ArticlePDF Available

Assessing phylogenetic relationships among varieties of Toona ciliata in sympatry with chloroplast genomes

Wiley
Ecology and Evolution
Authors:

Abstract

Toona ciliata is an endangered species due to over-cutting and low natural regen-eration in China. Its genetic conservation is of an increasing concern. However, several varieties are recognized according to the leaf and flower traits, which complicates genetic conservation of T. ciliata. Here, we sequenced the whole chloro-plast genome sequences of three samples for each of four varieties (T. ciliata var. ciliata, T. ciliata var. yunnanensis, T. ciliata var. pubescens, and T. ciliata var. henryi) in sympatry and assessed their phylogenetic relationship at a fine spatial scale. The four varieties had genome sizes ranged from 159,546 to 159,617 bp and had small variations in genome structure. Phylogenomic analysis indicated that the four varieties were genetically well-mixed in branch groups. Genetic diversity from the whole chloroplast genome sequences of 12 samples was low among varieties (average π = 0.0003). Besides, we investigated genetic variation of 58 samples of the four varieties in sympatry using two markers (psaA and trnL-trnF) and showed that genetic differentiation was generally insignificant among varieties (Ф st = 0%-5%). Purifying selection occurred in all protein-coding genes except for the ycf2 gene that was under weak positive selection. Most amino acid sites in all protein-coding genes were under purifying selection except for a few sites that were under positive selection. The chloroplast genome-based phylogeny did not support the morphology-based classification. The overall results implicated that a conservation strategy based on the T. ciliata complex rather than on intraspecific taxon was more appropriate.
Ecology and Evolution. 2023;13:e10828. 
|
1 of 17
https://doi.org/10.1002/ece3.10828
www.ecolevol.org
Received:27July2023 
|
Revised:19Oc tober2 023 
|
Accepted :28Novembe r2023
DOI:10.1002 /ece3.10828
RESEARCH ARTICLE
Assessing the phylogenetic relationship among varieties of
Toona ciliata (Meliaceae) in sympatry with chloroplast genomes
Yu Xiao1,2 | Xi Wang1,2 | Zi- Han He1,2 | Yan- Wen Lv1,2 | Chun- Hua Zhang3|
Xin- Sheng Hu1,2
Thisisanop enaccessarti cleundertheter msoftheCreativeCommonsAttributionL icense,whichpe rmitsuse,dis tribu tionandreprod uctioninanymed ium,
provide d the original wor k is properly cited.
©2023TheAuthors .Ecology and Evoluti onpublishedbyJo hnWiley&S onsLtd.
1CollegeofForestr yandL andsc ape
Architecture,SouthChinaAgricultural
University, Guangzhou, China
2GuangdongKeyLaboratoryfor
InnovativeDevelopmenta ndUtilization
ofForestPlantGermplasm,Guan gzhou ,
China
3Instit uteofHighlandForestScience,
ChineseAcade myofFores try,Kunming,
China
Correspondence
Xin-ShengHu,CollegeofFores tryand
Lands capeArchitecture,SouthChina
AgriculturalUniver sity,Guangzhou
510642, China.
Email:xinsheng@scau.edu.cn
Funding information
GuangdongBasicandApp liedBasic
ResearchFoundation,Grant/Award
Number :2023A1515012137;Nati onal
NaturalScienceFoundat ionofChina,
Grant /AwardNumber:32171819;South
ChinaAgriculturalUniversity,Grant/
AwardNumber:4 400-K16013
Abstract
Toona ciliata is an endangered species due to over- cutting and low natural regen-
eration in Ch ina. Its genetic cons ervation is of an inc reasing concern. However,
severalvarietiesarerecognizedaccordingtotheleafandflowertraits,whichcom-
plicates geneticconservation of T. ciliata.Here,wesequencedthe wholechloro-
plastgenome sequencesofthree samplesforeachoffourvarieties (T. ciliata var.
ciliata, T. ciliata var. yunnanensis, T. ciliata var. pubescens, and T. ciliata va r. henryi)
in sympatr y and assessed th eir phylogenetic relat ionship at a fine spatial sc ale.
Thefour varieties had genomesizesranged from159,546 to 159,617 bpandhad
small variations in genome structure. Phylogenomic analysis indicated that the
fourvarietiesweregeneticallywell-mixedinbranchgroups.Geneticdiversityfrom
thewholechloroplastgenomesequencesof 12sampleswas lowamong varieties
(average π= 0.0003). Besides, weinvestigatedgenetic variation of 58 samples of
thefourvarietiesinsympatryusingtwomarkers(psaAandtrnL- trnF)andshowed
thatgeneticdifferentiationwasgenerallyinsignificantamongvarieties(Фst= 0%–
5%).Purifying selectionoccurred in all protein-codinggenes except for the ycf2
genethatwasunderweakpositiveselection.Mostaminoacidsites inallprotein-
codinggeneswereunderpurifyingselectionexceptforafewsitesthatwereunder
positive selection.The chloroplast genome-basedphylogeny didnot support the
morphology-basedclassification.Theoverallresultsimplicatedthataconservation
strategybasedontheT. ciliatacomp lexrath ert han oni ntr asp e cif ict a xonwasmore
appropriate.
KEYWORDS
chloroplastgenome,geneticconser vation,purif yingselection,sympatricspeciation,Toona
ciliata
TAXONOMY CLASSIFICATION
Taxonomy
2 of 17 
|
   XIAO et al.
1 | INTRODUC TION
Toona ciliata,aka Chinesemahogany (Edmonds& Staniforth,1998),
belongstotheToonagenusoftheMeliac eaefami lyandisanimpor t-
ant timbe r species bec ause of its high -qua lity wood for i ndustrial
purposes in China (Chen et al., 19 97). The species is naturally dis-
tribute d in India, Malays ia, Indonesi a, and other tro pical and sub-
tropicalregions.Itgrows in thelow-altitudegully forests orinthe
hillside sparse forests in central andsouthern China, ranging from
300to260 0 mabovesealevel.Thespecieshasbeenoverexploited
and was listed as an endangered species at Level IIin China (Fu &
Jin, 1992)although not listedas thespeciesat risk byInternational
Union for Co nservatio n of Nature and Natur al Resources (IUC N).
Populationdensit yinnaturalforestsdeclinesduetothelownatural
regeneration(Liangetal.,2011)andpotentialinbreedingdepression
(Zhouetal.,2020).Becauseofthesereasons,an impor tant issueis
concernedwithgenetic conservationof this endangered speciesin
China.Geneticbreedingprogramshave been setupbythestateto
improvewoodqualityandresistancetoinsect s.
Another issue relevant to genetic conservation is concerned
withintraspecificvariationofT. cil iat a.Cu rre ntl y,fiv ev ari e ti e sw ere
recognizedaccordingtothe leaf(size,shape, andpubescence)and
flower (petallength andshape)traits(Chenetal.,19 97). They are
T. cilia ta va r. ciliata, T. cil iata var. yunnanensis, T. c il iata var. pubes-
cens, T. cili at a v ar. sublaxiflora, and T. c iliata v ar. henryi (Appendix
Table S1). These varieties are sympatry or partially overlapped
in natural geographic distribution in Yunnan Province in China
(Zhang,2018),andnaturalhybridizationamongthemcannotbeex-
cluded.However,morphologicaltraitsare oftencontinuously dis-
tributedorpo or fo rsub di vi si on ofintr a-an di nter specifi cv ar ia ti on s
(Ferreiraetal.,2021),which makes it difficult to delimit varieties
frommorphologicaltraits.Previousgeneticstudiesmainlyreferred
to the T. c iliata complex, without identifying specific varieties.
These include provenance trials(Lietal., 2017;Wenet al.,2012),
populationgeneticvariationassayedbysequence-relatedamplified
polymorphisms (SRAP) andsimple sequencerepeat (SSR) markers
(Liet al., 2015;Zhanetal.,2019),chloroplastDNA(cpDNA)mark-
ers (Hu, 2 019), a nd nuclear intern al transcribe d spacer (ITS) and
mitochondrialDNAmarkers(Xiaoetal.,2023).Fewstudiesinvesti-
gatedgeneticvariationinaspecificvarietyexceptforT. cili at a v ar.
pubescensisassayedbySSRmarkers(Liuetal.,2009).Allthesepre-
viousstudiesprovidedageneralpictureofgeneticvariationinthe
T. cilia tacomplex.
Classificationofvarietiesconsequentlycomplicatesgeneticcon-
servationofT. ci li ata (Andriamihajaetal.,2020; Ennos et al., 2005;
Panitsaetal.,2011).Thisisbecausegeneticconservationintermsof
single variety neglectsnatural hybrids amongvarieties in the sym-
patricregion and species interactions. Whether geneticconserva-
tion is based on the T. cilia ta complexor on singlevarietyremains
uncer tain. Ther efore, it is of pra ctical sign ificance to c larify the se
concerns for genetic conservation of this endangered species in
China(Federicietal.,2013).
In this study, we examined the phylogenetic relationship of
fourvarietiesofT. ci liataatafinespatialscalebasedonprevious
studies(Xiao et al., 2023;Zhang, 2018).Allthese varieties occur
inYunnanProvinceandaresympatricingeographicaldistribution
(Chen et al. , 1997; Zhang, 2018). The similarity and differences
among these varietiesprovide import antinformation to genetic
conservation.Italsoaidsinourunderstandingthemechanismsof
sympatricspeciationatthefinescale(Xiaoetal.,2022).Here,we
reportedthephylogeneticrelationshipsandthegeneticdifferen-
tiationamongsympatricvarietieswithboththewholechloroplast
genome sequence and markers, and explored the conservation
strateg y of this endangered species. Analysis with nuclear ge-
nomes wil l be present in a sep arate study usin g our recent as-
semblyofnucleargenomesequencesofT. cil ia taasthereference
genome (Wang, Xiao,He, Li, Lv,etal., 2022; Wang, Xiao, He, Li,
Song, etal., 2022). One reviewer suggested inclusion of nuclear
data anal yses, but it i s more approp riate to present t he nuclear
part in a separate study to accompany this worksince more ex-
tensiveanalysesareneededwiththeresequencingdataofthese
varieties.
Itiswell-knownthatchloroplastgenomehasmultipleattributes
forphylogeneticandpopulationstructureanalysis(Hu et al., 2019;
Ravi et al., 20 08), including (i) uniparental inheritance (maternal
inherit ance in most an giosperms but p aternal inher itance in most
gymnosperms), (ii) a relatively small genome size (120–220 kb)
(Palmer,1985),and(iii)a lowmutationratecompared with the mu-
tation r ate of nuclear genom es (Chmielewsk i et al., 2015; Provan
et al., 2001). The chlo roplast genom e sequences o r markers have
beenwidelya ppliedtoass essingbothp hylogenyandpopulationge-
neticvariation(Huetal.,2019).Althoughdiscordancewasreported
in phyloge nyi n terms of orga nelle genome s versus morp hologica l
traitsin the literature (Brown et al., 2010 ; Ebersbach et al., 2020),
thisremainsuncertainregardingthephylogeneticrelationshipofva-
rietiesofT. ci liata(Leliaertetal.,2009).
We addressed the following questions: (1) Could the whole
chloroplast genomesequences resolve the morphology-based de-
limitation of varieties of T. cili at a? (2) How genetic var iation was
distrib uted within and b etween symp atric varietie s of T. cil iata in
ter msofchlo roplastgenom es?Toans werth ef irstque st io n,wecon-
ducted phylogenetic analysesamong four sympatric varietiesusing
thewholechloroplastgenomesequencesandcomparedtheresults
withmorphologic delimitation.Toanswerthesecond question, we
conductedcomparativegenomicanalysesamongvarietiesusingthe
whole chloroplastgenome sequences andinvestigated geneticdif-
ferentiation withexpanded samples using two markers at the fine
scale. Toderiveamoregeneralconclusionassayedbymarkers,we
employed onemarkerincodingregion( psaA)andtheotherin non-
codingregion(trnL- trnF)region.Besides,weevaluatedthepotential
effec ts of natura l selecti on on shaping ch loroplast g enomic diver-
genceamongsympatricvarieties.Theoverallresultswerethensyn-
thesizedtoexploreanappropriatestrategyforgeneticconser vation
ofT. cilia ta .
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
3 of 17
XIAO et al .
2 | MATERIALS AND METHODS
2.1  | Taxonomic sampling and DNA extraction
InviewofapreviousstudyonvarietiesofT. ci liata(Zhang,2018), we
collectedleafsamplesofvarietiesindifferentlocationsinYunnan
Province of Ch ina (Figure 1a). These sampl es were taxonomic ally
identifiedaccordingtoboththefieldobservationsandliteraturere-
cords(Chen et al., 1997;Zhang, 2018).AppendixTable S1 provides
detail ed informatio n of the specim ens of these fou r varieties w ith
vouchernumbers.Wecollected12samplesofT. cili at a v ar. ciliata in
PuerandLijiangcities,13samplesofT. ci li ata v ar. henryiinPuercity,
20samplesofT. ci li ata v ar. pubescens,and13samplesofT. c il iata va r.
yunnanensisinLijiangandKunmingcities (Appendix Table S2).Note
that T. cil ia ta va r. sublaxiflorawasnotfoundinnaturalforestsand
hence was not included in this study. Figure 1bprovidesanimage
ofanadulttreeforeachvarietygrowinginYunnanProvince.Allcol-
lected samples were locatedatmorethan100meters awayamong
individualstoavoidgeneticrelatednessinnaturalforests.Forwhole
chloroplastgenomesequencing,werandomly selected three sam-
ples of eachvariety(Appendix Table S2). To investigate population
genetic di fferentia tion at the fin e spatial sca le, we analyze d all 58
samples with two markers. The sampling had been allowed by the
Chinese Government andcomplied with the laws of the People's
Republic of China.Thefresh sampleleaves were immediately dried
wi ths ili c age la n dth e nt r ans p orte dto lab o rat or yf orD N Ae x t rac t i on.
