ArticleLiterature Review

Therapeutic strategies in FcγIIA receptor-dependent thrombosis and thromboinflammation as seen in heparin-induced thrombocytopenia (HIT) and vaccine-induced immune thrombocytopenia and thrombosis (VITT)

Taylor & Francis
Expert Opinion on Pharmacotherapy
Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Introduction: Fcγ-receptors (FcγR) are membrane receptors expressed on a variety of immune cells, specialized in recognition of the Fc part of immunoglobulin G (IgG) antibodies. FcγRIIA-dependent platelet activation in platelet factor 4 (PF4) antibody-related disorders have gained major attention, when these antibodies were identified as the cause of the adverse vaccination event termed vaccine-induced immune thrombocytopenia and thrombosis (VITT) during the COVID-19 vaccination campaign. With the recognition of anti-PF4 antibodies as cause for severe spontaneous and sometimes recurrent thromboses independent of vaccination, their clinical relevance extended far beyond heparin-induced thrombocytopenia (HIT) and VITT. Areas covered: Patients developing these disorders show life-threatening thromboses, and the outcome is highly dependent on effective treatment. This narrative literature review summarizes treatment options for HIT and VITT that are currently available for clinical application and provides the perspective toward new developments. Expert opinion: Nearly all these novel approaches are based on in vitro, preclinical observations, or case reports with only limited implementation in clinical practice. The therapeutic potential of these approaches still needs to be proven in larger cohort studies to ensure treatment efficacy and long-term patient safety.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Background: Heparin-induced thrombocytopenia (HIT) is a major concern for all individuals that undergo cardiac bypass surgeries or require prolonged heparin exposure. HIT is a life- and limb-threatening adverse drug reaction with an immune response following the formation of ultra-large immune complexes that drive platelet activation through the receptor FcγRIIA. Thrombotic events remain high following the standard of care treatment with anticoagulants, while increasing risk of bleeding complications. This study sought to investigate a novel approach to treatment of HIT. Recent reports demonstrate increased procoagulant activity in HIT; however, these reports required analysis ex vivo, and relevance in vivo remains unclear. Methods: Using human and mouse model systems, we investigated the cooperativity of PARs (protease-activated receptors) and FcγRIIA in HIT. We challenged humanized FcγRIIA transgenic mice with or without endogenous mouse Par4 (denoted as IIA-Par4+/+ or IIA-Par4-/-, respectively) with a well-established model IgG immune complex (anti [α]-CD9). Furthermore, we assessed the procoagulant phenotype and efficacy to treat HIT utilizing inhibitor of 12-LOX (12[S]-lipoxygenase), VLX-1005, previously reported to decrease platelet activation downstream of FcγRIIA and PAR4, using the triple allele HIT mouse model. Results: IIA-Par4+/+ mice given αCD9 were severely thrombocytopenic, with extensive platelet-fibrin deposition in the lung. In contrast, IIA-Par4-/- mice had negligible thrombocytopenia or pulmonary platelet-fibrin thrombi. We observed that pharmacological inhibition of 12-LOX resulted in a significant reduction in both platelet procoagulant phenotype ex vivo, and thrombocytopenia and thrombosis in our humanized mouse model of HIT in vivo. Conclusions: These data demonstrate for the first time the need for dual platelet receptor (PAR [protease-activated receptor] and FcγRIIA) stimulation for fibrin formation in HIT in vivo. These results extend our understanding of HIT pathophysiology and provide a scientific rationale for targeting the procoagulant phenotype as a possible therapeutic strategy in HIT.
Article
Full-text available
Fc receptors are involved in a variety of physiologically and disease relevant responses. Among them, FcγRIIA (CD32a) is known for its activating functions in pathogen recognition and platelet biology, and, as potential marker of T lymphocytes latently infected with HIV-1. The latter has not been without controversy due to technical challenges complicated by T-B cell conjugates and trogocytosis as well as a lack of antibodies distinguishing between the closely related isoforms of FcγRII. To generate high-affinity binders specific for FcγRIIA, libraries of designed ankyrin repeat proteins (DARPins) were screened for binding to its extracellular domains by ribosomal display. Counter-selection against FcγRIIB eliminated binders cross-reacting with both isoforms. The identified DARPins bound FcγRIIA with no detectable binding for FcγRIIB. Their affinities for FcγRIIA were in the low nanomolar range and could be enhanced by cleavage of the His-tag and dimerization. Interestingly, complex formation between DARPin and FcγRIIA followed a two-state reaction model and discrimination from FcγRIIB was based on a single amino acid residue. In flow cytometry, DARPin F11 detected FcγRIIA+ cells even when they made up less than 1% of the cell population. Image stream analysis of primary human blood cells confirmed that F11 caused dim but reliable cell surface staining of a small subpopulation of T lymphocytes. When incubated with platelets, F11 inhibited their aggregation equally efficient as antibodies unable to discriminate between both FcγRII isoforms. The selected DARPins are unique novel tools for platelet aggregation studies as well as the role of FcγRIIA for the latent HIV-1 reservoir.
Article
Full-text available
Fondaparinux sodium is a chemically synthesized selective factor Xa inhibitor approved for the prevention and treatment of venous thromboembolic events, that is, deep vein thrombosis, pulmonary embolism, and superficial vein thrombosis, in acutely ill (including those affected by COVID-19 or cancer patients) and those undergoing surgeries. Since its approval in 2002, the efficacy and safety of fondaparinux is well demonstrated by many clinical studies, establishing the value of fondaparinux in clinical practice. Some of the advantages with fondaparinux are its chemical nature of synthesis, minimal risk of contamination, 100% absolute bioavailability subcutaneously, instant onset of action, a long half-life, direct renal excretion, fewer adverse reactions when compared with direct oral anticoagulants, and being an ideal alternative in conditions where oral anticoagulants are not approved for use or in patients intolerant to low molecular weight heparins (LMWH). In the last decade, the real-world use of fondaparinux has been explored in other conditions such as acute coronary syndromes, bariatric surgery, in patients developing vaccine-induced immune thrombotic thrombocytopenia (VITT) and in pregnant women with heparin-induced thrombocytopenia (HIT), or those intolerant to LMWH. The emerging data from these studies have culminated in recent updates in the guidelines that recommend the use of fondaparinux under various conditions. This paper aims to review the recent data and the subsequent updates in the recommendations of various guidelines on the use of fondaparinux sodium.
Article
Full-text available
Background: New antithrombotic therapies with less effect on bleeding are needed for coronary artery disease. The Btk inhibitor ibrutinib blocks atherosclerotic plaque-mediated thrombus formation. However, it is associated with increased bleeding, possibly due to non-Btk-mediated effects. Btk-deficient patients do not have bleeding issues, suggesting selective Btk inhibition as a promising antithrombotic strategy. Objectives: To compare the antithrombotic effects of the highly selective Btk inhibitor AB-95-LH34 (LH34) with ibrutinib. Methods: Glycoprotein VI and G-protein coupled receptor-mediated platelet function and signaling were analyzed in healthy human donor platelets by lumi-aggregometry, flow adhesion, and western blot following 1 h treatment with inhibitors in vitro. Results: LH34 showed similar inhibition of Btk-Y223 phosphorylation as ibrutinib, but had no off-target inhibition of Src-Y418 phosphorylation. Similar dose-dependent inhibition of aggregation to atherosclerotic plaque material was observed for both. However, in response to Horm collagen, which also binds integrin α2β1, LH34 exhibited less marked inhibition than ibrutinib. Both LH34 and ibrutinib inhibited platelet adhesion and aggregation to plaque material at arterial shear. Ibrutinib demonstrated the most potent effect, with complete blockade at high concentrations. Platelet activation (P-selectin) and procoagulant activity (phosphatidylserine exposure) in thrombi were inhibited by LH34 and completely blocked by ibrutinib at high concentrations. Furthermore, plaque-induced thrombin generation was reduced by higher concentrations of LH34 and ibrutinib. Conclusions: LH34 potently inhibits atherosclerotic plaque-induced thrombus formation and procoagulant platelet activity in vitro, with less off-target inhibition of Src than ibrutinib, suggesting it is a promising antiplatelet therapy with the potential for reduced bleeding side effects.
