ArticlePDF Available

Chemical profile of essential oils of the Costa Rican native tree Myrcianthes storkii (Myrtaceae)

Authors:

Abstract and Figures

Introduction: The genus Myrcianthes ranges from southern Florida to Chile, including the Caribbean, and the species Myrcianthes storkii is a shrub or tree found in Costa Rica and western Panama, in wet to very rainy, cloud, and oak forests (altitude 1300-3150m). Objective: To identify the chemical composition of essential oils from leaves, floral buds, and twigs of M. storkii of Costa Rica. Methods: We obtained the essential oils through hydrodistillation in a Clevenger-type apparatus. The chemical composition of the oils was done by GC/FID and GC/MS, using the retention indices on DB-5 and Carbowax types of capillary columns in addition to mass spectra. Results: The oils consisted mainly of terpenoids (55,45-87,75%). A total of 281 compounds accounted for 91,27-74,56% of the total amount of oils. The major constituents from the leaf oil were myrcene (17,44%), cis-calamenene (12,60%), α-pinene (5,48%), (E)-caryophyllene (5,16%), limonene (3,91%), p-cymene (3,71%), 1,8-cineole (2,80%), and α-humulene (2,80%). The floral bud essential oil consisted mainly of α-pinene (15,23%), cis-calamenene (12,70%), myrcene (8,59%), 1,8-cineole (4,26%), germacrene B (3,65%), α-humulene (3,55%), and (E)-caryophyllene oxide (2,93%). The major components of twig oil were cis-calamenene (11,31%), palmitic acid (7,99%), (E)-caryophyllene (4,68%), -cadinene (3,28%), cubenol (3,24%), and (Z)-caryophyllene oxide (2,94%). Conclusion: The presence of a significant quantity of myrcene and cis-calamenene seems to be characteristic of this species.
Content may be subject to copyright.
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
Chemical profile of essential oils of the Costa Rican native tree Myrcianthes
storkii (Myrtaceae)
Carlos Chaverri1,2 & José F. Cicció1,2
1. Universidad de Costa Rica, Escuela de Química, 11501-2060 San José, Costa Rica; cachaverri@gmail.com,
jfciccio@gmail.com
2. Universidad de Costa Rica, Centro de Investigaciones en Productos Naturales (CIPRONA), 11501-2060 San José, Costa
Rica.
Received 10-VII-2023 Corrected 08-IX-2023 Accepted 11-IX-2023
https://doi.org/10.22458/urj.v16i1.4863
ABSTRACT. Introduction: The genus Myrcianthes ranges
from southern Florida to Chile, including the Caribbean,
and the species Myrcianthes storkii is a shrub or tree
found in Costa Rica and western Panama, in wet to very
rainy, cloud, and oak forests (altitude 1300-3150m).
Objective: To identify the chemical composition of
essential oils from leaves, floral buds, and twigs of M.
storkii of Costa Rica. Methods: We obtained the essential
oils through hydrodistillation in a Clevenger-type
apparatus. The chemical composition of the oils was done
by GC/FID and GC/MS, using the retention indices on DB-
5 and Carbowax types of capillary columns in addition to
mass spectra. Results: The oils consisted mainly of
terpenoids (55,45-87,75%). A total of 281 compounds
accounted for 91,27-74,56% of the total amount of oils.
The major constituents from the leaf oil were myrcene
(17,44%), cis-calamenene (12,60%), α-pinene (5,48%), (E)-
caryophyllene (5,16%), limonene (3,91%), p-cymene
(3,71%), 1,8-cineole (2,80%), and α-humulene (2,80%).
The floral bud essential oil consisted mainly of α-pinene
(15,23%), cis-calamenene (12,70%), myrcene (8,59%), 1,8-
cineole (4,26%), germacrene B (3,65%), α-humulene
(3,55%), and (E)-caryophyllene oxide (2,93%). The major
components of twig oil were cis-calamenene (11,31%),
palmitic acid (7,99%), (E)-caryophyllene (4,68%), 𝛿-
cadinene (3,28%), cubenol (3,24%), and (Z)-caryophyllene
oxide (2,94%). Conclusion: The presence of a significant
quantity of myrcene and cis-calamenene seems to be
characteristic of this species.
Keywords: Myrcianthes storkii, essential oils, cis-
calamenene, myrcene, α-pinene, 1,8-cineole.
RESUMEN. Perfil químico de los aceites esenciales del
árbol nativo costarricense Myrcianthes storkii
(Myrtaceae)”. Introducción: El género Myrcianthes se
extiende desde el sur de Florida hasta Chile, incluyendo el
Caribe, y la especie Myrcianthes storkii es un arbusto o
árbol que se encuentra en Costa Rica y el oeste de
Panamá, en bosques húmedos, muy lluviosos, de neblina
y robles (altitud de 1300 a 3150 m). Objetivo: Identificar
la composición química de los aceites esenciales de las
hojas, yemas florales y ramas de M. storkii de Costa Rica.
Métodos: Obtuvimos los aceites esenciales mediante
hidrodestilación en un aparato de tipo Clevenger.
