ArticleLiterature Review

A review of non-invasive samples and tools in kala-azar diagnosis and test of cure

Authors:
  • ICMR-RMRIMS
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
American visceral leishmaniasis (VL) is a parasitic disease whose main domestic reservoir in the urban environment is dog and is considered one of the most important zoonoses in the context of public health. Serological tests are typically used for the diagnostic screening of the disease. This study aimed to analyse the performance of different methodologies used in the diagnosis of VL in dogs sampled from a recent transmission area. The sample consisted of 52 dogs separated into groups based on the absence and presence of clinical signs of VL. The following serological techniques were carried out: the DPP® rapid test (RT), the ALERE® RT and an RT and immunoenzymatic assay with a recently developed protein (rKDDR-plus). In addition, molecular techniques were carried out with conjunctival swabs, and bone marrow aspirate samples and parasitological samples were obtained directly from bone marrow aspirates. It was concluded that 27.4% of seronegative dogs were infected, but the serological tests, used as screening tests, showed unsatisfactory sensitivity results (average: 51.2%) for dogs without clinical signs. It was suggested that polymerase chain reaction with conjunctival swabbing be used as a screening test for dogs without clinical signs, as this is a non-invasive collection technique with high-sensitivity values.
Article
Full-text available
Background Visceral leishmaniasis is the most severe form of leishmaniasis which ranks second in mortality and fourth in morbidity. Parasitological diagnostic techniques with splenic aspirate remain the gold standard. However, sample collection is risky, painful, and difficult. Alternatively, serological techniques provide good diagnostic accuracy using serum sample that is difficult for applying on small children and in the field. So, finding alternative non-invasive and self-collected samples like urine is very important. Thus, the study aimed to evaluate the diagnostic performance of the rK-39 strip test using urine for diagnosis of visceral leishmaniasis. Methods A multicenter institutional-based cross-sectional study was conducted from November 2019 to March 2021 at Northwest Ethiopia. Sociodemographic information was collected using a structured questionnaire. Blood sample and midstream urine sample were collected for rK-39 test. Data were entered into Epi-data version 4.2 and analyzed using SPSS version 24.0. Diagnostic performance parameters of urine-based rK-39 rapid test, i.e. sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios (LR+/−), and diagnostic accuracy were determined on contingency table by using serum-based rK-39 test result as a reference. An agreement between urine and serum-based rK-39 test was statistically determined by kappa value. Result In total, 300 subjects, age ranged between 7 and 60 years, were included in the study. The overall sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of urine-based rK-39 test were found to be 98.0% (95% CI: 93.0% - 99.8%), 95.5% (95% CI: 91.6% - 97.9%), 91.6% (95% CI: 85.2%– 95.4%), 98.9 (95% CI: 96.0%– 99.7%), and 96.33% (95% CI: 93.53–98.16%), respectively. Additionally, there was a strong agreement between the results obtained on rK-39 ICT using urine and serum samples (kappa = 0.92; P < 0.001). Conclusion Urine-based rK-39 ICT had an excellent high sensitivity, specificity and strong agreement with serum-based rK-39 ICT results. This indicates that urine sample would be a promising noninvasive and easy to collect sample for diagnosis of VL in field and rural settings.
Article
Full-text available
Conjunctival swabs (CS) are the most promising non-invasive samples for the diagnosis and the regular screening of Leishmania infantum infection in dogs although knowledge on their diagnostic performance is still inconclusive. This study evaluates CS real time-PCR (qPCR) analysis for the diagnosis of canine leishmaniosis (CanL) and its prognostic value in seropositive dogs from an endemic area. In October 2020 (T0), 26 dogs were enrolled, divided in two groups according to anti-L. infantum antibody titres (n = 13, group low titre (LT) and n = 13, group high titre (HT)), and followed-up in August 2021. At both timepoints, animals underwent clinical examination, complete blood count and biochemical analyses, and serological (indirect fluorescent antibody test) and molecular (CS and peripheral blood qPCR) testing. At T0, 10 out of 26 enrolled dogs were positive at CS qPCR, with the number of positive animals significantly higher in group HT than in LT. After 10 months, only 5 out of 21 dogs that completed the trial still tested CS qPCR positive, and none of them developed an active CanL based on clinical score and antibody titre. None of the dogs required any leishmanicidal and/or leishmaniostatic treatments. This prospective study showed unsatisfying diagnostic and prognostic performances of CS qPCR analysis in L. infantum seropositive asymptomatic dogs from an endemic area.
Article
Full-text available
Visceral leishmaniasis (VL) is one of the major global health concerns due to its association with morbidity and mortality. All available diagnostic tools have been, until now, unable to provide a very specific and cost-effective mode of detection for VL globally. Therefore, the design of robust, specific, and commercially translatable diagnostic tests is urgently required. Currently, we are attempting to identify and explore the diagnostic potential of a novel parasite antigen. Repressor of differentiation kinase 2 (RDK2), a serine/threonine kinase, has a versatile role in parasite life cycle progression. However, its role as a diagnostic candidate for VL has not been investigated. Herein, we cloned and over-expressed LdRDK2 and studied the recombinant RDK2 for the diagnosis of human VL using serum and urine samples. In silico analysis predicted that RDK2 is conserved among Leishmania species with the least conservation in humans. RDK2 developed immune-reactive bands with antibodies present in VL patients' sera, and it demonstrated no cross-reactivity with sera from healthy controls and other diseases. Additionally, RDK2 antigen demonstrated a significant reactivity with IgG antibodies of VL patients' sera, with 78% sensitivity and 86.67% specificity as compared to healthy controls and other diseases. Furthermore, we evaluated its utility for non-invasive diagnosis of VL using patients' urine samples and found 93.8% sensitivity and 85.7% specificity. RDK2 was found to have better sensitivity and treatment response in patients' urine compared to serum samples, indicating its role as a promising point of care (POC) antigen. In a nutshell, we explored the role of RDK2 as a potential diagnostic marker for VL in both invasive and non-invasive modes as well as its utility as a promising POC antigen for treatment response cases.
Article
Full-text available
Canine leishmaniasis (CanL) diagnosis is not fully resolved. Currently, two specific methodologies are in continuous development, the detection of the parasite DNA or RNA in target organs and the detection of specific antibodies against Leishmania sp. For a correct diagnosis, it has been shown that the joint use of this type of test is necessary. In this work, a Sybr Green and a TaqMan Probe based on real time PCRs (qPCR) was performed for the detection of Leishmania sp. in order to correlate the results with clinicopathological and serological evaluations (IFA, ELISA and DAT) to propose an optimal biological sample to be used to detect the parasite in both early and late stages of the infection. A total of four samples were processed: conjunctival swabs, popliteal lymph node aspirates, bone marrow aspirates, and peripheral blood from experimentally infected dogs belonging to a larger study. Our results indicated that a single non-invasive sample (conjunctival swab) and the application of both types of qPCR would be reliable for determining Leishmania infection as well as the disease stage in dogs, thus avoiding bone marrow, lymph node aspirate or blood samples collection.
