PreprintPDF Available

Wafer-Scale Characterization of 1692-Pixel-Per-Inch Blue Micro-LED Arrays with an Optimized ITO Layer

Authors:
Preprints and early-stage research may not have been peer reviewed yet.

Abstract and Figures

Wafer-scale blue micro-light-emitting diode (micro-LED) arrays are fabricated with a pixel size of 12 μm, a pixel pitch of 15 μm, and a pixel density of 1692 pixels per inch, achieved by optimizing the properties of e-beam-deposited and sputter-deposited indium tin oxide (ITO). Although the sputter-deposited ITO (S-ITO) films exhibit a densely packed morphology and lower resistivity compared to those of the e-beam-deposited ITO (E-ITO) films, the forward voltage (VF) values of a micro-LED with the S-ITO films are higher than those with the E-ITO films. The VF values for a single pixel and for four pixels with E-ITO films are 2.82 V and 2.83 V, respectively, while the corresponding values for S-ITO films are 3.50 V and 3.52 V. This was attributed to ion bombardment damage and nitrogen vacancies in the p-GaN layer. Surprisingly, the VF variations of a single pixel and of four pixels with the optimized E-ITO spreading layer from five different regions are only 0.09 V and 0.10 V, respectively. This extremely uniform VF variation is suitable for realizing micro-LED displays to be used in AR and VR applications, circumventing the bottleneck in the development of long-lifespan and high-brightness organic LED devices for industrial mass production.
Content may be subject to copyright.
Article Not peer-reviewed version
Wafer-Scale Characterization of 1692-
Pixel-Per-Inch Blue Micro-LED Arrays
with an Optimized ITO Layer
Eun-Kyung Chu , Eun Jeong Youn , Hyun Woong Kim , Bum Doo Park , Ho Kun Sung , Hyeong-Ho Park *
Posted Date: 20 March 2024
doi: 10.20944/preprints202403.1230.v1
Keywords: micro-light-emitting diode; indium tin oxide; wafer-scale characterization; high pixel per inch
Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.
Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
Article
Wafer-Scale Characterization of 1692-Pixel-Per-Inch
Blue Micro-LED Arrays with an Optimized ITO Layer
Eun-Kyung Chu 1, Eun Jeong Youn 1,, Hyun Woong Kim 2, Bum Doo Park 2, Ho Kun Sung 2 and
Hyeong-Ho Park 1,*
1 Department of Optical Device Lab, Korea Advanced Nano Fab Center (KANC), Suwon 443270, Republic of
Korea; eunkyung.chu@kanc.re.kr(E.-K.C.); eunjeong.youn@kanc.re.kr(E.J.Y.)
2 Department of Convergence Process Division, Korea Advanced Nano Fab Center (KANC), Suwon 443270,
Republic of Korea; hyunwoong.kim@kanc.re.kr(H.W.K.); bumdoo.park@kanc.re.kr(B.D.P.);
hogun.sung@kanc.re.kr(H.G.S.)
* Correspondence: hyeongho.park@kanc.re.kr(H.-H.P.); Tel.: +82-31-546-6217
These authors contributed equally to this work.
Abstract: Wafer-scale blue micro-light-emitting diode (micro-LED) arrays are fabricated with a pixel
size of 12 μm, a pixel pitch of 15 μm, and a pixel density of 1692 pixels per inch, achieved by
optimizing the properties of e-beam-deposited and sputter-deposited indium tin oxide (ITO).
Although the sputter-deposited ITO (S-ITO) films exhibit a densely packed morphology and lower
resistivity compared to those of the e-beam-deposited ITO (E-ITO) films, the forward voltage (VF)
values of a micro-LED with the S-ITO films are higher than those with the E-ITO films. The VF values
for a single pixel and for four pixels with E-ITO films are 2.82 V and 2.83 V, respectively, while the
corresponding values for S-ITO films are 3.50 V and 3.52 V. This was attributed to ion bombardment
damage and nitrogen vacancies in the p-GaN layer. Surprisingly, the VF variations of a single pixel
and of four pixels with the optimized E-ITO spreading layer from five different regions are only
0.09 V and 0.10 V, respectively. This extremely uniform VF variation is suitable for realizing micro-
LED displays to be used in AR and VR applications, circumventing the bottleneck in the
development of long-lifespan and high-brightness organic LED devices for industrial mass
production.
Keywords: micro-light-emitting diode; indium tin oxide; wafer-scale characterization; high pixel
per inch
1. Introduction
Micro-light-emitting diode (Micro-LED) technology continues to attract strong interest due to
the high resolutions, outstanding luminous efficiency, remarkable brightness, and impressive
durability it can offer. These features make these types of diodes a most promising platform in high-
end display applications such as mobile phones, wearable watches, and augmented reality
(AR)/virtual reality (VR) displays, which require high luminance, high refresh rates, and high pixel-
per-inch (PPI) values [16]. Specifically, displays beyond eye-limiting resolutions have attracted
substantial interest as a key enabler of AR/VR displays [7,8]. Given that next-generation displays
require high optical contrast levels, sub-12 μm pixels must be used to achieve highly saturated images
and flicker-free images with minimal screen-door effects. This enhances the overall clarity of the
image and alleviates eye strain [9,10]. Also, for application to near-eye displays, the resolution should
exceed 1500 PPI. A high-resolution display provides enhanced immersion, a diminished screen door
effect, a sharply projected enlarged image, and heightened visual comfort during use [11].
