PresentationPDF Available

The Hadamard multiary quasigroup product

Authors:

Abstract

The Hadamard quasigroup product has recently been introduced as a natural generalization of the classical Hadamard product of matrices. It is defined as the superposition operator of three binary operations, one of them being a quasigroup operation. This paper delves into the fundamentals of this superposition operator by considering its more general version over multiary groupoids. Particularly, we show how this operator preserves algebraic identities, multiary groupoid structures, inverse elements, isotopes, conjugates and orthogonality. Then, we generalize the mentioned Hadamard quasigroup product to multiary quasigroups. Based on this product, we prove that the number of m-ary quasigroups defined on a given set X coincides with the number of m$ary operations that are orthogonal to a given m-set of orthogonal m-ary operations over X.
The Hadamard multiary quasigroup product
Ra´ul M. Falc´on
Department of Applied Maths I.
Universidad de Sevilla.
rafalgan@us.es
Kongunadu Arts and Science College.
Tamil Nadu, India.
January 30, 2024.
Joint work with:
Lorenzo Mella and Petr Vojtˇechovsk´y.
(Spanish Strategic R+D Project TED2021-130566B-I00)
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 1 / 45
CONTENTS
1Preliminaries.
2The Hadamard multiary quasigroup product.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 2 / 45
CONTENTS
1Preliminaries.
2The Hadamard multiary quasigroup product.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 3 / 45
Multiary operations.
Let m2 be a positive integer.
m(X):= {m-ary operations on a set X}
An m-ary groupoid over Xis any pair (X,f), with fm(X).
Example
Let X={1,2,3}. We consider the binary groupoid (X,f) described by
its Cayley table
A
1 2 3
2 1 1
3 1 1
so that f(i,j) := A[i,j], for all i,jX.
f(1,2) = 2
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 4 / 45
Multiary operations.
Example
Let X={1,2,3}. We consider the ternary groupoid (X,f) described by
the following arrays.
A1
123
211
311
A2
2 1 2
1 2 3
2 3 2
A3
3 3 1
3 3 3
1 3 1
so that f(i,j,k) := Ak[i,j], for all i,j,kX.
f(1,2,1) = 2 f(1,2,2) = 1 f(1,2,3) = 3
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 5 / 45
Multiary operations.
An m-ary groupoid (X,f) is an m-ary monoid if it has an identity
element eX. That is,
f(e,...,e
| {z }
i
,a,e,...,e
| {z }
mi1
) = a
for all aXand every non-negative integer i<m.
Example
1 is the unit element of the binary monoid
123
211
311
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 6 / 45
Multiary operations.
Example
1 and 2 are the unit elements of the ternary monoid (X,f) described by
the following arrays.
A1
123
211
311
A2
2 1 2
1 2 3
2 3 2
A3
3 3 1
3 3 3
1 3 1
so that f(i,j,k) := Ak[i,j], for all i,j,kX.
f(1,2,1) = 2 f(1,2,2) = 1 f(1,2,3) = 3
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 7 / 45
Multiary operations.
An element aXis invertible in an m-ary monoid (X,f) if there
exist a1Xand an identity element ein (X,f) such that
f(a,...,a
| {z }
i
,a1,a,...,a
| {z }
mi1
) = e(1)
for every non-negative integer i<m.
The element a1is an inverse of ain (X,f).
The set of inverses of ain (X,f) is Inv(a,f)
Example
In the binary monoid
123
211
311
it is Inv(1,f) = {1}and Inv(2,f) = Inv(3,f) = {2,3}.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 8 / 45
Multiary operations.
Example
In the ternary monoid
A1
123
211
311
A2
2 1 2
1 2 3
2 3 2
A3
3 3 1
3 3 3
1 3 1
it is Inv(1,f) = Inv(2,f) = {1,2}and Inv(3,f) = {1}.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 9 / 45
Multiary operations.
Example
In the ternary monoid
B1
222
211
311
B2
1 1 2
1 2 3
2 3 2
B3
3 3 1
3 3 3
1 3 2
the only identity element is 2, and Inv(a,f) = {a}, for all a.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 10 / 45
The classical Hadamard product.
Jacques Hadamard
(1865-1963)
(AB) [i,j] := A[i,j]·B[i,j]
Hadamard product Element-wise product.