Determinamos la composición química de los aceites
mediante cromatografía de gases con detector de
ionización de llama (GC/FID) y cromatografía de gases
acoplada a espectrometría de masas (GC/MS). Usamos los
índices de retención en columnas capilares de tipos DB-5
y Carbowax, además de espectros de masas. Resultados:
Los aceites están compuestos principalmente por
terpenoides (55,45-87,75%). Identificamos 281
compuestos, que representaron el 91,27-74,56% de la
cantidad total de los aceites. Los principales
constituyentes del aceite de hoja fueron mirceno
(17,44%), cis-calameneno (12,60%), α-pineno (5,48%), (E)-
cariofileno (5,16%), limoneno (3,91%), p-cimeno (3,71%),
1,8-cineol (2,80%) y α-humuleno (2,80%). El aceite
esencial de las yemas florales consistió principalmente en
α-pineno (15,23%), cis-calameneno (12,70%), mirceno
(8,59%), 1,8-cineol (4,26%), germacreno B (3,65%), α-
humuleno (3,55%) y óxido de (E)-cariofileno (2,93%). Los
componentes principales del aceite de las ramas fueron
cis-calameneno (11,31%), ácido palmítico (7,99%), (E)-
cariofileno (4,68%), δ-cadineno (3,28%), cubenol (3,24%)
y óxido de (Z)-cariofileno (2,94%). Conclusión: La
presencia de una cantidad significativa de mirceno y cis-
calameneno parece ser característica de esta especie.
Palabras clave: Myrcianthes storkii, aceites esenciales,
cis-calameneno, mirceno, α-pineno, 1,8-cineol.
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
The Myrtaceae is a pantropical family that comprises 17 tribes, about 144 genera, and over
5500 species (Wilson, 2011; Vasconcellos et al., 2017) distributed through southern regions of the
world (with a few representatives in Africa). This family is composed mainly of shrubs and trees with
most genera occurring in Australia and tropical and subtropical America. One of the characteristics
of this family is the presence of oil glands that produce essential oils, mainly constituted by
terpenoids.
Myrcianthes O. Berg is a genus composed of 39 recognized species ranging from southern
Florida and Mexico to Bolivia and northern Argentina, Uruguay and north-central Chile and the
Caribbean (McVaugh, 1963; Tucker et al., 1992; Tucker et al., 2002, World Flora Online [WFO],
2023). Myrcianthes storkii (Standl.) McVaugh [Synonyms: Eugenia rigidissima Cufod.; E. storkii
Standl.; Myrcianthes rigidissima (Cufod.) W.D. Stevens] is a native shrub or tree of about 4 to 30m
tall, with a distributional range from Costa Rica and western Panama. In Costa Rica, it is distributed
in wet to very rainy, cloud, and oak forests, from 1300 to 3150m of elevation and it is known
vernacularly as ‘guayabillo’ (Barrie, 2007). These forests can be found on mountain slopes, varying
in the intensity of rainfall. The leaves are elliptic or obovate to broadly elliptic or broadly obovate,
coriaceous, and glabrous on both sides. When the leaves are crushed, they give off a scent with
aromatic flavor. Young twigs are coarsely sericeous.
Many studies on the chemical composition of essential oils of diverse species of Myrcianthes
have been reported. Some of these studies are summarized in Table 1 in Appendix. The species and
the morphological part from which the studied essential oil was isolated, the location, and the major
compounds that constitute the oils are indicated. In general terms, the studied oils are constituted
mainly of terpenes and terpenoids.
There is no information about possible traditional uses of M. storkii.
To the best of our knowledge, no previous reports on the chemical composition of essential
oils of this species have been published.
MATERIALS AND METHODS
Plant materials: We collected leaves, floral buds, and twigs of Myrcianthes storkii from a
single tree in the locality of Pacayas de Alvarado, Province of Cartago, Costa Rica (09°55'03"N
83°48'29"W, at an elevation of 1 700m). A voucher specimen is Luis J. Poveda Álvarez 4915 (F).
Extraction of essential oils: We isolated the oils from fresh plant material by
hydrodistillation at atmospheric pressure, for 3 h using a Clevenger-type apparatus. The distilled oils
were collected and dried over anhydrous sodium sulfate, filtered, and stored between 0°C and 10°C
in the dark, until further analysis. The essential oil yields (v/w) were 0,05% (leaves), 0,09% (floral
buds), and (0,01% twigs).
Gas chromatographic analyses (GC-FID): We analyzed the essential oils of M. storkii by
capillary gas chromatography with a flame ionization detector (GC/FID) using a Shimadzu GC-2014
gas chromatograph. Data have been collected on a poly (5% diphenyl/95% dimethylsiloxane) fused
silica capillary column (30m x 0,25mm; film thickness 0,25μm), (MDN-5S, Supelco). The GC
integrations were performed with LabSolutions, Shimadzu GCsolution™ Chromatography Data
System software, version 2.3. Operating conditions used were carrier gas N2, flow 1,0mL/min; oven
temperature program: 60 to 280°C at 3°C/min, 280°C (2 min); sample injection port temperature
250°C; detector temperature 280°C; split 1:60.
