM); the rst GLM was used to analyze the effect of bromeliad size (PC1) on the diversity of arthropods (Hill numbers)
t with Gaussian; the second GLM was used to analyze the effect of season on the diversity of arthropods t with Gaussian. In these models, the Hill number
was the dependent variable; scores of PC1 and season were the independent variables. The sex ratio was analyzed using GLM t with binomial error (Wilson
and Hardy 2002). Finally, the density of each season was calculated by the following formula: Density = the number of
C.minimiora
/sampledarea(m2). To
extrapolate the abundance of individuals of
C.minimiora
per hectare, we multiplied the density for a hectare area (10,000 m2). Arthropod abundance was
extrapolated with the following formula: (Density of
C. minimiora
per ha) (Number of arthropods)/Number of
C.minimiora
. All analyses were performed
with R program version 4.2.1 (R Core Team 2020).
Results
Richness and abundance of arthropods:We counted 2,048 individuals that inhabited 58
C.minimiora
bromeliads,whichbelongto21ordersand71families(TableS1).TheordersPseudoscorpionidaandAcaricouldnotbeidentiedatthefamily
Entomobryomorpha, Hymenoptera, and Diptera, which account for 78% of the total of theindividuals. Entomobryidae and Formicidae were the most abundant
families, with 29% and 25%ofthetotal abundance, respectively.
Accordingtoseasonality,ahigherabundanceofarthropodswasregisteredduringtherainyseason(1,137individuals)comparedwiththedryseason;however,
didnotsignicantlydiffer between seasons(q0; Fig. 1a). Entomobryomorpha was the most abundant order during the dry season (53%), whereas
Hymenoptera and Diptera were the most abundant orders (45% and 28%, respectively) during the rainy season. However, both seasons presented a similar
number of families (53 the rainy seasonand 54 in the dry season). The order with the highest number of families was Araneae (17),followedby
Coleoptera(14), Diptera(9)andHemiptera(8).
Of the total of individuals collected, 25% were larvae, including three orders of holometabolousinsects (Diptera, Coleoptera, and Lepidoptera). Diptera was the
most abundant order with 487individuals from seven families. The Ceratopogonidae family was the most abundant order in thedry season, whereas
Limoniidae was the most abundant one in the rainy season. As for the
ordersColeopteraandLepidoptera,27andtwoindividualswereregistered,respectively.Duringtherainyseason,larvaeweremoreabundantthantheywereint
showed that the diversity of order 0 (observed richness) and order 1 did not present differences betweenseasons (Fig. 1a and 1b). However, order 2 diversity
showed differences between seasons, as the rainyseason showed a greaterdiversity offamilies (q2;Fig. 1c).
Page 4/10
Bromeliad morphology and its relationship with arthropod diversity.The rst and second components of PCA explained the 80% of variance found in
C.
minimiora
. The PC1explained 58% of the variance; all vectors were positive with similar values. This component was interpreted as bromeliad size (Table 1).
Bromeliad size was similar between males and females(
F1,55= 0.607, P= 0.439
) in both the rainy and dry seasons. But the size of bromeliad
individualsvariedbetweenseasons(
F1,55=8.847,P=0.004
). The individuals of
C. minimiora
sampledinthe dry season were larger in comparison to those
individuals sampled in the rainy season (Table 2).The GLM showed that bromeliad size (PC1) affected the richness of families (q0; Table 3). This is, the rainy
season favored the presence of dominant families (Fig. 1c), but it did not affect the plant size (Table 2).
Sex ratio:The sex ratio between male and female plants did not differ according to phorophytetype (
z = 0.635, P = 0.326
), but it differed among transects (
z =
0.206, P = 0.012;
Fig 2a) and betweenseasons (
z = 0.0631, P = 0.0002
). During the dry season, female plants were more abundant
thanmaleplants.Incontrast,maleplantsweremoreabundantduringtherainyseason (Fig.2b).
Density and extrapolation:The transect 1 recorded the highest population density of bromeliads in coffee shrubs and shade trees in dry season. In raining
season, the transect 3 recorded the highest density of bromeliads and arthropods (Table 4).
Discussion
The composition of arthropods associated to
C. minimiora
is like that of other epiphytic bromeliads (Alvarado and Barreno 2010; Arzivenko-Gesing 2008;
Leandro et al. 2014; Ospina-Bautista et al. 2004). We found that Entomobryomorpha was the most abundant order during the dry season; only one family was
registered (Entomobryidae). In contrast, during the rainy season, Hymenoptera was the most abundant order, being Formicidae the most abundant family
(Table S1). Regarding the richness of families, Araneae was the order with the highest value in both seasons. This result aligns with previous ndings that
attribute such richness to spiders’ anity for tridimensional structures such as bromeliad rosettes (Arzivenko-Gesing 2008; Campos-Serrano et al. 2017;
Wittman 2000).
Bromeliads interact with arthropods, such as ants, and spiders, which are sheltered in rosettes for food and reproduction (Bermúdez-Monge and Barrios 2011;
Leandro et al. 2014; Wittman 2000). Also, these arthropods defend bromeliads from herbivory attacks, something similar is thought to occur with coffee
bushes. It has been reported that ants play a signicant role in pest control of coffee crops, such as
Hypothenemus hampei
Ferrari (coffee berry borer), a pest
that damages coffee fruits (Jaramillo et al. 2006; Perfecto and Vandermeer 2006). On its part, spiders are generalist depredators; they consume a great variety
of arthropods including other spiders (Birkhofer and Wolters 2012; Pekár and Toft 2015). Spiders are of great importance, since they contribute to maintaining
low insect populations, which keeps agroecosystems regulated (Riechert and Lawrence 1997; Sarma et al. 2013).