With the increasing demand for micro-LEDs currently, the need for optimization research on
indium tin oxide (ITO), considered to be a promising electrode for the p-type GaN layer among
various current-spreading layers, has also increased [1215]. ITO films with high transparency, low
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 March 2024 doi:10.20944/preprints202403.1230.v1
© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
2
resistivity, and the ability to form reliable ohmic contacts with p-GaN are highly suitable for use as
extended electrodes in micro-LED applications [16]. There are various deposition methods that can
be used to obtain high-quality ITO films, such as electron-beam (e-beam) evaporation [1719],
magnetron sputtering [20,21], pulsed laser deposition (PLD) [22,23], sol-gel methods [24,25], and
spray pyrolysis [26,27]. Among these, e-beam evaporation and sputtering techniques are widely used
for ITO film deposition [28]. Additionally, magnetron sputtering presents distinct advantages,
including high deposition rates, low deposition pressures, the production of high-quality films,
enhanced adhesion, and superior uniformity across expansive surfaces [29]. The deposition method
used for ITO can affect the surface roughness and electrical properties of the film. ITO optimization
based on the deposition method is crucial for achieving high-resolution micro-LED arrays, especially
those with high pixel densities and those capable of operating at high current densities.
Despite the advancements in micro-LED technologies, several issues hinder their widespread
application. As an example, the application of near-eye displays to industrial mass production
requires comprehensive wafer-scale characterization of blue micro-LED arrays [30]. To the best of
our knowledge, wafer-scale characterization of the blue micro-LED arrays has not yet been reported
in detail. In addition, we still need to improve the optimization of ITO films. This is associated with
high power consumption resulting from the high forward voltage, attributed to the weakened optical
and electrical properties of the ITO films [31]. These motivations drove us to undertake the four-inch
wafer-scale characterization of high-performance blue micro-LED arrays with a resolution of 1692
PPI to realize micro-LED displays with a high-density resolution.
This study presents the four-inch wafer-scale fabrication of blue micro-LED arrays on a sapphire
substrate with a resolution of 1692 PPI, accomplished by optimizing the properties of e-beam-
deposited and sputter-deposited ITO as a current-spreading layer ultimately to realize high-
performance micro-LED displays.
2. Experimental Section
Wafer-scale blue micro-LED arrays were fabricated with a pixel size of 12 μm and a pixel pitch
of 15 μm, reaching 1692 PPI. InGaN/GaN-based epilayer structures were grown by metal-organic
chemical vapor deposition (MOCVD) on a sapphire substrate. The InGaN/GaN-based epilayer
structure is composed of a four-μm-thick undoped GaN layer, a 2.5-μm-thick Si-doped n-GaN layer,
ten-period InGaN/GaN multi-quantum wells (MQWs), a 20-nm-thick p-AlGaN electron blocking
layer, and a 200-nm-thick Mg-doped p-GaN layer.
First, 200-nm-thick ITO films were deposited using an e-beam evaporator or by sputtering as the
ohmic contact layer of a p-type GaN. The mesa-structure was formed by inductively coupled plasma-
reactive ion etching (ICP-RIE), reaching a pixel size of 12 µm X 12 µm. Subsequently, the sample was
placed in a HCl : H2O = 1 : 10 solution for one minute to minimize the damaged to the dry-etched
sidewalls of the pixels. To ensure proper ohmic contact, the sample was annealed at 600 °С for 120
sec by rapid thermal annealing (RTA). Then, multilayer deposition with Cr (20 nm) /Au (500 nm)
onto the ITO and the n-GaN layer was conducted to form individual p-electrodes and a common n-
electrode, respectively. Also, the mesa-sidewall of each micro-LED pixel was passivated by a 500-nm-
thick SiNx layer using chemical vapor deposition (CVD) to reduce the leakage current. To drive the
passive matrix (PM)-type blue micro-LED arrays, the SiNx passivation layer was selectively etched
using a buffer oxide etchant (BOE) until the individual p-electrodes and common n-electrode were
exposed, after which Cr (20 nm) and Au (500 nm) p-pad and n-pad line layers were deposited,
respectively. Because the corresponding pixel size and pixel pitch are 12 and 15 μm, the formed p-
pad line layer passed over the pixels, with the p-electrodes of each micro-LED then selectively
connected in a row for matrix-addressable driving. Samples labeled “E-ITO” were ITO films
deposited by the e-beam evaporator and samples termed “S-ITO” were ITO films deposited by
sputtering.
To realize various light-emitting images for the fabricated micro-LED arrays with hundreds of
individual pixels, PM-type micro-LED arrays were achieved, as shown in Figure 1. According to the
selective formation of the p-electrodes for the micro-LED arrays, each pixel could be individually
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 March 2024 doi:10.20944/preprints202403.1230.v1
3
turned on and off to demonstrate various monochrome images with a resolution of 1692 PPI. While
a pixel with a p-electrode is a light-emitting pixel, a pixel without a p-electrode does not emit light.
The surface morphologies of the ITO films were studied using field emission scanning electron
microscopy (FE-SEM) (Hitachi, S-4800) and atomic force microscopy (AFM) (PSIA, XE100). Current
density-voltage (JV) measurements of the LEDs were obtained with a parameter analyzer (Keithley,
4200-SCS). Wafer-scale characterization of the electroluminescence (EL) was conducted using a semi-
auto LED prober at normal incidence (Opto System, WPS3100).
Figure 1. Schematic diagram of the fabrication process used to create the blue micro-LED arrays.
3. Results and Discussion
Quantitative analyses were conducted to determine the grain size distributions in the different
ITO films deposited by e-beam evaporation and sputtering. The surface morphology and the grain
size of the ITO films were measured by examining top-view SEM images, as shown in Figure 2a-d.