Article
Full-text available
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a novel prothrombotic disorder characterized by thrombosis, thrombocytopenia, and disseminated intravascular coagulation identified in hundreds of recipients of ChAdOx1 nCoV-19 (Oxford/AstraZeneca), an adenovirus vector coronavirus disease 2019 (COVID-19) vaccine. VITT resembles heparin-induced thrombocytopenia (HIT) in that patients have platelet-activating anti-platelet factor 4 antibodies; however, whereas heparin typically enhances platelet activation by HIT antibodies, VITT antibody-induced platelet activation is often inhibited in vitro by pharmacological concentrations of heparin. Further, the thrombotic complications in VITT feature much higher frequencies of atypical thrombosis, most notably cerebral vein thrombosis and splanchnic vein thrombosis, compared with HIT. In this review, we outline the treatments that have been used to manage this novel condition since its recognition in March 2021, including anticoagulation, high-dose intravenous immune globulin, therapeutic plasma exchange, corticosteroids, rituximab, and eculizumab. We discuss the controversial issue of whether heparin, which often inhibits VITT antibody-induced platelet activation, is harmful in the treatment of VITT. We also describe a case of “long VITT”, describing the treatment challenges resulting from platelet-activating anti-PF4 antibodies that persisted for more than 9 months.
Article
Full-text available
Background Vaccine-induced immune thrombocytopenia and thrombosis (VITT) is triggered by nCOV-19 adenovirus-vectored vaccines against SARS-CoV2. Pathogenesis has been mainly related to platelet activation via PF4-reactive antibodies that activate platelets and may cross-react with heparin. Data concerning optimal anticoagulation are anecdotal, and so far, there are scattered reports of danaparoid use in VITT management. Danaparoid has good efficacy and safety in treatment of heparin-induced thrombocytopenia. We report here our experience of the administration and monitoring danaparoid in VITT. Methods We diagnosed a series of six hospitalized cases of VITT, based on the international diagnostic guidance. All VITT-related data were from the local electronic medical and laboratory record system and were analyzed with IBM SPSS Statistics. Results Predominately women in their late 40’s developed VITT on average 24 days (range 9–59) after the first ChAdOx1 dose. Clinical presentation included single or multiple venous and/or arterial thrombosis, moderate thrombocytopenia and high D-dimer levels. After detecting PF4 antibodies subcutaneous danaparoid was our first-line antithrombotic treatment with an average duration of three weeks. The median plasma anti-FXa activity was in the lower part of the therapeutic range and during the first week of danaparoid administration clinical symptoms, platelet counts, and fibrin turnover resolved or significantly improved. The average duration of hospital admission was 10 days [2–18]. One patient died but the other five patients recovered completely. Conclusions The clinical outcomes of our small cohort align with the earlier published reports, and support danaparoid as a rational option for the initial anticoagulation of VITT patients.
Article
Full-text available
High platelet reactivity leading to spontaneous platelet aggregation (SPA) is a hallmark of cardiovascular diseases; however, the mechanism underlying SPA remains obscure. Platelet aggregation in stirred hirudin-anticoagulated blood was measured by multiple electrode aggregometry (MEA) for 10 min. SPA started after a delay of 2–3 min. In our cohort of healthy blood donors (n = 118), nine donors (8%) with high SPA (>250 AU*min) were detected. Pre-incubation of blood with two different antibodies against the platelet Fc-receptor (anti-FcγRIIA, CD32a) significantly reduced high SPA by 86%. High but not normal SPA was dose-dependently and significantly reduced by blocking Fc of human IgG with a specific antibody. SPA was completely abrogated by blood pre-incubation with the reversible Btk-inhibitor (BTKi) fenebrutinib (50 nM), and 3 h after intake of the irreversible BTKi ibrutinib (280 mg) by healthy volunteers. Increased SPA was associated with higher platelet GPVI reactivity. Anti-platelet factor 4 (PF4)/polyanion IgG complexes were excluded as activators of the platelet Fc-receptor. Our results indicate that high SPA in blood is due to platelet FcγRIIA stimulation by unidentified IgG complexes and mediated by Btk activation. The relevance of our findings for SPA as possible risk factor of cardiovascular diseases and pathogenic factor contributing to certain autoimmune diseases is discussed.
Article
Full-text available
For more than 10 years, direct oral anticoagulants (DOACs) have been increasingly prescribed for the prevention and treatment of thrombotic events. However, their use in immunothrombotic disorders, namely heparin-induced thrombocytopenia (HIT) and antiphospholipid syndrome (APS), is still under investigation. The prothrombotic state resulting from the autoimmune mechanism, multicellular activation, and platelet count decrease, constitutes similarities between HIT and APS. Moreover, they both share the complexity of the biological diagnosis. Current treatment of HIT firstly relies on parenteral non-heparin therapies, but DOACs have been included in American and French guidelines for a few years, providing the advantage of limiting the need for treatment monitoring. In APS, vitamin K antagonists are conversely the main treatment (+/- anti-platelet agents), and the use of DOACs is either subject to precautionary recommendations or is not recommended in severe APS. While some randomized controlled trials have been conducted regarding the use of DOACs in APS, only retrospective studies have examined HIT. In addition, vaccine-induced immune thrombotic thrombocytopenia (VITT) is now a part of immunothrombotic disorders, and guidelines have been created concerning an anticoagulant strategy in this case. This literature review aims to summarize available data on HIT, APS, and VITT treatments and define the use of DOACs in therapeutic strategies.
Article
Full-text available
Background: Direct oral anticoagulants (DOACs) do not require concentration monitoring. However, whether DOAC concentrations are stable and their variation between and within patients is not well studied. Methods: Patients on vitamin K antagonists (VKA) who switched to rivaroxaban, apixaban, or dabigatran were included between 2018 and 2020. Blood was drawn at DOAC trough and peak concentrations at week 0, 2, and 8. Plasma drug concentrations were determined by anti-factor Xa concentrations (rivaroxaban, apixaban) or diluted thrombin time (dabigatran). Inter- and intra-individual variability was assessed by calculating the coefficient of variation (CV). Linear regression models were employed to evaluate associations between DOAC trough concentrations and previous VKA dosage, creatinine clearance, and body mass index (BMI). Results: One hundred fifty-two patients were included, of whom 96 (63%) were male and with a mean age of 73.9 ± 8.4 years. For the inter-individual variability, the CV ranged between 48% and 81% for trough values and between 25% and 69% for peak values among patients using the recommended DOAC dose. Intra-individual variability was substantially lower, as here the CV ranged between 18% and 33% for trough values and between 15% and 29% for peak values among patients using the recommended DOAC dose. Previous VKA dosage and creatinine clearance were inversely associated with DOAC trough concentrations. No association was found between BMI and DOAC trough concentrations. Conclusion: Inter-individual variability of DOAC concentrations was higher than intra-individual variability. Lower previous VKA dosage and creatinine clearance were associated with higher DOAC trough concentrations. These findings support further study into an optimal target range, in which the risks of both bleeding and thrombosis are minimal.