As in other studies, we found that the major abundance and richness of aquatic larvae were classied in Diptera order (Castro 2018; Diaz 2021; Mosquera-
Murillo et al. 2016). The larvae included in this order were successful to inhabit the phytotelma of bromeliads due to their morphological adaptations
(spiracles and siphons), alimentary traits (i.e., feeding of type collecting and lter), reproductive and dispersion capacities (Bermúdez-Monge and Barrios 2011;
Herrera 2003; Mosquera-Murillo et al. 2016; Ospina-Bautista et al. 2004). The families with more abundance in our study were Ceratopogonidae,
Chironomidae, Limoniidae, Syrphidae, and Culicidae. It is important to point that some of these families are considered crops pollinators of cacao (Cazorla-
Perfetti 2014; Kaufmann 1975; Montero-Cedeño et al. 2019), avocado (Castañeda- Vildózola et al. 1999) and mango (Sánchez et al. 2018). However, these
crops do not grow at these altitudes, but they can be considered as possible pollinating agents of the wild plants that inhabit these agroecosystems.
Diaz (2021) found that bromeliad length determined arthropod diversity. Other authors have concluded that the whole structure of bromeliad is of importance
to arthropod diversity (Herrera 2003; Jocque and Field 2014; Nielsen 2011; Ospina-Bautista et al. 2004). We found that bromeliad size affected the richness of
families but did not affect the dominance of families, which was affected by the season (Table3). The rainy season favors the water stored in tanks that later
become a phytotelma (i.e., rich medium), in which larvae of insects, mainly of Diptera develop (Bermúdez-Monge and Barrios 2011; Mosquera-Murillo et al.
2016; Ospina-Bautista et al. 2004).
The phenology of
C. minimiora
has been previously reported: being the owering period from July to January and the fruiting period in December (Martínez-
Correa 2019). In March, a month corresponding to the dry season sampling, we found fresh and dry inorescences of
C. minimiora
. A higher percentage of
female plants (60.8%) over male plants was registered in the dry season. This result coincides with
Catopsis compacta
Mez life cycle, which disperses its
seeds from March to April (Escobedo-Sarti and Mondragón 2016). In contrast, in June (the rainy season), we found that oral buttons and male plants were
more abundant (86.3%). These ndings suggest that
C. minimiora
presents an annual owering of seven months (Martínez-Correa 2019) similar to other
members of the Tillandsioideae subfamily (Gentry 1974).
The different sex ratios found during the owering period are like those of other dioecious owering plants, which produce more male than female plants
(Barrett and Hough 2013; Munguia- Rosas et al. 2011). Male plants invest more resources to produce more owers, and in turn, more pollen grains (Escobedo-
Sarti and Mondragón 2016; Field et al. 2013) by this way increase the probability to pollinate female plants. Forrest (2014) mentions that male plants ower
earlier than female plants since it takes longer to accumulate resources needed at the productive stage.
Although it has been demonstrated that epiphyte removal increases owering and fruit production of coffee bushes (Solís-Montero et al. 2019; Toledo-Aceves
et al. 2012), this practice endangers ora and may affect arthropod diversity. Our estimations suggest that the removal of
C. minimiora
of a coffee plantation
could affect 54,420 arthropods/ha, mainly larvae due to phytotelmata loss. These arthropods could provide different services such as pest control (e.g.,
spiders) and pollination to some plants around coffee plantations (e.g., Ceratopogonidae and Syrphidae).
In conclusion, the shade coffee plantations in Soconusco provide with shelter not only to epiphytes with specialized reproductive systems, such as
C.
minimiora
, but also to arthropods associated to this bromeliad. These arthropods provide different ecosystem services in coffee plantations. Thus, the
Page 5/10
“desmusgue” practice could have a negative effect on the diversity of epiphytes, and in turn, it may has an impact on arthropods associated with them.
Declarations
Competing interests and funding: The authors declare no competing interest. The National Council of Humanities, Sciences and Technologies (CONAHCyT,
acronym in Spanish) granted DJG a scholarship to carry out postgraduate studies (CVU 1102196).
Acknowledgment
To Guillermo Ibarra Núñez and Hector Montaño Moreno for their guidance and support for the taxonomic identication of spiders. To Fernando García
Crisóstomo, for the logistical support in the eld and laboratory. To Martín Roberto Domínguez Fuentes and Erick Antonio Chacón Hartleven, for their advice
and support in the taxonomic identication of the Blattodea group and Diptera larvae, respectively. To Nelson Perez for his permission to sample his coffee
plantation.
References
1. Agudelo N, Mora JM, Pérard S, Jut Solórzano JC (2012) Extensión del bosque nublado y su contribución de la lluvia horizontal a la precipitación total en
la reserva biológica Uyuca, Honduras. Ceiba 53(2): 109–123. https://doi.org/10.5377/ceiba.v53i2.2508
2. Aguilar-Astudillo E, Morales-Morales CJ, Rosales-Esquinca MA, Gómez Castañeda JC, Cena-Velázquez JM, Alonso-Bran RA (2019) Insectos asociados a
cultivos de café en Simojovel de Allende, Chiapas, México. Entomología Mexicana 6: 379–384.