The surface morphology of the S-ITO film was relatively smooth and dense, while that of the E-ITO
films was rather rough. Grain size distribution histograms of the E-ITO films and the S-ITO films are
correspondingly shown in Figure 2e and f. The grain size distribution of the E-ITO films was found
to have a broad size range from 9 to 54 nm, while that of the S-ITO films showed a much narrower
range (9 - 30 nm). The grain size distribution of the S-ITO films was significantly narrower compared
to that of the E-ITO films. In addition, the average grain size of the E-ITO films was measured and
found to be 24.8 nm, whereas that of the S-ITO films was 18.2 nm. The average grain size of the E-
ITO films showed an incremental trend compared to that of the S-ITO films. In general, when
particles are deposited at a high energy level with a substantial amount of migration present, the
resulting grain size tends to be smaller. Conversely, if there is reduced migration during particle
condensation on the substrate, the grain size will be larger [32]. In our case, in that sputtering is a
relatively high-energy process, the S-ITO films show a much narrower size distribution compared to
the E-ITO films.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 March 2024 doi:10.20944/preprints202403.1230.v1
4
Figure 2. Top-view SEM images of E-ITO films: ((a) at 100,000 X and (b) at 200,000 X) and S-ITO films
((c) at 100,000 X and (d) at 200,000 X), and histograms showing the grain size distributions of (b) for
(e) the E-ITO films and (d) for (f) the S-ITO films.
The surface morphologies of the p-GaN layer and the ITO films deposited on the p-GaN layer
with two different deposition methods were observed by AFM; these results are shown in Figure 3.
The measured RMS roughness values of the p-GaN layer, the E-ITO films, and the S-ITO films are
0.175, 5.187, and 0.824 nm, respectively. To investigate only the surface morphology of ITO films
processed with two different deposition methods, the films were calculated to eliminate the influence
of the roughness of the sub-layer, in this case the p-GaN layer. The S-ITO film has a lower RMS
roughness value of 0.649 nm compared to that of the E-ITO films, which have a RMS roughness value
of 5.012 nm. The roughness of the E-ITO films is approximately 7.72 times higher than that of the S-
ITO films. The S-ITO films exhibit smooth surfaces and have small grains, while the E-ITO films have
grains with increased sizes, creating a rougher morphology. The difference in the surface morphology
could be reflected in the corresponding film resistivity. The measured resistivity of the S-ITO films is
4.86 X 10-4 ohm·cm, much lower than that of the E-ITO films (5.96 X 10-3 ohm·cm). The surface AFM
observation suggests that the different ITO films, deposited by the e-beam evaporation and
sputtering, have a distinct effect on the resistivity as well as the surface morphology, consistent with
the surface SEM observations.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 March 2024 doi:10.20944/preprints202403.1230.v1
5
Figure 3. Two-dimensional (2D) and three-dimensional (3D) AFM images of a p-GaN layer, and 2D
and 3D AFM images of E-ITO film and S-ITO film deposited onto a p-GaN layer.
Figure 4 shows the J-V characteristics of blue micro-LEDs fabricated with the E-ITO films and S-
ITO films. The forward voltage (VF) values of a single pixel and of four pixels with the E-ITO films
are 2.82 and 2.83 V at 30 A/cm2, while those of a single pixel and four pixels with the S-ITO films are
3.50 and 3.52 V at 30 A/cm2, respectively. Interestingly, although the S-ITO films exhibited a densely
packed morphology and lower resistivity compared to the E-ITO films, the VF values of the micro-
LED created with the S-ITO films were higher than those of the micro-LED created with the E-ITO
films. The higher VF values of the S-ITO films could be related as follows. Son et al. reported that the
ion bombardment damage introduced by sputtering significantly increases the VF values [33].
Sputtering involves the bombardment of the target material (ITO) with ions, which can damage the
underlying layers. In this case, ion bombardment during the sputtering of ITO causes damage to the
p-GaN layer in the micro-LED structure. The plasma-induced damage to the p-GaN is associated
with a notable increase in the VF values, suggesting changes in the electrical properties of the p-GaN
layer. In addition, Tian et al. reported that surface damage to the p-GaN layer was specifically
attributed to nitrogen vacancies on the p-GaN surface [34]. The sputtering process, during which
negative voltage is applied to the ITO target, generates O2- sputtering ions with a greater
bombardment effect on the p-GaN crystal surface. This results in the loss of more nitrogen atoms on
the p-GaN crystal surface, causing surface damage and potentially altering the electrical
characteristics of the p-GaN layer. The presence of nitrogen vacancies at the ITO/p-GaN interface has
been identified as a factor contributing to the higher VF values in micro-LEDs with S-ITO films [35].
Consequently, both ion bombardment damage during sputtering and surface damage with nitrogen
vacancies on the p-GaN layer could lead to higher VF values in micro-LEDs created with S-ITO films,
despite their densely packed morphology and lower resistivity compared to E-ITO films.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 March 2024 doi:10.20944/preprints202403.1230.v1
6
Figure 4. J-V characteristics of blue micro-LEDs for a single pixel and for four pixels with the E-ITO
films and S-ITO films.
For industrial mass production, uniformity of micro-LED pixel electrical parameters, such as the
VF characteristics, is a very important factor for high-quality displays. As shown in Figure 5, the VF
values of a single pixel with the optimized E-ITO spreading layer from region 1 to region 5 on a four-
inch wafer are 2.88, 2.81, 2.81, 2.82, and 2.79 V at 30 A/cm2, respectively. Also, with four pixels, the
corresponding VF values of the five different regions are 2.89, 2.83, 2.83, 2.83, and 2.79 V at 30 A/cm2.
Surprisingly, the VF variations for a single pixel and for four pixels with five different regions are
only 0.09 V (3.13 %) and 0.10 V (3.46 %), respectively. These VF variation values are very low, and
they show a narrow distribution on the four-inch wafer. This extremely uniform VF variation is
suitable for improving the quality and performance of displays created via industrial mass
production.