Totalgenomic DNA of eachsamplewas extracted using CTAB
method (Doyle & Doyle, 1987 ). The quality of extracted DNA
was checked by following analyse s: (i) use of 0.8% agarose elec-
trophoresis to detect DNA samples for degradation and impu-
rity, and to es timate the DN A concentrat ion; (ii) use of Nan odrop
Spectrophotometer(ThermoScientific)todetecttheconcentration
and purit y of sample s; and (iii) use of Q ubit 2.0 Fluo rometer (Life
Technologies)todetecttheconcentrationofsamples.
2.2  | Library construction and
high- throughput sequencing
Three individuals of each variety were sequenced by Science
Corpor ation of Gene (SCG ene), Guangzho u. Tested sa mples were
made according to the standardprocedure of IllumianDNA library,
and a doub le-end seque ncing libr ary with a n insert size of 35 0 bp
was constructed. After the construction of DNA library, qPCR
methodandAlignment2100Bioanalyzer(AlilentTechnologies)were
usedforqualitycontrol.TheDNAlibrarythatpassedthequalityin-
spect ion was sequenced by Illumina Nov aseq 6000 (Il lumination)
high-throughputsequencingplatform.Thesequencingstrateg ywas
pair-end150,andthesequencingdatawerenot<1Gb.
Illumina high-throughput sequencing results were originally
presentedas raw imagedata files, whichwere converted to raw
reads after base calling by the CASAVA software. Raw reads
from Illumina sequencing were subjected to adaptor trimming
andfilteringoflow-qualityreadsbyfastpv0.20.1(https://github.
c o m / O p e n G e n e / f a s t p ; Chen et al., 2018).Themin imumleng thfor
reads aftertrimmingwassetto150nucleotides, andthequalit y
thresholdwassettoQ20.Detailsforqualitycontrolweresumma-
rizedinAppendixTable S3.
2.3  | Chloroplast genome assembly and
annotations
With the c lean reads af ter trimm ing (App endix Table S3),geno me
sequences were de novo assembledusing SPAdesv.3.15.2 (h t tp://
c a b . s p b u . r u / p u b l i c a t i o n / n e w - f r o n t i e r s - o f - g e n o m e - a s s e m b l y - w i t h - 
spade s- 3- 0/ ),withk-mersizesof33,55,79,97,and127.Theassem-
bled conti gs include d a mixture of s equences fr om organel lar and
nuclear genomes. Weidentifiedchloroplastcontigs usingsimilarit y
searchesbyB L ASTN2.13.0 +ag ai ns tN CB In uc le ot id ec ol le ction(nt)
databas e. We had assessed t he assembly q uality of thes e chloro-
plast genomesby mappingrawpaired-end readsto the chloroplast
genome using bowtie2 (v2.3.5.1; Langmead &Salzberg, 2012) and
generate d sequencing dep th and coverage map acco rding to Ni's
protocol(Nietal.,2023).
Genes were annotated using Cp GAVAS (Liu et al., 2012) and
ORFFinder(h t t p s : / / w w w . n c b i . n l m . n i h . g o v / o r f f i n d e r / ).For the pre-
liminar yresultsofannotations,theaccuracyoftheresultswasveri-
fiedbycomparingtheencodedproteinsandrRNAwiththerepor ted
chloroplastgenome ofT. cil ia ta (GenBank access no.: NC_039592)
usingBlastn2.13.0 (https://blast.ncbi.nlm.nih.gov/Blast.cgi) against
NCBI nucleotide collection (nt) database. All proteins had been
verifiedbyusing similaritysearches by Blastp2.13.0 against NCBI
nonredundantproteinsequences(nr) database(Zhangetal., 2000).
ARWEN (Laslett & Canbäck, 2008)was used toannotatetRNA . If
abnormal tRNA occurred, the verification would be carried out
again in combination with tRNAscan-SE 2.0 predictions (Lowe &
Chan, 2016).Thegenemapofchloroplastgenomewasdrawnusing
OGDRAW(Greineretal.,2019).Thefinalgenome sequencesofall
12sampleswere deposited in GenBankunder the accession num-
bersOM135324OM135327 and OP373439OP373446.
2.4  | Comparative genome analysis
among varieties
Alignments ofchloroplast genomesofthefour varieties were con-
ducted using ClustalW fromMEGAX(Kumar et al.,2018) with de-
fault parameters. Tandem repeat finder( TRF) (Benson,1999) and
microsatelliteidentificationtool(MISAv2.1)(Beieretal.,2017) were
used to sea rch for repet itive seque nces. To visualize the v ariation
amongthe12 samples,weanalyzedthehomolog yof their genome
sequences using mVIS TA(Frazer et al.,2004) wherethesequence
ofT. ci li ata(GenBank accessno.:NC_039592)was used as the ref-
erence. The nucleotide diversity per site (π) was estimate d using
DnaSPv5(Librado&Rozas,2009).
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
4 of 17 
|
   XIAO et al.
2.5  | Phylogenetic analysis and divergent
time estimation
Toev aluate the phyl ogenetic rela tionship amo ng varieties , we se-
lected T. sinensis (GenBank access no.: MW4 01816) and Melia
azedarach(access no.: NC_050650) of the same family (Meliaceae)
as outgro ups. Tod erive a relia ble tree, we us ed the conc atenated
wholegenomesequencesthatwereorthologousamongsixtaxaand
alignedforphylogeneticanalysisusingclustalWalgorithminMEGAX
(Kumaretal.,2018).NotethatonlyoneIRregionwasincluded.The
FIGURE 1 SamplesitesandimagesoffourvarietiesofT. ci li atainYunnanProvince:(a)Samplingsitesof58individuals.Thefourvarieties
are T. c il iata var. ciliatainblue,T. ci li ata var. henryi in red, T. cil ia ta va r. yunnanensis in green, and T. cilia ta va r. pubescensinpurple.(b)The
bottomfourtreeimagesfromlefttorightareT. c iliata var. ciliata, T. cil ia ta var. henryi, T. ci liata va r. yunnanensis, and T. ci liata va r. pubescens,
respectively.
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
5 of 17
XIAO et al .
general time reversible (GTR) modelwith a discrete Gammadistri-
bution (G TR + G) was detected as t he best-fit-mode l according to
Akaike informationcriterion (AIC) and Bayesianinformation crite-
rion (BIC ). Weco nstructed a m aximum likeliho od (ML) tree using
MEGAXwith1000BootstrapreplicationsandtheGTR + Gmodel.
BEAS T v1.10.4 (Suchard et al ., 2018) was used to reconstruct
phylogeneticrelationshipandestimatedivergenttimes,withaYule
process as the prior,the assumptionof an uncorrelated lognormal
relaxedclock,andtheGTR + Gmodel.Threecalibrationtimeswere
selectedforestimatingdivergenttimes.Thedivergenttimebetween
Toona and Meliawas approximately 68.3 Mya with a 95% HPD of
80.5–52.8Mya(Appelhansetal.,2012).Forcalibratingbranchages
containingallmembersoftheToona and Meliagenera,themeanage
ofthe mostrecentcommonancestor (MRCA)wasset at68.3 Mya,
withapriornormaldistributionandastandarddeviationof7.1Mya.
TheageoftheMRCAbetweenT. sinensis and M. azedarach was set
at48.0Mya,withastandarddeviationof0.3anda95%confidence
interval [47.8, 48.9] Mya from the TimeTree database (Grudinski
et al., 2014; Kum ar et al., 2017; Li, Yi, e t al., 2019). The divergent
time between T. cil ia ta and T. sinensis was set at 31.6 Mya, with a
standarddeviationof8.0anda95%confidenceinterval[15.1,46.5]
Mya(Muellneretal.,2 010).
The leng th of Markov chai n Monte Carlo ( MCMC) was set as
5.0 × 108 generations and data were sampled every 1000 gener-
ations. Ef fective sample size (ESS) was ch ecked in Tracer v1.7.2
(Suchard e t al., 2018) and accepte d for further analysis under a
largeESS(>200).WeusedTreeA nnotatorv1.10.4tobuildthema x-
imumcladecredibility(MCC)treewiththefirst20%ofsamplesas
theburn-in,andthetreederivedfromBayesian inference(BI)was
comparedwith the ML tree derived from MEGAX under GTR + G
model. T he phylogen etic trees w ere graphe d using iTOL (h tt p s : //
itol.embl.de).
2.6  | Detection of positive and purifying selection
Bothbranch-andsite-modelswithcodemlfromPAMLv4.9package
wereusedtodetectselectionintermsoftheratioofnonsynonymous
tosynonymoussubstitutions(ω=dN/dS)forallprotein-codinggenes
(Ya ng, 2007;Yang&Bielawski,2000).Thebranchmodelswithone-
ω versus two- ω ratiosweretested using likelihood ratio test(LRT):
2∆ℓ = 2log(L1- L0), where L1 is the log- likelihood under the alternative
hypothesis(i.e.,thetwo-ωratiosmodel)andL0 is the log- likelihood
underthenullhypothesis(i.e.,theone-ωmodel).The statistics2∆ℓ
followsachi-squareddistributionwiththedegreeoffreedombeing
equal to the dif ferentnumber of parameters between nulland al-
ternativehypotheses.Thebranchforeachofthe fourvarietieswas
separatelysetastheforegroundbranchandtheremainingbranches
as the background branches (Figure S1), with the aim at detecting
selection in each variety.
Thesitemodelwasseparatelyappliedtoanalyzingtheconcate-
natedsequencesofprotein-codinggenesinlargesinglecopy(LSC),
smallsinglecopy(SSC),inver tedrepeat (IR),andthewholegenome
regions withoneIRincluded.Twopairs of contrasting sitemodels,
M2a(selection) versusM1a(neutral),M8 (beta&ω> 1)versus M7
(beta), wereused todetect positiveselectionsites.Likelihoodratio
testwasusedtotestthesignificanceofalternativemodels.Posterior
probabilitiesateach amino acidsitewere estimatedfromthreesite
classes underM2a modelusingnaïveempiricalBayes(NEB)proce-
dure,andaprobabilityofnot≤0.95indicatedapositiveselectionsite
(Yang&Swanson,2002).
2.7  | Genetic differentiation among varieties
Toinvestigatepopulationdif ferentiationatthefinescale,wefound
single nucleotide polymorphisms (SNPs) from the alignment of
wholechloroplastgenomesequencesamongthefourvarietiesand
designeda pair ofprimerswithpolymorphisms in psaAregion. The
designedprimerswere5- A T C G C C G T G T T G T A A C A G A G A - 3 and 5-
T G A T T C T T C C T G G G T C G A T G C - 3 .Fromtheliterature(Taberletetal.,
1991), we selec ted a polymor phic marker in t he intergenic re gion
trnL- trnF,and the designed primers were 5-CGAA ATCGGTAGACG
C T A C G - 3 and 5- A T T T G A A C T G G T G A C A C G A G - 3 . The PCR was
performedin25 μLvolume,whichcontained1 μLplantDNA,12.5 μL
2 × Es Taq MasterMix (0.1 U Tap polymerase, 500 μmol/L dNTPs,
20 mmol/LTris–HCl,3 mmol/LMgCl2,100 mmol/LKCl),1 μLofeach
primer,and9.5 μLddH2O.ThePCRprotocolw assetbelow:preheat-
ingat95°Cfor4 min,35 cyclesat94°Cfor30 s,annealingat55°Cfor
1 min,andelongationat72°Cfor1 min,followedbyafinalextension
at72°Cfor10 min.ThePCRproductsweresubjectedtoagarosegel
electrophoresisat2%,andtheresultsweredetectedbygelimager.
The single amplified product with clear bandswas sentto Sangon
Biotech(Shanghai)Co.,Ltdforsequencing.
Themultiplesequencealignmentwasconductedwith ClustalW
algorith m from MEGAX with default pa rameter settings. The s e-
quences of 363 bpforpsaAand 969 bpfor trnL- trnFwere used for
downstr eam analyses , and the aligne d sequences we re submitted
to figshare (h t t p s : / / d o i . o r g / 1 0 . 6 0 8 4 / m 9 . f i g s h a r e . 2 4 2 0 3 7 6 3 ). To
exploregeneticvariationamongfourvarieties,analysisofmolecu-
larvariance(AMOVA) was doneseparately for sequences of psaA ,
trnL- trnF a nd their concat enated sequence s (psaA-trnL- trnF ) using
Arlequinv3.0(Excoffieretal.,2005).
Genetic differentiation among varieties was also analyzed by
comparingpopulation differentiation in termsofmarkersequence
divergence (Nst) versus in terms of allele frequency (Fst) (Pons &
Petit,1996).DnaSPv6(Rozasetal.,2 017)wasusedtoestimateNst
and Fst.Adif ferencebetweenFst and Nstwastestedusingpermuta-
tions(Rozasetal.,2017).Alltheseestimateswereobtainedusingthe
concatenatedsequencesofthesetwomarkers.