Article
Full-text available
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a newly described hematologic disorder, which presents as acute thrombocytopenia and thrombosis after administration of the ChAdOx1 nCov-19 (AstraZeneca) and Ad26.COV2.S (Johnson & Johnson) adenovirus-based vaccines against COVID-19. Due to positive assays for antibodies against platelet factor 4 (PF4), VITT is managed similarly to autoimmune heparin-induced thrombocytopenia (HIT) with intravenous immunoglobulin (IVIG) and non-heparin anticoagulation. We describe a case of VITT in a 50-year-old man with antecedent alcoholic cirrhosis who presented with platelets of 7 × 103/μL and portal vein thrombosis 21 days following administration of the Ad26.COV2.S COVID-19 vaccine. The patient developed progressive thrombosis and persistent severe thrombocytopenia despite IVIG, rituximab and high-dose steroids and had persistent anti-PF4 antibodies over 30 days after his initial presentation. As such, delayed therapeutic plasma exchange (TPE) was pursued on day 32 of admission as salvage therapy, with a sustained improvement in his platelet count. Our case serves as proof-of-concept of the efficacy of TPE in VITT.
Article
Full-text available
Novel molecules that directly target the neonatal Fc receptor (FcRn) and/or Fc gamma receptors (FcγRs) are emerging as promising treatments for immunoglobulin G (IgG)-dependent autoimmune pathologies. Mutated Fc regions and monoclonal antibodies that target FcRn are currently in clinical development and hold promise for reducing the levels of circulating IgG. Additionally, engineered structures containing multimeric Fc regions allow the dual targeting of FcRn and FcγRs; however, their tolerance needs to first be validated in phase I clinical studies. Here, for the first time, we have developed a modified monomeric recombinant Fc optimized for binding to all FcRns and FcγRs without the drawback of possible tolerance associated with FcγR cross-linking. A rational approach using Fc engineering allowed the selection of LFBD192, an Fc with a combination of six mutations that exhibits improved binding to human FcRn and FcγR as well as mouse FcRn and FcγRIV. The potency of LFBD192 was compared with that of intravenous immunoglobulin (IVIg), an FcRn blocker (Fc-MST-HN), and a trimeric Fc that blocks FcRn and/or immune complex-mediated cell activation through FcγR without triggering an immune reaction in several in vitro tests and validated in three mouse models of autoimmune disease.
Article
Full-text available
Background Vaccine-induced immune thrombocytopenia and thrombosis (VITT) is a new syndrome associated with the ChAdOx1 nCoV-19 adenoviral vector vaccine against severe acute respiratory syndrome coronavirus 2. Data are lacking on the clinical features of and the prognostic criteria for this disorder. Methods We conducted a prospective cohort study involving patients with suspected VITT who presented to hospitals in the United Kingdom between March 22 and June 6, 2021. Data were collected with the use of an anonymized electronic form, and cases were identified as definite or probable VITT according to prespecified criteria. Baseline characteristics and clinicopathological features of the patients, risk factors, treatment, and markers of poor prognosis were determined. Results Among 294 patients who were evaluated, we identified 170 definite and 50 probable cases of VITT. All the patients had received the first dose of ChAdOx1 nCoV-19 vaccine and presented 5 to 48 days (median, 14) after vaccination. The age range was 18 to 79 years (median, 48), with no sex preponderance and no identifiable medical risk factors. Overall mortality was 22%. The odds of death increased by a factor of 2.7 (95% confidence interval [CI], 1.4 to 5.2) among patients with cerebral venous sinus thrombosis, by a factor of 1.7 (95% CI, 1.3 to 2.3) for every 50% decrease in the baseline platelet count, by a factor of 1.2 (95% CI, 1.0 to 1.3) for every increase of 10,000 fibrinogen-equivalent units in the baseline d-dimer level, and by a factor of 1.7 (95% CI, 1.1 to 2.5) for every 50% decrease in the baseline fibrinogen level. Multivariate analysis identified the baseline platelet count and the presence of intracranial hemorrhage as being independently associated with death; the observed mortality was 73% among patients with platelet counts below 30,000 per cubic millimeter and intracranial hemorrhage. Conclusions The high mortality associated with VITT was highest among patients with a low platelet count and intracranial hemorrhage. Treatment remains uncertain, but identification of prognostic markers may help guide effective management. (Funded by the Oxford University Hospitals NHS Foundation Trust.)
Article
Full-text available
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare adverse effect of COVID-19 adenoviral vector vaccines1–3. VITT resembles heparin-induced thrombocytopenia (HIT) as it is associated with platelet-activating antibodies against platelet factor 4 (PF4)4; however, patients with VITT develop thrombocytopenia and thrombosis without heparin exposure. The objective of this study was to determine the binding site on PF4 of antibodies from patients with VITT. Using alanine scanning mutagenesis5, we determined the binding of VITT anti-PF4 antibodies (n=5) was restricted to 8 surface amino acids, all of which were located within the heparin binding site on PF4, and the binding was inhibited by heparin. In contrast, HIT sampled (n=10) bound to amino acids corresponding to 2 different sites on PF4. Using biolayer interferometry, we demonstrated VITT anti-PF4 antibodies had a stronger binding response against PF4 and PF4/heparin complexes than HIT antibodies; albeit, with similar dissociation rates. Our data indicates VITT antibodies can mimic the effect of heparin by binding to a similar site on PF4, allowing PF4 tetramers to cluster and form immune complexes, which in turn cause FcγRIIa-dependent platelet activation. These results provide an explanation for VITT antibody-induced platelet activation that could contribute to thrombosis.
Article
Full-text available
C-type lectin-like receptor 2 (CLEC-2, also known as CLEC-1b) is expressed on platelets, Kupffer cells and other immune cells, and binds to various ligands including the mucin-like protein podoplanin (PDPN). The role of CLEC-2 in infection and immunity has become increasingly evident in recent years. CLEC-2 is involved in platelet activation, tumor cell metastasis, separation of blood/lymphatic vessels, and cerebrovascular patterning during embryonic development. In this review, we have discussed the role of CLEC-2 in thromboinflammation, and focused on the recent research.
Article
Full-text available
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is associated with high titers of immunoglobulin G class antibodies directed against the cationic platelet chemokine platelet factor 4 (PF4). These antibodies activate platelets via FcγIIa receptors. VITT closely resembles heparin-induced thrombocytopenia. Inflammation and tissue trauma substantially increase the risk for forming pathogenic PF4 antibodies. We therefore propose the use of therapeutic plasma exchange as rescue therapy in VITT to deplete antibodies plus factors promoting inflammation such as excess cytokines in the circulation as well as extracellular vesicles derived from activated platelets.