Figure 5. Wafer-scale uniformity of the VF characteristics of blue micro-LED arrays for a single pixel
and for four pixels using an E-ITO spreading layer with five different regions.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 March 2024 doi:10.20944/preprints202403.1230.v1
7
Inefficient micro-LEDs can induce self-heating of the micro-LED device, which can further
deteriorate the performance of the micro-LEDs, particularly the emission wavelength. The variation
in the emission wavelength of 120 pixels with the optimized E-ITO spreading layer from region 1 to
region 5 on a four-inch wafer was measured as the current density was increased from 30 to 1500
A/cm2, as shown in Figure 6a-b. The values of the emission wavelength for 120 pixels from region 1
to region 5 on a four-inch wafer are 448.9, 449.1, 448.1, 448.9, and 447.5 nm at 30 A/cm2, respectively.
The variation in the emission wavelength at 30 A/cm2 with five different regions is only 1.6 nm. As
the current density was increased from 30 to 1,500 A/cm2, the blue shifts in the EL peaks wavelength
were approximately 8.2, 7.5, 6.4, 8.2, and 6.3 nm from region 1 to region 5, respectively. These blue
shifts can be attributed to the screen effect on the quantum-confined stark effect (QCSE) and to the
enhanced carrier-band filling effect with an increase in the injection current density, during which
excess carriers would occupy the higher energy level states [3638]. In addition, the variation of the
full width at half maximum (FWHM) for 120 pixels with the optimized E-ITO spreading layer from
region 1 to region 5 was analyzed, as shown in Figure 6c. As a function of the injection current density,
the variation of the FWHM values from regions 1 to 5 are approximately 10.5, 9.9, 9.8, 8.9, and 11.2
nm, respectively. The FWHM of a GaN-based LED can be affected by the quality of the quantum
well, the well width, and by any indium fluctuations [39]. The emission wavelength and the FWHM
of 120 pixels at different injected current densities from region 1 to region 5 are summarized in Table
1. These variations of the emission wavelength and the FWHM are very low, and they show a narrow
distribution on a four-inch wafer. This high-performance blue micro-LED pixel with the optimized
E-ITO spreading layer provides a promising and practical solution to realize micro-LED displays for
use in AR and VR applications, circumventing the bottleneck in the development of long-lifespan
and high-brightness organic LED devices.
Figure 6. Wafer-scale uniformity of (a) the EL spectra, (b) the emission wavelength, and (c) the FWHM
of blue micro-LED arrays for 120 pixels using an E-ITO spreading layer with five different regions on
a four-inch wafer as the current density was increased from 30 to 1500 A/cm2.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 March 2024 doi:10.20944/preprints202403.1230.v1
8
Table 1. Variations of the emission wavelength and the FWHM of blue micro-LED arrays for 120
pixels with five different regions as the current density was increased from 30 to 1500 A/cm2.
Position
EL property
Current density
30 A/cm2
75 A/cm2
150 A/cm2
1500 A/cm2
Region 1
Emission wavelength
[nm]
448.9
445.0
443.1
440.7
FWHM [nm]
18.2
19.7
21.5
28.7
Region 2
Emission wavelength
[nm]
449.1
445.5
444.1
441.6
FWHM [nm]
19.1
19.4
22.9
29.0
Region 3
Emission wavelength
[nm]
448.1
447.6
444.3
441.7
FWHM [nm]
18.8
19.0
21.4
28.6
Region 4
Emission wavelength
[nm]
448.9
445.2
443.1
440.7
FWHM [nm]
19.2
20.4
23.1
28.1
Region 5
Emission wavelength
[nm]
447.5
443.6
441.9
441.2
FWHM [nm]
17.6
19.4
22.0
28.8
Figure 7 shows emission images of PM-type blue micro-LEDs created with the optimized E-ITO
films. Zoomed-in images of the PM-type blue micro-LEDs showing the light-emitting outcomes at
583 pixels and 847 pixels simultaneously demonstrate good display uniformity and brightness.
Optical microscope images of the light emission result highlight the uniformity and confirm the
overall excellent image quality, validating the applicability of these micro-LEDs for use in high-
performance display technologies. This demonstration emphasizes the tremendous potential of these
blue micro-LEDs for display applications requiring high-performance capabilities. This observation
has significant implications with regard to the advancement and potential commercial viability of
micro-LED displays, indicating their capacity to meet stringent criteria for image quality in practical
applications.
Figure 7. Photographs of zoomed-in images of PM-type blue micro-LEDs with light-emitting images
at the same time: (a) 583 pixels and (b) 847 pixels.
4. Conclusions
We successfully demonstrated the four-inch wafer-scale fabrication of high-resolution blue
micro-LED arrays created using optimized e-beam-deposited and sputter-deposited ITO layers on a
sapphire substrate, achieving a density level of 1692 PPI. The surface morphology of the S-ITO film
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 March 2024 doi:10.20944/preprints202403.1230.v1
9
was relatively smooth and dense, while that of the E-ITO films was rather rough. The roughness of
the E-ITO films is approximately 7.72 times greater than that of the S-ITO films. Also, the measured
resistivity of the S-ITO films is 4.86 x 10-4 ohm·cm, much lower than that of the E-ITO films, at 5.96 x
10-3 ohm·cm. Interestingly, although the S-ITO films exhibited a densely packed morphology and
lower resistivity compared to the E-ITO films, the VF values of a micro-LED created with the S-ITO
films were higher than those of a micro-LED created with the E-ITO films. The VF values of a single
pixel with the optimized E-ITO layer from region 1 to region 5 on a four-inch wafer are 2.88, 2.81,
2.81, 2.82, and 2.79 V at 30 A/cm2, respectively. Also, with four pixels, the corresponding VF values of
the five different regions are 2.89, 2.83, 2.83, 2.83, and 2.79 V at 30 A/cm2. Surprisingly, the VF
variations of a single pixel and of four pixels with five different regions are only 3.13 % and 3.46 %,
respectively. As the current density was increased from 30 to 1,500 A/cm2, the blue shifts in the EL
peaks wavelength were approximately 8.2, 7.5, 6.4, 8.2, and 6.3 nm from region 1 to region 5,
respectively. In addition, the corresponding variations of the FWHM values on a four-inch wafer
were approximately 10.5, 9.9, 9.8, 8.9, and 11.2 nm, respectively. The values of VF, the emission
wavelength, and the FWHM are very low and show a narrow distribution on the four-inch wafer.