3. Alvarado Peña ZK, Barreno Coba HV (2010) Composición de macroinvertebrados acuáticos en bromelias de un bosque de altura, El Paraíso, Honduras.
Dissertation Escuela Agrícola Panamericana.
4. Armbrech I, Perfecto I (2001) Diversidad de artrópodos en los agroecosistemas cafeteros. Acta Del Simposio Café y Biodiversidad: 11–16.
5. Armijo V, García LC, Vera LD, Castro J, Martínez, M (2020) Insectos polinizadores en sistemas de producción de
Theobroma cacao
L. en la zona central
del litoral ecuatoriano. Ciencia y Tecnología 13. https://doi.org/10.18779/cyt.v13i2.389
. Arzivenko-Gesing JP (2008) Macroinvertebrados associados á
Vriesea friburgensis
Mez (Bromeliaceae) em oresta Ribeirinha, Santa Maria, RS, Brasil.
Dissetation Universidade Federal de Santa Maria.
7. Barrett SCH, Hough J (2013) Sexual dimorphism in owering plants. Journal of Experimental Botany 64: 67–82. https://doi.org/10.1093/jxb/ers308
. Bermúdez-Monge J, Barrios H (2011) Insectos asociados a
Vriesea sanguinolenta
Cogn& Marchal (Bromeliaceae). Scientia 21: 7–32.
9. Birkhofer K, Wolters V (2012) The global relationship between climate, net primary production and the diet of spiders. Global Ecology and Biogeography
21: 100–108. https://doi.org/10.1111/j.1466-8238.2011.00654.x
10. Brouard O, Céréghino R, Corbara B, Carrias JF (2012) Understory environments inuence functional diversity in tank-bromeliad ecosystems. Freshwater
Biology 57: 815–823. https://doi.org/10.1111/j.1365-2427.2012.02749.x
11. Campos-Serrano J, Herrera-Fuentes MC, Zavala-Hurtado JA, Navarrete-Jiménez A (2017) Arañas asociadas a epítas totelmata. Acarología y
Aracnología: 40–45.
12. Castañeda-Vildózola A, Equihua-Martínez A, Valdés-Carrasco J, Barrientos-Priego AF, Ish-Am G, Gazit S (1999) Insectos polinizadores del aguacatero en
los estados de México y Michoacán. Revista Chapingo Serie Horticultura 5: 129-136.
13. Castro RIY (2018) Diversidad de Bromelias (Bromeliaceae) y entomofauna asociada en un gradiente altitudinal en la cuenca del río Pamplonita.
Dissertation, Universidad de Pamplona.
14. Cazorla-Perfetti, D (2014) Catálogo de las especies de ceratopogonidae (Diptera: Nematocera) registradas para Venezuela y su importancia agro-
ecológica y sanitaria. Saber. Universidad de Oriente 26: 395–408.
15. Clark KL, Lawton RO, Butler PR (2014) El entorno físico. In Wheelwright NT and Nadkarni NM (eds)
Monteverde: ecología y conservación de un bosque
nuboso tropical. Vol. 3. Bowdoin scholar bookshelf, pp. 18-55 https://digitalcommons.bowdoin.edu/scholars-bookshelf/3/ Accessed3 May 2023
1. Cogliatti-Carvalho L, Rocha-Pessôa TC, Nunes-Freitas AF, Duarte CF (2010) Volume de água armazenado no tanque de bromélias, em restingas da costa
brasileira. Acta Bot. Bras 24(1): 84–95.
17. CONAGUA (2022) Precipitación a nivel nacional y por entidad federativa 2022. Depto. Temperaturas y lluvias.
https://smn.conagua.gob.mx/es/climatologia/temperaturas-y- lluvias/resumenes-mensuales-de-temperaturas-y-lluvias. Accessed 5 July 2023
1. Crayn DM, Winter K, Andrew J, Smith C (2004) Multiple origins of crassulacean acid metabolism and the epiphytic habit in the Neotropical family
Bromeliaceae. PNAS 101(10): 3703–3708. https://doi.org/10.1073/pnas.0400366101
19. Cruz-Angón A, Greenberg R (2005) Are epiphytes important for birds in coffee plantations? An experimental assessment. J. of Appl. Ecology 42: 150–159.
https://doi.org/10.1111/j.1365-2664.2004.00983.x
20. Diaz KA (2021) Riqueza y abundancia de macroinvertebrados acuáticos asociados a bromelias (Bromeliacea Juss. 1789), en el Parque Nacional Pico
Pijol, Yoro, Honduras. Dissertation Instituto de Desarrollo Mesoamericano.
21. Escobedo-Sarti J, Mondragón D (2016) Flowering phenology of
Catopsis compacta
(Bromeliaceae), a dioecious epiphyte in an oak forest. Botanical
Sciences 94(4): 729–736. https://doi.org/10.17129/botsci.669
22. Espejo-Serna A, López-Ferrari AR, Martínez-Correa N, Pulido-Esparza VA (2017) Bromeliad ora of Chiapas state, Mexico: Richness and distribution.