Article
Full-text available
Background Visceral leishmaniasis (VL), also known as kala-azar (KA), is a neglected vector-borne disease, targeted for elimination, but several affected blocks of Bihar are posing challenges with the high incidence of cases, and moreover, the disease is spreading in newer areas. High-quality kala-azar surveillance in India, always pose great concern. The complete and accurate patient level data is critical for the current kala-azar management information system (KMIS). On the other side, no accurate data on the burden of post kala-azar dermal leishmaniasis (PKDL) and co-infections are available under the current surveillance system, which might emerge as a serious concern. Additionally, in low case scenario, sentinel surveillance may be useful in addressing post-elimination activities and sustaining kala-azar (KA) elimination. Health facility-based sentinel site surveillance system has been proposed, first time to do a proper accounting of KA, PKDL and co-infection morbidity, mortality, diagnosis, case management, hotspot identification and monitoring the impact of elimination interventions.Methodology/principal findingsKala-azar sentinel site surveillance was established and activated in thirteen health facilities of Bihar, India, using stratified sampling technique during 2011 to 2014. Data were collected through specially designed performa from all patients attending the outpatient departments of sentinel sites. Among 20968 symptomatic cases attended sentinel sites, 2996 cases of KA and 53 cases of PKDL were registered from 889 endemic villages. Symptomatic cases meant a person with fever of more than 15 days, weight loss, fatigue, anemia, and substantial swelling of the liver and spleen (enlargement of spleen and liver).The proportion of new and old cases was 86.1% and 13.9% respectively. A statistically significant difference was observed for reduction in KA incidence from 4.13/10000 in 2011 to 1.75/10000 in 2014 (p
Article
Full-text available
The recombinant product (rK39) of the 39-amino-acid repeats encoded by a kinesin-like protein-encoding gene of Leishmania chagasi was evaluated by enzyme-linked immunosorbent assay (ELISA) for diagnostic potential and the ability to predict the response to therapy in Indian kala-azar or visceral leishmaniasis (VL); we also compared its performance with that of crude soluble antigen (CSA). At the diagnosis of VL, the anti-rK39 antibody titer was 59-fold higher than the anti-CSA antibody titer. With successful therapy, antibody titers declined steeply at the end of treatment and during follow-up. In contrast, patients who relapsed showed increased titers of antibodies to rK39. The extremely high levels of anti-rK39 antibodies in VL cases suggest the application of rK39 for sensitive and specific serodiagnosis, and rK39 ELISA is also valuable in monitoring drug therapy and detecting relapse of the disease.
Article
Full-text available
The dog is the main domestic reservoir of Leishmania and font of infection for the vector, constituting an important host for the transmission of the parasite to humans. Non-invasive collection of swab samples for leishmaniasis diagnosis has been a promising alternative. This study analyzed the positivity of polymerase chain reaction (PCR) for the diagnosis of canine leishmaniasis in conjunctiva samples. DNA extraction was performed using SDS 20% and PCR was performed using 13A/13B primers that amplify 120-bp of Leishmania kDNA. Of the 77 dogs analyzed, 50 (64.93%) had ocular changes: 25 (32.47%) dogs had periocular lesion, 41 (53.25%) dogs had purulent eye discharge, and 17 (22.08%) dogs had both signals. PCR was positive in 35 dogs (45.45%), and there was no significant difference between dogs with and without ocular signals (p=0.4074). PCR positivity was significant higher in dogs without periocular injury (p=0.0018). Conjunctive PCR, a less invasive, fast, and painless collection technique, is indicated to complement the diagnosis, especially in dogs without periocular injury, independent of the presence of purulent eye discharge.
Article
Full-text available
Introduction: HIV coinfection presents a challenge for diagnosis of visceral leishmaniasis (VL). Invasive splenic or bone marrow aspiration with microscopic visualisation of Leishmania parasites remains the gold standard for diagnosis of VL in HIV-coinfected patients. Furthermore, a test of cure by splenic or bone marrow aspiration is required as patients with VL-HIV infection are at a high risk of treatment failure. However, there remain financial, implementation and safety costs to these invasive techniques which severely limit their use under field conditions. Methods and analysis: We aim to evaluate blood and skin qPCR, peripheral blood buffy coat smear microscopy and urine antigen ELISA as non-invasive or minimally invasive alternatives for diagnosis and post-treatment test of cure for VL in HIV-coinfected patients in India, using a sample of 91 patients with parasitologically confirmed symptomatic VL-HIV infection. Ethics and dissemination: Ethical approval for this study has been granted by The Liverpool School of Tropical Medicine, The Institute of Tropical Medicine in Antwerp, the University of Antwerp and the Rajendra Memorial Research Institute of Medical Science in Patna. Any future publications will be published in open access journals. Trial registration number: CTRI/2019/03/017908.
Article
Full-text available
Background Asymptomatic Leishmania infections outnumber clinical infections on the Indian subcontinent (ISC), where disease reservoirs are anthroponotic. Diagnostics which detect active asymptomatic infection, which are suitable for monitoring and surveillance, may be of benefit to the visceral leishmaniasis (VL) elimination campaign on the ISC. Methods Quantitative polymerase chain reaction (qPCR), loop-mediated isothermal amplification (LAMP), and the direct agglutination test (DAT) were carried out on blood samples, and the Leishmania antigen ELISA was carried out on urine samples collected from 720 household and neighbouring contacts of 276 VL and post–kala-azar dermal leishmaniasis (PKDL) index cases, with no symptoms or history of VL or PKDL, in endemic regions of Bangladesh between September 2016 and March 2018. Results Of the 720 contacts of index cases, asymptomatic infection was detected in 69 (9.6%) participants by a combination of qPCR (1.0%), LAMP (2.1%), DAT (3.9%), and Leishmania antigen ELISA (3.3%). Only one (0.1%) participant was detected positive by all four diagnostic tests. Poor agreement between tests was calculated using Cohen’s kappa (κ) statistics; however, the Leishmania antigen ELISA and DAT in combination captured all participants as positive by more than one test. We find evidence for a moderately strong association between the index case being a PKDL case (OR 1.94, p = 0.009), specifically macular PKDL (OR 2.12, p = 0.004), and being positive for at least one of the four tests. Conclusions Leishmania antigen ELISA on urine detects active asymptomatic infection, requires a non-invasive sample, and therefore may be of benefit for monitoring transmission and surveillance in an elimination setting in combination with serology. Development of an antigen detection test in a rapid diagnostic test (RDT) format would be of benefit to the elimination campaign.
Article
Full-text available
This review describes and appraises a novel protein-based antigen detection test for visceral leishmaniasis (VL). The test detects in patient’s urine six proteins from Leishmania infantum (chagasi) and Leishmania donovani, the etiological agents of VL. The gold standard test for VL is microscopic observation of the parasites in aspirates from spleen, liver, or bone marrow (and lymph node for dogs). Culture of the parasites or detection of their DNA in these aspirates are also commonly used. Serological tests are available but they cannot distinguish patients with active VL from either healthy subjects exposed to the parasites or from subjects who had a successful VL treatment. An antigen detection test based on the agglutination of anti-leishmania carbohydrates antibody coated latex beads has been described. However, the results obtained with this carbohydrate-based test have been conflicting. Using mass spectrometry, we discovered six L. infantum/L. donovani proteins excreted in the urine of VL patients and used them as markers for the development of a robust mAb-based antigen (protein) detection test. The test is assembled in a multiplexed format to simultaneously detect all six markers. Its initial clinical validation showed a sensitivity of 93% and specificity of 100% for VL diagnosis.
Article
Full-text available
Diagnosis of visceral leishmaniasis (VL) relies on invasive and risky aspirate procedures, and confirmation of cure after treatment is unreliable. Detection of Leishmania donovani antigens in urine has the potential to provide both a non-invasive diagnostic and a test of cure. We searched for L. donovani antigens in urine of VL patients from India and Sudan to contribute to the development of urine antigen capture immunoassays. VL urine samples were incubated with immobilised anti-L. donovani polyclonal antibodies and captured material was eluted. Sudanese eluted material and concentrated VL urine were analysed by western blot. Immunocaptured and immunoreactive material from Indian and Sudanese urine was submitted to mass spectrometry for protein identification. We identified six L. donovani proteins from VL urine. Named proteins were 40S ribosomal protein S9, kinases, and others were hypothetical. Thirty-three epitope regions were predicted with high specificity in the 6 proteins. Of these, 20 were highly specific to Leishmania spp. and are highly suitable for raising antibodies for the subsequent development of an antigen capture assay. We present all the identified proteins and analysed epitope regions in full so that they may contribute to the development of non-invasive immunoassays for this deadly disease.