Also, various emission images of PM-type blue micro-LEDs utilizing the optimized E-ITO spreading
layer at 583 pixels and 847 pixels simultaneously demonstrate good display uniformity and
brightness. These observations highlight the immense potential of blue micro-LEDs for demanding
display applications, showcasing their ability to meet rigorous criteria for superior image quality in
practical applications.
Author Contributions: Conceptualization, E.-K.C., E.J.Y. and H.-H.P.; methodology, E.-K.C. and E.J.Y.;
validation, H.W.K., B.D.P. and H.G.S.; formal analysis, H.W.K. and B.D.P.; investigation, H.-H.P.; data curation,
H.G.S.; writingoriginal draft preparation, E.-K.C. and E.J.Y.; writingreview and editing, E.-K.C., E.J.Y. and
H.-H.P.; supervision, H.-H.P.; project administration, H.-H.P.; funding acquisition, H.-H.P. All authors have
read and agreed to the published version of the manuscript.
Funding: This work was supported by the Technology Innovation Program (No. 20017391, No. RS-2023-
00257784 and No. RS-2024-00417436) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflicts of interest.
References
1. Huang, Y.; Hsiang, E.-L.; Deng, M.-Y.; Wu, S.-T. Mini-LED, Micro-LED and OLED Displays: present status
and future perspectives. Light Sci. Appl. 2020, 9, 105.
2. Chen, Z.; Yan, S.; Danesh, C. MicroLED technologies and applications: characteristics, fabrication, progress,
and challenges. J. Phys. D: Appl. Phys. 2021, 54, 123001.
3. Wu, T.; Sher, C.W.; Lin, Y.; Lee, C.F.; Liang, S.; Lu, Y.; Chen, S.W.H.; Guo, W.; Kuo, H.C.; Chen, Z. Mini-
LED and micro-LED: Promising candidates for the next generation display technology. Appl. Sci. 2018, 8,
1577.
4. Lin, J.Y.; Jiang, H.X. Development of microLED. Appl. Phys. Lett. 2020, 116, 100502.
5. Qi, L.; Zhang, X.; Chong, W.C.; Li, P.; Lau, K.M. 848 ppi high-brightness active-matrix micro-LED micro-
display using GaN-on-Si epi-wafers towards mass production. Opt. Express 2021, 29, 10580-10591.
6. Lu, S.; Li, J.; Huang, K.; Liu, G.; Zhou, Y.; Cai, D.; Zhang, R.; Kang, J. Designs of InGaN micro-LED structure
for improving quantum efficiency at low current density. Nanoscale Res. Lett. 2021, 16, 99.
7. Xiong, J.; Hsiang, E.-L.; He, Z.; Zhan, T.; Wu, S.-T. Augmented reality and virtual reality displays: emerging
technologies and future perspectives. Light Sci. Appl. 2021, 10, 216.
8. Bae, J.; Shin, Y.; Yoo, H.; Choi, Y.; Lim, J.; Jeon, D.; Kim, I.; Han, M.; Lee, S. Quantum dot-integrated GaN
light-emitting diodes with resolution beyond the retinal limit. Nat. Commun. 2022, 13, 1862.
9. Jin, S.X.; Li, J.; Li, J.Z.; Lin, J.Y.; Jiang, H.X. GaN microdisk light emitting diodes. Appl. Phys. Lett. 2000, 76,
631633.
10. Day, J.; Li, J.; Lie, D.Y.C.; Bradford, C.; Lin, J.Y.; Jiang, H.X. III-Nitride full-scale high-resolution
microdisplays. Appl. Phys. Lett. 2011, 99, 031116.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 March 2024 doi:10.20944/preprints202403.1230.v1
10
11. Liu, Y.; Feng, F.; Zhang, K.; Jiang, F.; Chan, K.-W.; Kwok, H.S.; Liu, Z. Analysis of size dependence and the
behavior under ultrahigh current density injection condition of GaN-based Micro-LEDs with pixel size
down to 3 μm. J. Phys. D: Appl. Phys. 2022, 55, 315107.
12. Chen, J.; Brewer, W.D. Ohmic contacts on P-GaN. Adv. Electron. Mater. 2015, 1, 1500113.
13. Zahir, N.H.; Talik, N.A.; Harun, H.N.; Kamarundzaman, A.; Tunmee, S.; Nakajima, H.; Chanlek, N.;
Shuhaimi, A.; Abd Majid, W.H. Improved performance of InGaN/GaN LED by optimizing the properties
of the bulk and interface of ITO on p-GaN. Appl. Surf. Sci. 2021, 540, 148406.
14. Horng, R.-H.; Wuu, D.-S.; Lien, Y.C.; Lan, W.-H. Low-resistance and high-transparency Ni/indium tin
oxide ohmic contacts to p-type GaN. Appl. Phys. Lett. 2001, 79, 29252927.
15. Sheremet, V.; Genç, M.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür;
Morkoç, H. The role of ITO resistivity on current spreading and leakage in InGaN/GaN light emitting
diodes. Superlattices Microstruct. 2017, 111, 11771194.