Example
A
13 2
2 0 1
1 2 3
B
0 2 1
13 2
1 1 3
AB
062
2 0 2
1 2 9
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 11 / 45
The classical Hadamard product.
·Z30 1 2
0 0 0 0
1 0 1 2
2 0 2 1
Example
A
1 1 2
2 0 1
0 2 2
M3(Z3)
B
0 2 1
2 1 2
1 1 0
M3(Z3)
AB
0 2 2
1 0 2
0 2 0
M3(Z3).
Can it be naturally generalized for other operations?
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 12 / 45
The classical Hadamard product.
·Z30 1 2
0 0 0 0
1 0 1 2
2 0 2 1
Example
A
1 1 2
2 0 1
0 2 2
M3(Z3)
B
0 2 1
2 1 2
1 1 0
M3(Z3)
AB
0 2 2
1 0 2
0 2 0
M3(Z3).
Can it be naturally generalized for other operations?
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 12 / 45
Generalizing the classical Hadamard product.
+Z30 1 2
0 0 1 2
1 1 2 0
2 2 0 1
Example
A
112
201
022
M3(Z3)
B
0 2 1
2 1 2
1 1 0
M3(Z3)
A+Z3B
1 0 0
1 1 0
1 0 2
M3(Z3).
The relevant aspect here is the Cayley table under consideration.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 13 / 45
Generalizing the classical Hadamard product.
+Z30 1 2
0 0 1 2
1 1 2 0
2 2 0 1
Example
A
112
201
022
M3(Z3)
B
0 2 1
2 1 2
1 1 0
M3(Z3)
A+Z3B
1 0 0
1 1 0
1 0 2
M3(Z3).
The relevant aspect here is the Cayley table under consideration.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 13 / 45
Generalizing the classical Hadamard product.
L
0 1 2
1 2 0
2 0 1
Example
A
112
201
022
M3(Z3)
B
021
212
110
M3(Z3)
ALB
1 0 0
1 1 0
1 0 2
M3(Z3).
In this study, we focus on Cayley tables of multiary quasigroups. That is,
on Latin hypercubes.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 14 / 45
Generalizing the classical Hadamard product.
L
0 1 2
1 2 0
2 0 1
Example
A
112
201
022
M3(Z3)
B
021
212
110
M3(Z3)
ALB
1 0 0
1 1 0
1 0 2
M3(Z3).
In this study, we focus on Cayley tables of multiary quasigroups. That is,
on Latin hypercubes.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 14 / 45
n-ary quasigroups and Latin hypercubes.
Ruth Moufang (1935)
Aquasigroup is a pair (X,f)formed by
a set X, and
a binary operation f:X×XX,
such that both equations
f(a,x) = band f(y,a) = b
have unique solutions x,yX, for all a,bX.
Its Cayley table is a Latin square.
1 2 3
2 3 1
3 1 2
Entry set:Ent(L) := {(row,column,symbol)}={(i,j,L[i,j])}.
Ent(L) = {(1,1,1),(1,2,2),(1,3,3)
(2,1,2),(2,2,3),(2,3,1),
(3,1,3),(3,2,1),(3,3,2)}.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 15 / 45
n-ary quasigroups and Latin hypercubes.
Ruth Moufang (1935)
Aquasigroup is a pair (X,f)formed by
a set X, and
a binary operation f:X×XX,
such that both equations
f(a,x) = band f(y,a) = b
have unique solutions x,yX, for all a,bX.
Its Cayley table is a Latin square.
1 2 3
2 3 1
3 1 2
Entry set:Ent(L) := {(row,column,symbol)}={(i,j,L[i,j])}.
Ent(L) = {(1,1,1),(1,2,2),(1,3,3)
(2,1,2),(2,2,3),(2,3,1),
(3,1,3),(3,2,1),(3,3,2)}.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 15 / 45
n-ary quasigroups and Latin hypercubes.
Ruth Moufang (1935)
Aquasigroup is a pair (X,f)formed by
a set X, and
a binary operation f:X×XX,
such that both equations
f(a,x) = band f(y,a) = b
have unique solutions x,yX, for all a,bX.
Its Cayley table is a Latin square.