Article
Full-text available
Background: In endemic areas of zoonotic leishmaniosis caused by L. infantum, early detection of Leishmania infection in dogs is essential to control the dissemination of the parasite to humans. The aim of this study was to evaluate the serological and/or molecular diagnostic performance of minimally and non-invasive samples (conjunctiva cells (CS) and peripheral blood (PB)) for monitoring Leishmania infection/exposure to Phlebotomus perniciosus salivary antigens in dogs at the beginning and the end of sand fly seasonal activity (May and October, respectively) and to assess associated risks factors. Methods: A total of 208 sheltered dogs from endemic areas of leishmaniosis were screened. Leishmania DNA detection in PB on filter paper and CS was performed by nested-PCR (nPCR), while the detection of anti-Leishmania antibodies was performed using IFAT and ELISA. The exposure to P. perniciosus salivary antigens (SGH, rSP01 and rSP03B + rSP01) was measured by ELISA. Results: Ninety-seven (46.6%) and 116 (55.8%) of the 208 dogs were positive to Leishmania antibodies or DNA by at least one test at the beginning and end of the sand fly season, respectively. IFAT and ELISA presented a substantial agreement in the serodiagnosis of leishmaniosis. Discrepant PB nPCR results were obtained between sampling points. Leishmania DNA was detected in CS of 72 dogs at the end of the phlebotomine season. The presence of antibodies to the parasite measured by ELISA was significantly higher in dogs presenting clinical signs compatible with leishmaniosis at both sampling points. Phlebotomus perniciosus salivary antibodies were detected in 179 (86.1%) and 198 (95.2%) of the screened dogs at the beginning and end of the phlebotomine season, respectively. Conclusions: The association between ELISA positivity and clinical signs suggests its usefulness to confirm a clinical suspicion. CS nPCR seems to be an effective and non-invasive method for assessing early exposure to the parasite. PB nPCR should not be used as the sole diagnostic tool to monitor Leishmania infection. The correlation between the levels of antibodies to P. perniciosus saliva and Leishmania antibodies suggests the use of a humoral response to sand fly salivary antigens as biomarkers of L. infantum infection.
Article
Full-text available
Unicellular eukaryotes of the Trypanosomatidae family include human and animal pathogens that belong to the Trypanosoma and Leishmania genera. Diagnosis of the diseases they cause requires the sampling of body fluids (e.g., blood, lymph, peritoneal fluid, cerebrospinal fluid) or organ biopsies (e.g., bone marrow, spleen), which are mostly obtained through invasive methods. Body fluids or appendages can be alternatives to these invasive biopsies but appropriateness remains poorly studied. To further address this question, we perform a systematic review on clues evidencing the presence of parasites, genetic material, antibodies, and antigens in body secretions, appendages, or the organs or proximal tissues that produce these materials. Paper selection was based on searches in PubMed, Web of Science, WorldWideScience, SciELO, Embase, and Google. The information of each selected article (n = 333) was classified into different sections and data were extracted from 77 papers. The presence of Trypanosomatidae parasites has been tracked in most of organs or proximal tissues that produce body secretions or appendages, in naturally or experimentally infected hosts. The meta-analysis highlights the paucity of studies on human African trypanosomiasis and an absence on animal trypanosomiasis. Among the collected data high heterogeneity in terms of the I 2 statistic (100%) is recorded. A high positivity is recorded for antibody and genetic material detection in urine of patients and dogs suffering leishmaniasis, and of antigens for leishmaniasis and Chagas disease. Data on conjunctival swabs can be analyzed with molecular methods solely for dogs suffering canine visceral leishmaniasis. Saliva and hair/bristles showed a pretty good positivity that support their potential to be used for leishmaniasis diagnosis. In conclusion, our study pinpoints significant gaps that need to be filled in order to properly address the interest of body secretion and hair or bristles for the diagnosis of infections caused by Leishmania and by other Trypanosomatidae parasites.
Article
Full-text available
Sweat has been associated with health and disease ever since it was linked to high body temperature and exercise. It contains a broad range of electrolytes, proteins, and lipids, and therefore hosts a broad panel of potential noninvasive biomarkers. The development of novel smartphone-based biosensors will enable a more sophisticated, patient-driven sweat analysis. This will provide a broad range of novel digital biomarkers. Digital biomarkers are of increasing interest because they deliver various relevant longitudinal health data. To date, investigations on digital biomarkers have focused on creating objective measurements of function. Sweat analysis using smartphone-based biosensors has the potential to provide initial noninvasive metabolic feedback and therefore represents a promising complement and a source for next-generation digital biomarkers. From this viewpoint, we discuss state-of-the-art sweat research, focusing on the clinical implementation of sweat in medicine. Sweat provides biomarkers that represent direct metabolic feedback and is therefore expected to be the next generation of digital biomarkers. With regard to its broad application in various fields of medicine, we see a clear need to evolve the internet-enabled field of sweat expertise: iSudorology.
Article
Full-text available
Leishmaniasis, caused by protozoan parasites of the Leishmania genus, represents an important health problem in many regions of the world. Lack of effective point-of-care (POC) diagnostic tests applicable in resources-limited endemic areas is a critical barrier to effective treatment and control of leishmaniasis. The development of the loop-mediated isothermal amplification (LAMP) assay has provided a new tool towards the development of a POC diagnostic test based on the amplification of pathogen DNA. LAMP does not require a thermocycler, is relatively inexpensive, and is simple to perform with high amplification sensitivity and specificity. In this review, we discuss the current technical developments, applications, diagnostic performance, challenges, and future of LAMP for molecular diagnosis and surveillance of Leishmania parasites. Studies employing the LAMP assay to diagnose human leishmaniasis have reported sensitivities of 80% to 100% and specificities of 94% to 100%. These observations suggest that LAMP offers a good molecular POC technique for the diagnosis of leishmaniasis and is also readily applicable to screening at-risk populations and vector sand flies for Leishmania infection in endemic areas.
Article
Full-text available
Visceral leishmaniasis is a serious and debilitating infection with high fatality rate in tropical and subtropical countries. As clinical symptoms of visceral leishmaniasis are not so specific, confirmatory diagnostic methods with high sensitivity and specificity are needed. Noninvasive methods have been developed using urine as a clinical sample for visceral leishmaniasis diagnosis. In fact, there is a clear correlation between kidney impairment and Leishmania DNA in urine. However, it has been proved that Leishmania nucleic acid may also be isolated from patients without any sign of renal involvement. Even though urine has become a promissing biological sample, it is still not widely used due to several issues, such as (i) incomprehension of the whole renal pathophysiology process in visceral leishmaniasis, (ii) presence of many amplification inhibitors in urine, and (iii) lack of an efficient urinary DNA extraction method. In this article, we performed a literature review to bring a new perspective for Leishmania DNA isolation in urine.