Isolationbydistance(IBD)atthefinescalewastestedusingthe
regression of Fst/(1−Fst) on the logarithm of geographic distance
(Rousset, 1997 ). Pairwise population differentiation (Fst) was cal-
culated by A rlequin v3. 0 (Excoffi er et al., 2005) using the conc at-
enated sequences. Geographical distance matrix among pairwise
varieti es was calculate d from central sam pling sites (T. c iliat a v ar.
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
6 of 17 
|
   XIAO et al.
ciliata:26° 2419 N, 100°3917 E;T. ci lia ta va r. henryi:24°3260 N,
100°47 39 E;T. ci liata va r. yunnanensis: 25°3 843 N,102°3854 E;
T. cilia ta va r. pubescens:25°4310 N,102°3934 E).
3 | RESULTS
3.1  | Genome sequences of four varieties
Ahigh-qualityassemblyofchloroplastgenomewasobtainedforeach
variety.Detailsforgenome assembly information were providedin
AppendixTable S3.Forinstance,theQ30valuesrangedfrom89.8%
to93.4%andtheaveragesequencingdepthwas>180×. The cover-
ageratewas100%forall sequencing of12samples.Thecomplete
sequencesof 12sampleswerereposited toNCBI GenBank(access
numbers: OM135324OM135327 and OP373 439OP373446).
Theirgenomesizesrangedfrom159,546 bpto159,617 bpinlength.
Therewere334SNPsand96indelsamongthe12samples.Thege-
nomeexhibitedacircularmoleculewithtypicalquadripartitestruc-
ture of angi osperms (LSC , SSC, IRA , and IRB), and harb ored 103
genes in tot al, includ ing 79 protein-cod ing genes, 20 t RNA genes,
and4 rRNAgenes.Figure 2showsthecircularchloroplastgenome
mapofT. ci liata va r. ciliata, and the remaining threevarietieshada
similargenome structure except forsmalldifferencesinsizedueto
lowmutationrates.
Acomparisonindicatedthathighlyconservativechloroplastge-
nomesoccurredamongthefourvarieties( Table 1).LSCandSSCre-
gionsexhibitedrelativelyhigherdivergencethanIRregions.TheSSC
region had t he largest nucleotide diversity p er site (π= 0.00039),
followed by the LSC (π= 0.00 036) and IR regions (π= 0.00004).
Asimilarpatternof nucleotidediversitypersitewasalsoobserved
fortheprotein-codingsequencesinSSC(0.00037), LSC (0.00035),
andIR(0.00023)regions.Aglobalcomparisonofchloroplastgenome
homolog y across th e 12 sample s showed high se quence simil arity
and indic ated that the chloroplast genomes of the four varieties
werehighlyconserved(AppendixFigure S2).
Sequencerepeats,includingtandem,forward,palindromic,com-
plement,andreverserepeats,wereidentified.Figure 3 shows that
these repeats weregenerally conservative among the fourvariet-
ies. The re were 54–56 repetit ive sequence s in total where 11–12
forward repeat s and 19–20 palindromic repeats were separately
detected. Tandem repeat sequences occurred most frequently,
with22inthecpDNAsequencesofT. c iliata v ar. ciliata, T. c il iata var.
henryi, and T. c ilia ta var. yunnanensis,and23inthecpDNAsequence
ofT. c il iata var. pubescens.Fewcomplementaryandreverserepeats
wereobser ved(Figure 3a).
Therepetitivesequencesinthefourvarietieswerebetween30
and 58 bp (Figure 3b). Most repeatswere distributed innoncoding
regions(theintergenicregionsandintrons),andonlyafewincoding
genes. Forinstance, there were seven repeated sequencesin ycf2
gene,butonlyonerepeatinpsaB, psaA ,andndhFgenes(Appendix
Tables S4 and S5).
Table 2summarizesdifferenttypesofSSRsinthefourvariet-
ies. T. cili at a v ar. pubescenshad244SSRs,andthe remaining three
varietieshad243SSRs.Thepredominant typeofSSRs was mono-
nucleotide repeats, with A/T accounting for 74.07% of SSRs in
T. cilia ta va r. ciliata, T. ci li ata var. henryi and T. ci li ata var. yunnanensis,
and73.77% in T. cili at a v ar. pubescens(Appendix Figure S3). Other
typesofSSRs accounted forasmall proportion, with a decreasing
abundancefromdinucleotidestotetranucleotides,totrinucleotides,
and to pent anucleotid es. The chloro plast genome of T. ci lia ta va r.
pubescenshad oneun iqu ehe xan ucl e ot ide SSR tha tw asa bse ntint he
genomesoftheremainingthreevarieties.
A few coding genes, including rpoC2, rbcL, petA, ycf2, ndhF,
ndhD, ycf1, and ycf 2,containedmorethantwotypesofSSRsinT. ci l-
iata va r. ciliata, T. cil iata va r. henryi, and T. c ilia ta va r. yunnanensis. The
codingsequenceshad23.05%ofthetotalnumberof SSRs inthese
threevarieties,but23.36%inT. c iliat a v ar. pubescens.Inaddition,a
hexanucleotideSSRoccurredingenerpoAofT. cili ata var. pubescens.
3.2  | Phylogenetic relationships among varieties
Thetopologyofmaximumcladecredibility(MCC)treederivedfrom
Bayesian inference (BI) generally matched the ML tree using the
concatenatedsequences ofLSC,SSC, and one IR regions. Figure 4
shows that samples ofthe four varieties were not monophyleticin
MCC tree. A ppendix Figure S4 provides the ML tree constructed
byusing the whole-genome sequenceswith a single IR region. For
instan ce, the clade of T. c il iata var. yunnanensis (the firs t sample)
and T. cili at a v ar. pubescens(the twentiethsample)had a Bayesian
posterior probabilityof 100%. The remaining subclades had lower
Bayesia np oster io rp ro babilitie s, rangingfrom21%to52%(Figure 4).
TheMCCtree derivedfromBEASTanalysisprovided the point
estimatesofagesand 95%HPD(Figure 4).Thedivergenttimebe-
tween M. azedarach and genus Toonawasestimatedas48 .02–34.36
Mya.Thelargestdivergenttimeamongvarietieswasapproximately
24.47Mya(95%HPD:39–12Mya).Themostrecentdivergenttime
wasabout0.92Mya(95%HPD:0–6Mya).
3.3  | Test of purifying and positive selections
Natural selection was tested in 79 polymorphic protein-coding
genes. Likelihood ratio tests showed that the two-
𝜔
-ratios mod el
wasnotsignificantlydifferentfromtheone-
𝜔
-ratiomodel(Appendix
Table S6), indicating that the ωestimateswereessentiallyconsistent
amongthefourvarieties.
We removed 21 genes w hose dN or dS values were close to
0, which oth erwise y ielded over flow or zero e stimates of d N/d S
ratios.Thesegenesweremoreconservativeamongvarieties.The
remaining 58 protein-coding genes were used to detect natural
selectionbasedonthephylogenyofthefour varieties(Appendix
Table S6).
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
7 of 17
XIAO et al .
Figure 5 shows that most protein-coding genes were under
strong purifying selection. Weak positive selection was present
only in ycf2gene(ω= 1.07).Pair wiseanalysiswithyn00fromPAML
package between eachofthe four varieties of T. ci liata with T. s in-
ensis or with M. azedarachalsoconfirmedpositive selectionin ycf2
gene(datanotshown here). GenesinIR regionhadlowerω values
(ω= 0.1540 ± 0.0 263), whereas gene s in LSC and SSC re gions had
relatively higher ωvalues (ω= 0.1889 ± 0 .1578 in LSC re gion, and
ω= 0.2282 ± 0.2243inSSCregion).
Random-site models were applied tomapping amino acid sites
under positive selection (Yang, 2006). The naï ve empirical Bayes
procedurewas used tocalculatethe posteriorprobabilities ofposi-
tiveselection(ω> 1)underdifferentmodelassumptions.Appendix
Table S7 shows the LRTs of positive selectionin LSC, SSC, andIR
regions.
In the LSC region (60 genes from rps12 to rpl22 in genome,
Figure 2), LRT between M2a and M1a models was
2Δl
= 7.2247
(AppendixTable S8), greater than
𝜒2
0.05,df
=
2
= 5.9914,indicatingthe
FIGURE 2 CircularmapofthedenovoassembledchloroplastgenomeofT. cil iata var. ciliatachloroplastgenome.Grayarrowsindicate
thedirec tionofgenetranscription.Thegenesinsideandoutsidethecirclearetranscribedinclock wiseandcounterclockwisedirections,
respectively.Genesindifferentfunctionalgroupsareshownindifferentcolors.Thedarkergraycolumnsintheinnercirclecorrespondto
GCcontent.Regionsofsmallsinglecopy(SSC),largesinglecopy(LSC),andinvertedrepeats(IRA,IRB)areindicated.
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
8 of 17 
|
   XIAO et al.
presence of positive selection. Test with M8 (beta & ω> 1) versus
M7(bet a)alsoindicatedthepresence ofpositive selection insome
amino aci d sites (p-value = .0 063; Appendix Table S7). The rpoC2
gene had two amino acid sites with positive selection, 3212 V (va-
line) and 3772 Q ( glutamin e), while genes of cemA , rps2, rps8 and
rpl22 had only o ne amino acid si te with positi ve selecti on, 2314 S
TAB LE 1  PolymorphicsitesandnucleotidediversityamongfourvarietiesofToona ciliata.
Region
Coding and noncoding sequences Protein- coding sequences
Site Polymo rphic site πSite Polymo rphic site π
LSC 87, 23 4 10 8 0.00036 43,42 2 46 0.00035
SSC 18,423 25 0.00039 14, 271 17 0.00037
IR 27, 0 6 6 40.00004 10, 419 60.00023
LSC,IR,andSSC 132,723 137 0.00030 68 ,112 69 0.00 034
FIGURE 3 Comparisonofrepetitivesequencesamongfourvarieties:(a)Fivetypesofrepeats;(b)Frequenciesofdifferentsizesof
repeats(bp).
TAB LE 2  DistributionofSSRsofchloroplastgenomesinfourvarietiesofToona ciliata.
Tax on
T. ciliata var.
ciliata
T. ciliata var.
henryi
T. ciliata var.
yunnanensis
T. ciliata var.
pubescens
GenomeSize(bp) 159, 617 1 59,617 159,615 159, 55 0
SSRtype Mononucleotide 184 184 18 4 184
Dinucleotide 42 42 42 41
Trinucleotide 5 5 5 5
Tetranucleotide 11 11 11 11
Pentanucleotide 1 1 1 2
Hexanucleotide 0 0 0 1
Tot a l 243 24 3 243 24 4
Protein-codingsequence No. 56 56 56 57
%23.05 23.05 23.05 23.36
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
9 of 17
XIAO et al .
(serine), 10, 893 H (histidin e), 13,713 L(l eucine) and 14,414 P (pro-
line),respectively(AppendixTable S7).
In the IR A region (7 genes from rps19 to ycf15 in genome,
Figure 2), LRTs with M2a versus M1a or M8 versus M7 showed the
presenceof positive selection (p- value ~10−9; Appendi x Table S8).
Therewasoneaminoacidsiteunderpositiveselectionintherpl23
gene,14,861 G(glycine),andfourintheycf2gene,including16,183 N
(asparagine),16,585R (arginine),16,589 T(threonine),and16,591 L
(AppendixTable S7).
In the SSC region (12 genes from ndhF to ycf1 in genome,
Figure 2), LRTs with M2a versus M1a or M8 versus M7 showed sig-
nificant differences (p- value ~10−9; Appendi x Table S8), indicating
thepresenceofpositiveselectioninsomeaminoacidsites.Twosites
under positive selection were detec ted only in ycf1gene, 21,30 8 G
and21,468 T( AppendixTable S7).
Comparedwiththeresultsin Appendix Table S7, LRTs with the
cate na te dse qu ences ofal l79p ro te in-co dinggen es exhib it edac om-
parablenumberofsitesunderpositiveselec tion(AppendixTable S9).
For instance, estimates with M2a were ω0= 0.1138, ω
1= 1.0000,
and ω2= 13.3938,withpropor tions ofp0= 0.9046,p1= 0.0856,and
p2= 0.0098. LRT withM2a versus M1a showed that 12 siteswere
under positiveselection (Appen dixTable S8). Appendi x Figure S5
showsthedistribution ofamino acid sitesunderpositive selection.
Most ofthese aminoacidsites were consistentwith the preceding
resultsderivedfromanalysesinindividualsegments(LSC ,SSC,and
IR;AppendixTable S7).Forinstance, comparedwiththe analysisof
the SSC regiononly,more positive selection sitesinycf1 were de-
tectedwiththeconc atenatedsequencesof79codinggenes,includ-
ing 21,22 5 T, 21308 G, 21468 T, 21505 E (g lutamic acid ), 21,529 K
(lysine), 21, 862 S, and 22,4 40 T.T he ndhF gene had only one s ite
underpositiveselection,18,391H.Thereweretwositesunderpos-
itive selection in the ycf2genein IRregion,16,183 N and16,589 T.
Both the rpoC2 and rps8genesintheLSCregionhadonlyonepos-
itive selection site,3772Qand13,713 L,respectively.Reasons for
suchdifferencescouldarisefromoffsettingef fect samongpositive
andnegativeaminoacidsiteswhendifferentlengthsofgenomeseg-
mentswereanalyzed.