Phytotaxa 310. https://doi.org/10.11646/phytotaxa.310.1.1
Page 6/10
23. Field DL, Pickup M, Barrett SCH (2013) Comparative analyses of sex-ratio variation in dioecious owering plants. Evolution 67: 661–672.
https://doi.org/10.1111/evo.12001
24. Forrest JRK (2014) Plant size, sexual selection, and the evolution of protandry in dioecious plants.American Naturalist 184: 338–351.
https://doi.org/10.1086/677295
25. Frank JH, Lounibos LP (2009) Insects and allies associated with bromeliads: a review. Terrestrial Arthropod Reviews 1: 125–153.
https://doi.org/10.1163/187498308X414742
2. García-Franco J, Toledo-Aceves T (2008) Epítas Vasculares (Bromelias y Orquideas). In Manson RH, Hernández-Ortiz SG, Mehltrter K (eds),
Agroecosistemas cafetaleros de Veracruz, Vol. 1, México: Instituto de Ecología A.C. (INECOL) e Instituto Nacional de Ecología (INE-SEMARNAT), Ciudad de
México, pp 69–82.
27. García-González A, Damon A, Raventós J, Riverón-Giró FB, Mújica E, Solís-Montero L (2017) Impact of different shade coffee management scenarios, on
a population of
Oncidium poikilostalix
(Orchidaceae), in Soconusco, Chiapas, Mexico. Plant Ecology and Diversity 10: 185–196.
https://doi.org/10.1080/17550874.2017.1315840
2. Gentry AH (1974) Flowering Phenology and Diversity in Tropical Bignoniaceae. Biotropica 6: 64. https://doi.org/10.2307/2989698
29. Givnish TJ, Barfuss MHJ, Van Ee B et al (2014) Adaptive radiation, correlated and contingent evolution, and net species diversication in Bromeliaceae.
Molecular Phylogenetics and Evolution 71: 55–78. https://doi.org/10.1016/j.ympev.2013.10.010
30. Givnish TJ, Barfuss MHJ, van Ee B, Sytsma KJ (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: Insights from an eight-
locus plastid phylogeny. American Journal of Botany 98: 872–895. https://doi.org/10.3732/ajb.1000059
31. Granados-Sánchez D, López-Ríos GF, Hernández-García MA, Sánchez-González A (2004) Ecología de las plantas epítas. Revista Chapingo Serie Ciencias
Forestales y Del Ambiente 9: 101–111.
32. Guzmán-Mendoza R, Calzontzi-Marín J, Salas-Araiza MD, Martínez-Yáñez R (2016) Insects biological richness: analysis of their multidimensional
importance. Acta Zoológica Mexicana
32: 370-379.
33. Herrera ID (2003) Invertebrados terrestres asociados a
Tillandsia turneri
Baker y
Tillandsia complanata
Bentham (Bromeliaceae) en un fragmento de
bosque andino de la Sabana de Bogotá, Dissertation, Universidad de los Andes.
34. Hietz P (2005) Conservation of Vascular Epiphyte Diversity in Mexican Coffee Plantations. Conservation Biology 19: 391–399. doi:
https://doi.org/10.1111/j.1523- 1739.2005.00145.x
35. Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and
Evolution 7: 1451–1456. https://doi.org/10.1111/2041-210X.12613
3. Hylander K, Nemomissa S (2008) Home garden coffee as a repository of epiphyte biodiversity in Ethiopia. Frontiers in Ecology and the Environment 6:
524–528. https://doi.org/10.1890/080001
37. Jaramillo J, Borgemeister C, Baker P (2006) Coffee berry borer
Hypothenemus hampei
(Coleoptera: Curculionidae): searching for sustainable control
strategies. Bulletin of Entomological Research 96: 223–233. https://doi.org/10.1079/ber2006434
3. Jocque M, Field R (2014) Aquatic invertebrate communities in tank bromeliads: How well do classic ecological patterns apply? Hydrobiologia 730: 153–
166. https://doi.org/10.1007/s10750- 014-1831-7
39. Jost L (2006) Entropy and diversity. Oikos 113: 363–375. https://doi.org/10.1111/j.2006.0030- 1299.14714.x
40. Katayama BN, Rodrigues FR, Pikart FC et al (2020) How does a C3 epiphytic tank bromeliad respond to drought? Botanical Journal of the Linnean Society
192: 855–867. https://doi.org/10.1093/botlinnean/boz093
41. Kaufmann T (1975) Studies on the ecology and biology of a cocoa pollinator,
Forcipomyia squamipennis
I. & M. (Diptera, Ceratopogonidae), in Ghana.
Bull. Ent. Res. 65: 263–268.
42. Leandro M, Prezoto F, Ferreira de Abreu P, Menini L (2014) Bromélias e suas principais interações com a fauna. Ces Revista Juiz de Fora 28: 3–16.
43. Liria-Salazar J (2006) Insectos de importancia forense en cadáveres de ratas, Carabobo - Venezuela. Revista Peruana de Medicina Experimental y Salud
Publica 23(1): 33–38.
44. Marino NAC, Guariento RD, Dib V, Azevedo FD, Farjalla VF (2011) Habitat size determine algae biomass in tank-bromeliads. Hydrobiologia 678: 191–199.
https://doi.org/10.1007/s10750-011-0848-4
45. Martínez-Correa N (2019) Filogenia de
Catopsis
Griseb. (Bromeliaceae, Tillandsioideae), Dissertation, Universidad Autónoma Metropolitana.
4. Matuda E. 1975. Dos Nuevas Bromeliáceas de México. Cactáceas y Suculentas Mexicanas
20: 44-46.