Article
Full-text available
Visceral leishmaniasis (VL) is a serious and fatal disease caused by the parasites Leishmania infantum and Leishmania donovani . The gold standard diagnostic test for VL is the demonstration of parasites or their DNA from spleen, lymph node or bone marrow aspirates. Serological tests exist but cannot distinguish active VL from either prior exposure to the parasites or subsequent to disease treatment. Using mass spectroscopy, we have previously identified three L. infantum protein biomarkers ( Li-isd1, Li-txn1, and Li-ntf2 ) in urine of VL patients and developed a sensitive and specific urine-based antigen detection assay for diagnosis of VL that occurs in Brazil (where VL is caused by L. infantum ). However, unpublished observations from our laboratory showed that these biomarkers were detected in only 55-60% of VL patients from India and Kenya, where the disease is caused by L. donovani . Here, we report the discovery and characterization of two new biomarkers of L. donovani ( Ld-mao1 and Ld-ppi1 ) present in the urine of VL patients from these two countries. Capture ELISAs using specific rabbit IgG and chicken IgY were developed and the assays had sensitivities of 44.4% and 28.8% to detect Ld-mao1 and Ld-ppi1 respectively. In contrast, a multiplexed assay designed to simultaneously detect all five leishmanial biomarkers markedly increased the assay sensitivity to 82.2%. These results validate the utility of leishmanial protein biomarkers found in urine of VL patients as powerful tools for the development of an accurate diagnostic tests for this disease.
Article
Full-text available
Background: There is a recognized need for an improved diagnostic test to assess post-chemotherapeutic treatment outcome in visceral leishmaniasis (VL) and to diagnose post kala-azar dermal leishmaniasis (PKDL). We previously demonstrated by ELISA and a prototype novel rapid diagnostic test (RDT), that high anti-Leishmania IgG1 is associated with post-treatment relapse versus cure in VL. Methodology: Here, we further evaluate this novel, low-cost RDT, named VL Sero K-SeT, and ELISA for monitoring IgG1 levels in VL patients after treatment. IgG1 levels against L. donovani lysate were determined. We applied these assays to Indian sera from cured VL at 6 months post treatment as well as to relapse and PKDL patients. Sudanese sera from pre- and post-treatment and relapse were also tested. Results: Of 104 paired Indian sera taken before and after treatment for VL, when deemed clinically cured, 81 (77.9%) were positive by VL Sero K-SeT before treatment; by 6 months, 68 of these 81 (84.0%) had a negative or reduced RDT test line intensity. ELISAs differed in positivity rate between pre- and post-treatment (p = 0.0162). Twenty eight of 33 (84.8%) Indian samples taken at diagnosis of relapse were RDT positive. A comparison of Indian VL Sero K-SeT data from patients deemed cured and relapsed confirmed that there was a significant difference (p < 0.0001) in positivity rate for the two groups using this RDT. Ten of 17 (58.8%) Sudanese sera went from positive to negative or decreased VL Sero K-SeT at the end of 11–30 days of treatment. Forty nine of 63 (77.8%) PKDL samples from India were positive by VL Sero K-SeT. Conclusion: We have further shown the relevance of IgG1 in determining clinical status in VL patients. A positive VL Sero K-SeT may also be helpful in supporting diagnosis of PKDL. With further refinement, such as the use of specific antigens, the VL Sero K-SeT and/or IgG1 ELISA may be adjuncts to current VL control programmes.
Article
Full-text available
Background: Detection of Leishmania antigens in the urine provides a non-invasive means of diagnosis and treatment monitoring of cases of visceral leishmaniasis (VL). Leishmania antigen load in the urine may vary between different time-points within a day, thus influencing the performance of antigen-detection tests. Methods: We investigated the dynamics of Leishmania antigen in urine collected at three different time points (08:00, 12:00 and 16:00 hours). All urine samples collected were tested with the Leishmania Antigen ELISA (VL ELISA) kit, produced by Kalon Biological Ltd., UK. Results: The median concentration of Leishmania antigen in urine collected at 08:00 (2.7 UAU-urinary antigen units/ml) was higher than at 12:00 (1.7 UAU/ml) and at 16:00 (1.9 UAU/ml). These differences were found to be statistically significant (08:00 vs. 12:00, p=0.011; 08:00 vs. 16:00, p=0.041). Conclusion: This pilot study indicates that the Leishmania antigen concentration is higher in urine samples collected in the morning, which has important implications when the VL ELISA kit or other tests to detect Leishmania antigen in urine are used for diagnosis of VL and treatment monitoring.
Article
Full-text available
The diagnosis of visceral leishmaniasis (VL) is one of the foremost barriers in the control of this disease, as demonstration of the parasite by splenic/bone marrow aspiration is relatively difficult and requires expertise and laboratory support. The aim of the present study was to find a noninvasive diagnostic approach using the existing recombinant kinesine-39 (rK-39) immunochromatographic nitrocellulose strips test (ICT) with a human sweat specimen for the diagnosis of VL. The investigation was carried out on specimens (blood, sweat, and urine) collected from 58 confirmed VL, 50 confirmed post kala-azar dermal leishmaniasis (PKDL), 36 healthy control, and 35 patients from other diseases. The data obtained from this study reveal that 96.55% clinically confirmed active VL participants were found to be positive when tested against a sweat specimen. Interestingly, the scenario was similar when tested against a blood specimen (96.55% positive by rK-39). Moreover, a test of both sweats and blood specimens from 50 PKDL participants resulted in 100% positivity, whereas no healthy control participants were found to be rK-39 positive. The sensitivity of the rK-39 ICT in sweat specimen was 94.74%, whereas the specificity was 100% in healthy controls from endemic, nonendemic, and other infectious diseases, respectively. No difference was observed in sweat specimen of VL and PKDL cases which signifies its reliability. However, further evaluation of this method on a larger scale could enhance the reliability of the proposed model so that it could be used efficiently in VL management and eradication.
Article
Full-text available
Visceral leishmaniasis (VL), a potentially fatal disease is an outcome of infection caused by the parasite Leishmania donovani. The clinical diagnostic tests for this disease are still related to invasive tissue aspiration or serological immunochromatography. Advancements in immunoproteomics such as two-dimensional gel electrophoresis, mass spectrometry, B cell epitope prediction, and peptide synthesis have enabled researchers to discover newer biomarkers for disease diagnosis. In this study, we have screened several urine-reactive leishmanial membrane proteins as potential biomarker candidates. In the immunoblot assay, three proteins 51, 55 and 63 kDa showed 100% reactivity to the urine of 47 VL patients and nonreactive to 18 healthy and other diseases. Mass spectrometry revealed the identity of 51, 55 and 63 kDa proteins as elongation factor 1α (EF1-α), α-tubulin, and glycoprotein 63, respectively. B cell reactive epitopes of these proteins were mapped through bioinformatic tools and one epitope from each protein that had the highest score were synthesized. All the three native electroeluted proteins and their corresponding synthetic peptides were tested through ELISA for reactivity with VL and control urine samples. While all three demonstrated good reactivity, the diagnostic performance of EF1-α was the best. Our findings illustrate the use of urine-based proteomic approach for biomarker discovery in non-invasive clinical diagnosis of VL.