1 2 3
2 3 1
3 1 2
An n-ary quasigroup is a pair (X,f)formed by a set Xand an n-ary
operation f:XnXsuch that the equation
f(x1,...,xn) = y
has unique solution in X, whenever n1 variables in {x1,...,xn}, and
also the variable y, are fixed.
Its Cayley table is a Latin hypercube of dimension n.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 16 / 45
n-ary quasigroups and Latin hypercubes.
Ruth Moufang (1935)
Aquasigroup is a pair (X,f)formed by
a set X, and
a binary operation f:X×XX,
such that both equations
f(a,x) = band f(y,a) = b
have unique solutions x,yX, for all a,bX.
Its Cayley table is a Latin square.
1 2 3
2 3 1
3 1 2
An n-ary quasigroup is a pair (X,f)formed by a set Xand an n-ary
operation f:XnXsuch that the equation
f(x1,...,xn) = y
has unique solution in X, whenever n1 variables in {x1,...,xn}, and
also the variable y, are fixed.
Its Cayley table is a Latin hypercube of dimension n.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 16 / 45
n-ary quasigroups and Latin hypercubes.
Ruth Moufang (1935)
Aquasigroup is a pair (X,f)formed by
a set X, and
a binary operation f:X×XX,
such that both equations
f(a,x) = band f(y,a) = b
have unique solutions x,yX, for all a,bX.
Its Cayley table is a Latin square.
1 2 3
2 3 1
3 1 2
An n-ary quasigroup is a pair (X,f)formed by a set Xand an n-ary
operation f:XnXsuch that the equation
f(x1,...,xn) = y
has unique solution in X, whenever n1 variables in {x1,...,xn}, and
also the variable y, are fixed.
Its Cayley table is a Latin hypercube of dimension n.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 16 / 45
n-ary quasigroups and Latin hypercubes.
Example
Let X={1,2,3}. We consider the ternary quasigroup (X,f) described
by the following arrays.
A1
123
231
312
A2
2 3 1
3 1 2
1 2 3
A3
3 1 2
1 2 3
2 3 1
Latin cube
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 17 / 45
Isotopisms of multiary quasigroups.
SXSymmetric group on the set X.
Two m-ary quasigroups (X,f) and (X,g) are isotopic if there exists
m+ 1 permutation π1, . . . , πm+1 SXsuch that
g(π1(a1), . . . , πm(am)) = πm+1 (f(a1,...,am))
for all a1,...,amX.
This is an isomorphism if π1=. . . =πm+1.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 18 / 45
CONTENTS
1Preliminaries.
2The Hadamard multiary quasigroup product.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 19 / 45
The operator .
n(X):= {n-ary operations on a set X}
x:= (x1,...,xn)Xn.
: m(X)m(Ωn(X))
ff: (Ωn(X))mn(X)
(g1,...,gm)f(g1,...,gm)
f(g1,...,gm)(x) := f(g1(x),...,gm(x))
m=n= 2:
f(g1,g2)(x,y) := f(g1(x,y),g2(x,y))
In the usual notation for binary operations:
g1 4 g2f
4 ?x4 ?y:= (x4y)(xy)
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 20 / 45
The operator .
n(X):= {n-ary operations on a set X}
x:= (x1,...,xn)Xn.
: m(X)m(Ωn(X))
ff: (Ωn(X))mn(X)
(g1,...,gm)f(g1,...,gm)
f(g1,...,gm)(x) := f(g1(x),...,gm(x))
m=n= 2:
f(g1,g2)(x,y) := f(g1(x,y),g2(x,y))
In the usual notation for binary operations:
g1 4 g2f
4 ?x4 ?y:= (x4y)(xy)
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 20 / 45
The operator .
n(X):= {n-ary operations on a set X}
x:= (x1,...,xn)Xn.
: m(X)m(Ωn(X))
ff: (Ωn(X))mn(X)
(g1,...,gm)f(g1,...,gm)
f(g1,...,gm)(x) := f(g1(x),...,gm(x))
m=n= 2:
f(g1,g2)(x,y) := f(g1(x,y),g2(x,y))
In the usual notation for binary operations:
g1 4 g2f
4 ?x4 ?y:= (x4y)(xy)
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 20 / 45
The operator .