3.4  | Genetic differentiation among varieties
Sequencesoftwomarkers(psaAandtrnL- trnF)wereanalyzedusing
AMOVA.Theresultsindicatedthatmostvariationwaswithinvarie-
ties: Фst= 0.0569,p-value = .0166for the psaA region; Фst= 0.0310,
p-value = .0675 for the trnL- trnF region; and Фst= 0.0351,
p-value = .0430fortheconcatenatedsequences(Table 3). Generally,
alowlevelandinsignificantgeneticdifferentiationoccurredamong
varieties.
The maximum likelihood tree indicated that taxon samples
were not gro uped into disti nct cluster s in terms of the ca tenated
sequencesofthesetwomarkers,whichwasdiscordantwithvariety
delimitationaccordingtomorphologicaltraits(Figure 6).
Genetic differentiation of pairwise varieties was analyzed
usingtheconcatenatedsequencesofpsaA and trnL- trnFsegments.
T. c ilia ta var. ciliatadi f fer e dfr o mT. c ilia ta v ar. henryi with Фst= 0.0534
(p-value = .0587 ), from T. cili at a v ar. yunnanensis with Фst= 0.0276
(.0841), and from T. c il iata var. pubescens with Фst= 0.0520(.0782).
T. cilia ta va r. henryi differed from T. ci liata va r. yunnanensis with
FIGURE 4 Phylogeneticrelationshipamongvarietiesderivedfromthewholechloroplastgenomeunderthemodelofrelaxedmolecular
clockanduncorrelatedrates.Theboldvalueateachnoderepresentsmeanage(Mya),andthevaluesinparenthesesarethe95%HPD
intervalsaroundpointageestimates.BranchlabelsrepresentBayesianposteriorprobabilities.
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
10 of 17 
|
   XIAO et al.
Фst= −0.0114 (.6764), and from T. cilia ta va r. pubescens with
Фst= 0.0284(.1730).GeneticdifferentiationwasФst= 0.0501(.0596)
betweenT. ci liata va r. yunnanensis and T. ci liata va r. pubescens. All
pairwiseanalysesindicatedinsignificantgenetic differentiationbe-
tween varieties.
Withtheconcatenatedsequences( psaA-trnL- trnF),Nst(0.0348)
was not signi ficantly d ifferent fr om Fst(0.0354), indicating absent
phylogeographic structure among varieties. Isolation by distance
effects were not significant among varieties (Fst/(1-Fst) = 0.0353–
0.0074ln(distance), p-value = .2507).
4 | DISCUSSION
In this stu dy,we p rovided evi dence that fou r varietie s of T. ci li ata
were ver y closely related i n terms of the variati on of chloroplast
genomesequences.Thisalsoprovidedevidencethat aconflictbe-
tween organelle genome- and morphology-based delimitations in
sympat ric speciation , and implied dis tinct rates of lin eage sorting
processesbetweenorganelleandnucleargenomes(Huetal.,2019).
Althoughtherewassubstantialpopulationgeneticdifferentiationin
terms of the T. c il iata complexderivedfrom nuclear markers(Xiao
FIGURE 5 Estimatesofd N/dSof58protein-codinggenesinfourvarietiesofToona ciliata.
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
11 of 17
XIAO et al .
et al., 2023),the phylogeneticrelationshipamong varietiesinsym-
patricregionwasunknownatafinescale.Fromthepatter nofmito-
chondrialgenomemarkers,Xiao etal.(2023) showed three distinct
regions in n atural dist ribution of t he T. ci liata comple x. This stud y
investigatedfoursympatricvarietiesofT. ci lia ta in the eastern region
(Zhang,2018). The results partly consolidated the previous study on
populationgeneticstructureoftheT. cil iata complexwherevarieties
werenotidentified( Xiaoetal.,2023).
4.1  | Genome divergence and evolutionary process
Thefourvarietieshadthetypicalstructureofangiospermorganelle
genomes , with LSC, S SC, IRA , and IRB part s. Their geno me sizes
were compa rable to those fou nd in T. ciliata, T. sinensis, T. sureni,
and other s pecies in the M eliaceae fa mily althou gh the estim ated
numbers of genes were unequal among them (Lin et al., 2018;
Mader et al., 2018; Tan et al., 2023; Xin et al., 2018).The four va-
rieties exhibited small variation in chloroplast genome size, gene
arrangement,andgenomicstructure.Thenucleotidediversityper
site (π) wasmuch smaller compared with those of plant species in
monophyly stage(Syring et al., 20 07), such as the per- site nucleo-
tidediversitybetweenspeciesinLagerstroemia and Michelia genera
(Dengetal.,2020; Xu et al., 2017).However,theobservedpattern
ofnucleotide diversitysupported the commonalitythat the muta-
tion rate s are general ly greater in L SC and SSC th an in IR regions
withrepetitiveproperties(Lietal.,2016;Perry&Wolfe,2002;Zhu
et al., 2016).Generally, only a fewmutations were accumulatedin
each region.
Therepetitivesequencesoftenexhibitlarge sequencevariation
among spe cies in the mono phyly stage ( Ahmed et al., 2012). The
fourvarietiesshowedthatnoncodingregionswerelessconservative
thanprotein-codingregions,consistentwithpreviousreports(Wen
et al., 2021).However,the samepat tern ofrepetitivesequencesin
three varieties except for T. c il iata var. pubescensforaslightdiffer-
enceimplicatedthattheywererecentlydivergent.
Besides the lowmutationrates,allprotein-coding genes except
forycf2wereunderpurifyingselection(ω< 1).Chloroplastgenomes
accumula ted deleterio us mutations d ue to small eff ective popu la-
tionsize(Kimura,1962)andalackofrecombination.Strongpurifying
selection removeddetrimental mutations in taxa. This alsoimplied
that the disruptive selection that fixed alternative alleles between
varieti es was effect ively impede d at the gene level. Th us, purify-
ing selec tion could p lay an impor tant role i n conserv ing seque nce
structure amongvarieties in sympatric region. Although there was
positive selectiononlyat a fewamino acid sites,whichcould likely
exhibitalternativegeneexpression,theirjointeffectsweresmall.In
addition,thepatternofaveragestreng thof purif yingselectionwas
consistentwiththepatternofmutationratesindifferentregions(IR,
LSC,andSSC).
4.2  | Evolutionary divergence among varieties
The phylogenomic analysis implied that the four varieties were
relativelyrecentlydivergent.Pointestimatesshowedawiderange
ofdivergenttimes(0.92–24.47 Mya)amongvarieties.Notethatthe
large inter val ofthe estimates of divergenttimes (Figure 4) could
arisefromtheuseofawiderangeofdivergenttimesderivedfrom
TimeTreedat abase for calibrations(Kumar et al., 2017). This was
the same situation for estimating the divergent times between
T. cilia ta and T. sinensis (Wang , Xiao, He, Li, Lv, Hu, et al. , 2022;
Wang, Xiao, He,Li, Song,etal., 2022). The fossil recordsarestill
lackingforthespeciesthatarecloselyrelatedtotheToona genus.
Nevertheless, our estimates of the divergent times between
M. azedarach and genus Toona(48.02 Mya) or between T. sinensis
and T. ci liata (34.36 My a) were consis tent with previous studies
(Appelhansetal.,2012; Grudinski et al., 2014; Kumaretal.,2017;
Li,Yi,etal.,2019).
Chloroplast genomemarkers are widely applied to analyzing
both phylogeny and population structure (Hu et al., 2019; Xie
et al., 2018). Markers in noncoding regions are commonly uti-
lized for inves tigating ge netic dif ferentiati on (Binks et al ., 2021;
Fang et al., 2010; Sh aw et al., 2007), but the re are also coding
regionsthatarepolymorphicanddesignedformarkers,suchasin
Saxifraga sinomontana(Lietal., 2018), Quercus liaotungensis(Yan g
TAB LE 3  Analysisofmolecularvariance(AMOVA)ofchlorotypesamongvarietiesofToona ciliata.
cpDNA segment Source of variation df Sum of square
Variance
component
Percentage of
variance (%) Фst p- Value
psaA Amongvarieties 35.592 0.0605 5.69 0.0569 .0166
Withinvarieties 54 54.0 97 1.0 018 94.31
Tot a l 57 59. 69 0 1.0623
trnL- trnF A mongvarieties 323.958 0.1754 3.10 0.0310 .0675
Withinvarieties 54 296.128 5.4839 96 .90
Tot a l 57 320.086 5.659 2
psaAandtrnL- trnF Amongvarieties 32 9. 55 0 0.2359 3. 51 0.0351 .0430
Withinvarieties 54 350.226 6.4857 96.49
Tot a l 57 379.776 6.7215
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
12 of 17 
|
   XIAO et al.
FIGURE 6 Phylogeneticrelationshipderivedfromthemaximumlikelihood(ML)analysisamong58individualsoffourvarietiesofToona
ciliatausingthecatenatedsequencesofpsaAandtrnL- trnFmarkers.Branchlabelsrepresentbootstrapsupportingvaluesof>20%.
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
13 of 17
XIAO et al .
et al., 2018), and Prunus armeniaca(Lietal.,2021).Here,we dis-
coveredapolymorphicmarkerinpsaAfromsequencealignments,
whichisinfrequentlyreportedinotherstudies.TherbcL and matK
sequencesareoftenusedasgeneticbarcodestoidentifyspecies.
In this st udy,p olymorphic sit es were absent in rbcL sequences
among varieties, but present in matK sequences only between
T. cilia ta va r. pubescens and T. ci li ata v ar. yunnanensis. The rbcL se-
quenceis often usedforidentifying deep phylogeneticrelation-
ships due to t he more conse rvative pro perty o f this gene. Both
rbcL and matKb ar co deswerenoteffect ivef orident if y in gt hefour
varieti es. Analysis of ge netic differ entiation supp orted the mix-
tureofgenomic composition amongthefourvarieties(Figure 6).
Weconcludedthatthemorphol ogicaldiversityamongfourvari et-
ieswasnotsupportedbythegeneticdivergenceintermsofchlo-
roplastgenomesequences.
Incongruencecannotbe ruledoutbetween morphological-and
organelle genome-based species delimitations. Sincethe morpho-
logical t raits (e.g., le af and flower trait s) are mainly contro lled by
nuclear ge nes, this incong ruence could mainl y arise from the cy-
tonuclear phylogeneticconflict. Cytonuclear incongruence among
closelyrelatedtaxaiswidelyrecordedintheliterature.Forinstance,
reports show mitochondrial-nuclear discordance in phylogeny of
animals,poplars, and other species (Funk & Omland, 20 03; Huang
et al., 2014; Sl oan et al., 2017). A lso, studies s howed chlorop last-
nuclear discordance in phylogeny of different plant species (Hu
et al., 2019; Le e-Yaw et al., 2019; Mata-Sucre e t al., 2023; Rivas-
Chamorroetal.,2023; Xie et al., 2023).Differentratesofevolution
and different modes of inheritance could contribute to this incon-
gruence.Theresults(Figures 4 and 6)impliedthatgeneticdriftpro-
cesscouldplayaminorroleingeneratingdiscordantchloroplastand
morphologyphylogenies.Thisisbecausecoalescent processbyge-
neticdriftisfastertoreachthereciprocalmonophylyforchloroplast
genomes(1/Ne,haploid) than fornuclear(1/2Ne, diploid) genomes
(Huetal.,2019),which was not the caseamong the fourvarieties.
Naturalhybridizationbetweenvarietiescouldoccurinsympatrybut
likely had sm all effect s on chloropl ast genome dive rgence among
varieti es. This is beca use only seed disp ersal contri butes to gene
flowofmaternallyinheritedgenes.Arecentstudyindicatedthatthe
ratio of po llen to seed fl ow was subst antial in the we stern regio n
in T. c iliat acomplex (Xiaoetal.,2023),whichimplies thateffectsof
seedflowweremuchsmallerthoseofpollenflowamongsympatric
varieties.Afurtherclarification with nucleargenomeswouldaidin
gaininginsightsintonaturalhybridization.Thiscouldalsohelptoex-
plaintheincongruencebetweenchloroplast genome-andmorpho-
logicaltrait-basedspeciesdelimitations.
Analternative explanation is thatdifferent models ofselec tion
likely participated in this conflict. The present results provided
strongevidencethatpurifyingselectionac tedonallprotein-coding
genesexceptfortheycf2gene,whichcouldeffectivelyimpedechlo-
roplastgenomedivergenceamongvarieties.Thislikelydifferedfrom
morpho logical trait s (e.g., the leaf and f lower traits) whe re adap-
tivelydivergentselectioncouldbeinvolvedinandyieldedextensive
morphological diversity. Consequently, this produced discordant
phylogeniesintermsofmorphologicaltraits versuschloroplast ge-
nomesequences.
Onlyone protein-codinggene, ycf2, was detected under weak
positive selection. The ycf2 gene is the largest plastid gene in an-
giosperms (Drescher et al., 2000)and had 6822 bp in the four va-
rieties. Previous studies indicatedthat the ycf2 gene had mu ltiple
positive selectionsites duringangiosperm evolution, and thisgene
was recomm ended for con struct ing angiospe rm phylogeny du e to
its long sequence and alowrate ofnucleotidesubstitution (Huang
et al., 2010; Li, Ma, et al., 2 019). The ycf2 genewas recently found
tobeessentialforcellviabilityandakeyenzymeforATPproduction
bychloroplastinthedarkorinnonphotosyntheticplastids(Drescher
et al., 2000; Kikuchi et al., 2018). Here, we fo und that ycf2 gene
hadtwoorfoursitesunderpositiveselectionfromthetestsonsin-
glegenesequenceoronthe concatenatedsequence,respectively.