Article
Full-text available
Diagnosis of visceral leishmaniasis (VL) and assessment of treatment response in human immunodeficiency virus (HIV)-coinfected patients still relies on invasive tissue aspiration. This hampers scale-up and decentralization of care in resource-limited settings. Noninvasive diagnostics are urgently needed. KATEX is a frequently used latex agglutination test for Leishmania antigen in urine that has never been evaluated in HIV-coinfected individuals from Leishmania donovani-endemic areas. This was an exploratory sub-study embedded within the screening phase of a trial in highly endemic northwestern Ethiopia. All patients were HIV-positive and aspirate-confirmed VL cases. Accuracy of KATEX for VL diagnosis and as test of cure at treatment end was assessed against tissue aspirate parasite load (reference methods), and the evolution of weekly antigen levels during treatment was described. Most of the 87 included patients were male (84, 97%), young (median age 31 years), and had poor immune status (median cluster of differentiation type 4 count 56 cells/μL). KATEX had moderate sensitivity (84%) for VL diagnosis. KATEX had moderate sensitivity (82%) and a moderate negative predictive value (87%) but only low specificity (49%) and a low positive predictive value (40%) while assessing the treatment outcomes. Weekly antigen levels showed characteristic patterns during treatment of patients with different initial parasite loads and treatment outcomes. Antigen detection in urine using KATEX can contribute to improved VL diagnosis in HIV-coinfected patients but has limited use for monitoring of treatment response. Better noninvasive diagnostics are needed to reduce reliance on invasive methods and thus to expand and improve clinical care for VL in resource-limited settings.
Article
Full-text available
Visceral leishmaniasis (VL), a deadly parasitic disease, is a major public health concern globally. Countries affected by VL have signed the London Declaration on Neglected Tropical Diseases and committed to eliminate VL as a public health problem by 2020. To achieve and sustain VL elimination, it will become progressively important not to miss any remaining cases in the community who can maintain transmission. This requires accurate identification of symptomatic and asymptomatic carriers using highly sensitive diagnostic tools at the primary health service setting. The rK39 rapid diagnostic test (RDT) is the most widely used tool and with its good sensitivity and specificity is the first choice for decentralized diagnosis of VL in endemic areas. However, this test cannot discriminate between current, subclinical, or past infections and is useless for diagnosis of relapses and as a prognostic (cure) test. Importantly, as the goal of elimination of VL as a public health problem is approaching, the number of people susceptible to infection will increase. Therefore, correct diagnosis using a highly sensitive diagnostic test is crucial for applying appropriate treatment and management of cases. Recent advances in molecular techniques have improved Leishmania detection and quantification, and therefore this technology has become increasingly relevant due to its possible application in a variety of clinical sample types. Most importantly, given current problems in identifying asymptomatic individuals because of poor correlation between the main methods of detection, molecular tests are valuable for VL elimination programs, especially to monitor changes in burden of infection in specific communities. This review provides a comprehensive overview of the available VL diagnostics and discusses the usefulness of molecular methods in the diagnosis, quantification, and species differentiation as well as their clinical applications.
Article
Full-text available
Background: Biomarkers predicting the risk of VL treatment failure and relapse in VL/HIV coinfected patients are needed. Nested within a two-site clinical trial in Ethiopia (2011–2015), we conducted an exploratory study to assess whether (1) levels of Leishmania antigenuria measured at VL diagnosis were associated with initial treatment failure and (2) levels of Leishmania antigenuria at the end of treatment (parasitologically-confirmed cure) were associated with subsequent relapse. Methods: Leishmania antigenuria at VL diagnosis and cure was determined using KAtex urine antigen test and graded as negative (0), weak/moderate (grade 1+/2+) or strongly-positive (3+). Logistic regression and Kaplan-Meier methods were used to assess the association between antigenuria and (1) initial treatment failure, and (2) relapse over the 12 months after cure, respectively. Results: The analysis to predict initial treatment failure included sixty-three coinfected adults [median age: 30 years interquartile range (IQR) 27–35], median CD4 count: 56 cells/μL (IQR 38–113). KAtex results at VL diagnosis were negative in 11 (17%), weak/moderate in 17 (27%) and strongly-positive in 35 (36%). Twenty (32%) patients had parasitologically-confirmed treatment failure, with a risk of failure of 9% (1/11) with KAtex-negative results, 0% (0/17) for KAtex 1+/2+ and 54% (19/35) for KAtex 3+ results. Compared to KAtex-negative patients, KAtex 3+ patients were at increased risk of treatment failure [odds ratio 11.9 (95% CI 1.4–103.0); P: 0.025]. Forty-four patients were included in the analysis to predict relapse [median age: 31 years (IQR 28–35), median CD4 count: 116 cells/μL (IQR 95–181)]. When achieving VL cure, KAtex results were negative in 19 (43%), weak/moderate (1+/2+) in 10 (23%), and strongly positive (3+) in 15 patients (34%). Over the subsequent 12 months, eight out of 44 patients (18%) relapsed. The predicted 1-year relapse risk was 6% for KAtex-negative results, 14% for KAtex 1+/2+ and 42% for KAtex 3+ results [hazard ratio of 2.2 (95% CI 0.1–34.9) for KAtex 1+/2+ and 9.8 (95% CI 1.8–82.1) for KAtex 3+, compared to KAtex negative patients; P: 0.03]. Conclusion: A simple field-deployable Leishmania urine antigen test can be used for risk stratification of initial treatment failure and VL relapse in HIV-patients. A dipstick-format would facilitate field implementation.
Article
Full-text available
Several studies have described the use of non-invasive collection methods, mostly based on the detection of parasite DNA, for diagnosis. However, no Leishmania specimens have been isolated from saliva. Here, we report the first isolation of Leishmania braziliensis from the saliva of humans with cutaneous leishmaniasis but without lesions on their mucosa. The isolates were obtained from salivary fluid inoculated in hamsters and were tested by multilocus enzyme electrophoresis. Seven samples from 43 patients suspected of having the disease were identified for in vivo culture. These findings suggest that saliva is a clinical sample that allows the isolation of Leishmania sp.
Article
Full-text available
Progress in the diagnosis of leishmaniases depends on the development of effective methods and the discovery of suitable biomarkers. We propose firstly an update classification of Leishmania species and their synonymies. We demonstrate a global map highlighting the geography of known endemic Leishmania species pathogenic to humans. We summarize a complete list of techniques currently in use and discuss their advantages and limitations. The available data highlights the benefits of molecular markers in terms of their sensitivity and specificity to quantify variation from the subgeneric level to species complexes, (sub) species within complexes, and individual populations and infection foci. Each DNA-based detection method is supplied with a comprehensive description of markers and primers and proposal for a classification based on the role of each target and primer in the detection, identification and quantification of leishmaniasis infection. We outline a genome-wide map of genes informative for diagnosis that have been used for Leishmania genotyping. Furthermore, we propose a classification method based on the suitability of well-studied molecular markers for typing the 21 known Leishmania species pathogenic to humans. This can be applied to newly discovered species and to hybrid strains originating from inter-species crosses. Developing more effective and sensitive diagnostic methods and biomarkers is vital for enhancing Leishmania infection control programs.
Article
Full-text available
Background Visceral Leishmaniasis (VL), a severe parasitic disease, could be fatal if diagnosis and treatment is delayed. Post kala-azar dermal leishmaniasis (PKDL), a skin related outcome, is a potential reservoir for the spread of VL. Diagnostic tests available for VL such as tissue aspiration are invasive and painful although they are capable of evaluating the treatment response. Serological tests although less invasive than tissue aspiration are incompetent to assess cure. Parasitological examination of slit-skin smear along with the clinical symptoms is routinely used for diagnosis of PKDL. Therefore, a noninvasive test with acceptable sensitivity and competency, additionally, to decide cure would be an asset in disease management and control. Methodology/principal findings We describe here, the development of antibody-capture ELISA and field adaptable dipstick test as noninvasive diagnostic tools for VL and PKDL and as a test of cure in VL treatment. Sensitivity and specificity of urine-ELISA were 97.94% (95/97) and 100% (75/75) respectively, for VL. Importantly, dipstick test demonstrated 100% sensitivity (97/97) and specificity (75/75) in VL diagnosis. Degree of agreement of the two methods with tissue aspiration was 98.83% (κ = 0.97) and 100% (κ = 1), for ELISA and dipstick test, respectively. Both the tests had 100% positivity for PKDL (14/14) cases. ELISA and dipstick test illustrated treatment efficacy in about 90% (16/18) VL cases when eventually turned negative after six months of treatment. Conclusions/significance ELISA and dipstick test found immensely effective for diagnosis of VL and PKDL through urine samples thus, may substitute the existing invasive diagnostics. Utility of these tests as indirect methods of monitoring parasite clearance can define infected versus cured. Urine-based dipstick test is simple, sensitive and above all noninvasive method that may help not only in active VL case detection but also to ascertain treatment response. It can therefore, be deployed widely for interventions in disease management of VL particularly in poor resource outskirts.