4
1 1 2
2 0 1
0 2 2
0 2 1
2 1 2
1 1 0
0 1 2
1 2 0
2 0 1
4?
1 0 0
1 1 0
1 0 2
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 21 / 45
Example
If |X|= 2, then 2(X) is formed by the next 16 binary operations.
g1g2g3g4g5g6g7g8
g9g10 g11 g12 g13 g14 g15 g16
The Cayley table of (Ω2(X),g1) is
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 22 / 45
Example
If |X|= 2, then 2(X) is formed by the next 16 binary operations.
g1g2g3g4g5g6g7g8
g9g10 g11 g12 g13 g14 g15 g16
The Cayley table of (Ω2(X),g1) is
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 22 / 45
Example
If |X|= 2, then 2(X) is formed by the next 16 binary operations.
g1g2g3g4g5g6g7g8
g9g10 g11 g12 g13 g14 g15 g16
The Cayley table of (Ω2(X),g2) is
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 23 / 45
Example
If |X|= 2, then 2(X) is formed by the next 16 binary operations.
g1g2g3g4g5g6g7g8
g9g10 g11 g12 g13 g14 g15 g16
The Cayley table of (Ω2(X),g7) is
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 24 / 45
The operator .
γc:XnX
a7→ γc(a) := c
Lemma
(X,f)embeds into (Ωn(X),f)via the homomomorphism
(X,f)(Ωn(X),f)
cXnX
xc
Proof
Let c1,...,cmXand aXn. Then,
γf(c1,...,cm)(a) = f(γc1(a), . . . , γcm(a)) = f(γc1, . . . , γcm)(a).
Hence, γf(c1,...,cm)=f(γc1, . . . , γcm).
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 25 / 45
The operator .
Lemma
(X,f)holds an algebraic identity ϕ=ψif and only if (Ωn(X),f)does.
Example(m=n=2): Commutativity (4 ??4)
x4 ?y= (x4y)(xy)=(xy)(x4y) = x?4y
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 26 / 45
The operator .
Lemma
(X,f)holds an algebraic identity ϕ=ψif and only if (Ωn(X),f)does.
Necessary condition: If (X,f) holds ϕ=ψ, then
ϕ(g1(a),...,gt(a)) = ψ(g1(a),...,gt(a))
for all g1,...,gmn(X) and aXn. Then,
ϕ(g1,...,gt) = ψ(g1,...,gt)
Hence, (Ωn(X),f) also holds ϕ=ψ.
Sufficient condition:
If (Ωn(X),f) holds ϕ=ψ, then
ϕ(γa1, . . . , γat) = ψ(γa1, . . . , γat)
for all a1,...,atX. Thus, ϕ(a1,...,at) = ψ(a1,...,at). Hence, (X,f)
also holds ϕ=ψ.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 27 / 45
The operator .
For each non-negative integer i<m, the set of i-identity elements of
(X,f) is
Ii(X,f):=
eX:f(e,...,e
| {z }
i
,a,e,...,e
| {z }
mi1
) = a,for all aX
.
Lemma
cIi(X,f)if and only if γcIi(Ωn(X),f).
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 28 / 45
The operator .
The image of fis img(f):= {f(a): aXm}.
Lemma
Ii(Ωn(X),f) = {gn(X) : img(g)Ii(X,f)}.
Example
123
1 1 2 3
2 1 2 3
3 1 1 1
.
Since I0(X, ) = {1,2}, the binary operation
123
1 1 2 1
2 2 2 1
3 1 2 2
is a left identity element in (Ω2(X),?).
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 29 / 45
The operator .
Proposition
It is satisfied that
I(Ωn(X),f) = {gn(X) : img(g)I(X,f)}.
In particular, the following two statements hold.
1If I(X,f) = {e}for some eX, then I(Ωn(X),f) = {γe}.
2If I(Ωn(X),f) = {g}for some gn(X), then g=γefor some
eX. Moreover, I(X,f) = {e}.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 30 / 45
The operator .
The operator also preserves inverse elements.
Proposition
1If gis an invertible n-ary operator in (Ωn(X),f),
Inv (g,f) = {hn(X): h(a)Inv(g(a),f)for all aXn}.
2Let cX. If c1Inv(c,f), then γc1Inv (γc,f).