Furtherinvestigationof thisgenecouldbeinterested in relationto
speciesdelimitation.
Althoughafewamino acidsites were under positiveselection,
they accounted for only a small proportion of genome (Yang &
Swanson, 2002). Most amino acid sites wereunder purifyingselec-
tion. Thus, compared with the drift process(Freeland et al.,2011;
Hudson & Coy ne, 2002; Palum bi et al., 2001), pu rifying se lection
couldbedominantinshapingchloroplastgenomephylogenyatboth
geneandaminoacidsitelevels,orinproducingtheconflictbetween
morphological-andcpDNA-basedphylogenies.
4.3  | Implications for genetic conservation
Previous s tudies accor ding to the max imum entropy (Ma xEnt) ap-
proach showed that T. ci li ata va r. ciliata would potentially expand as
climate changes in the future, while T. cili ata v ar. pubescens would
shrink inYunnanProvince (Zhangetal.,2018a, 2018 b).Thedemo-
graphicchangesinothertwovarietiesremainunknownalthoughthe
wholerangeofT. ci li atacomplexdidnotshowexpansionafterbot-
tleneckeffects(Xiaoetal.,2023).Astrategyofconser vingmultiple
populationswasrecommendedin the westernregionsfromthere-
sultsassayedbynuclearITSsequences.
This studyidentified four sympatricvarietiesofT. cil ia ta at the
finer scale andfurther investigatedgenetic differentiation in sym-
patry in the western region. Our results sup port the strategy of
conservinggeneticvariationbasedonthe T. cili at a complexrather
than on div idual variet y. This is bec ause a close genet ic relation-
ship exis ted among varieti es of T. cil iata. Be sides, natural hy brid-
ization am ong varieties could not be excluded in sympatr y (Xiao
et al., 2023). The t raditional singl e variety-based ap proach is not
effectivetoconservegeneticvariationofT. ci liat awherehybridsb e-
tweenvarietiesareoverlooked.Instead,theapproachthatmaintains
theevolutionarypotentialoftheT. cil ia tacomplexismoreeffective,
suchastheprocess-basedspeciesconser vationproposedbyEnnos
etal.(2012).
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
14 of 17 
|
   XIAO et al.
5 | CONCLUSION
Weinvestigatedthephylogenetic relationshipamong four varie-
ties of T. ci li ata(T. cilia ta va r. ciliata, T. cil iata var. yunnanensis, T.
ciliata v ar. pubescens, and T. c il iata var. henryi) insympatry using
thewholechloroplastgenomesequencesandtwogeneticmark-
ers. Comparative genomicanalysisshowedthat geneticdiversit y
among varietieswas ver y small(π= 0.0003). These phylogenetic
varieties weregenetically well-mixed, and their divergent times
wereabout0.92–24.47Mya.Analysiswithtwomarkersindicated
thatavery smalllevelofgenetic differentiation occurred among
varieties(
Φst
= 0%–5%).Chloroplastgenome-basedphylogenywas
discordantwiththemorphology-basedspeciesdelimitationatthe
finespatialscale(sympatricspeciation).Strongpurifyingselection
wasdetectedacross all protein-codinggenes exceptfortheycf2
genethatwasunderweakpositiveselection.Asimilarpat tern of
purifyingselectionwasobservedacrossgenome-wideaminoacid
sites.Purifyingselection couldplayanimportant roleinimped-
ingchloroplast genome divergence among varieties. From these
results,aconservationstrategyfocusingontheT. c il iatacomplex
ratherthanindividualvarietyisrecommendedforthisendangered
species in China.
AUTHOR CONTRIBUTIONS
Xin- Sheng Hu:Conceptualization (lead); funding acquisition(lead);
projectadministration(lead);writing–reviewandediting(lead).Yu
Xiao: Conceptualization (supporting); data curation (lead); formal
analysis (lead); investigation (lead); methodology (lead); writing –
original draft(lead).Xi Wang:Data curation(supporting);investiga-
tion(supporting);methodology(supporting);resources(supporting).
Zi- Han He: Data curation (supporting); investigation (supporting);
resources(supporting).Yan- Wen Lv:Datacuration(supporting);in-
vestigation(supporting); resources(supporting).Chun- Hua Zhang:
Data curation (supporting); investigation (suppor ting); resources
(supporting).
ACKNOWLEDGMENTS
We appreciate the associate editor and two anonymous review-
ers for con struct ive comments o n this arti cle, and Jiehu Chen f or
help. This r esearch was fun ded by Guangdong B asic and Applie d
Basic Rese arch Foundati on (2023A1515012137), National Nat ural
Science FoundationofChina(32171819),and the fundingfromthe
SouthChinaAgriculturalUniversity(4400 -K16013).
DATA AVAIL AB I LI T Y STATE MEN T
Thecompletesequencesofchloroplastgenomesoffourvarietiesof
T. cilia ta were deposited inNCBI database. Toona ciliata var. ciliata
(GenBankaccessnumbers:OM135324, OP373439, and OP373 44 0),
T. cilia ta va r. henryi(OM135325 , O P373 4 41, and OP373 442), T. cil-
iata va r. yunnanensis(OM135326, OP373 445, and OP373 446), and
T. cilia ta va r. pubescens(OM135327, OP373443, and OP373444).
The psaAandtrnL- trnFalignmentsequencesweresubmittedtofig-
share(h t t p s : / / d o i . o r g / 1 0 . 6 0 8 4 / m 9 . f i g s h a r e . 2 4 2 0 3 7 6 3 ).
ORCID
Yu Xiao https://orcid.org/0000-0001-9759-5685
Xi Wang https://orcid.org/0000-0002-8780-1331
Zi- Han He https://orcid.org/0009-0003-8076-1749
Yan- Wen Lv https://orcid.org/0009-0002-3956-1713
Chun- Hua Zhang https://orcid.org/0000-0002-2735-623X
Xin- Sheng Hu https://orcid.org/0000-0002-8049-9491
REFERENCES
Ahmed , I., Biggs, P. J., Matt hews, P. J., Collins, L . J., Hendy, M. D., &
Lockhart, P. J. (2012). Mut ational dynamics of aroid chloroplast
genomes.Genome Biology and Evolution, 4(12),1316–1323.h t tp s://
d o i . o r g / 1 0 . 1 0 9 3 / g b e / e v s 1 1 0
Andriamihaja,C.F.,Ramarosandratana, A.V.,G risoni,M.,Jeannoda,V.,
& Besse, P. (2020). T he leafle ss vanill a species-c omplex fr om the
south-west Indianocean region:At axonomic puzzleandamodel
for orchidevolution and conservation research. Diversity, 12(12) ,
443. h t t p s : / / d o i . o r g / 1 0 . 3 3 9 0 / d 1 2 1 2 0 4 4 3
Appelhans, M. S.,Kessler, P.J. A., Smets, E., Razafimandimbison, S. G.,
& Janssen s, S. B. (2012). A ge and histor ical biogeo graphy of the
pantropically distributed Spathelioideae (Rutaceae, Sapindales).
Journal of Biogeography, 39(7), 1235–1250. https:// doi. org/ 10.
1 1 1 1 / j . 1 3 6 5 - 2 6 9 9 . 2 0 1 2 . 0 2 6 8 6 . x
Beier,S.,Thiel,T.,Munch,T.,Scholz,U.,&Mascher,M.(2017).MISA-web:
A web ser ver for micros atellite pre diction . Bioinformatics, 33(16),
2583–2585.h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / b i o i n f o r m a t i c s / b t x 1 9 8
Benson, G. (1999). Tandem repeatsfinder: A program toanalyze DNA
sequences.Nucleic Acids Research, 27(2),573–580.https:// doi. org/
1 0 . 1 0 9 3 / n a r / 2 7 . 2 . 5 7 3
Binks,R .M., Steane,D. A.,&Byrne, M. (2021).Genomicdivergencein
sympatryindicatesstrongreproductivebarrier sandcrypticspecies
within Eucalyptus salubris. Ecology and Evolution, 11, 5096–5110.
ht tps :// doi . o rg/ 10. 10 0 2/ e ce3 . 74 0 3
Brown, J. L ., Maan, M. E., Cummings, M . E., & Summers, K. (2010).
Evidenceforselection oncoloration ina Panamanianpoison frog
acoalescent-based approach.Journal of Biogeography, 37(5 ), 891–
901.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 3 6 5 - 2 6 9 9 . 2 0 0 9 . 0 2 2 6 0 . x
Chen,S.,Zhou,Y.,Chen,Y.,&Gu,J.(2018).Fastp:Anultra-fastall-in-one
FASTQpreprocessor.Bioinformatics, 34(17),i8 84–i890.ht t p s:// d o i .
o r g / 1 0 . 1 0 9 3 / b i o i n f o r m a t i c s / b t y 5 6 0
Chen, S . K., Li, H., & Che n, B. Y. (1997). Meliace ae. Flora Reipublicae
Popularis Sinicae(Vol.43(3),pp.40–43).SciencePress.
Chmiel ewski, M., Mey za, K., Chy bicki, I. J., D zialuk, A ., Litkowiec, M .,
&Burczyk,J.(2015).Chloroplast microsatellitesasa toolforphy-
logeogr aphic stu dies: The ca se of white oak s in Poland. iForest -
Biogeosciences and Forestr y, 8, 765–771. https:// doi. org/ 10. 3832/
i f o r 1 5 9 7 - 0 0 8
Deng, Y.W.,Luo,Y.Y.,He,Y.,Qin,X.S., Li,C.G .,&Deng, X.M.(2020).
CompletechloroplastgenomeofMichelia shiluensisandacompar-
ativeanalysiswit hfourMagnoliaceaespecies.Forestr y, 11(3), 267.
h t t p s : / / d o i . o r g / 1 0 . 3 3 9 0 / f 1 1 0 3 0 2 6 7
Doyle, J. J., & Doyle, J. L. (1987).A rapid DN A isolation procedure for
small quantities of fresh le af tissues. Phytochemical Bulletin, 19,
11–1 5 .
Drescher,A.,Ruf,S., Calsa, T.J., Carrer,H.,& Bock,R .(2000).Thet wo
largestchloroplastgenome-encodedopenreadingframesofhigher
plants are essential genes. The Plant Journal, 22(2),97–104.ht tp s://
d o i . o r g / 1 0 . 1 0 4 6 / j . 1 3 6 5 - 3 1 3 x . 2 0 0 0 . 0 0 7 2 2 . x
Ebersbach, J., Posso-Terranova, A ., Bogdanowic z, S., Gómez-Diaz, M.,
García-González, M. X., Bolívar-Garcia, W., & Andrés, J. (2020).
Complexpatternsofdifferentiationandgeneflowunderlythediver-
genceofaposematicphenotypesinOophagapoisonfrogs.Molecular
Ecology, 29(11),1944–1956.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / m e c . 1 5 3 6 0
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
15 of 17
XIAO et al .
Edmonds, J. M., & Stanifor th, M. (1998). Toona sinensis: Meliaceae.
Curtis's Botanical Magazine, 15, 186–193.https :// doi. or g/ 10. 1111/
1 4 6 7 - 8 7 4 8 . 0 0 1 6 9
Ennos, R . A., French, G. C., & Hollingsworth, P.M. (2005). Conser ving
taxonomic complexity.Trends in Ecology & Evolution, 20(4), 164–
168. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . t r e e . 2 0 0 5 . 0 1 . 0 1 2
Ennos, R.A., Whitlock, R., Fay,M.F.,Jones, B., Neaves,L.E., Payne,R.,
Taylor,I.,DeVere,N.,&Hollingsworth,P.M.(2012).Process-based
speciesactionplans:Anapproachtoconservecontemporaryevo-
lutionaryprocessesthatsustaindiversityintaxonomicallycomplex
groups. Botanical Journal of the Linnean Society, 168 (2), 194–203.
h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 0 9 5 - 8 3 3 9 . 2 0 1 1 . 0 1 2 0 6 . x
Excoff ier,L.,Laval,G.,&Schneider,S.(20 05).Arlequin(version3.0):An
integratedsoftwarepackageforpopulationgeneticsdataanalysis.
Evolutionary Bioinformatics, 1(4), 47–50. https :// doi. org/ 10. 1177/
117693430500100003
Fang,H.L.,Guo,Q.S.,Shen,H.J.,&Shao,Q.S.(2010).Phylogeography
ofChrysanthemum indicumL.(Co mp os it ae)in Chinaba se dontrnL - F
sequences.Biochemical Systematics and Ecology, 38(6),1204–1211.
h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . b s e . 2 0 1 0 . 1 2 . 0 1 1
Federici,S.,Galimber ti,A.,Bar tolucci,F.,Bruni,I.,DeMattia,F.,Cortis,P.,
&Labra,M.(2013).DNAbarcodingtoanalysetaxonomicallycom-
plex gro ups in plants : The case of Thymus (Lamiaceae).Botanical
Journal of the Linnean Society, 171(4), 687–699.https:// doi. org/ 10.