Article
Full-text available
Background: Recombinant fusion proteins are now commonly used to detect circulating antibodies for the serodiagnosis of visceral leishmaniasis (VL) in Asia, Africa and the Americas. Although simple, these tests still require blood collection and their use in remote settings can be limited due to the need of collection devices, serum fractionation instrument and generation of biohazardous waste. The development of an accurate and non-invasive diagnostic algorithm for VL, such as could be achieved with urine, is desirable. Methods: We enrolled 87 VL patients and 81 non-VL individuals, including 33 healthy endemic controls, 16 healthy non-endemic controls, 16 disease controls and 16 tuberculosis (TB) patients. We compared the efficacy of recombinant antigens rK28, rK39 and rKRP42 for the diagnosis of VL when either serum or urine were used to develop antibody-detection ELISA. Results: As expected, each of the antigens readily detected antibodies in the serum of VL patients. rK28 ELISA showed the highest sensitivity (98.9 %), followed by rK39 and rKRP42 ELISA (97.7 and 94.4 %, respectively); overall specificity was > 96 %. When urine was used as the test analyte, only a marginal drop in sensitivity was observed, with rK28 ELISA again demonstrating the greatest sensitivity (95.4 %), followed by rK39 and rKRP42 ELISA, respectively. Again, the overall specificity was > 96 %. Conclusions: Our data indicate the potential for using urine in the diagnosis of VL. Detection of antibodies against rK28 demonstrated the greatest sensitivity. Together, our results indicate that rK28-based antibody detection tests using urine could provide a completely non-invasive tool amenable for diagnosis of VL in remote locations.
Article
Full-text available
Visceral leishmaniasis (VL) is the most devastating parasitic infection worldwide causing high morbidity and mortality. Clinical presentation of VL ranges from asymptomatic or subclinical infection to severe and complicated symptomatic disease. A major challenge in the clinical management of VL is the weakness of health systems in disease endemic regions. People affected by VL mostly present to primary health care centers (PHCs), often late in their therapeutic itinerary. PHC physicians face a major challenge: they do not deal with a single disease issue but with patients presenting with complaints pointing to several diagnostic possibilities. Risk exists when some patients having less clinical manifestations are misdiagnosed. Therefore, field based accurate, sensitive, and cost effective rapid diagnostic tools that can detect disease in its mildest form are essential for effective control and reaching the goal of VL elimination. In this review, we discuss the current status and challenges of various diagnostic tools for the diagnosis of VL and assess their application in resource poor settings.
Article
Full-text available
Visceral leishmaniasis (VL) can be fatal without timely diagnosis and treatment. Treatment efficacies vary due to drug resistance, drug toxicity and co-morbidities. It is important to monitor treatment responsiveness to confirm cure and curtail relapse. Currently, microscopy of spleen, bone marrow or lymph node biopsies is the only definitive method to evaluate cure. A less invasive test for treatment success is a high priority for VL management. In this study, we describe the development of a capture ELISA based on detecting Leishmania donovani antigens in urine samples and comparison with the Leishmania Antigen ELISA, also developed for the same purpose. Both were developed as prototype kits and tested on patient urine samples from Sudan, Ethiopia, Bangladesh and Brazil, along with appropriate control samples from endemic and non-endemic regions. Sensitivity and specificity were assessed based on accurate detection of patients compared to control samples. One- Way ANOVA was used to assess the discrimination capacity of the tests and Cohen’s kappa was used to assess their correlation. The Leishmania Antigen Detect™ ELISA demonstrated >90 % sensitivity on VL patient samples from Sudan, Bangladesh and Ethiopia and 88 % on samples from Brazil. The Leishmania Antigen ELISA was comparable in performance except for lower sensitivity on Sudanese samples. Both were highly specific. To confirm utility in monitoring treatment, urine samples were collected from VL patients at days 0, 30 and 180 post- treatment. For the Leishmania Antigen Detect™ ELISA, positivity was high at day 0 at 95 %, falling to 21 % at day 30. At day 180, all samples were negative, corresponding well with clinical cure. A similar trend was also seen for the Leishmania Antigen ELISA albeit; with lower positivity of 91 % at Day 0 and more patients, remaining positive at Days 30 and 180. The Leishmania Antigen Detect™ and the Leishmania Antigen ELISAs are standardized, user- friendly, quantitative and direct tests to detect Leishmania during acute VL as well as to monitor parasite clearance during treatment. They are a clear improvement over existing options. The ELISAs provide a non-invasive method to detect parasite antigens during acute infection and monitor its clearance upon cure, filling an unmet need in VL management. Further refinement of the tests with more samples from endemic regions will define their utility in monitoring treatment.
Article
Full-text available
Leishmania infantum infections in dogs play a crucial role in the transmission of pathogens causing visceral leishmaniasis to humans in the Gansu province, northwest China. To be able to control zoonotic transmission of the parasite to humans, a non-invasive loop-mediated isothermal amplification (LAMP) assay to specifically detect L. infantum infections in dogs was developed. The primers used in the LAMP assay were designed to target kinetoplast DNA minicircle sequences of the L. infantum isolate MCAN/CN/90/SC and tested using DNA isolated from promastigotes of different Leishmania species. The LAMP assay was evaluated with conjunctional swab samples obtained from 111 and 33 dogs living in an endemic and a non-endemic region of zoonotic visceral leishmaniasis in the Gansu province, respectively. The LAMP assay was also compared with conventional PCR, ELISA and microscopy using conjunctional swab, serum and bone marrow samples from the dogs, respectively. The LAMP assay detected 1 fg of L. infantum DNA purified from cultured promastigotes which was 10-fold more sensitive than a conventional PCR test using Leishmania genus-specific primers. No cross reaction was observed with DNA isolated from promastigotes of L. donovani, L. major, L. tropica, and L. braziliensis, and the L. infantum reference strain MHOM/TN/80/IPT1. The L. infantum-positive rates obtained for field-collected samples were 61.3 %, 58.6 %, 40.5 % and 10.8 % by LAMP, PCR, ELISA and microscopy, respectively. As only one out of the 33 samples from control dogs from the non-endemic region of zoonotic visceral leishmaniasis was positive by the LAMP assay and the PCR test, the observed true negative rate (specificity) was 97 % for both methods. This study has shown that the non-invasive, conjunctional swab-based LAMP assay developed was more sensitive in the detection of leishmaniasis in dogs than PCR, ELISA and microscopy. The findings indicate that the LAMP assay is a sensitive and specific method for the field surveillance of domestic dogs, particularly of asymptomatic canines, in ZVL-endemic areas in western China.