3Let cX. If (γc)1Inv (γc,f), then img (γc)1Inv(c,f).
4If (X,f)has unique inverses, then (Ωn(X),f)also has unique
inverses. More precisely, the inverse g1of gn(X)is given by
g1(a)=(g(a))1for all aXn.
5If (Ωn(X),f)has unique inverses, then (X,f)also has unique
inverses.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 31 / 45
The operator .
Lemma
If (X,f)is isotopic to (X,g), then (Ωn(X),f)is isotopic to (Ωn(X),g).
Proof
If (π1, . . . , πm+1) is an isotopism from (X,f) to (X,g), we define for each
positive integer im+ 1 the bijection
ρi: n(X)n(X)
h7→ πih
If h1,...,hmn(X) and aXn
g(ρ1(h1), . . . , ρm(hm)) (a) = g(π1(h1(a)), . . . , πm(hm(a))) =
=πm+1(f(h1(a),...,hm(a))) =
=πm+1(f(h1,...,hm)(a)) =
=ρm+1(f(h1,...,hm))(a).
Thus, g(ρ1(h1), . . . , ρm(hm)) = ρm+1(f(h1,...,hm)).
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 32 / 45
The Hadamard quasigroup product.
Qm(X):= {fm(X): (X,f) is an m-ary quasigroup}.
Proposition
f Qm(X) f Qm(Ωn(X)).
Lemma (m=n)
Let (g1,...,gn)(Ωn(X))n. The map
n(X)n(X)
f f(g1,...,gn)
is a permutation if and only iff the set {g1,...,gn}is orthogonal. That is,
iff the map
XnXn
x(g1(x),...,gn(x))
is a permutation.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 33 / 45
The Hadamard quasigroup product.
Qm(X):= {fm(X): (X,f) is an m-ary quasigroup}.
Proposition
f Qm(X) f Qm(Ωn(X)).
Lemma (m=n)
Let (g1,...,gn)(Ωn(X))n. The map
n(X)n(X)
f f(g1,...,gn)
is a permutation if and only iff the set {g1,...,gn}is orthogonal. That is,
iff the map
XnXn
x(g1(x),...,gn(x))
is a permutation.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 33 / 45
The Hadamard quasigroup product.
O(g1,...,gn):={gn: ({g1,...,gn}\{gi}) {g}orthogonal, for alli}
Proposition
If {g1,...,gn}is orthogonal, then the map
Qn(X) O(g1,...,gn)
f f(g1,...,gn)
is a bijection.
Under which conditions f(g1,...,gn) Qn(X)?
(m=n= 2)
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 34 / 45
The Hadamard quasigroup product.
O(g1,...,gn):={gn: ({g1,...,gn}\{gi}) {g}orthogonal, for alli}
Proposition
If {g1,...,gn}is orthogonal, then the map
Qn(X) O(g1,...,gn)
f f(g1,...,gn)
is a bijection.
Under which conditions f(g1,...,gn) Qn(X)?
(m=n= 2)
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 34 / 45
The Hadamard quasigroup product (m=n= 2).
The Hadamard quasigroup product does not preserve the Latin square
property in general.
f
123
312
231
f2:= f(f,f)
1 1 1
1 1 1
1 1 1
Lemma
Let f Q2(X)and let g1,g22(X). Then, f(g1,g2) Q2(X)iff
{(g1(x,y),g2(x,y)) : yX}
and
{(g1(y,x),g2(y,x)) : yX}
are Latin transversals in (X,f), for all xX.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 35 / 45
The Hadamard quasigroup product (m=n= 2).
Proposition
f2 Q2(X)X={f(x,x): xX}
ff2
132
321
213
What about successive iterations?
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 36 / 45
The Hadamard quasigroup product (m=n= 2).
Proposition
f2 Q2(X)X={f(x,x): xX}
ff2
132
321
213
What about successive iterations?
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 36 / 45
The Hadamard quasigroup product (m=n= 2).
2
`f:= 2
ρf:= f2.
k
`f:= ff,k1
`fand k
ρf:= fk1
ρf,f
Proposition
The minimum positive integers (f)and ρ(f)such that
`(f)+1
`f=ρ(f)+1
ρf=f
are quasigroup isomorphism invariants. They satisfy that
(f) = ρ(ft).