1111/b oj .12 03 4
Ferreira,D. M., Palma-Silva,C.,Neri, J.,Medeiros,M.C.,Pinange,D.S.,
Benko-Iseppon,A.M.,&Louzada,R.B .(2021). Populationgenetic
struc tureandspe ciesdelimitationintheCryptanthus zonatuscom-
plex(Bromeliaceae).Botanical Journal of the Linnean Society, 196 (1),
12 3 –14 0 . h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / b o t l i n n e a n / b o a a 0 9 4
Frazer,K.A .,Pachter,L.,Poliakov,A.,Rubin,E.M.,&Dubchak ,I.(20 04).
VISTA: Computational tools for comparative genomics. Nucleic
Acids Research, 32, W273–W279. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / n a r /
gkh458
Freeland, J. R., Kirk, H., & Petersen, S. D. (2011). Molecular ecology.
Wiley-Blackwell.
Fu,L. K., & Jin ,J.M. (1992).China plant red data book: Rare and endan-
gered plants(Vol.1).SciencePress.
Funk, D. J., & Om land, K . E. (2003 ). Species- level parap hyly and po ly-
phyly:Frequency,cause,andconsequences,withinsightsfroman-
imalmitochondrialDNA.Annual Review of Ecology and Systematics,
34(1), 397–423. https:// doi. org/ 10. 1146/ annur ev. ecols ys. 34.
011802. 132421
Greine r,S. , Lehwark , P., & Bock , R. (2019). Organ ellar geno me DRAW
(OGDR AW)version1.3.1:Expandedtoolkit forthegr aphicalvisu-
alizationoforganellargenomes.Nucleic Acids Research, 47,59–64.
h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / n a r / g k z 2 3 8
Grudinski, M., Wanntorp, L ., Pannell, C. M., & Muellner-Riehl, A. N.
(2014). West to eas t dispersal in a w idespread an imal-dispers ed
woody angiosper m genus (Aglaia, Meliaceae) across the indo-
Australian archipelago. Journal of Biogeography, 41(6) , 1149–1159.
h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j b i . 1 2 2 8 0
Hu, Y. (2019). Phylogeographic structure of Toona ciliata (Meliaceae) in
China inferred from cpDNA markers and ecological niche model analy-
ses (MSc the sis).SouthChinaAgriculturalUniversity.
Hu,Y.,Wang,X.,Zhang,X .X .,Zhou,W., Chen, X. Y.,&Hu,X. S.(2019).
Advancing phylogeography with chloroplast DNA markers.
Biodiversity Science, 27(2), 219–234. https:// doi. or g/ 10. 17520/
biods.2018319
Huang, D., Hefer, C., Kolosova, N., Douglas, C., & Cronk, Q. (2014).
Wholeplastome sequencing revealsdeepplastiddivergenceand
cytonucleardiscordancebetween closely related balsampoplars,
Populus balsamifera and P. trichocarpa(Salic aceae).New Phytologist,
204(3),693–703.h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / n p h . 1 2 9 5 6
Huang, J.L.,Sun, G.L.,&Zhang,D.M. (2010).Molecularevolutionand
phylogenyoftheangiospermyc f2 gene. Journal of Systematic s and
Evolution, 48(4), 240–248. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 7 5 9 - 6 8 3 1 .
2010. 00080. x
Hudson,R.R.,&Coyne,J.A.(2002).Mathematicalconsequencesofthe
genealogical species concept. Evolution, 56(8),1557–1565.ht t p s ://
d o i . o r g / 1 0 . 1 1 1 1 / j . 0 0 1 4 - 3 8 2 0 . 2 0 0 2 . t b 0 1 4 6 7 . x
Kikuch i, S., Asaku ra, Y., Imai, M., Nak ahira, Y., Kotani, Y., Hashi guchi,
Y.,Nakai, Y.,Takafuji, K., dard, J.,Hirabayashi-Ishioka, Y.,Mori,
H., Shiina, T.,& Nakai, M. (2018). A Yc f2-FtsHi heteromeric A AA-
ATPasecomplex is requiredfor chloroplast protein import. Plant
Cell, 30(11),2677–2703.https:// doi. org/ 10. 1105/ tpc. 18. 00357
Kimura, M. (1962). On the probability of fixation of mutant genes in a
population. Genetics, 47(6), 713–719. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 /
genet ics/ 47.6. 713
Kumar,S ., Stecher,G., Li,M., Knyaz,C ., & Tamura, K. (2018).MEGAX:
Molecular evolutionary genetics analysis across computing plat-
forms. Molecular Biology and Evolution, 35(6), 1547–15 49. ht t p s ://
d o i . o r g / 1 0 . 1 0 9 3 / m o l b e v / m s y 0 9 6
Kumar,S., Stecher,G.,Suleski,M., & Hedges, S. B. (2017). TimeTree:A
resourcefortimelines,timetrees,anddivergencetimes.Molecular
Biology and Evolution, 34(7), 1812–1819. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 /
mol bev/msx116
Langmead,B.,&Salzberg,S.L.(2012).Fastgapped-readalignmentwith
bowtie.Nature Methods, 9,357–359.
Laslet t, D., & Canbäck, B. (20 08). ARWEN, a program to detect
tRNA genes in metazoan mitochondrial nucleotide sequences.
Bioinformatics, 24(2),172–175.h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / b i o i n f o r m a
tics/btm573
Lee-Yaw,J. A ., Grass a, C. J., Jo ly,S ., Andre w,R . L., & Ri eseber g, L. H.
(2019). An evalua tion of alternat ive explanat ions for widesp read
cytonuclear discordance in annual sunflowers (Helianthus). New
Phytologist, 221(1),515–526.https:// doi . o rg / 10. 1111 / nph. 1538 6
Leliaer t, F., Verbruggen, H ., Wysor, B., & De Clerc k, O. (2009). DNA
taxonomyinmorphologicallyplastict axa: Algorithmicspecies de-
limitation in the Boodlea complex (Chlorophyta: Cladophorales).
Molecular Phylogenetics and Evolution, 53(1), 122–133. ht t p s :// d o i .
o r g / 1 0 . 1 0 1 6 / j . y m p e v . 2 0 0 9 . 0 6 . 0 0 4
Li,F.W.,Kuo,L. Y.,Pryer,K.M.,& Rothfels,C.J.(2016).Genestr anslo-
catedintothe plastidinvertedrepeatshowdeceleratedsubstitu-
tion rates and elevated GC content. Genome Biology and Evolution,
8(8),2452–2458.h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / g b e / e v w 1 6 7
Li, H. T., Yi, T. S., G ao, L. M., Ma, P.F.,Zhang, T., Yang, J. B.,Wang, J.,
Gitzendanner, M., Fritsch, P., Cai, J., Luo, Y., Wang, H., Bank,
M., Zhang, S. D., Wang , Q. F., Zhang, Z . R., Fu, C. N., Yang, J.,
Hollingsworth,P.,&Li,D.Z.(2019).Originofangiospermsandthe
puzzleoftheJurassicgap.Nature Plants, 5(5),461–470.ht t p s : // d o i .
o r g / 1 0 . 1 0 3 8 / s 4 1 4 7 7 - 0 1 9 - 0 4 2 1 - 0
Li,P.,Que,Q.M.,Wu,L.Y.,Zhu,Q.,&Chen,X.Y.(2017).Growthrhythms
of Toona ciliata seedli ngs from differ ent provenances . Journal of
South China Agricultural University, 38(1), 96–102.https:// doi. org/
1 0 . 7 6 7 1 / j . i s s n . 1 0 0 1 - 4 1 1 X . 2 0 1 7 . 0 1 . 0 1 6
Li, P.,Zhan, X., Que,Q. M., Qu, W.T.,Liu, M. Q.,Ouyang, K. X., Li,J.,
Deng, X ., Zhang, J ., Liao, B., Pi an, R., & Ch en, X. (2015 ). Genetic
diversityandpopulationstr uctureofToona ciliataRoem.basedon
sequence-relatedamplifiedpolymorphism(SRAP)markers.Forests,
6(12),1094–1106.h t t p s : / / d o i . o r g / 1 0 . 3 3 9 0 / f 6 0 4 1 0 9 4
Li, W. W., Liu, L. Q. , Zhang, Q. P., Zhou, W. Q., Fan, G . Q., & Liao, K.
(2021).PhylogeographyofPrunus armeniacaL.revealedbychloro-
plastDNAandnuclear ribosomalsequences.Scientific Reports, 11,
13623. h t t p s : / / d o i . o r g / 1 0 . 1 0 3 8 / s 4 1 5 9 8 - 0 2 1 - 9 3 0 5 0 - w
Li,Y.,Gao,Q.B.,Gengji,Z.M.,Jia,L.K.,Wang,Z.H.,&Chen,S.L.(2018).
Rapid intraspecific diversification of the alpine species Saxifraga
sinomontana (Saxifragaceae) in the Qinghai-Tibetan Plateau and
Himalayas. Frontiers in Genetics, 9, 381. h t t p s : / / d o i . o r g / 1 0 . 3 3 8 9 /
f g e n e . 2 0 1 8 . 0 0 3 8 1
Li,Z.H.,Ma, X., Wang, D. Y.,Li,Y.X ., Wang, C. W.,&Jin,X .H.(2019).
Evolutionofplastidgenomes of Holcoglossum (Orchidaceae) with
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
16 of 17 
|
   XIAO et al.
recent radiation. BMC Evolutionary Biology, 19(1), 63. ht t p s : // d o i .
o r g / 1 0 . 1 1 8 6 / s 1 2 8 6 2 - 0 1 9 -1 3 8 4 - 5
Liang, R .L., Liao,R. Y.,& Dai,J.(2011).A nalysisof endangered causes
andprotectionstrategiesofToona ciliata. Guangxi Forestry Science,
40(3),201–203.h t t p s : / / d o i . o r g / 1 0 . 1 9 6 9 2 / j . c n k i . g f s . 2 0 1 1 . 0 3 . 0 1 1
Librado,P.,&Rozas,J.(2009).DnaSPv5:Asoftwareforcomprehensive
analysisof DNApolymorphismdata. Bioinformatics, 25(1 1) , 14 51–
1452. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / b i o i n f o r m a t i c s / b t p 1 8 7
Lin,N.,Moore,M .J.,Deng,T.,Sun,H.,Yang,L.S.,Sun,Y.X.,&Wang,H.
C. (2018). Complete plastome sequencing fromToo na (Meliaceae)
andphylogenomicanalyseswithinSapindales.Applications in Plant
Sciences, 6, e1040. https:// doi. or g/ 10. 1002/ aps3. 10 40
Liu, C., Shi,L., Zhu, Y., Chen,H.M.,Zhang,J. H.,Lin, X. H., & Guan, X.
(2012). CpG AVAS, an inte grated web ser ver for the annota tion,
visualization,analysis,andGenBanksubmissionofcompletelyse-
quencedchloroplastgenomesequences.B MC Genomics, 13(1),715.
htt ps:// doi. org / 10. 1186/ 1471- 216 4- 13- 715
Liu,J.,Che n, Y.T.,Ji ang ,J.M.,He ,G .P., &Yu ,G .M.(200 9) .Stu dy on po p-
ulation genetic structure in Toona ciliata var. pubescens wit h SSR.
Forest Research, 22(1),37–41.
Lowe,T.M., &Chan,P.P.(2016).tRNAscan-SEon-line:Search andcon-
textualanalysis oftransferRNAgenes.Nucleic Acids Research, 44,
54– 57. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / n a r / g k w 4 1 3
Mader, M., Pa kull, B., Blan c-J olivet, C., Pa ulini-Drewes, M ., Bouda, Z.
H.N., Degen,B., Small,I., &Kersten,B. (2018). Complete chloro-
plastgenomesequencesoffourMeliaceaespecies andcompara-
tive analyses. International Journal of Molecular Sciences, 19(3),701.
h t t p s : / / d o i . o r g / 1 0 . 3 3 9 0 / i j m s 1 9 0 3 0 7 0 1
Mata-Sucre,Y.,Matzenauer,W.,Castro,N.,Huet tel,B.,Pedrosa-Harand,
A., Marques, A.,& Souza,G.(2023). Repeat-based phylogenomic s
shedlightonunclearrelationshipsinthemonocentricgenusJuncus
L.(Juncaceae). Molecular Phylogenetics and Evolution, 189,107930.
h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . y m p e v . 2 0 2 3 . 1 0 7 9 3 0
Muellner,A. N.,Pennington, T.D.,Koecke,A.V.,&Renner,S.S.(2010).
Biogeography of Cederela (Meliaceae, Sapindales) in central and
South America. Botany, 97(3), 511–518. https:// doi. org/ 10. 3732/
ajb.0900229
Ni,Y.,Li,J.,Zhang,C .,&Liu,C.(2023).Generating sequencing depth and
coverage map for organelle genomes. protocols.io. https:// doi. org/ 10.
1 7 5 0 4 / p r o t o c o l s . i o . 4 r 3 l 2 7 j k x g 1 y / v 1
Palmer,J.D.(1985).Comparativeorganizationofchloroplastgenomes.
Annual R eview of Genetics, 19(1),325–354.https:// doi. org/ 10. 1146/
a n n u r e v . g e . 1 9 . 1 2 0 1 8 5 . 0 0 1 5 4 5
Palumbi, S. R., Cipriano, F., & Hare, M. P. (2001). Predicting nuclear
gene coal escence fro m mitochond rial data: T he three-tim es rule.
Evolution, 55(5), 859–868. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 0 0 1 4 - 3 8 2 0 .