47. Mavárez-Cardoza MG, Espina de Fereira AI, Barrios-Ferrer FA, Fereira-Paz JL (2005) La Entomología Forense y el Neotrópico. Cuadernos de Medicina
Forense 11: 23–33.
4. Merritt RW, Cummins KW, Berg MB (2008) An introduction to the Aquatic Insects of North America, 4th edn. Iowa, Kendall/ Hunt Publishing Company.
49. Mondragón DM, Ramírez IM, Flores M, García JG (2011) La Familia Bromeliaceae en México. 1st edn, Cuidad de México, Secretaría de Agricultura,
Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA)-Servicio Nacional de Inspección y Certicación de Semillas (SNICS), Universidad
Autónoma de Chapingo.
50. Montero-Cedeño SL, Sánchez P, Solórzano-Faubla R, Pinargote-Borrero A, Cañarte- Berdez EG (2019) Floración y diversidad de insectos polinizadores
en un sistema monocultivo de cacao. Revista Espamciencia, 10: 1–7.
51. Mosquera-Murillo Z, Gómez MA, González MB (2016) Diversidad de macroinvertebrados acuáticos asociados con Bromeliaceae en una zona de bosque
pluvial tropical, Chocó, Colombia. Revista Biodiversidad Neotropical 6:147-153. https://doi.org/10.18636/bioneotropical.v6i2.350
Page 7/10
52. Munguia-Rosas MA, Ollerton J, Parra-Tabla V (2011) Phenotypic selection on owering phenology and size in two dioecious plant species with different
pollen vectors. Plant Species Biology 26: 205–212. https://doi.org/10.1111/j.1442-1984.2011.00320.x
53. Nielsen WP (2011) Composición de macroinvertebrados acuáticos en bromelias (
Catopsis spp.
) de la Reserva Biológica Uyuca, Honduras. Dissertation
Escuela Agrícola Panamericana, Zamorano.
54. Ospina-Bautista F, Estévez-Varón J, Betancur J, Realpe-Rebolledo E (2004) Estructura y composición de la comunidad de macroinvertebrados acuáticos
asociados a
Tillandsia turneri
Baker (Bromeliaceae) en un bosque alto andino colombiano. Acta Zoológica Mexicana
20: 153–166.
55. Pekár S, Toft S (2015) Trophic specialisation in a predatory group: The case of prey- specialised spiders (Araneae). Biological Reviews 90: 744–761.
https://doi.org/10.1111/brv.12133
5. Perfecto I, Vandermeer J (2006) The effect of an ant-hemipteran mutualism on the coffee berry borer (
Hypothenemus hampei)
in southern Mexico.
Agriculture, Ecosystems & Environment 117: 218–221. https://doi.org/10.1016/j.agee.2006.04.007
57. Philpott SM, Arendt WJ, Armbrecht I, Zolotoff, JM (2008) Biodiversity loss in Latin American coffee landscapes: Review of the evidence on ants, birds, and
trees. Conservation Biology 22: 1093–1105. https://doi.org/10.1111/j.1523-1739.2008.01029.x
5. Pimentel D, Stachow U, Takacs DA, et al (1992) Conserving Biological Diversity in Agricultural/Forestry Systems. BioScience 42: 354–362.
59. Popp M, Janett HP, Lüttge U, Medina E (2003) Metabolite gradients and carbohydrate translocation in rosette leaves of CAM and C3 bromeliads. New
Phytologist 157: 649–656. https://doi.org/10.1046/j.1469-8137.2003.00683.x
0. Quezada IM, Gianoli E (2011) Crassulacean acid metabolism photosynthesis in Bromeliaceae: an evolutionary key innovation. Biological Journal of
Linnean Society 104: 480–486. https://doi.org/10.1111/j.1095-8312.2011.01713.x
1. R Core Team (2020) R: A language and environment for statistical computing. https://www.R-project.org/. Accessed 5 December 2020.
2. Riechert SE, Lawrence K (1997) Test for predation effects of single versus multiple species of generalist predators: spiders and their insect prey.
Entomologia Experimentalis et Applicata 84: 147-155. https://doi.org/10.1046/j.1570-7458.1997.00209.x
3. Sarma S, Pujari D, Rahman Z (2013) Role of spiders in regulating insect pests in the agricultural ecosystem- an overview. JIARM 1: 100-117.
4. Sánchez M, Velásquez Y, Vaez-Olivera M, González M, Cuevas J (2018) Sírdos (Diptera: Syrphidae): aliados en la polinización del cultivo protegido del
mango (
Mangifera indica
L.). Agrícola Vergel 409: 126–129.
5. Sheldon KS, Nadkarni NM (2015) Reproductive phenology of epiphytes in Monteverde, Costa Rica. Rev. Biol. Trop. 63: 1119–1126.
https://doi.org/10.15517/rbt.v63i4.16583
. Solís-Montero L, Quintana-Palacios V, Damon A (2019) Impact of moss and epiphyte removal on coffee production and implications for epiphyte
conservation in shade coffee plantations in southeast Mexico. Agroecology and Sustainable Food Systems 43: 1124–1144.
https://doi.org/10.1080/21683565.2019.1566193
7. Stefanescu C, Aguado LO, Asís JD, Tormos J (2018) Diversity of insect pollinators in the Iberian Peninsula. Ecosistemas 27: 9–22.
https://doi.org/10.7818/ECOS.1391
. Toledo-Aceves T, García-Franco JG, Hernández-Rojas A, Macmillan K (2012) Recolonization of vascular epiphytes in a shaded coffee agroecosystem.