2 4 1 3 5
1 3 5 2 4
5 2 4 1 3
4 1 3 5 2
3 5 2 4 1
(ρ, `) = (3,5)
21543
43215
15432
32154
54321
(ρ, `) = (5,3)
25314
53142
31425
14253
42531
(ρ, `) = (5,5)
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 37 / 45
The Hadamard quasigroup product (m=n= 2).
2
`f:= 2
ρf:= f2.
k
`f:= ff,k1
`fand k
ρf:= fk1
ρf,f
Proposition
The minimum positive integers (f)and ρ(f)such that
`(f)+1
`f=ρ(f)+1
ρf=f
are quasigroup isomorphism invariants. They satisfy that
(f) = ρ(ft).
2 4 1 3 5
1 3 5 2 4
5 2 4 1 3
4 1 3 5 2
3 5 2 4 1
(ρ, `) = (3,5)
21543
43215
15432
32154
54321
(ρ, `) = (5,3)
25314
53142
31425
14253
42531
(ρ, `) = (5,5)
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 37 / 45
The Hadamard quasigroup product (m=n= 2).
2 5 12 4 8 7 13 14 15 16 3 6 10 11 1 9
3 1 7 8 11 6 14 15 5 13 16 2 9 12 10 4
4 6 5 2 10 15 7 13 11 8 14 3 16 1 9 12
5 15 9 3 14 1 6 8 2 4 7 13 11 16 12 10
1 3 8 9 6 16 11 4 13 12 15 14 5 10 7 2
10 2 11 12 7 4 3 5 14 15 9 16 1 13 8 6
9 12 3 10 1 2 8 6 16 14 13 15 4 5 11 7
15 14 2 1 5 13 4 7 3 6 8 10 12 9 16 11
13 7 14 15 16 3 5 9 10 11 6 12 2 8 4 1
14 10 15 7 13 5 16 2 12 9 11 1 8 4 6 3
16 13 4 5 15 14 1 11 7 10 12 9 3 6 2 8
12 4 16 13 3 8 15 1 9 7 10 11 6 2 14 5
6 8 10 11 9 12 2 16 1 5 4 7 14 3 15 13
7 9 6 16 12 11 10 3 8 1 2 4 13 15 5 14
11 16 1 6 2 9 12 10 4 3 5 8 7 14 13 15
8 11 13 14 4 10 9 12 6 2 1 5 15 7 3 16
ρ= 30
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 38 / 45
The Hadamard quasigroup product of orthogonal binary operations.
MO(k,X):= n(f1,...,fk)(Ω2(X))k:fifj,for all i,jo.
MO2(k,X):= ((f1,f2,g1,...,gk2)MO(k,X): (f1,f22(X),
g1,...,gk2 Q2(X)).
Lemma
The following map is an involution.
Φ : MO2(k,X)MO2(k,X)
(f1,f2,g1,...,gk2)fΦ
1,fΦ
2,gΦ
1,...,gΦ
k2
where
fΦ
1(f1(x,y),f2(x,y)) := x
fΦ
2(f1(x,y),f2(x,y)) := y
gΦ
s(f1(x,y),f2(x,y)) := gs(x,y),
for all s {1,...,k2}.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 39 / 45
The Hadamard quasigroup product of orthogonal binary operations.
f1f2g1. . . gk2
x y f1(x,y)f2(x,y)g1(x,y). . . gk2(x,y)
l
f1f2g1. . . gk2
f1(x,y)f2(x,y)x y g1(x,y). . . gk2(x,y)
l
fΦ
1fΦ
2gΦ
1. . . gΦ
k2
f1(x,y)f2(x,y)x y g1(x,y). . . gk2(x,y)
If f1,f2 Q2(X), then (f1,f2,g1, . . . gk2) and fΦ
1,fΦ
2,gΦ
1,...,gΦ
k2are
two paratopic k-MOLS [Egan, Wanless’16].