2 0 0 1 . t b 0 0 6 0 3 . x
Panitsa,M.,Koutsias,N.,Tsiripidis,I.,Zotos,A .,&Dimopoulos,P.(2011).
Species-based versus habitat-based evaluation for conservation
status assessment of habitat types in the East Aegean islands
(Gree ce). Journal for Nature Conservation, 19 (5), 269–275. ht t p s ://
d o i . o r g / 1 0 . 1 0 1 6 / j . j n c . 2 0 1 1 . 0 4 . 0 0 1
Perry,A.S., & Wolfe, K . H. (20 02). Nucleotide substitution rates in le-
gumechloroplastDNAdependonthepresenceoftheinvertedre-
peat. Jour nal of Molecular Evolu tion, 55(5),501–508.https:// doi. org/
1 0 . 1 0 0 7/ s 0 0 2 3 9 - 0 0 2 -2 3 3 3 - y
Pons,O.,&Petit,R.J.(1996).Measuringandtestinggeneticdifferentia-
tion with ordered versus unordered alleles. Genetics, 144(3),1237–
1245. h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / g e n e t i c s / 1 4 4 . 3 . 1 2 3 7
Provan, J. , Powell, W., & Hollin gsworth , P. M. (2001). C hloroplas t mi-
crosatellites: Newtoolsforstudiesinplantecologyandevolution.
Trends in Ecology & Evolution, 16 (3), 142–147. https:// doi. org/ 10.
1 0 1 6 / s 0 1 6 9 - 5 3 4 7 ( 0 0 ) 0 2 0 9 7 - 8
Ravi,V.,Khur ana, J.P.,Tyagi, A. K.,&Khurana,P.(2008).An updateon
chloroplastgenomes.Plant Systematics and Evolution, 271( 1), 10 1–
122. https:// doi. org/ 10. 1007/ s0060 6- 007- 0608- 0
Rivas-Chamorro, M., Cadenillas, R., Ge, X. J., Jin, L., Millan , B., &
Roncal, J. (2023). Testing species relationships and delimitation
in the Amazonian hyperdominant Astrocaryum section Huicungo
(Arec aceae) usingchloroplastdata from genomeskimming.Ta xon ,
72(3),501–514.h t t p s : / / d o i . o r g / 1 0 . 1 0 0 2 / t a x . 1 2 9 2 8
Rousset,F.(1997). Genetic differentiation and estimation of gene flow
from F-statistics under isolation by distance. Genetics, 145(4),
1219–1228.h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / g e n e t i c s / 1 4 5 . 4 . 1 2 1 9
Rozas, J., Ferrer-Mata, A., nchez-DelBarrio, J. C., Guirao-Rico, S.,
Librado, P., Ramos-Onsins, S. E., & Sanchez-Gracia, A. (2017).
DnaSP 6:DNAsequence polymorphismanalysis oflargedatasets.
Molecular Biolog y and Evolution, 34(12), 3299–3302. h t t p s : // d o i .
o r g / 1 0 . 1 0 9 3 / m o l b e v / m s x 2 4 8
Shaw,J.,L ickey,E.B.,Schilling,E.E .,&Sma ll,R.L .(2007).Compar iso nof
wholechloroplastgenomesequencestochoosenoncodingregions
forphylogeneticstudiesinangiosperms:Thetortoiseandthehare
III.American Journal of Botany, 94 (3), 275–288.https:// doi. org/ 10.
3 7 3 2 / a j b . 9 4 . 3 . 2 7 5
Sloan,D.B.,Harird,J.C.,&Sharbrough,J.(2017).Theon-again,off-again
relationshipbetweenmitochondrialgenomesandspeciesboundar-
ies. Molecular Ecology, 26 (8), 2212–2236. ht tps:// doi . org/ 10. 1111/
m e c . 1 3 9 5 9
Suchar d, M. A., L emey, P., Bael e, G., Ayres , D. L., Dru mmond, A . J., &
Rambaut,A.(2018).Bayesianphylogeneticandphylodynamicdata
integrationusingBEAST1.10.Virus Evolution, 4(1),vey016.h t tp s://
d o i . o r g / 1 0 . 1 0 9 3 / v e / v e y 0 1 6
Syring, J., Farrell, K., Businský, R., Cronn, R., & Lis ton, A . (2007 ).
WidespreadgenealogicalnonmonophylyinspeciesofPinussubge-
nus Strobus. Systematic Biology, 56(2),163–181.https:// doi. org/ 10.
1080/ 10635 15 070 1258787
Taberlet, P.,Gielly,L .,Pautou, G., &Bouvet, J.(1991).Universalprimers
foramplificationofthreenon-codingregionsofchloroplastDNA.
Plant Molecular Biology, 17, 1105–1109. https:// doi. org/ 10 . 1007/
BF00037152
Tan, F.X ., Li, W. X., Feng , H., Huang, Y. L., & B anerjee, A . K. (2023).
Interspecific variation and phylogenetic relationship between
mangroveandnon-mangrovespeciesofasamefamily(Meliaceae)-
insights from comparative analysis of complete chloroplast ge-
nome.PeerJ, 11, e15527. h t t p s : / / d o i . o r g / 1 0 . 7 7 1 7 / p e e r j . 1 5 5 2 7
Wang, X. , Xiao, Y., He, Z. H., Li, L . L., Lv, Y. W., & Hu, X. S. (20 22).
EvolutionarydivergencebetweenToona ciliata and Toona sinensis
assayedwiththeirwholegenomesequences.Genes, 13(10), 1799.
h t t p s : / / d o i . o r g / 1 0 . 3 3 9 0 / g e n e s 1 3 1 0 1 7 9 9
Wang,X .,Xiao,Y.,He,Z.H.,Li,L.L., Song,H.Y.,Zhang,J.J.,Cheng,X.,
Chen,X.Y.,Li,P.,&Hu,X.S. (2022). Achromosome-levelgenome
assemblyofToona ciliata(Meliaceae).Genome Biology and Evolution,
14(8),evac121.h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / g b e / e v a c 1 2 1
Wen, F.,Wu , X. Z., Li , T.J., J ia, M. L. , Liu, X. S ., & Liao, L . (2021). The
completechloroplastgenomeofStauntonia chinensisandcompared
analysisrevealedadaptiveevolutionofsubfamilyLardizabaloideae
species in China. BMC Genomics, 22, 1. https:// doi. org/ 10. 1186/
s1286 4- 021- 07484 - 7
Wen,W.H.,Wu,J.Y.,Chen,M.G.,Chen,J.F.,Cheng,Y.,Wang,X .J.,
&Liu, Q. (2012). Seedling grow th performance of Toona ciliata
elite trees progeny. Chinese Agricultural Science Bulletin, 28(3 4),
36 –3 9.
Xiao, Y., Wang, X ., Li, L. L ., He, Z. H ., & Hu, X. S . (2022). Adva nces in
speciationtheoriesand theirverifications basedon thebiological
species concept . Biodiversity Science, 30, 21480. https:// doi. org/ 10.
17520/biods.2021480
Xiao,Y.,Zhang,X.X.,Hu,Y.,Wang,X.,Li,P.,He,Z.H.,Lv,Y.W.,Chen,X.
Y.,&Hu,X .S.(2023).Phylogeographyof Toona ciliata(Meliaceae)
complex in China inferredfromcytonuclearmarkers. Genes, 14(1) ,
116. h t t p s : / / d o i . o r g / 1 0 . 3 3 9 0 / g e n e s 1 4 0 1 0 1 1 6
Xie, D.F., Yu,Y., Deng,Y.Q.,Li,J.,Liu, H. Y.,Zhou,S.D.,& He,X.J.
(2018).Comparativeanalysisofthe chloroplastgenomesofthe
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
   
|
17 of 17
XIAO et al .
ChineseendemicgenusUrophysaandtheircontributiontochlo-
roplast phylogeny and adaptive evolution. International Journal
of Molecular Sciences, 19(7),18 47.h t t p s : / / d o i . o r g / 1 0 . 3 3 9 0 / i j m s 1
9071847
Xie, J. G. , Del Tredici, P., LaPorte , M., Bekmetj ev,A ., Lemmon, A . R.,
Lemmon,E.M.,G ong,W.,Tang,Y.,&Li,J. H.(2023).Phylogenetic
relationshipsofTilia(Malvaceae)inferredfrommultiplenuclearloci
and plastid genomes.International Journal of Plant Sciences, 18 4,
56 67. https:// doi. org/ 10. 1086/ 722474
Xin, G. L ., Liu, J. Q. , & Liu, J. (2018). Co mplete chl oroplast g enome of
an endangered tree species, Toona ciliata(Sapindales:Meliaceae).
Mitochondrial DNA Part B Resources, 3(2),663–664.https:// doi. org/
1 0 . 1 0 8 0 / 2 3 8 0 2 3 5 9 . 2 0 1 8 . 1 4 7 6 0 7 4
Xu,C.,Dong,W.P.,Li,W.Q.,Lu,Y.Z.,Xie,X.M .,Jin,X .B.,Shi,J.,He,K.,
&Suo,Z.(2017).Comparativeanalysisofsixlagerstroemiacomplete
chloroplastgenomes. Frontiers in Plant Science, 8, 15. ht t p s : // d o i .
o r g / 1 0 . 3 3 8 9 / f p l s . 2 0 1 7 . 0 0 0 1 5
Yang,J.,Vazquez, L.,Feng, L.,Liu, Z., & Zhao, G.(2018).Climaticand
soil fac tors shap e the demogr aphical h istory a nd genetic di ver-
sityof adeciduousoak(Quercus liaotungensis)inNor ther nChina.
Frontiers in Plant Science, 9, 1534. h t t p s : / / d o i . o r g / 1 0 . 3 3 8 9 / f p l s .
2018. 01534
Yang,Z.H.(2006).Computational Molecular Evolution.OxfordUniversity
Press.
Yang, Z. H. (20 07). PAML 4: Phylo genetic anal ysis by maxim um likeli-
hood. Molecular Biology and Evolution, 24(8), 1586–1591.h tt ps://
d o i . o r g / 1 0 . 1 0 9 3 / m o l b e v / m s m 0 8 8
Yang,Z. H., & Bielawski, J. B.(200 0). Statistical methods for detecting
molecular adaptation. Trends in Ecology & Evolution, 15(12), 496–
503. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / s 0 1 6 9 - 5 3 4 7 ( 0 0 ) 0 1 9 9 4 - 7
Yang,Z. H.,&Swanson,W.J.(2002).Codon-substitutionmodels tode-
tectadaptive evolutionthat accountfor heterogeneousselective
pressuresamongsiteclasses.Molecular Biology and Evolution, 19(1),
49 –5 7.h t t p s : / / d o i . o r g / 1 0 . 1 0 9 3 / o x f o r d j o u r n a l s . m o l b e v . a 0 0 3 9 8 1
Zhan, X ., Li, P., Hui, W. K., Deng , Y.W., Gan , S. M., Sun, Y., Zha o, X.,
Chen,X.,& De ng ,X .( 2019).Geneticdi ve rs it ya nd po pu lations truc-
ture of Toona ciliatarevealed by simple sequence repeat markers.
Biotechnology & Biotechnological Equipment, 33(1),214–222.ht t p s://
doi. org/ 10. 10 80/ 1310 2 818. 2018. 15 61210
Zhang, C . H. (2018). Study on characteristics and suitable region distri-
butions for Toona ciliata and Congenerics (PhD thesis). Chinese
AcademyofForestrySciences.
Zhang,C.H.,He,J.,Sun,Y.Y.,&Li,K.(2018a).Predictionofdistributional
changeofToona ciliata var. ciliata and application in regionalization
of introduction based on MaxEnt. Journal of Yunnan University,
40(1),164 –173.
Zhang, C. H.,He,J.,Sun,Y.Y.,& Li,K.(2018b).Distributionalchangein
suitableareasforT. ciliata var. pubescens basedon MaxEnt.Forest
Research, 31(1),120–126.
Zhang, Z., Schwart z,S., Wagner,L., & Miller, W.(20 00).A greedy algo-
rithmforaligningDNAsequences.Journal of Computational Biology,
7(1–2) , 2 0 3–2 14 .
Zhou, W., Zha ng, X. X. , Ren, Y., Li, P.,C hen, X. Y., & Hu, X . S. (2020).
Matingsystemandpopulationstr uctureinthenaturaldistribution
ofToona ciliata(Meliaceae)inSouthChina.Scientific Reports, 10 (1),
16998.h t t p s : / / d o i . o r g / 1 0 . 1 0 3 8 / s 4 1 5 9 8 - 0 2 0 - 7 4 1 2 3 - 8
Zhu,A .,Guo,W.,Gupta, S.,Fan,W.,&Mower,J.P.(2016).Evolutionar y
dynamicsof the plastidinverted repeat:T heef fectsof expansion,
contraction, and losson substitution rates. New Phytologist, 209,
1747–1756.https:// doi . org/ 10. 1111/ nph. 13743
SUPPORTING INFORMATION
Additional supporting information can be found online in the
Suppor tingInformationsectionattheendofthisarticle.