Article
Full-text available
Background The effectiveness and safety of non‐heparin anticoagulants for the treatment of heparin‐induced thrombocytopenia (HIT) are not fully established, and the optimal treatment strategy is unknown. In a systematic review and meta‐analysis, we aimed to determine precise rates of platelet recovery, new or progressive thromboembolism (TE), major bleeding, and death for all non‐heparin anticoagulants and to study potential sources of variability. Methods Following a detailed protocol (PROSPERO: CRD42020219027), EMBASE and Medline were searched for all studies reporting clinical outcomes of patients treated with non‐heparin anticoagulants (argatroban, danaparoid, fondaparinux, direct oral anticoagulants [DOAC], bivalirudin, and other hirudins) for acute HIT. Proportions of patients with the outcomes of interest were pooled using a random‐effects model for each drug. The influence of the patient population, the diagnostic test used, the study design, and the type of article was assessed. Results Out of 3194 articles screened, 92 studies with 119 treatment groups describing 4698 patients were included. The pooled rates of platelet recovery ranged from 74% (bivalirudin) to 99% (fondaparinux), TE from 1% (fondaparinux) to 7% (danaparoid), major bleeding from 1% (DOAC) to 14% (bivalirudin), and death from 7% (fondaparinux) to 19% (bivalirudin). Confidence intervals were mostly overlapping, and results were not influenced by patient population, diagnostic test used, study design, or type of article. Discussion Effectiveness and safety outcomes were similar among various anticoagulants, and significant factors affecting these outcomes were not identified. These findings support fondaparinux and DOACs as viable alternatives to conventional anticoagulants for treatment of acute HIT in clinical practice.
Article
Full-text available
Spleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (BTK) play critical roles in platelet physiology, facilitating ITAM-mediated signaling downstream of platelet glycoprotein VI (GPVI) and GPIIb/IIIa receptors. Small molecule tyrosine kinase inhibitors (TKIs) targeting Syk and BTK have been developed as anti-neoplastic and anti-inflammatory therapeutics and have also gained interest as anti-platelet agents. Here, we investigate the effects of 12 different Syk and BTK inhibitors on GPVI-mediated platelet signaling and function. These inhibitors include, four Syk inhibitors, Bay 61-3606, R406 (fostamatinib), entospletinib, TAK-659, four irreversible BTK inhibitors, ibrutinib, acalabrutinib, ONO-4059 (tirabrutinib), AVL-292 (spebrutinib), and four reversible BTK inhibitors, CG-806, BMS-935177, BMS-986195, and fenebrutinib. In vitro, TKIs targeting Syk or BTK reduced platelet adhesion to collagen, dense granule secretion, and alpha granule secretion in response to the GPVI agonist CRP-XL. Similarly, these TKIs reduced the percentage of activated integrin α IIb β 3 on the platelet surface in response to CRP-XL, as determined by PAC-1 binding. While all TKIs tested inhibited PLCγ2 phosphorylation following GPVI-mediated activation, other downstream signaling events proximal to PI3K and PKC were differentially affected. In addition, reversible BTK inhibitors had less pronounced effects on GPIIb/IIIa-mediated platelet spreading on fibrinogen and differentially altered the organization of PI3K around microtubules during platelets spreading on fibrinogen. Select TKIs also inhibited platelet aggregate formation on collagen under physiological flow conditions. Together, our results suggest that TKIs targeting Syk or BTK inhibit central platelet functional responses but may differentially affect protein activities and organization in critical systems downstream of Syk and BTK in platelets.
Article
Full-text available
Inhibitors of the tyrosine kinase Btk have been proposed as novel antiplatelet agents. In this study we show that low concentrations of the Btk inhibitor ibrutinib block CLEC-2-mediated activation and tyrosine phosphorylation including Syk and PLCγ2 in human platelets. Activation is also blocked in patients with X-linked agammaglobulinaemia (XLA) caused by a deficiency or absence of Btk. In contrast, the response to GPVI is delayed in the presence of low concentrations of ibrutinib or in patients with XLA, and tyrosine phosphorylation of Syk is preserved. A similar set of results is seen with the second-generation inhibitor, acalabrutinib. The differential effect of Btk inhibition in CLEC-2 relative to GPVI signalling is explained by the positive feedback role involving Btk itself, as well as ADP and thromboxane A2 mediated activation of P2Y12 and TP receptors, respectively. This feedback role is not seen in mouse platelets and, consistent with this, CLEC-2-mediated activation is blocked by high but not by low concentrations of ibrutinib. Nevertheless, thrombosis was absent in 8 out of 13 mice treated with ibrutinib. These results show that Btk inhibitors selectively block activation of human platelets by CLEC-2 relative to GPVI suggesting that they can be used at 'low dose' in patients to target CLEC-2 in thrombo-inflammatory disease.
Article
Full-text available
Introduction: Heparin-induced thrombocytopenia (HIT) is known for its strong association with thrombosis and distinct pathogenesis involving anti-PF4/polyanion antibodies that activate platelets strongly through clustering of platelet FcγIIa receptors. Autoimmune HIT (aHIT) refers to a subgroup of patients whose HIT antibodies have both heparin-dependent and heparin-independent platelet-activating properties. aHIT patients have atypical clinical presentations including delayed-onset HIT, persisting (refractory) HIT, heparin ‘flush’ HIT, fondaparinux-associated HIT, severe thrombocytopenia (platelet count <20 × 10⁹/L) with overt disseminated intravascular coagulation, and spontaneous HIT syndrome. Areas covered: This article reviews all available literature describing the use of high-dose intravenous immunoglobulin (IVIG) as an adjunct treatment to anticoagulation in HIT patients. IVIG is usually effective in interrupting platelet activation by aHIT antibodies, manifesting as a rapid platelet count increase after starting IVIG (usual dose, 1g/kg × 2 days). Experience to date suggests IVIG de-escalates HIT and likely reduces thrombotic risk. A new case of aHIT successfully treated with IVIG is presented. Use of IVIG to prevent acute HIT with planned heparin reexposure in antibody-positive patients is also discussed. Expert opinion: High-dose IVIG appears to rapidly inhibit HIT antibody-induced platelet activation and has the potential to become an important treatment adjunct for HIT, particularly in patients with aHIT.
Article
Heparin-induced thrombocytopenia (HIT) is characterized by thrombocytopenia associated with a highly prothrombotic state due to the development of pathogenic antibodies that recognize human (h) platelet factor 4 (PF4) complexed with various polyanions. While non-heparin anticoagulants are the mainstay of care in HIT, subsequent bleeding may develop, and risk of new thromboembolic events remain. We had described a mouse IgGК2b antibody KKO that mimics the sentinel features of pathogenic HIT antibodies, including binding to the same neoepitope on hPF4:polyanion complexes. KKO, like HIT IgGs, both activates platelets through FcγRIIA and induces complement activation. We now asked whether Fc-modified KKO can be used as a novel therapeutic to prevent or treat HIT. Using the endoglycosidase EndoS, we created deglycosylated KKO (DGKKO). While DGKKO retained binding to PF4-polyanion complexes, it inhibited FcγRIIA-dependent activation of PF4-treated platelets triggered by unmodified KKO, 5B9 (another HIT-like monoclonal antibody), and IgGs isolated from HIT patients. DGKKO also decreased complement activation and deposition of C3c on platelets. Unlike the anticoagulant fondaparinux, injection of DGKKO into "HIT mice" lacking mouse PF4, but transgenic for hPF4 and FcγRIIA, prevented and reversed thrombocytopenia when injected before or after unmodified KKO, 5B9 or HIT IgG. DGKKO also reversed antibody-induced thrombus growth in HIT mice. In contrast, DGKKO was ineffective in preventing thrombosis by IgG from patients with the HIT-related anti-PF4 prothrombotic disorder, vaccine-induced immune thrombotic thrombocytopenia. Thus, DGKKO may represent a new class of therapeutics for targeted treatment of patients with HIT.