Applied Vegetation Science 15: 99–107. https://doi.org/10.1111/j.1654-109X.2011.01140.x
9. Triplehorn CA, Johnson NF (2005) Borror and BeLong´s introduction to the study of insects, 7th edn, Belmont,Thompson Brooks/Cole.
70. Ubick D, Paquin P, Cushing P, Dupérré N (2017) Spiders of North America: An Identication Manual, Second Edition. Keene, New Hampshire, American
Arachnological Society
71. Urbaneja A, Castañera P, Vanaclocha P et al (2005) Importancia de los artrópodos depredadores de insectos y ácaros en España. Boletín de Sanidad.
Vegetal. Plagas 31: 209–224.
72. Vergara-Pineda S, Carrillo I, Zúñiga JA (2020) Escarabajos Histéridos (Coleoptera: Histeridae) asociados a cadáveres de cerdo (Sus scrofa domestica)
durante verano en Concá, Arroyo Seco, Querétaro. Entomología Medico Forense 7: 377–381.
73. Wilson K, Hardy ICW (2002) Statiscal analysis of sex ratios: an introduction. In Hardy ICW (ed.) Sex Ratios concepts and Research Methods, New York,
Cambridge University Press: 48–92.
74. Wittman PK (2000) The animal community associated with canopy bromeliads of the lowland peruvian amazon rain forest. Selbyana 21: 48–51.
75. Yepes-Quintero A, Duque-Montoya AJ, Navarrete-Encinales D et al (2011) Estimación de las reservas y pérdidas de carbono por deforestación en los
bosques del departamento de Antioquia, Colombia. Actualidades Biológicas 33: 193–208.
Tables
Table 1.Eigenvectors of two principal components (PC1 and PC2) of PCA of the morphology of
Catopsisminimiora
.
Morphologicaltraits PC1 PC2
Lengthofindividual 0.412 0.594
Diameterofindividual 0.561 -0.487
Numberofrosettes 0.389 0.558
Volumeofindividual 0.603 -0.312
Page 8/10
 
Table 2.Mean ± standard error of variables measured in
Catopsis minimiora.
Variable Transect1 Transect2 Transect3 Transect4 Dryseason Rainyseason
Heightat
phorophyte(m)
1.48±0.18
1.36±0.14
1.31±0.11
1.65±0.08
1.43±0.11
1.48±0.07
Length(cm) 26.05±3.39 23.15±1.14 20.28±0.92 19.60±1.91 24.8±1.97 19.94±1.04
Diameter(cm) 27.79±2.03 33.83±1.86 25.53±1.61 23.67±2.42 30.41±1.49 25.53±1.47
Volume(cm3)5 525±880 7 364±993 4 232±552 4 238±1983 6 322±669 4 235±1010
Numberof 4.75±0.68 3.84±0.58 2.78±0.50 2.07±0.33 4.34±0.45 2.42±0.30
rosettes
Numberof 20.5±1.04 24.28±1.51 24.12±1.38 20.93±1.62 17.78±0.88 23.03±1.06
leaves
Volumeof
phytotelma(ml)
0 46.54±5.54 53±11.90 58.38±19.26 46.54±1.24 55.59±1.65
Temperatureof
phytotelma(ºC)
0 19.42±0.12 20.95±0.23 21.66±0.28 19.42±0.08 21.29±0.19
Table 3.Summary of statistics of two generalized linear models (GLM) to analyze the size of
Catopsis minimiora
and season sampled on the arthropod
diversity (the number of Hill). The values in parentheses are the standard errors of the estimate.
Variable Estimate(SE)
Teststatistic(z) P
PC1
q0 0.918(0.837) 0.026 0.038*
q1 0.405(0.267) 0.134 0.390
q2 0.277(0.220) 0.213 0.638
Season
q0 -1.354(1.194) 0.226 0.256
q1 -1.578(0.815) 0.058 0.053
q2 -1.485(0.673) 0.031 0.027*

Table 4.Extrapolation of abundance of
Catopsis minimiora
and the number of arthropods per phorophyte type and season.
Page 9/10
Transect Plants/transect
(300m2)
Plantdensity(ind/m2)Plants/ha Arthropods
/plant±S.E.
Arthropods/ha
T1 Bush 33 0.11 1,100 29.17±1.94 32,087
T1 Tree 52 0.17 1,700 35,989
T2 Bush 21 0.07 700 31.92±2.19 22,344
T2 Tree 5 0.01 100 22,344
T3 Bush 30 0.1 1,000 54.42±12.7 54,420
T3 Tree 21 0.07 700 38,094
T4 Bush 10 0.03 300 26.78±1.47 8,034
T4 Tree 13 0.04 400 10,712
Season
Season Plants/
season(600m2)
Plantdensity(ind/m2)Plants/ha Arthropods
/Plant±S.E.
Arthropods/ha
Dry 111 0.185 1,850 30.36(0.52) 56,166
Rainy 74 0.123 1,233.33 40.60(2.21) 50,073.19
Figures
Figure 1
Page 10/10
Rarefaction/extrapolation curves based on sampling size with intervals of condence of 95% (shadow areas): a) Richness family (q0), b) exponential of
Shannon (q1), and c) inverse of Simpson (q2). Orange circle (rainy season) and blue triangle (dry season).