16. Zhanghu, M.; Hyun, B.-R.; Jiang, F.; Liu, Z. Ultra-bright green InGaN micro-LEDs with brightness over
10M nits. Opt. Express 2022, 30, 10119-10125.
17. Leonard, J.T.; Cohen, D.A.; Yonkee, B.P.; Farrell, R.M.; Denbaars, S.P.; Speck, J.S.; Nakamura, S. Smooth E-
beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity
contacts. J. Appl. Phys. 2015, 118, 145304.
18. Gandrothula, S.; Kamikawa, T.; Shapturenka, P.; Anderson, R.; Wong, M.; Zhang, H.; Speck, J.S.;
Nakamura, S.; Denbaars, S.P. Optical and electrical characterizations of micro-LEDs grown on lower defect
density epitaxial layers. Appl. Phys. Lett. 2021, 119, 142103.
19. Fallah, H.R.; Ghasemi, M.; Hassanzadeh, A.; Steki, H. The effect of annealing on structural, electrical and
optical properties of nanostructured ITO films prepared by e-beam evaporation. Mater. Res. Bull. 2007, 42,
487496.
20. Tuna, O.; Selamet, Y.; Aygun, G.; Ozyuzer, L. High quality ITO thin films grown by dc and RF sputtering
without oxygen. J. Phys. D: Appl. Phys. 2010, 43, 055402.
21. Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M. Structural and morphological properties of ITO thin
films grown by magnetron sputtering. J. Theor. Appl. Phys. 2015, 9, 285290.
22. Zuev, D.A.; Lotin, A.A.; Novodvorsky, O.A.; Lebedev, F.V.; Khramova, O.D.; Petuhov, I.A.; Putilin, P.N.;
Shatohin, A.N.; Rumyanzeva, M.N.; Gaskov, A.M. Pulsed laser deposition of ITO thin films and their
characteristics. Semiconductors 2012, 46, 410413.
23. Socol, M.; Preda, N.; Rasoga, O.; Costas, A.; Stanculescu, A.; Breazu, C.; Gherendi, F.; Socol, G. Pulsed laser
deposition of indium tin oxide thin films on nanopatterned glass substrates. Coatings 2019, 9, 19.
24. Cho, H.; Yun, Y.-H. Characterization of indium tin oxide (ITO) thin films prepared by a sol-gel spin coating
process. Ceram. Int. 2011, 37, 615619.
25. Hammad, T.M. Effect of annealing on electrical, structural, and optical properties of sol-gel ITO thin films.
Phys. Status Solidi A 2009, 206, 21282132.
26. Marikkannu, S.; Sanjeeviraja, C.; Piraman, S.; Ayeshamariam, A. Studies on the structural, optical, and
electrical properties of jet-nebulized spray pyrolysis ITO thin films. J. Mater. Sci.: Mater. Electron 2015, 26,
25312537.
27. Aouaj, M.A.; Diaz, R.; Belayachi, A.; Rueda, F.; Abd-Lefdil, M. Comparative study of ITO and FTO thin
films grown by spray pyrolysis. Mater. Res. Bull. 2009, 44, 14581461.
28. Hsu, S.-C.; Wuu, D.-S.; Zheng, X.; Horng, R.-H. Electron-beam and sputter-deposited indiumtin oxide
omnidirectional reflectors for high-power wafer-bonded AlGaInP light-emitting diodes. J. Electrochem.
2009, 156, H281-H284.
29. Shakiba, M.; Kosarian, A.; Farshidi, E. Effects of processing parameters on crystalline structure and
optoelectronic behavior of DC sputtered ITO thin film. J. Mater. Sci: Mater. Electron. 2017, 28, 787797.
30. Liu, Z.; Lin, C.H.; Hyun, B.-R.; Sher, C.W.; Lv, Z.; Luo, B.; Jiang, F.; Wu, T.; Ho, C.-H.; Kuo, H.-C.; He, J.-H.
Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 2020, 9, 83.
31. Lin, Y.-S.; Li, C.N.; Chang, Y.-C.; Tseng, C.-L.; Shen, C.-H. Improved output power and low forward voltage
for GaN-based light emitting diodes with an annealed ITO transparent conducting layer. J. Mater. Sci:
Mater. Electron. 2016, 27, 62656270.
32. Visher, G.S. Grain size distributions and depositional processes. J. Sediment. Res. 1969, 39, 1074-1106.
33. Son, K.J.; Kim, T.K.; Cha, Y.-J.; Oh, S.K.; You, S.-J.; Ryou, J.-H.; Kwak, J.S. Impact of plasma electron flux on
plasma damage-free sputtering of ultrathin tin-doped indium oxide contact layer on p-GaN for
InGaN/GaN light-emitting diodes. Adv. Sci. 2018, 5, 1700637.
34. Tian, L.; Cheng, G.; Zheng, R.; Tian, K.; Yan, X.; Hu, Z.; Wang, H. Effect of sputtering deposition process of
indium tin oxynitride on surface damage of gallium nitride film. Superlattice. Microst. 2017, 109, 750757.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 March 2024 doi:10.20944/preprints202403.1230.v1
11
35. Foster, G.M.; Koehler, A.; Ebrish, M.; Gallagher, J.; Anderson, T.; Noesges, B.; Brillson, L.; Gunning, B.;
Hobart, K.D.; Kub, F. Recovery from plasma etching-induced nitrogen vacancies in p-Type gallium nitride
using UV/O3 treatments. Appl. Phys. Lett. 2020, 117, 082103.