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 40 / 45
The Hadamard quasigroup product of orthogonal binary operations.
f1f2g1. . . gk2
x y f1(x,y)f2(x,y)g1(x,y). . . gk2(x,y)
l
f1f2g1. . . gk2
f1(x,y)f2(x,y)x y g1(x,y). . . gk2(x,y)
l
fΦ
1fΦ
2gΦ
1. . . gΦ
k2
f1(x,y)f2(x,y)x y g1(x,y). . . gk2(x,y)
If f1,f2 Q2(X), then (f1,f2,g1, . . . gk2) and fΦ
1,fΦ
2,gΦ
1,...,gΦ
k2are
two paratopic k-MOLS [Egan, Wanless’16].
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 40 / 45
The Hadamard quasigroup product of orthogonal binary operations.
fΦ
1(f1(x,y),f2(x,y)) := x
fΦ
2(f1(x,y),f2(x,y)) := y
gΦ
s(f1(x,y),f2(x,y)) := gs(x,y),
Lemma
For each s {1,...,k2},
gΦ
s(f1,f2) = gs
and
gsfΦ
1,fΦ
2=gΦ
s.
f1f2g1. . . gk2
lΦ
fΦ
1fΦ
2g1fΦ
1,fΦ
2. . . gsfΦ
1,fΦ
2
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 41 / 45
The Hadamard quasigroup product of orthogonal binary operations.
fΦ
1(f1(x,y),f2(x,y)) := x
fΦ
2(f1(x,y),f2(x,y)) := y
gΦ
s(f1(x,y),f2(x,y)) := gs(x,y),
Lemma
For each s {1,...,k2},
gΦ
s(f1,f2) = gs
and
gsfΦ
1,fΦ
2=gΦ
s.
f1f2g1(f1,f2). . . gk2(f1,f2)
lΦ
fΦ
1fΦ
2g1. . . gk2
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 42 / 45
The Hadamard quasigroup product of orthogonal binary operations.
Theorem
If {g1,g2}is orthogonal, then the following map is a bijection.
O(g1,g2) Q2(X) O gΦ
1,gΦ
2 Q(X)
f fgΦ
1,gΦ
2
12345678
21438765
35261847
53172486
84716352
48627531
76583214
67854123
12345678
35172846
21854763
84627351
67583124
53261487
48716532
76438215
12345678
53716482
84172356
76854213
48261537
67438125
35627841
21583764
g1g2f
18732465
81257643
53148726
27416358
35861274
46523187
64375812
72684531
16752384
72186453
61328547
38641725
27465831
83574612
54813276
45237168
17423856
62578341
58364712
71246583
43815267
34187625
85632174
26751438
gΦ
1gΦ
2fΦgΦ
1,gΦ
2
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 43 / 45
REFERENCES
J Egan, IM Wanless, Enumeration of MOLS of small order. Math. Comput. 85 (2016),
799–824.
RM Falc´on, V ´
Alvarez, JA Armario, MD Frau, F Gudiel, MB uemes, A computational
approach to analyze the Hadamard quasigroup product, Electron. Res. Arch. 31 (2023),
3245–3263.
RM Falc´on, L Mella, Petr Vojtˇechovsk´y, The multiary quasigroup product, Submitted.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 44 / 45
Many thanks!
The Hadamard multiary quasigroup product
Ra´ul M. Falc´on
Department of Applied Maths I.
Universidad de Sevilla.
rafalgan@us.es
Kongunadu Arts and Science College.
Tamil Nadu, India.
January 30, 2024.
Ra´ul M. Falc´on The Hadamard multiary quasigroup product 45 / 45
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
We report the results of a computer investigation of sets of mutually orthogonal latin squares (MOLS) of small order. For $n\le9$ we 1. Determine the number of orthogonal mates for each species of latin square of order $n$. 2. Calculate the proportion of latin squares of order $n$ that have an orthogonal mate, and the expected number of mates when a square is chosen uniformly at random. 3. Classify all sets of MOLS of order $n$ up to various different notions of equivalence. We also provide a triple of latin squares of order 10 that is the closest to being a set of MOLS so far found.
A computational approach to analyze the Hadamard quasigroup product
  • Rm Falcón
  • J A Válvarez
  • Armario
  • Md Frau
  • Gudiel
  • Güemes
RM Falcón, VÁlvarez, JA Armario, MD Frau, F Gudiel, MB Güemes, A computational approach to analyze the Hadamard quasigroup product, Electron. Res. Arch. 31 (2023), 3245-3263.