Article
Full-text available
Background In leishmaniasis caused by Leishmania infantum, the dog acts as the main reservoir for the disease. Non-invasive sampling for Leishmania detection is pivotal for rapid and affordable diagnosis. Recently, the use of conjunctival swab (CS) has been evaluated as a non-invasive sampling technique for quantitative real-time PCR (qPCR). However, few investigations have been made on the applicability of CS qPCR in particular cases such as dogs with borderline IFAT titres, suspected disease relapse with comorbidity and therapy monitoring. The aims of this study were i) to confirm the efficacy of CS, comparing these samples to buffy coat (BC) samples, as effective non-invasive samples for Leishmania quantitative detection by qPCR and ii) to verify the usefulness of qPCR compared to conventional laboratory and clinical parameters to assist in therapeutic decision making regarding dogs with complex clinical cases.Methods Eighty dogs were divided into 4 groups based on their IFAT titres and clinical histories. Two qPCR assays were performed both on CS raw lysates and on purified DNA from BC samples. The assays were then compared. Z tests for difference of proportion, with Bonferroni correction, were carried out to evaluate the qPCR results. Logistic regression with backward stepwise elimination was performed to detect the subset of haematochemical variables significantly associated with PCR positivity.ResultsThe qPCR performed on CS samples showed better sensitivity (87%) and specificity (96%) than assays carried out using BC samples, regardless of the primers used. The haematochemical parameters haemoglobin and globulins were found to be significantly associated with qPCR positivity. Pearson correlations between Leishmania kDNA load in CS and body condition scores or IFAT titres were calculated in dogs with new leishmaniasis diagnoses. The Leishmania kDNA load in CS correlated moderately with IFAT titres (R¿=¿0.59) but a very weak correlation (R¿=¿0.37) with body condition score (BCS) was found.Conclusions The applicability of CS for Leishmania detection in dogs was confirmed, revealing the usefulness of raw lysates for quantitative purposes. Moreover, the qPCR was found to be particularly useful in cases lacking a clear clinical diagnosis, where the haematochemical values cannot be predictive.
Article
Visceral leishmaniosis (VL) remains a serious public health problem in Brazil. Dogs are the main hosts of the parasite, developing canine leishmaniosis (CanL), hence the importance of an accurate diagnosis of the animals. Recently, the application of qPCR method to non-invasive samples obtained from dogs with CanL has shown high sensitivity. Thus, we analyzed by qPCR blood, hair (from healthy zones and cutaneous lesions) and cerumen of 16 dogs with confirmed leishmaniosis from Araçatuba, a Brazilian endemic area. Cerumen-qPCR showed the highest sensitivity (87.5%), followed by hair (lesions: 78.57%, healthy skin: 62.5%), and blood (68.75%). We also analyzed blood, hair and cerumen of 5 healthy dogs from a non-endemic area, obtaining 100% of specificity in all samples. The use of cerumen and hair for qPCR analysis provides high reliability, taking into account the sensitivity and total specificity of the method. The non-invasive sampling procedure without the need of specific conditions of storage and transport support the usefulness of hair and cerumen for the diagnosis of CanL.
Article
Leishmaniasis is an arthropod borne disease that is endemic in 102 countries and one and half million new cases are reported each year. Sand flies are the one and only proven vectors of the disease and dogs are the main reservoirs in urban areas. Karaburun peninsula is located in most western part of Turkey and is reported to be an endemic area for human and canine leishmaniasis. The most recent study was undertaken more than 15 years ago in The peninsula and no clear data available for vectors or reservoirs. Thus, we aimed to update the information regarding sand fly diversity, infection status of reservoirs and vectors in the study area. Sand flies were collected using CDC light traps at 13 different sites of Karaburun and species identification was made using previously published keys. Monospecific pools were generated using midguts with blood retention and were screened for the presence of Leishmania spp. DNA by molecular techniques. A non-invasive conjunctival swab sampling was performed to identify the infection status among reservoirs and species typing of the causative agent was also undertaken using ITS1 PCR. Three out of 30 pools were found positive for Leishmania infantum that were generated using guts of Phlebotomus tobbi (n:36). Among all sampled dogs (44) and cats (19), 11 and one of them were found positive for L. infantum, respectively. There was a decrease in the number of P. papatasi during the study period, while increase was observed in the number of P. tobbi. The presence of proven vectors and reservoirs as well as Leishmania DNA in cats was shown in the present study. Sand fly fauna is updated and Leishmania DNA presence in cats was reported in the study area for the first time.
Article
The diagnosis of leishmaniasis relies mainly on the use of invasive processes, to collect the biological material for detecting Leishmania parasites. Body fluids, which can be collected by non-invasive process, would greatly facilitate the leishmaniasis diagnosis. In the present study, we investigated the potency of urine immunoblotting to diagnose cutaneous and visceral leishmaniasis and we compared with routine molecular methods. A total of 80 samples, including 40 sera and their 40 corresponding urine samples were collected from 37 suspected patients with cutaneous and visceral leishmaniasis, and 3 healthy individuals (as control), in Ilam and Ardabil provinces of Iran. All sera and urine samples were analyzed, using immunoblotting. The confirmation of leishmaniasis infection was performed, using conventional and quantitative PCRs as well as by sequencing the amplicons. Among 37 suspected patients, 23 patients presented cutaneous lesions (CL) and 14 exhibited clinical symptoms reminiscent of visceral leishmaniasis (L. infantum). Among cutaneous patients, 15 were positive for zoonotic cutaneous leishmaniasis (L. major), and eight for anthroponotic cutaneous leishmaniasis (L. tropica). Molecular quantification of Leishmania parasites was performed on sera, urines and cutaneous biopsies of CL and VL patients, demonstrating that parasite load is lower in urines, compared to sera or biopsy. DNA can be detected in 20 out of 23 (86.9%) CL urine samples and in 13 out of 14 (92.8%) VL urine samples. Immunodetection analysis demonstrates that 22 out of 23 (95.6%) sera from CL patients and all patients suspected with VL are positive. For urine samples, 18 out of 23 (78.2%) urine of CL patients and 13 out of 14 (92.8%) urine of VL patients were positive, using Western blot. Therefore, immunodetection and molecular analysis using urine samples can be used as a diagnostic tool for surveying cutaneous and visceral leishmaniasis.
Article
Visualization of amastigotes in lymph nodes, bone marrow, and other tissues samples remains the gold standard method for the diagnosis of visceral leishmaniasis (VL) in humans. This gold standard diagnostic method uses a technically challenging microscopy procedure that is often not accessible in many places in the world where VL is endemic. Here, we report the current systematic review and meta-analysis to evaluate whether urine is a reliable clinical sample for diagnosis of human VL. Data were extracted from ten available databases during the period from 2002 to 2017. Overall, 29 articles fulfilled the inclusion criteria and were used for data extraction in this systematic review. Most studies (72.4%) using urine specimens were reported from five countries: India 6 (20.7%), Iran 5 (17.2%), Bangladesh 4 (13.8%), Japan 3 (10.3%) and Spain 3 (10.3%), respectively. The most common diagnostic tests performed on urine were Katex (62.1%), ELISA (24.1%), and the rK39 (17.2%) assays. In meta-analysis the sensitivity and specificity of the three most commonly used diagnostic assays were rK39 (97%; CI: 91-99; 98%;76-100), ELISA (91%; 82-95; 99%; CI: 94-100), and Katex (83%; 73-90; 98%; 98-100), suggesting that the rK39 assay provided the highest sensitivity and the ELISA assay provided the highest specificity for diagnosis of VL from urine samples. Our findings suggest that urine is a valuable clinical sample for the diagnosis of human VL, particularly in areas where the gold standard test for VL is not available.