Article
Atherosclerosis is characterized by the accumulation of lipids and immune cells, including mast cells and B cells, in the arterial wall. Mast cells contribute to atherosclerotic plaque growth and destabilization upon active degranulation. The FcεRI-IgE pathway is the most prominent mast cell activation route. Bruton's Tyrosine Kinase (BTK) is involved in FcεRI-signaling and may be a potential therapeutic target to limit mast cell activation in atherosclerosis. Additionally, BTK is crucial in B cell development and B-cell receptor signaling. In this project, we aimed to assess the effects of BTK inhibition on mast cell activation and B cell development in atherosclerosis. In human carotid artery plaques, we showed that BTK is primarily expressed on mast cells, B cells and myeloid cells. In vitro, BTK inhibitor Acalabrutinib dose-dependently inhibited IgE mediated activation of mouse bone marrow derived mast cells. In vivo, male Ldlr-/- mice were fed a high-fat diet for eight weeks, during which mice were treated with Acalabrutinib or control solvent. In Acalabrutinib treated mice, B cell maturation was reduced compared to control mice, showing a shift from follicular II towards follicular I B cells. Mast cell numbers and activation status were not affected. Acalabrutinib treatment did not affect atherosclerotic plaque size or morphology. In advanced atherosclerosis, where mice were first fed a high-fat diet for eight weeks before receiving treatment, similar effects were observed. Conclusively, BTK inhibition by Acalabrutinib alone did neither affect either mast cell activation nor early- and advanced atherosclerosis, despite the effects on follicular B cell maturation.
Article
IgGs are essential soluble components of the adaptive immune response that evolved to protect the body from infection. Compared with other immunoglobulins, the role of IgGs is distinguished and enhanced by their high circulating levels, long half-life and ability to transfer from mother to offspring, properties that are conferred by interactions with neonatal Fc receptor (FcRn). FcRn binds to the Fc portion of IgGs in a pH-dependent manner and protects them from intracellular degradation. It also allows their transport across polarized cells that separate tissue compartments, such as the endothelium and epithelium. Further, it is becoming apparent that FcRn functions to potentiate cellular immune responses when IgGs, bound to their antigens, form IgG immune complexes. Besides the protective role of IgG, IgG autoantibodies are associated with numerous pathological conditions. As such, FcRn blockade is a novel and effective strategy to reduce circulating levels of pathogenic IgG autoantibodies and curtail IgG-mediated diseases, with several FcRn-blocking strategies on the path to therapeutic use. Here, we describe the current state of knowledge of FcRn–IgG immunobiology, with an emphasis on the functional and pathological aspects, and an overview of FcRn-targeted therapy development. Neonatal Fc receptor (FcRn) supports host defence through its role in antibody recycling and transcytosis, as well as by regulating immune effector cells together with classical Fc receptors for IgG. However, in autoantibody-mediated disease, these activities can be harmful. FcRn-blocking strategies are now showing promise in the clinic.
Article
The glycoprotein (GP) IIb/IIIa receptor is found integrin present in platelet aggregations. GP IIb/IIIa antagonists interfere with platelet cross-linking and platelet-derived thrombus formation through the competition with fibrinogen and von Willebrand factor. Currently, three parenteral GP IIb/IIIa competitors (tirofiban, eptifibatide, and abciximab) are approved for clinical use in patients affected by percutaneous coronary interventions (PCI) in the location of acute coronary syndrome (ACS). GP IIb/IIIa antagonists have their mechanism of action in platelet aggregation prevention, distal thromboembolism, and thrombus formation, whereas the initial platelet binding to damage vascular areas is preserved. This work is aimed to provide a comprehensive review of the significance of GP IIb/IIIa inhibitors as a sort of antiplatelet agent. Their mechanism of action is based on factors that affect their efficacy. On the other hand, drugs that inhibit GP IIb/IIIa already approved by the FDA were reviewed in detail. Results from major clinical trials and regulatory practices and guidelines to deal with GP IIb/IIIa inhibitors were deeply investigated. The cardiovascular pathology and neuro-interventional surgical application of GP IIb/IIIa inhibitors as a class of antiplatelet agents were developed in detail. The therapeutic risk/benefit balance of currently available GP IIb/IIa receptor antagonists is not yet well elucidated in patients with ACS who are not clinically evaluated regularly for early cardiovascular revascularization. On the other hand, in patients who have benefited from PCI, the antiplatelet therapy intensification by the addition of a GP IIb/IIIa receptor antagonist (intravenously) may be an appropriate therapeutic strategy in reducing the occurrence of risks of thrombotic complications related to the intervention. Development of GP IIb/IIIa inhibitors with oral administration has the potential to include short-term antiplatelet benefits compared with intravenous GP IIb/IIIa inhibitors for long-term secondary preventive therapy in cardiovascular disease. But studies showed that long-term oral administration of GP IIb/IIIa receptor inhibitors has been ineffective in preventing ischemic events. Paradoxically, they have been linked to a high risk of side effects by producing prothrombotic and pro-inflammatory events.
Article
Zusammenfassung Das konzertante Zusammenspiel zwischen endothelialer Dysfuntion, aktivierten Thrombozyten und anderen Immunzellen sowie simultaner Komplementaktivierung führt zur Aktivierung und gegenseitigen Verstärkung sowohl der Immunantwort als auch der Gerinnungskaskade. Durch die unkontrollierte Fortdauer dieser physiologischen Mechanismen kann der pathologische Prozess der Thromboinflammation induziert werden. In dieser Übersichtsarbeit fassen wir grundlegende Mechanismen zusammen, die zur Thromboinflammation als ein Auslöser von venösen Thromboembolien führen.
Article
Life-threatening thrombotic events at unusual sites have been reported after vector-based vaccinations against severe acute respiratory syndrome coronavirus 2. This phenomenon is now termed vaccine-induced immune thrombotic thrombocytopenia (VITT). The pathophysiology of VITT is similar to that of heparin-induced thrombocytopenia (HIT) and is associated with platelet-activating antibodies (Abs) against platelet factor 4 (PF4). Therefore, current guidelines suggest nonheparin anticoagulants to treat VITT patients. In this study, we investigated the interactions of heparin, danaparoid, fondaparinux, and argatroban with VITT–Ab/PF4 complexes using an ex vivo model for thrombus formation as well as in vitro assays to analyze Ab binding and platelet activation. We found that immunoglobulin Gs (IgGs) from VITT patients induce increased adherent platelets/thrombus formation in comparison with IgGs from healthy controls. In this ex vivo flow-based model, the procoagulant activity of VITT IgGs was effectively inhibited with danaparoid and argatroban but also by heparin. Interestingly, heparin and danaparoid not only inhibited IgG binding to PF4 but were also able to effectively dissociate the preformed PF4/IgG complexes. Fondaparinux reduced the in vitro generation of procoagulant platelets and thrombus formation; however, it did not affect platelet aggregation. In contrast, argatroban showed no effect on procoagulant platelets and aggregation but significantly inhibited VITT-mediated thrombus formation. Taken together, our data indicate that negatively charged anticoagulants can disrupt VITT–Ab/PF4 interactions, which might serve as an approach to reduce Ab-mediated complications in VITT. Our results should be confirmed, however, in a clinical setting before a recommendation regarding the selection of anticoagulants in VITT patients could be made.