36. Gîrgel, I.; Edwards, P.R.; Boulbar E.L.; Coulon P.-M.; Sahonta S.-L.; Allsopp D.W.E.; Martin R.W.;
Humphreys C.J.; Shields P.A. Investigation of indium gallium nitride facet-dependent nonpolar growth
rates and composition for coreshell light-emitting diodes. J. Nanophotonics 2016, 10, 016010.
37. Bi, Z.; Gustafsson, A.; Lenrick, F.; Lindgren, D.; Hultin, O.; Wallenberg, L.R.; Ohlsson, B.J.; Monemar, B.;
Samuelson, L. High In-content InGaN nano-pyramids: Tuning crystal homogeneity by optimized
nucleation of GaN seeds. J. Appl. Phys. 2018, 123, 25102.
38. Senawiratne, J.; Chatterjee, A.; Detchprohm, T.; Zhao, W.; Li, Y.; Zhu, M.; Xia, Y.; Li, X.; Plawsky, J.; Wetzel,
C. Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes.
Thin Solid Films 2010, 518, 17321736.
39. Kim, K.-C.; Schmidt, M.C.; Sato, H.; Wu, F.; Fellows, N.; Saito, M.; Fujito, K.; Speck, J.S.; Nakamura, S.;
DenBaars, S.P. Improved electroluminescence on nonpolar m-plane InGaN/GaN quantum wells LEDs.
Phys. Status Solidi RRL 2007, 1, 125-127.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 March 2024 doi:10.20944/preprints202403.1230.v1
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
In this paper, the GaN-based green Micro-LEDs with various sizes (from 3 to 100 μm) were fabricated and electro-optically characterized. Atom layer deposition (ALD) passivation and potassium hydroxide (KOH) treatment were applied to eliminate the sidewall damage. The size dependence of Micro-LED was systematically analyzed with current-versus-voltage and current density-versus-voltage relationship. According to the favorable ideality factor results (<1.5), the optimized sidewall treatment was achieved when the device size shrank down to <10 μm. In addition, the EQE droop phenomenon, luminance and output power density characteristics were depicted up to the highest current density injection condition to date (120 kA/cm2), and 6 μm device exhibited an improved EQE performance with the peak EQE value of 16.59% at 20 A/cm2 and over 600k and 6M cd/cm2 at 1 and 10 A/cm2, indicating a greater brightness quality for over 3000 PPI multiple display application. Lastly, the blue shift of 6 μm device with elevating current density was observed in electroluminescence (EL) spectra and converted to CIE 1931 color space. The whole shifting track and color variation from 1 A/cm2 to 120 kA/cm2 were demonstrated by color coordinates.
Article
Full-text available
Near-eye display technology is a rapidly growing field owing to the recent emergence of augmented and mixed reality. Ultrafast response time, high resolution, high luminance, and a dynamic range for outdoor use are all important for non-pixelated, pupil-forming optics. The current mainstream technologies using liquid crystals and organic materials cannot satisfy all these conditions. Thus, finely patterned light-emissive solid-state devices with integrated circuits are often proposed to meet these requirements. In this study, we integrated several advanced technologies to design a prototype microscale light-emitting diode (LED) arrays using quantum dot (QD)-based color conversion. Wafer-scale epilayer transfer and the bond-before-pattern technique were used to directly integrate 5-µm-scale GaN LED arrays on a foreign silicon substrate. Notably, the lithography-level alignment with the bottom wafer opens up the possibility for ultrafast operation with circuit integration. Spectrally pure color conversion and solvent-free QD patterning were also achieved using an elastomeric topographical mask. Self-assembled monolayers were applied to selectively alter the surface wettability for a completely dry process. The final emissive-type LED array integrating QD, GaN, and silicon technology resulted in a 1270 PPI resolution that is far beyond the retinal limit.
Article
Full-text available
An investigation of electrical and optical properties of InGaN micro-scale light-emitting diodes (micro-LEDs) emitting at ∼530 nm is carried out, with sizes of 80, 150, and 200 µm. The ITO as a current spreading layer (CSL) provides excellent device performance. Over 10% external quantum efficiency (EQE) and wall-plug efficiency (WPE), and ultra-high brightness (> 10M nits) green micro-LEDs are realized. In addition, it is observed that better current spreading in smaller devices results in higher EQE and brightness. Superior green micro-LEDs can provide an essential guarantee for a variety of applications.
Article
Full-text available
With rapid advances in high-speed communication and computation, augmented reality (AR) and virtual reality (VR) are emerging as next-generation display platforms for deeper human-digital interactions. Nonetheless, to simultaneously match the exceptional performance of human vision and keep the near-eye display module compact and lightweight imposes unprecedented challenges on optical engineering. Fortunately, recent progress in holographic optical elements (HOEs) and lithography-enabled devices provide innovative ways to tackle these obstacles in AR and VR that are otherwise difficult with traditional optics. In this review, we begin with introducing the basic structures of AR and VR headsets, and then describing the operation principles of various HOEs and lithography-enabled devices. Their properties are analyzed in detail, including strong selectivity on wavelength and incident angle, and multiplexing ability of volume HOEs, polarization dependency and active switching of liquid crystal HOEs, device fabrication, and properties of micro-LEDs (light-emitting diodes), and large design freedoms of metasurfaces. Afterwards, we discuss how these devices help enhance the AR and VR performance, with detailed description and analysis of some state-of-the-art architectures. Finally, we cast a perspective on potential developments and research directions of these photonic devices for future AR and VR displays. Emerging holographic optical elements and lithography-based devices are enhancing the performances of augmented reality and virtual reality displays with glasses-like form factor.