How to cite this article: Xiao,Y.,Wang,X.,He,Z.-H.,Lv,
Y.-W.,Zhang,C.-H.,&Hu,X.-S.(2023).Assessingthe
phylogeneticrelationshipamongvarietiesofToona ciliata
(Meliaceae)insympatrywithchloroplastgenomes.Ecology
and Evolution, 13, e10828. https://doi.org/10.1002/
ece3.10828
20457758, 2023, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.10828 by South China Agricultural, Wiley Online Library on [13/12/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
... The distribution of haplotypes in the western region was consistent with previous results. Xiao et al. [21] showed well-mixed phylogenetic relationships among individuals of four varieties of T. ciliata in Yunnan Province (T. ciliata var. ...
... Information on well-mixed genetic relationships among all samples derived from phylogenetic relationships (Figures 5 and 6) is partially consistent with the results of four varieties assayed with chloroplast sequences [21]. This supports the previous recommendation of conserving the genetic variation of this species in terms of the T. ciliata complex rather than individual varieties. ...
Article
Full-text available
Toona ciliata is a deciduous or semi-deciduous tree species and belongs to the Toona genus of the Meliaceae family. Owing to low natural regeneration and over-exploitation, the species is listed as an endangered species at level II in China and its conservation has received increasing concern. Here, we sampled 447 individuals from 29 populations across the range-wide distribution of the T. ciliata complex in China and assessed their genetic variation using two chloroplast DNA markers. The results showed that the overall haplotype diversity and nucleotide diversity per site were high at h = 0.9767 and π = 0.0303 for the psbA-trnH fragment and h= 0.8999 and π = 0.0189 for the trnL-trnL fragment. Phylogenetic analysis supported the division of the natural distribution of T. ciliata complex into western and eastern regions. The genetic diversity was higher in the western region than in the eastern region, showing significant phylogeographic structure. Genetic differentiation among populations was moderate (Φst=42.87%), and the effects of isolation by distance (IBD) were significant. A neutrality test and mismatch distribution analysis indicated that the distribution of the T. ciliata complex generally did not expand, although a few local populations could likely expand after bottleneck effects. The overall results were complementary to and consolidated previous studies using mitochondrial and nuclear DNA markers. We finally discussed strategies for the genetic conservation of the T. ciliata complex.
... Its genetic conservation is of increasing concern due to overcutting and a low natural regeneration rate in China. A conservation strategy based on the T. ciliata complex rather than a single variety was recommended from the analysis of the population genetic structure [3] and phylogenetic relationships among varieties [45]. A similar case was also reported in an endangered Araucaria angustifolia, whose varieties were rarely considered in conservation strategies [46,47]. ...
Article
Full-text available
Forest genetic conservation is typically species-specific and does not integrate interspecific interaction and community structure. It mainly focuses on the theories of population and quantitative genetics. This approach depicts the intraspecific patterns of population genetic structure derived from genetic markers and the genetic differentiation of adaptive quantitative traits in provenance trials. However, it neglects possible interspecific interaction in natural forests and overlooks natural hybridization or subspeciation. We propose that the genetic diversity of a given species in a forest community is shaped by both intraspecific population and interspecific community evolutionary processes, and expand the traditional forest genetic conservation concept under the community ecology framework. We show that a community-specific phylogeny derived from molecular markers would allow us to explore the genetic mechanisms of a tree species interacting with other resident species. It would also facilitate the exploration of a species' ecological role in forest community assembly and the taxonomic relationship of the species with other species specific to its resident forest community. Phylogenetic β-diversity would assess the similarities and differences of a tree species across communities regarding ecological function, the strength of selection pressure, and the nature and extent of its interaction with other species. Our forest genetic conservation proposal that integrates intraspecific population and interspecific community genetic variations is suitable for conserving a taxonomic species complex and maintaining its evolutionary potential in natural forests. This provides complementary information to conventional population and quantitative genetics-based conservation strategies.
Preprint
Full-text available
The success in development of molecular markers, phylogenetic analysis, and genetic engineering relies heavily on high quality organelle genomes. Any errors in the assembly of these genomes can result in inaccurate downstream analysis. In this article, we present a complete protocol for assessing the assembly quality of organelle genomes using sequencing depth and coverage plot. The protocol consists of nine steps that can be divided into three sections, allowing users to map sequence reads to the assembly, calculate sequence depth and coverage, and plot the data using a custom script, respectively. We provide detailed instructions for setting up the computational environment and running the analytical software tools. This protocol is particularly suitable for users with little bioinformatic experience and will play a vital role in ensuring the high assembly quality of organelle genomes.
Article
Full-text available
Toona ciliata is an important timber species but is recognized as an endangered species at level II in China. Its genetic conservation is of increasing concern. Provenance trials and other breeding programs were conducted to develop seed transfer rules and multiplications. Here, we investigated twenty-nine populations sampled across the natural distribution of the T. ciliata complex using mtDNA and nrDNA ITS (ribosomal internal transcribed spacer) markers. Haplotype diversity was h = 0.190 ± 0.202 and nucleotide diversity was π = 0.000383 ± 0.000536 for mtDNA marker. Nucleotide diversity for ITS sequences was 0.00837 ± 0.000783. Haplotypes exhibited phylogeographic structure in spatial distribution. The extent of genetic differentiation was significant (Fst = 0.6994 ± 0.0079 for ITS and 0.8870 ± 0.0077 for mtDNA marker). Isolation by distance (IBD) and by elevation (IBE) occurred among populations. Phylogenetic relationships from mtDNA marker indicated three genetically distinct regions, each without IBD effects. Compared with pollen flow, seed flow was strongly impeded in the western region, but extensive in the central region, and less impeded in the eastern region. Most populations did not exhibit expansion, with only a few populations showing expansion after bottleneck effects. We discussed a strategy of region-based genetic conservation and proposed to conserve multiple populations in the western and eastern regions and a few populations in the central region.
Article
Full-text available
Toona ciliata and Toona sinensis belong to the Toona genus of the Meliaceae family and are important timber species in China. T. ciliata is an endangered species at level II due to overcutting and a low rate of natural regeneration. T. sinensis was cultivated as an economic and nutritious tree for more than 2000 years. The two species differ in flower and leaf morphological traits, reproductive systems, and range size of natural distribution. To reveal the potential molecular basis of these divergences, we examined the similarities and differences in their whole genome sequences. Results indicate that T. ciliata had a higher number of expanded gene families than T. sinensis. The whole genome duplication (WGD) occurred before their speciation. The long-terminal repeats (LTRs) insertion was earlier in the T. ciliata genome (3.2985 ± 2.5007 Mya) than in the T. sinensis genome (3.1516 ± 2.2097 Mya). Twenty-five gene families in the T. ciliata genome were detected to be under positive selection compared with background branches of ten different land species. The T. ciliata genome was highly collinear with the T. sinensis genome, but had low collinearity with the genomes of more distant species. These genomic and evolutionary divergences are potentially associated with the differences between T. ciliata and T. sinensis in terms of their reproductive systems and ecological adaptation.
Article
Full-text available
Toona ciliata Roem is an important timber species in the Toona genus of the Meliaceae family and an endangered species due to over-cutting and a low rate of natural regeneration in China. Although molecular markers have been applied to studying population genetic diversity, the absence of a reliable reference genome limits in-depth genetic conservation and evolutionary studies of this species. Here, we reported a high-quality assembly of the whole genome sequence of T. ciliata. The total assembled genome has 520.64Mb in length anchored on 28 chromosomes (contig N50 = 4.48Mb). A total of 42,159 genes were predicted after the ab initio, homology-based and transcriptome analyses. A total of 41,284 protein-encoding genes (97.92%) were functionally annotated and 1,246 non-coding RNAs were identified in the T. ciliata genome. Phylogenomic analysis showed that T. ciliata was divergent at 15.06 (6∼25) Mya from T. sinensis of the same genus Toona. This whole genome sequence provides a valuable resource to study genetic conservation and molecular evolution of T. ciliata in the future.
Article
Full-text available
To clarify the phytogeography of Prunus armeniaca L., two chloroplast DNA fragments (trnL-trnF and ycf1) and the nuclear ribosomal DNA internal transcribed spacer (ITS) were employed to assess genetic variation across 12 P. armeniaca populations. The results of cpDNA and ITS sequence data analysis showed a high the level of genetic diversity (cpDNA: HT = 0.499; ITS: HT = 0.876) and a low level of genetic differentiation (cpDNA: FST = 0.1628; ITS: FST = 0.0297) in P. armeniaca. Analysis of molecular variance (AMOVA) revealed that most of the genetic variation in P. armeniaca occurred among individuals within populations. The value of interpopulation differentiation (NST) was significantly higher than the number of substitution types (GST), indicating genealogical structure in P. armeniaca. P. armeniaca shared genotypes with related species and may be associated with them through continuous and extensive gene flow. The haplotypes/genotypes of cultivated apricot populations in Xinjiang, North China, and foreign apricot populations were mixed with large numbers of haplotypes/genotypes of wild apricot populations from the Ili River Valley. The wild apricot populations in the Ili River Valley contained the ancestral haplotypes/genotypes with the highest genetic diversity and were located in an area considered a potential glacial refugium for P. armeniaca. Since population expansion occurred 16.53 kyr ago, the area has provided a suitable climate for the population and protected the genetic diversity of P. armeniaca.
Article
Full-text available
Genetic studies are increasingly detecting cryptic taxa that likely represent a significant component of global biodiversity. However, cryptic taxa are often criticized because they are typically detected serendipitously and may not receive the follow‐up study required to verify their geographic or evolutionary limits. Here, we follow‐up a study of Eucalyptus salubris that unexpectedly detected two divergent lineages but was not sampled sufficiently to make clear interpretations. We undertook comprehensive sampling for an independent genomic analysis (3,605 SNPs) to investigate whether the two purported lineages remain discrete genetic entities or if they intergrade throughout the species’ range. We also assessed morphological and ecological traits, and sequenced chloroplast DNA. SNP results showed strong genome‐wide divergence (FST = 0.252) between two discrete lineages: one dominated the north and one the southern regions of the species’ range. Within lineages, gene flow was high, with low differentiation (mean FST = 0.056) spanning hundreds of kilometers. In the central region, the lineages were interspersed but maintained their genomic distinctiveness: an indirect demonstration of reproductive isolation. Populations of the southern lineage exhibited significantly lower specific leaf area and occurred on soils with lower phosphorus relative to the northern lineage. Finally, two major chloroplast haplotypes were associated with each lineage but were shared between lineages in the central distribution. Together, these results suggest that these lineages have non‐contemporary origins and that ecotypic adaptive processes strengthened their divergence more recently. We conclude that these lineages warrant taxonomic recognition as separate species and provide fascinating insight into eucalypt speciation.
Article
The mahogany family, Meliaceae, contains 58 genera with only one mangrove genus: Xylocarpus. Two of the three species of the genus Xylocarpus are true mangroves (X. granatum and X. moluccensis), and one is a non-mangrove (X. rumphii). In order to resolve the phylogenetic relationship between the mangrove and non-mangrove species, we sequenced chloroplast genomes of these Xylocarpus species along with two non-mangrove species of the Meliaceae family (Carapa guianensis and Swietenia macrophylla) and compared the genome features and variations across the five species. The five Meliaceae species shared 130 genes (85 protein-coding genes, 37 tRNA, and eight rRNA) with identical direction and order, with a few variations in genes and intergenic spacers. The repetitive sequences identified in the rpl22 gene region only occurred in Xylocarpus, while the repetitive sequences in accD were found in X. moluccensis and X. rumphii. The TrnH-GUG and rpl32 gene regions and four non-coding gene regions showed high variabilities between X. granatum and the two non-mangrove species (S. macrophylla and C. guianensis). In addition, among the Xylocarpus species, only two genes (accD and clpP) showed positive selection. Carapa guianensis and S. macrophylla owned unique RNA editing sites. The above genes played an important role in acclimation to different stress factors like heat, low temperature, high UV light, and high salinity. Phylogenetic analysis with 22 species in the order Sapindales supported previous studies, which revealed that the non-mangrove species X. rumphii is closer to X. moluccensis than X. granatum. Overall, our results provided important insights into the variation of genetic structure and adaptation mechanism at interspecific (three Xylocarpus species) and intergeneric (mangrove and non-mangrove genera) levels.
Article
Hyperdominant trees in Amazonia account for half of the individual trees (>10 cm dbh) in the forest, and thus play a crucial role in ecosystem dynamics. However, several of these widespread hyperdominant species may be complexes hiding cryptic diversity that can affect species richness estimates and conservation priorities. Here, we study the intraspecific variation of Astrocaryum murumuru (Arecaceae), a keystone and hyperdominant species in Amazonia, also known as Astrocaryum sect. Huicungo, a complex of 15 understory to subcanopy palm species. Using chloroplast DNA from genome skimming (>66 kbp alignment) in a Bayesian framework, we present evidence that A. sect. Huicungo represents three separately evolving lineages, suggesting that the section is not a single hyperdominant species, and that the 15 morphology-based species may be an over-representation. Genome skimming chloroplast data did not fully resolve the species-level phylogenetic relationships in A. sect. Huicungo mostly because of gene discordance and the paraphyly of most species. Contrary to a previous nuclear-based phylogenetic analysis, the chloroplast genomic data did not recover A. sect. Huicungo monophyletic, but yielded monophyly in an increased number of species (six) in the complex. Interspecific phylogenetic relationships showed a geographic pattern, and the traditional morphology-based classification was not supported. Our phylogenomic results are discussed in light of earlier phylogeographical studies using Sanger sequencing. Our findings show the utility of genome skimming data in species delimitation analyses to uncover intraspecific variation of hyperdominant species in Amazonia, the largest evergreen tropical forest.