Article
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a life-threatening syndrome of aggressive thrombosis, often profound thrombocytopenia, and frequently overt disseminated intravascular coagulation. It has been associated with two adenovirus vector COVID-19 vaccines: ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.S (Janssen). Unlike the myriad of other conditions that cause thrombosis and thrombocytopenia, VITT has an important distinguishing feature: affected individuals have platelet-activating anti-PF4 antibodies that appear in a predictable time frame following vaccination. The reported incidence of VITT differs between jurisdictions; it is dependent on accurate ascertainment of cases and accurate estimates of the size of the vaccinated population. The incidence ranges from 1 case per 26,500 to 127,3000 first doses of ChAdOx1 nCoV-19 administered. It is estimated at 1 case per 518,181 second doses of ChAdOx1 nCoV-19 administered, and 1 case per 263,000 Ad26.COV2.S doses administered. There are no clear risk factors for VITT, including sex, age, or comorbidities. VITT is a rare event, but its considerable morbidity and mortality merit ongoing pharmacovigilance, and accurate case ascertainment.
Article
Introduction Vaccine-induced thrombotic thrombocytopenia (VITT) is a severe complication of recombinant adenoviral vector vaccines used to prevent COVID-19, likely due to anti-platelet factor 4 (PF4) IgG antibodies. The specificity and platelet-activating activity of VITT antibodies strikingly resemble that of antibodies detected in "autoimmune" heparin-induced thrombocytopenia (HIT), but their features remain poorly characterized. In particular, a better knowledge of these antibodies should help to understand the mechanisms leading to hypercoagulability and the particular thrombotic events observed in VITT, but rarely in typical HIT. We have recently developed a chimeric IgG1 anti-PF4 antibody, 1E12, which strongly mimics "autoimmune" HIT antibodies in terms of specificity and cellular effects. Therefore, we assessed whether 1E12 could mimic VITT antibodies. We then evaluated the capability of DG-1E12, a deglycosylated form of 1E12 unable to bind FcγR, to inhibit cellular activation induced by VITT antibodies. Methods and Results Using a PF4-sensitized serotonin release assay (PF4-SRA) (Vayne C, New Engl J Med, 2021), we demonstrated that 1E12 (5 and 10 μg/mL) strongly activated platelets, with a pattern similar to that obtained with human VITT samples (n=7), i.e. in a PF4-dependent manner and without heparin. This platelet activation was inhibited by low heparin concentration (0.5 IU/mL), an effect also observed with VITT samples. Serotonin release induced by 1E12 was also fully inhibited by IV-3, a monoclonal antibody blocking FcγRIIa, or by IdeS, a bacterial protease that cleaves IgG and strongly inhibits the binding of IgG antibodies to FcγRIIa. This inhibitory effect of IV-3 and IdeS strongly supports that interactions between pathogenic anti-PF4 IgG and FcγRIIa play a central role in VITT. Incubation of 1E12 or VITT samples with isolated neutrophils (PMN) and platelets with PF4 (10 µg/mL) strongly induced DNA release and NETosis, supporting that PMN are involved in the processes leading to thrombosis in VITT. Furthermore, when whole blood from healthy donors incubated with 1E12 or VITT plasma was perfused in capillaries coated with von Willebrand Factor, numerous large platelet/leukocyte aggregates containing fibrin(ogen) were formed. To investigate whether 1E12 and VITT antibodies recognize overlapping epitopes on PF4, we then performed competitive assays with a deglycosylated form of 1E12 (DG-1E12), still able to bind PF4 but not to interact with Fcγ receptors. In PF4-SRA, pre-incubation of DG-1E12 (50 µg/mL) dramatically reduced platelet activation induced by VITT antibodies, which was fully abrogated for 9 of the 14 VITT samples tested. Additional experiments using a whole blood PF4-enhanced flow cytometry assay recently designed for VITT diagnosis (Handtke et al, Blood 2021), confirmed that DG-1E12 fully prevented platelet activation induced by VITT antibodies. Moreover, when platelets and neutrophils were pre-incubated with DG-1E12 (100 µg/mL), NETosis and thus DNA release, nuclear rounding, and DNA decondensation induced by VITT antibodies were completely inhibited. Finally, DG-1E12 (100 µg/mL) also fully abolished VITT antibody-mediated thrombus formation in whole blood in vitro under vein flow conditions. Comparatively, DG-1E12 did not inhibit ALB6, a murine monoclonal anti-CD9 antibody, which also strongly activates platelets in a FcγRIIa-dependent manner. Conclusions Our results show that 1E12 exhibits features similar to those of human VITT antibodies in terms of specificity, affinity and cellular effects, and could therefore be used as a model antibody to study the pathophysiology of VITT. Our data also demonstrate that DG-1E12 prevents blood cell activation and thrombus formation induced by VITT antibodies, likely due to the competitive effect of its Fab fragment on antibody binding to PF4. DG-1E12 may allow the development of a new drug neutralizing the pathogenic effect of autoimmune anti-PF4 antibodies, such as those associated with VITT. Disclosures Thiele: Bristol Myers Squibb: Honoraria, Other; Pfizer: Honoraria, Other; Bayer: Honoraria; Chugai Pharma: Honoraria, Other; Novo Nordisk: Other; Novartis: Honoraria; Daichii Sankyo: Other. Pouplard: Stago: Research Funding. Greinacher: Macopharma: Honoraria; Biomarin/Prosensa: Other, Research Funding; Sagent: Other, Research Funding; Rovi: Other, Research Funding; Gore inc.: Other, Research Funding; Bayer Healthcare: Other, Research Funding; Paringenix: Other, Research Funding; BMS: Honoraria, Other, Research Funding; MSD: Honoraria, Other, Research Funding; Boehringer Ingelheim: Honoraria, Other, Research Funding; Aspen: Honoraria, Other, Research Funding; Portola: Other; Ergomed: Other; Instrument Laboratory: Honoraria; Chromatec: Honoraria. Gruel: Stago: Other: symposium fees, Research Funding. Rollin: Stago: Research Funding.
Article
Background Vaccine-induced thrombotic thrombocytopenia (VITT) is a rare coagulation disorder reported after administration of COVID-19 adenovirus-vectored vaccines. VITT is mediated by anti-platelet factor 4 (PF4) antibodies activating platelets through the Fcγ-receptor II (FcγRII), and it is associated with strong fibrin turnover. The complement system is involved in several other immunothrombotic entities, but its impact on VITT is not established. Objective To assess antibodies in interaction with the activation of platelets and complement triggered by VITT. Methods Antibodies against adenovirus type 2 hexon protein, ChAdOx1 adenoviral vector-specific IgG and PF4 were analyzed by enzyme immunoassays from VITT patients (n = 5). The EDTA plasma samples of the patients and controls were used to measure both terminal complement complexes (TCC) by ELISA and aggregation of healthy donor platelets. We studied the effects of human immunoglobulin (IVIG) and glycoprotein IIb/IIIa inhibitor (GPIIb/IIIa) on spontaneous and collagen-induced platelet aggregation supplemented with VITT plasma. Results None of the patients had experienced a COVID-19 infection. Antibody analyses confirmed the immunogenicity of the adenovirus-vectored ChAdOx1 vaccine. Moreover, VITT plasma had anti-PF4 antibodies and elevated TCC levels as a sign of complement activation. In isolated healthy donor platelets, VITT patient plasma caused marked, spontaneous aggregation of platelets, which was abolished by eptifibatide and high-dose therapeutic IVIG. Conclusions Our findings suggest that VITT is triggered by antibodies against adenovirus vector and PF4-polyanion complexes which strongly co-activate complement and platelets. The spontaneous platelet aggregation was suppressed by IVIG or eptifibatide, indicating that besides FcγRII, also GPIIb/IIIa receptor exerts platelet procoagulant role in VITT.