Article
Full-text available
We have fabricated μLEDs of mesa sizes 10 × 10 and 15 × 15 μm² on native (2021¯) semipolar substrates and on epitaxial lateral overgrown (ELO) wings of the (2021¯) substrate. The ELO μLEDs exhibited very low leakage current (less than 10⁻¹⁰ A) under forward bias (V < 2 V) and at reverse bias voltages, which was a reduction in several orders of magnitude when compared with planar μLEDs under the same fabrication and sidewall passivation scheme. Electrical characterization revealed that the mesa sidewall is less damaged in plasma dry etching in the ELO μLEDs due to a lower material defect density than the planar μLEDs. Moreover, the ELO μLEDs showed improved optical performance over the planar μLEDs.
Article
Full-text available
Here we report a comprehensive numerical study for the operating behavior and physical mechanism of nitride micro-light-emitting-diode (micro-LED) at low current density. Analysis for the polarization effect shows that micro-LED suffers a severer quantum-confined Stark effect at low current density, which poses challenges for improving efficiency and realizing stable full-color emission. Carrier transport and matching are analyzed to determine the best operating conditions and optimize the structure design of micro-LED at low current density. It is shown that less quantum well number in the active region enhances carrier matching and radiative recombination rate, leading to higher quantum efficiency and output power. Effectiveness of the electron blocking layer (EBL) for micro-LED is discussed. By removing the EBL, the electron confinement and hole injection are found to be improved simultaneously, hence the emission of micro-LED is enhanced significantly at low current density. The recombination processes regarding Auger and Shockley–Read–Hall are investigated, and the sensitivity to defect is highlighted for micro-LED at low current density. Synopsis : The polarization-induced QCSE, the carrier transport and matching, and recombination processes of InGaN micro-LEDs operating at low current density are numerically investigated. Based on the understanding of these device behaviors and mechanisms, specifically designed epitaxial structures including two QWs, highly doped or without EBL and p-GaN with high hole concentration for the efficient micro-LED emissive display are proposed. The sensitivity to defect density is also highlighted for micro-LED.
Article
Full-text available
In this paper, fabrication processes of a 0.55-inch 400 × 240 high-brightness active-matrix micro-light-emitting diode (LED) display using GaN-on-Si epi-wafers are described. The micro-LED array, featuring a pixel size of 20 µm × 20 µm and a pixel density of 848 pixels per inch (ppi), was fabricated and integrated with a custom-designed CMOS driver through Au-Sn flip-chip bonding. Si growth substrate was removed using a crack-free wet etching method. Four-bit grayscale images and videos are clearly rendered. Optical crosstalk is discussed and can be mitigated through micro-LED array design and process modification. This high-performance, high-resolution micro-LED display demonstration provides a promising and cost-effective solution towards mass production of micro-displays for VR/AR applications.
Article
Full-text available
Micro light-emitting diode (microLED) technology is expected to be used in next-generation displays and other applications due to its many advantages. This paper categorizes, reviews, and analyzes the main challenges and technical solutions in the microLED displays manufacturing process, covering epitaxial growth, wafer fabrication, mass transfer, control circuit, and panel. In the overview section, the comparison between microLED, liquid crystal display, and organic light-emitting diode displays, as well as the various applications of microLEDs, are reviewed. In the same part, the specific challenges of microLED manufacturing are also discussed, including full-color operation, reduced external quantum efficiency (EQE), low-efficiency and low-yield mass transfer, and structure and process design from a system perspective. In the epitaxial growth section, the requirements, problems, and technical developments of epitaxial growth, especially the growth of AlInGaN red LED, have been reviewed. The microLED chip characterization and fabrication section present the reasons for the low EQE of microLEDs and the methods to overcome this problem. This section also includes the unique characteristics and theories of microLEDs, compared with those of traditional broad-area LEDs. Various mass transfer technologies are summarized in the mass transfer section. The design and operation mechanism of the microLED control circuit is discussed in the control circuit and panel section. This section also introduces the manufacturing and performance improvement of the backplane and the panel. The best way to use this review is to read the overview section first, get a big picture of microLEDs, read the chip section to learn about their special features and reasons behind them, and then go to the parts you are interested in.
Article
Full-text available
Plasma etching of p-type GaN creates n-type nitrogen vacancy (VN) defects at the etched surface, which can be detrimental to device performance. In mesa isolated diodes, etch damage on the sidewalls degrades the ideality factor and leakage current. A treatment was developed to recover both the ideality factor and leakage current, which uses UV/O3 treatment to oxidize the damaged layers followed by HF etching to remove them. The temperature dependent I–V measurement shows that the reverse leakage transport mechanism is dominated by Poole–Frenkel emission at room temperature through the etch-induced VN defect. Depth resolved cathodoluminescence confirms that the damage is limited to first several nanometers and is consistent with the VN defect.
Article
Indium Tin Oxide films were deposited directly on p-type Gallium Nitride film using the electron beam deposition method at different substrate temperatures from 25 °C to 550 °C. The structural, optical and Hall measurements represent a direct correlation of ITO properties with the substrate temperature during deposition. The substrate temperature of 450 °C produces the best ITO/p-GaN properties for the InGaN/GaN Light Emitting Diode performance, which outperforms the 550 °C device, although the latter exhibits better optical characteristics. At 100 mA, the 450 °C LED exhibits the highest power efficiency of 9.32 mW with an operation voltage of 6.96 V. X-ray Photoemission Spectroscopy measurement shows that substitution of Sn⁴⁺ occurs inside the In2O3 structure, which reaches its limit at the 450 °C substrate temperature. This result manifests the crucial role of the surface chemistry effect on the current injection into the LED. Additionally, the band offset of ITO/p-GaN interface data shows that the interface of the 450 °C sample exhibits the highest conduction band offset of 1.93 eV. For the metal/ITO junction, the 450 °C sample experiences the lowest Conduction Band Maximum of 0.69 eV, which ultimately helps to enhance the carrier injection from the anode part in the device.