Figure 2
a) Sexual ratio of
Catopsis minimiora
per transect and b) per season in a shade coffee plantation. Grey (female) and dark grey (male).
Supplementary Files
This is a list of supplementary les associated with this preprint. Click to download.
SuplementaryTable1.xlsx
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Los bosques tropicales almacenan grandes cantidades de carbono en su biomasa, y por ello juegan un papel determinante en el ciclo global de este elemento. Las variables biofísicas determinan la capacidad de almacenamiento de los bosques como reservorios de carbono. No obstante en los últimos años, la deforestación tropical ha hecho que estos ecosistemas se conviertan en fuente de emisiones de dióxico de carbono (CO2) a la atmósfera. El presente estudio quiso evaluar la distribución de la biomasa aérea (BA) y carbono en relación con la variación altitudinal de los bosques naturales del departamento de Antioquia (Colombia), así como las pérdidas potenciales asociadas con la deforestación, durante el periodo 2000-2007. Para ello se empleó información estructural (diámetro, biomasa aérea) proveniente de 16 parcelas permanentes de 1,0 ha, dentro de las cuales se midió la vegetación leñosa arbórea. Se cuantificó la deforestación a nivel departamental usando imágenes de sensores remotos MODIS para el período 2000-2007. Los resultados evidencian que la BA y los contenidos de carbono en los bosques naturales de Antioquia, presentan una relación inversa con la altitud. La CO2promedio fue 244 ± 63 Mg ha-1 y la tasa de deforestación en el período 2000-2007 fue 25.279 ha año-1. Durante este período se perdieron en total 176.950 ha de bosque natural, con las cuales se emitieron potencialmente a la atmósfera 79.161,29 Gg CO2. En Antioquia posiblemente problemáticas como la deforestación, pueden llegar a destruir considerablemente estos ecosistemas, ocasionando la pérdida de servicios ecosistémicos importantes como el almacenamiento de carbono.
Thesis
Full-text available
RESUMEN: La pérdida potencial de los bosques nublados como resultado del avance de la frontera agrícola, ha generado procesos de perdida en cascada de la diversidad biológica. Uno de los componentes conspicuos de dichos ecosistemas son las bromelias, que al almacenar considerables volúmenes de agua entre sus hojas, dan lugar al desarrollo de comunidades de macroinvertebrados acuáticos. Sin embargo, las bromelias son organismos sumamente sensibles a la fragmentación del bosque, aspecto que se ve reflejado en distintas áreas protegidas de Honduras, donde el café es una de las principales amenazas a la biodiversidad. El objetivo de dicha investigación es estimar la riqueza y abundancia de macroinvertebrados acuáticos y su relación con los parámetros fisicoquímicos y características morfológicas en las bromelias (Bromeliacea Juss. 1789), en el Parque Nacional Pico Pijol, Yoro, Honduras. Se colectaron un total de 142 individuos, correspondientes a 32 familias de macroinvertebrados acuáticos, de las cuales el orden Coleoptera y Diptera, mostraron la mayor de riqueza de familias. La riqueza de macroinvertebrados acuáticos, respondió a variables como el tamaño de la bromelia y el volumen de agua almacenado por estas. Palabras claves: bromelias, fitotelmata, macroinvertebrados, Honduras. ABSTRAC: The potential loss of cloud forests as a result of the advance of the agricultural frontier has generated processes of cascading loss of biological diversity. One of the conspicuous components of these ecosystems is bromeliads, which by storing considerable volumes of water between their leaves, lead to the development of communities of aquatic macroinvertebrates. However, bromeliads are highly sensitive organisms to forest fragmentation, an aspect that is reflected in different protected areas of Honduras, where coffee is one of the main threats to biodiversity. The objective of this investigation is to estimate the richness and abundance of aquatic macroinvertebrates and their relationship with the physicochemical parameters and morphological characteristics in bromeliads (Bromeliacea Juss. 1789), in the Pico Pijol National Park, Yoro, Honduras. A total of 142 individuals were collected, corresponding to 32 families of aquatic macroinvertebrates, of which the order Coleoptera and Diptera showed the greatest wealth of families. The richness of aquatic macroinvertebrates responded to variables such as the size of the bromeliad and the volume of water stored by them. Key words: bromeliads, fitotelmatas, macroinvertebrates, Honduras.
Article
Full-text available
Large numbers of a wide range of spider species inhabit agricultural fields. Their presence limits the habitats open to insect pests. Spiders threaten insect pests with various foraging strategies. As well as consuming large numbers of insect pests as prey, they have the trait of killing all insects living in their territory. For this reason, spiders are a favorable biological control agent in the agricultural ecosystem and can be successfully used to check pest population in the field.
Article
Full-text available
Intermittent water availability characterizes the canopy habitat, but few studies have focused on how C3 epiphytic bromeliads deal with drought. In this context, we investigated how water deficits affect the photosynthetic responses of the epiphytic bromeliad Vriesea gigantea regarding its physiological and anatomical traits that can minimize the effects of stomatal closure. In a controlled experiment in which bromeliads were submitted to 21 days of drought, we demonstrated a reduction in the leaf water content followed by strong reductions in net CO2 exchange and the efficiency of the photochemical system. However, there were increases in the yield of non-photochemical quenching and the activities of hydrophilic antioxidants. We observed substomatal chambers connected with air channels reaching the chlorophyllous parenchyma. Our findings indicate that the low net CO2 exchange and the energy imbalance possibly increased the cyclic transport of electrons and activated the thermal dissipation of energy to avoid damage to the photosynthetic apparatus. Additionally, the aeration channels may passively store CO2 to facilitate its re-assimilation. Because most epiphytic bromeliads are C3 plants and drought is frequent in the canopy, we speculate that some attributes of V. gigantea may occur in other C3 species, favouring their radiation in the epiphytic environment.