Article
The diagnosis of canine leishmaniosis (CanL) is complex due to its variable clinical manifestations and laboratory findings. The availability of vaccines to prevent CanL has increased the complexity of diagnosis, as serological tests may not distinguish between naturally infected and vaccinated dogs. Current practices of prevaccination screening are not sufficiently sensitive to detect subclinically infected dogs, resulting in the vaccination of infected animals, which may lead to disease in vaccinated dogs that are also infectious to sand flies. This review evaluates the current techniques for diagnosing CanL, and focuses on new challenges raised by the increasing use of vaccines against this disease. Important gaps in knowledge regarding the diagnosis of CanL are underscored to highlight the need for novel diagnostic test development.
Article
Detection of serum anti-Leishmania antibodies by quantitative or qualitative techniques has been the most used method to diagnose Canine Leishmaniosis (CanL). Nevertheless, saliva may represent an alternative to blood because it is easy to collect, painless and non-invasive in comparison with serum. In this study, two time-resolved immunofluorometric assays (TR-IFMAs) for quantification of anti-Leishmania IgG2 and IgA antibodies in saliva were developed and validated and their ability to distinguish Leishmania-seronegative from seropositive dogs was evaluated. The analytical study was performed by evaluation of assay precision, sensitivity and accuracy. In addition, serum from 48 dogs (21 Leishmania-seropositive and 27 Leishmania-seronegative) were analyzed by TR-IFMAs. The assays were precise, with an intra- and inter-assay coefficients of variation lower than 11%, and showed high level of accuracy, as determined by linearity under dilution (R² = 0.99) and recovery tests (> 88.60%). Anti-Leishmania IgG2 antibodies in saliva were significantly higher in the seropositive group compared with the seronegative (p < 0.0001), whereas no significant differences for anti-Leishmania IgA antibodies between both groups were observed. Furthermore, TR-IFMA for quantification of anti-Leishmania IgG2 antibodies in saliva showed higher differences between seropositive and seronegative dogs than the commercial assay used in serum. In conclusion, TR-IFMAs developed may be used to quantify anti-Leishmania IgG2 and IgA antibodies in canine saliva with an adequate precision, analytical sensitivity and accuracy. Quantification of anti-Leishmania IgG2 antibodies in saliva could be potentially used to evaluate the humoral response in CanL. However, IgA in saliva seemed not to have diagnostic value for this disease. For future studies, it would be desirable to evaluate the ability of the IgG2 assay to detect dogs with subclinical disease or with low antibody titers in serum and also to study the antibodies behaviour in saliva during the treatment of CanL.
Article
Although some studies have investigated the potential role of cats as a reservoir for Leishmania, their role in the epidemiology of visceral leishmaniasis (VL) is still poorly understood. Molecular diagnostic techniques are an important tool in VL diagnosis, and PCR shows high sensitivity and specificity for Leishmania spp. detection. Quantitative real-time PCR (qPCR) is a method that permits quantitative analysis of a large number of samples, resulting in more sensitive, accurate, and reproducible measurements of specific DNA present in the sample. This study compared real-time PCR (qPCR) and conventional PCR (cPCR) for detection of Leishmania spp. in blood and conjunctival swab (CS) samples of healthy cats from a non-endemic area in the state of São Paulo, Brazil. Of all CS samples, 1.85% (2/108) were positive for Leishmania spp. by both cPCR as qPCR (kappa index = 1), indicating excellent agreement between the two methods. The DNA from the two CS-cPCR- and CS-qPCR-positive samples was further tested with a PCR test amplifying the Leishmania spp. discriminative rRNA internal transcribed spacer 1 (ITS 1), of which one sample generated a 300–350-bp DNA fragment whose size varies according to the Leishmania species. Following sequencing, the fragment showed 100% similarity to a GenBank L. infantum sequence obtained from a cat in Italy. In conclusion, the association of qPCR and CS proved to be effective for detection of Leishmania in cats. Conjunctival swab samples were shown to be a practical and better alternative to blood samples and may be useful in the diagnosis and studies of feline leishmaniasis.
Article
Implementation of simple diagnostic tests using non-invasive collection of biological specimens is of great importance in the diagnosis of pediatric visceral leishmaniasis caused by Leishmania infantum. Latex agglutination kit (KAtex(®)) is widely used in the diagnosis mainly in L. donovani endemic areas. However its utilization in L. infantum endemic regions remains limited and its use on noninvasive biological specimen apart urine was not reported. In this study, KAtex(®) kit was used to detect Leishmania-related antigen in urine and oral fluid of 35L. infantum visceral leishmaniasis cases and 62 controls including non-infectious disease and infectious disease controls (34 and 28 respectively). Sensitivity and specificity of urine based KAtex(®) were 51.4% and 98.3% respectively, whereas, sensitivity and specificity of oral-fluid based KAtex(®) were 80% and 88.3% respectively. Although, sensitivity of oral-fluid KAtex(®) was high, its specificity varied significantly according to the presence or the absence of an infectious disease (71.4% versus 97%, p=0.01).
Article
Purpose: Excessive sweating is a common symptom of the disease and an unexplored biofluid for TB diagnosis, we conducted a proof-of concept- study to identify potential diagnostic biomarkers of active TB in eccrine sweat. Experimental design: We performed a global proteomic profile of eccrine sweat sampled from patients with active pulmonary TB, other lung diseases (non-TB disease), and healthy controls. A comparison of proteomics between Active-TB, Non-TB and Healthy Controls was done in search for potential biomarkers of active TB. Results: Sweat specimens were pooled from 32 active TB patients, 27 patients with non-TB diseases and 24 apparently healthy controls, all were negative for HIV. Over one hundred unique proteins were identified in the eccrine sweat of all three groups. Twenty six proteins were exclusively detected in the sweat of patients with active TB while the remaining detected proteins overlapped between three groups. Gene ontology evaluation indicated that the proteins detected uniquely in sweat of active TB patients were involved in immune response and auxiliary protein transport. Gene products for cellular components (e.g. ribosomes) were detected only in active TB patients. Data are available via ProteomeXchange with identifier PXD003224 CONCLUSIONS AND CLINICAL RELEVANCE: : Proteomics of sweat from active TB patients is a viable approach for biomarker identification which could be used to develop a non-sputum based test for detection of active TB This article is protected by copyright. All rights reserved.
Article
Parasites often cause devastating diseases and represent a significant public health and economic burden. More accurate and convenient diagnostic tools are needed in support of parasite control programmes in endemic regions, and for rapid point-of-care diagnosis in nonendemic areas. The detection of cell-free DNA (cfDNA) is a relatively new concept that is being applied in the current armamentarium of diagnostics. Here, we review the application of cfDNA detection with nucleic acid amplification tests for the diagnosis and evaluation of different human parasitic infections and highlight the significant benefits of the approach using non-invasive clinical samples.
Article
The diagnosis of canine leishmaniasis (CanL) in symptomatic and asymptomatic dogs is a very important and problematic public health issue in Turkey. A longitudinal study was carried out on dogs in selected villages in the Çukurova Plain in Turkey, from July 2011 to June 2013, where cutaneous (CL) and visceral (VL) leishmaniasis is endemic. The study aimed to determine the prevalence of CanL and to evaluate the early diagnostic performance of the non-invasive conjunctival swab nested PCR (CS n-PCR) test in comparison with the Indirect Fluorescent Antibody Test (IFAT). The consecutive blood and CS samples from a representative number of dogs (80–100 dogs/each survey) were collected in a cohort of 6 villages located in the area. Clinical symptoms, demographic and physical features about each dog were noted and lymph node aspiration samples were obtained from selected dogs with lymphadenopathy.