Article
SARS-CoV-2 vaccine ChAdOx1 nCov-19 (AstraZeneca) causes a thromboembolic complication termed vaccine-induced immune thrombotic thrombocytopenia (VITT). Using biophysical techniques, mouse models and analysis of VITT patient samples we identified determinants of this vaccine-induced adverse reaction. Super-resolution microscopy visualized vaccine components forming antigenic complexes with platelet factor 4 (PF4) on platelet surfaces to which anti-PF4 antibodies obtained from VITT patients bound. PF4/vaccine complex formation was charge-driven and increased by addition of DNA. Proteomics identified substantial amounts of virus production-derived T-REx HEK293 proteins in the EDTA-containing vaccine. Injected vaccine increased vascular leakage in mice leading to systemic dissemination of vaccine components known to stimulate immune responses. Together, PF4/vaccine complex formation and the vaccine-stimulated proinflammatory milieu trigger a pronounced B cell response that results in the formation of high-avidity anti-PF4 antibodies in VITT patients. The resulting high-titer anti-PF4 antibodies potently activated platelets in the presence of PF4 or DNA and polyphosphate polyanions. Anti-PF4 VITT patient antibodies also stimulated neutrophils to release NETs in a platelet PF4-dependent manner. Biomarkers of procoagulant NETs were elevated in VITT patient serum, and NETs were visualized in abundance by immunohistochemistry in cerebral vein thrombi obtained from VITT patients. Together, vaccine-induced PF4/adenovirus aggregates and proinflammatory reactions stimulate pathologic anti-PF4 antibody production that drive thrombosis in VITT. The data support a two-step mechanism underlying VITT that resembles the pathogenesis of (autoimmune) heparin-induced thrombocytopenia.
Article
A series of cases with rare thromboembolic incidents including cerebral sinus vein thrombosis (some of them fatal) and concomitant thrombocytopenia occurring shortly after vaccination with the COVID-19 vaccine AZD1222 (Vaxzevria) has caused significant concern and led to its temporary suspension in many countries. Immediate laboratory efforts in four of these patients have identified a tentative pathomechanism underlying this syndrome termed vaccine-induced prothrombotic immune thrombocytopenia (VIPIT) or vaccine-induced thrombosis with thrombocytopenia (VITT), which encompasses the presence of platelet-activating antibodies to platelet-factor 4/heparin complexes, possibly emulated by polyanionic constituents of AZD1222, and thus resembles heparin-induced thrombocytopenia (HIT). Because these immune complexes bind and activate platelets via Fcγ-receptor IIA (FcγRIIA), high-dose intravenous immunoglobulin G has been suggested for treatment of VIPIT in addition to non-heparin anticoagulants. Here we propose inhibitors of Bruton tyrosine kinase (Btk) approved for B-cell malignancies (e.g. ibrutinib) as another therapeutic option in VIPIT, as they are expected to pleiotropically target multiple pathways downstream of FcγRIIA-mediated Btk activation, e.g. as demonstrated for the effective inhibition of platelet aggregation, dense granule secretion, P-selectin expression and platelet-neutrophil aggregate formation stimulated by FcγRIIA cross-linking. Moreover, CLEC-2- and GPIb-mediated platelet activation, the interactions and activation of monocytes and the release of neutrophil extracellular traps, as encountered in HIT, could be attenuated by Btk inhibitors. As a paradigm for emergency repurposing of approved drugs in COVID-19, off-label use of Btk inhibitors in a low dose range not affecting haemostatic functions could thus be considered as a sufficiently safe option to treat VIPIT.
Article
Thrombosis is the most feared complication of cardiovascular diseases and a main cause of death worldwide, making it a major health-care challenge. Platelets and the coagulation cascade are effectively targeted by antithrombotic approaches, which carry an inherent risk of bleeding. Moreover, antithrombotics cannot completely prevent thrombotic events, implicating a therapeutic gap due to a third, not yet adequately addressed mechanism, namely inflammation. In this Review, we discuss how the synergy between inflammation and thrombosis drives thrombotic diseases. We focus on the huge potential of anti-inflammatory strategies to target cardiovascular pathologies. Findings in the past decade have uncovered a sophisticated connection between innate immunity, platelet activation and coagulation, termed immunothrombosis. Immunothrombosis is an important host defence mechanism to limit systemic spreading of pathogens through the bloodstream. However, the aberrant activation of immunothrombosis in cardiovascular diseases causes myocardial infarction, stroke and venous thromboembolism. The clinical relevance of aberrant immunothrombosis, referred to as thromboinflammation, is supported by the increased risk of cardiovascular events in patients with inflammatory diseases but also during infections, including in COVID-19. Clinical trials in the past 4 years have confirmed the anti-ischaemic effects of anti-inflammatory strategies, backing the concept of a prothrombotic function of inflammation. Targeting inflammation to prevent thrombosis leaves haemostasis mainly unaffected, circumventing the risk of bleeding associated with current approaches. Considering the growing number of anti-inflammatory therapies, it is crucial to appreciate their potential in covering therapeutic gaps in cardiovascular diseases.
Article
Background and objectives: Heparin-induced thrombocytopenia (HIT) is an antibody-mediated condition that leads to thrombocytopenia and possible thrombosis. Patients with HIT who require cardiac surgery pose a challenge as high doses of heparin or heparin alternatives are required to permit cardiopulmonary bypass (CPB). Intraoperative therapeutic plasma exchange (TPE) is a valuable adjunct in the management of antibody-mediated syndromes including HIT. The clinical impact of TPE on thromboembolic events, bleeding and mortality after heparin re-exposure is not well established. We hypothesized that TPE with heparin re-exposure will not lead to HIT-related thromboembolic events, bleeding or increased mortality after cardiac surgery with CPB. Materials and methods: We reviewed 330 patients who received perioperative TPE between September 2012 and September 2017. Results: Twenty four patients received TPE for HIT before anticipated heparin use for CPB. Most patients were males (79%) scheduled for advanced heart failure therapies. Three patients (12·5%) died within 30 days after surgery but none of the deaths were considered HIT-related. Thromboembolic events (TE) occurred in 3 patients within 7 days of surgery; of those, two were possibly HIT-related. Conclusion: Therapeutic plasma exchange with heparin re-exposure was not strongly associated with HIT-related thrombosis/death after cardiac surgery with CPB.