Article
Full-text available
The “desmusgue” is a process wherein epiphytes are removed from coffee bushes to increase production but its benefits are largely anecdotal. The main aim of this study was to find out whether this practice effectively increases coffee production, its cost-benefit and its effect on epiphyte biodiversity. We found that coffee bushes of Coffea arabica and C. canephora that had epiphytes removed produced more fruits than those with epiphytes. However, the increase in production and in farmer´s incomes were highly variable. This practice clearly endangers epiphyte biodiversity. In order to protect epiphytes and farmer income, farmers should be informed of the impact of “desmusgue” on epiphytes, and the consequences of biodiversity loss.In order to protect epiphytes and farmer income, farmers should be informed of the impact of “desmusgue” onepiphytes, and the consequences of biodiversity loss. In addition, coffee certification programs that subsidize epiphyte-friendly practices, and protected areas and community reserves that favor epiphytes should be established.
Article
Los polinizadores naturales cumplen un rol importante en la eficiencia reproductiva de Theobroma cacao. El objetivo de esta investigación fue determinar la cantidad y diversidad de insectos en T. cacao tipo Nacional, en sistema monocultivo y sistema agroforestal, con énfasis en los polinizadores. El estudio se realizó en finca experimental “La Represa” ubicada en el cantón Quevedo, provincia Los Ríos, Ecuador. Se colocaron trampas de emergencia y captura de insectos en los dos sistemas de cultivo. Además, se realizaron observaciones directas en las flores de T. cacao para registrar la presencia de insectos polinizadores. Los insectos capturados se identificaron con la ayuda de claves entomológicas, lupa, y estereomicroscopio. Se calculó el índice de dominancia y diversidad Simpson e índice de similitud de Jaccard. Los mayores porcentajes de insectos se obtuvieron del orden Hymenóptera (76.99%), Coleóptera (10.21%) y Díptera (7.95%). El índice Simpson fue de 0.58 y 0.42 para dominancia y diversidad, respectivamente. La similitud según Jaccard fue del 24 por ciento de las familias de insectos en los sistemas de producción. Se registró una sola familia (Cecidomyiidae) como un posible polinizador en T. cacao en el área de estudio. Hay baja diversidad y alta dominancia de insectos para los sistemas de producción analizados. Uno de los factores climáticos que influye en la presencia de los insectos capturados en T. cacao es la humedad relativa, pues se encontró una relación directa positiva entre estas dos variables.
Article
Numerous observations and studies that have been carried out in recent decades show that, in addition to bees ((Hymenoptera; Anthophila), other groups of insects play a major role in entomophilous pollination. This article reviews the information and literature available on the contribution of the main groups of pollinators that traditionally have been considered as "secondary": beetles, butterflies and moths, dipterans, wasps and ants. For each of these groups a common outline is followed, with a brief introduction, a summary of the basic characteristics - both morphological and behavioral - in relation to pollination, their effectiveness as pollinators and their conservation status in the Iberian Peninsula. This review highlights the importance of all these groups in entomophilous pollination and the need to include them in comprehensive studies on this phenomenon. Although data are generally very limited, there is clear evidence of a general decline in most of these groups which calls for a pressing need to improve knowledge about their population trends.
Article
La evolución en la agricultura protegida es notable en los últimos años, no sólo en las estructuras o tecnologías empleadas para la producción, sino también en la variedad de cultivos que empiezan a cobrar importancia. Es el caso del mango (Mangifera indica L.), que es un cultivo que tradicionalmente se produce al aire libre con especial importancia en las provincias de Granada y Málaga, y que progresivamente está aumentando su superficie de cultivo en invernadero. Este incremento viene justificado por la búsqueda de alternativas a los cultivos hortícolas principales por parte de los agricultores. Este cambio en la forma de cultivo a su vez supone una necesidad tecnológica para adecuar su manejo bajo estas nuevas condiciones ambientales. Uno de los desafíos tecnológicos pasa por la búsqueda de vectores polinizadores que sustituyan a los presentes en ambientes abiertos y que sean efectivos en recintos confinados. En este trabajo se propone el uso de sírfidos eristalinos, para llevar a cabo el proceso de miofilia en cultivos protegidos de mango en Andalucía. https://www.edicioneslav.es/producto/agricola-vergel-num-409-abril-2018/
Book
The current knowledge of the Bromeliad Flora of the state of Chiapas, Mexico, is presented. Based on the study of 5,495 herbarium specimens corresponding to 3,233 collections, and in a detailed bibliographic revision, we conclude that the currently known Bromeliad Flora of Chiapas comprises 133 species and 14 genera. With 21 endemic taxa, corresponding to the genera Hechtia (1 sp.), Pitcairnia (7 spp.), and Tillandsia (13 spp.), Chiapas occupies the second place in endemism after Oaxaca. The catalog of the species, as well as generic and specific identification keys, and distribution maps of all taxa are included.