Article
Background: Despite their usefulness in perioperative and acute care settings, factor-Xa inhibitor-specific assays are scarcely available, contrary to heparin anti-Xa assay. We assessed whether the heparin anti-Xa assay can (1) be used as a screening test to rule out apixaban, rivaroxaban, fondaparinux, and danaparoid levels that contraindicate invasive procedures according to current guidelines (>30 ng·mL, >30 ng·mL, >0.1 µg·mL, and >0.1 IU·mL, respectively), (2) quantify the anticoagulant level if found significant, that is, if it exceeded the abovementioned threshold. Methods: In the derivation cohort then in the validation cohort, via receiver operatingcharacteristics (ROC) curve analysis, we evaluated the ability of heparin anti-Xaassay to detect levels of factor-Xa inhibitors above or below the abovementioned safety thresholds recommended for an invasive procedure (screening test). Among samples with relevant levels of factor-Xa inhibitor, we determined the conversion factor linking the measured level and heparin anti-Xa activity in a derivation cohort. In a validation cohort, the estimated level of each factor-Xa inhibitor was thus inferred from heparin anti-Xa activity. The agreement between measured and estimated levels of factor-Xa inhibitors was assessed. Results: Among 989 (355 patients) and 756 blood samples (420 patients) in the derivation and validation cohort, there was a strong linear relationship between heparin anti-Xa activities and factor-Xa inhibitors measured level (r = 0.99 [95% confidence interval {CI}, 0.99-0.99]). In the derivation cohort, heparin anti-Xa activity ≤0.2, ≤0.3, <0.1, <0.1 IU·mL reliably ruled out a relevant level of apixaban, rivaroxaban, fondaparinux, and danaparoid, respectively (area under the ROC curve ≥0.99). In the validation cohort, these cutoffs yielded excellent classification accuracy (≥96%). If this screening test indicated relevant level of factor-Xa inhibitor, estimated and measured levels closely agreed (Lin's correlation coefficient close to its maximal value: 95% CI, 0.99-0.99). More than 96% of the estimated levels fell into the predefined range of acceptability (ie, 80%-120% of the measured level). Conclusions: A unique simple test already widely used to assay heparin was also useful for quantifying these 4 other anticoagulants. Both clinical and economic impacts of these findings should be assessed in a specific study.
Article
Thromboembolism complicates disorders caused by IgG-containing immune complexes (ICs), but the underlying mechanisms are incompletely understood. Prior evidence indicates that induction of tissue factor (TF) on monocytes, a pivotal step in the initiation, localization and propagation of coagulation by ICs, is mediated through Fc gamma receptor IIa (FcγRIIa), yet the involvement of other receptors has not been investigated in detail. The neonatal Fc receptor (FcRn) that mediates IgG and albumin recycling also participates in cellular responses to IgG-containing ICs. Here we asked whether FcRn is also involved in the induction of TF-dependent factor Xa activity by IgG-ICs by THP-1 monocytic cells and human monocytes. Induction of factor Xa activity by ICs containing IgG antibodies to platelet factor 4 (PF4) involved in heparin-induced thrombocytopenia (HIT), b-2-glycoprotein-1 implicated in the antiphospholipid syndrome (APS), or red blood cells coated with anti-(α)-Rh(D) antibodies that mediate hemolysis in vivo were inhibited by a humanized monoclonal antibody (MoAb) that blocks IgG binding to human FcRn. IgG ICs that bind to FcγR and FcRn induced Factor Xa activity, whereas IgG-ICs with an Fc engineered to be unable to engage FcRn did not. Infusion of an α-FcRn MoAb prevented fibrin deposition following microvascular injury in a murine model of HIT in which human FcgRIIa is expressed as a transgene. These data implicate FcRn in TF-dependent FXa activity induced by soluble and cell-associated IgG-containing ICs. Antibodies to FcRn, now in clinical trials in warm autoimmune hemolytic anemic to lower IgG antibodies and IgG containing ICs may also reduce the risk of venous thromboembolism.
Article
Key Points Six different BTKi’s blocked platelet activation in blood after FcγRIIA stimulation by cross-linking, anti-CD9 antibodies, or HIT serum. Established oral irreversible and novel reversible BTKi’s may offer a new option to treat HIT.
Article
The molecular basis for heparin-induced thrombocytopenia (HIT), a relatively common complication of heparin therapy, is not yet fully understood. We found that pretreatment of platelets with AR-C66096 (formerly FPL 66096), a specific platelet adenosine diphosphate (ADP) receptor antagonist, at a concentration of 100 to 200 nmol/L that blocked ADP-dependent platelet aggregation, resulted in complete loss of platelet aggregation responses to HIT sera. AR-C66096 also totally inhibited HIT serum-induced dense granule release, as judged by measurement of adenosine triphosphate (ATP) release. Apyrase, added to platelets at a concentration that had only minor effects on thrombin- or arachidonic acid-induced aggregation, also blocked completely HIT serum-induced platelet aggregation. Furthermore, AR-C66096 inhibited platelet aggregation and ATP release induced by cross-linking FcγRIIA with specific antibodies. These data show that released ADP and the platelet ADP receptor play a pivotal role in HIT serum-induced platelet activation/aggregation. The thromboxane receptor inhibitor, Daltroban, had no effect on HIT serum-induced platelet activation whereas GPIIb-IIIa antagonists blocked platelet aggregation but had only a moderate effect on HIT serum-induced dense granule release. Pretreatment of platelets with chondroitinases but not with heparinases resulted in concentration dependent inhibition of HIT serum-induced platelet aggregation. These novel data relating to the mechanism of platelet activation induced by HIT sera suggest that the possibility should be examined that ADP receptor antagonists or compounds that inhibit ADP release may be effective as therapeutic agents for the prevention or treatment of complications associated with heparin therapy.
Article
HIT, a prothrombotic disorder caused by heparin-dependent antibodies, is often treated with fondaparinux, usually with good outcomes. A 70-year-old female developed severe HIT (platelet count, 25 × 10⁹/L) post-glioblastoma resection during heparin thromboprophylaxis, complicated by disseminated intravascular coagulation (DIC) and symptomatic lower-limb deep-vein thrombosis (DVT). Despite therapeutic-dose fondaparinux, thrombocytopenia/hypofibrinogenemia persisted, with new symptomatic catheter-associated upper-extremity DVT. This clinical picture could be explained by autoimmune HIT (aHIT) refractory to fondaparinux or by fondaparinux cross-reactivity, so high-dose intravenous immunoglobulin (IVIG) was given (to treat possible aHIT) and fondaparinux switched to rivaroxaban, with subsequent clinical recovery. In vitro studies revealed strong fondaparinux cross-reactivity, without aHIT antibodies. Moreover, the patient’s serotonin-release assay became negative post-IVIG, suggesting in-vivo inhibition of HIT antibody-induced platelet activation. Our case illustrates fondaparinux cross-reactivity in HIT manifesting as persisting thrombocytopenia, new thrombosis, and DIC, with successful rivaroxaban treatment, adding to emerging data that oral factor Xa inhibitors are efficacious for treating HIT.
Article
Ischaemic stroke elicits a strong neuroinflammatory response, but the functional relevance and therapeutic potential of neuroinflammation has only recently become apparent. In acute experimental stroke, T cells contribute to ischaemia–reperfusion injury after recanalization in an antigen-independent manner. Surprisingly, the detrimental T cell effects are platelet-dependent. Glycoprotein (GP)Ib-mediated and GPVI-mediated platelet activation, but not GPIIb–IIIa-mediated platelet aggregation, is an important checkpoint that orchestrates thrombotic and pro-inflammatory pathways, and downstream activation of coagulation factor XII is a driving force of ischaemia–reperfusion injury in acute stroke. The evidence therefore suggests that T cells interact with platelets and facilitate further infarct development through a complex process that we refer to as thrombo-inflammation. Results of clinical trials of agents that target lymphocytes support this concept. However, in the majority of patients with ischaemic stroke, recanalization cannot be achieved and the contribution of T cells in the setting of the resultant permanent ischaemia and subacute stroke is less clear and more complex. In some settings, T cells still seem to aggravate neuronal damage late after the ischaemic insult, but stroke triggers systemic immunodepression, therefore further anti-inflammatory treatments would need to be used carefully in this context. Targeting stroke-related neuroinflammation could become an effective adjunct therapy to improve outcomes after ischaemic stroke, but this approach will require caution regarding the timing and avoidance of adverse effects.