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
Gas chromatography-mass spectrometry (GC-MS): GC-MS analyses were performed with a
Shimadzu GC-2010 Plus gas chromatograph coupled with a GCMS-QP2010 SE apparatus and with
GCMSsolution™ software (version 4.20), with NIST and Wiley 139 computerized databases. The
analyzes were performed with two fused-silica-capillary columns with stationary phases of different
polarities: 1,4-bis(dimethylsiloxy) phenylene dimethylpolysiloxane and polyethylene glycol. The
data were obtained with a non-polar SLB™-5ms (Supelco) fused silica column (30m x 0,25mm; film
thickness 0,25μm). Operating conditions were: carrier gas He, flow 1,4 mL min-1 with constant
pressure; oven temperature was programmed linearly from 60°C to 280°C at 3°C min-1; sample
injection port temperature 250°C; interface temperature 260°C; ionization voltage: 70 eV; ionization
current 60μA; scanning speed 0,30s over 35 to 400 amu range; split 1:70. Also, the data were
obtained with a second polar Supelcowax™10 (Supelco) fused silica column (30m x 0,25mm; film
thickness 0,2 μm). Operating conditions were carrier gas He, flow 1,4mL min-1; oven temperature
program: 60220°C at 3°C min-1; sample injection port temperature 240°C; transfer line
temperature 230°C; ionization voltage: 70 eV; ionization current 60 μA; scanning speed 0,30s over
acquisition mass range, 35 to 400 amu; split 1:70.
Compound identification: We identified the essential oil constituents by comparison of
their linear retention indices which were calculated in relation to a homologous series of n-alkanes,
on a poly (5% diphenyl/95% dimethylsiloxane) type column (van den Dool & Kratz, 1963) and on
polyethylene glycol capillary column and, by comparison of their mass spectra with those published
in the literature (Adams, 2007), or those of our own homemade MS library, or comparing their mass
spectra with those available in the computerized databases (NIST 107 and Wiley 139) or in a web
source (Wallace, 2021). To obtain the retention indices for each peak, 0,1 μL of an n-alkane mixture
(Sigma, C8C32 standard mixture) was co-injected under the same experimental conditions reported
above. Integration of the total chromatogram (GC/FID), expressed as area percent, without
correction factors, has been used to obtain quantitative compositional data.
RESULTS
The essential oils from different parts of Myrcianthes storkii presented a complex mixture
of compounds. The constituents identified, their experimental retention indices on two columns of
diverse polarity, their relative percentage concentrations, and the methods used for their
identification are presented in Table 2 in Appendix. The constituents are listed in order of elution
on a non-polar poly-(5% phenyl 95% dimethylsiloxane) type column and for comparison purposes,
previously published values of the retention indices are included (Adams, 2007; Wallace, 2021).
Myrcianthes storkii gave essential oils that were predominantly terpenoid in nature. The
leaf and floral bud oils were dominated by monoterpenoids (42,66% and 38,63%, respectively) and
sesquiterpenoids (44,67% and 44,69%, respectively), whereas twig oil was dominated by
sesquiterpenoids (46,45%) and aliphatic compounds (18,77%). From the hydrodistilled oils, a total
of 281 compounds were identified using GC/FID and GC/MS, accounting for 91,27% (leaves), 86,65%
(floral buds), and 74,56% (twigs) of the total composition of the essential oils.
The leaf essential oil consisted largely of monoterpene hydrocarbons (36,98%) and
sesquiterpene hydrocarbons (34,06%) with minor amounts of oxygenated derivatives. The main
constituents were myrcene (17,44%), cis-calamenene (12,60%), α-pinene (5,48%), (E)-caryophyllene
(5,16%), limonene (3,91%), p-cymene (3,71%), 1,8-cineole (2,80%), α-humulene (2,80%), cubenol
(2,45%), α-copaene (2,22%), α-cubebene (2,10%), linalool (2,05%), (E)-caryophyllene oxide (2,04%),
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
and β-phellandrene (2,00%). [See the total ion chromatogram (TIC) in Fig 1]. The chemical structures
of some of these compounds are shown in Fig. 3.
Fig. 1. GC-MS chromatogram (TIC) of Myrcianthes storkii leaf essential oil [1. α-pinene; 2. myrcene; 3. p-
cymene; 4. limonene; 5. 1,8-cineole; 6. linalool; 7. α-copaene; 8. (E)-caryophyllene; 9. α-humulene; 10. cis-
calamenene; 11. 1-epi-cubenol; 12. cubenol].
The composition of the floral bud essential oil also was dominated by sesquiterpene
hydrocarbons (32,36%), and monoterpene hydrocarbons (30,75%) with α-pinene (15,23%), cis-
calamenene (12,70%), myrcene (8,59%), 1,8-cineole (4,26%), germacrene B (3,65%), α-humulene
(3,55%), (E)-caryophyllene oxide (2,93%), α-copaene (2,24%), hinesol (2,16%), and α-cubebene
(2,14%) as main constituents.
The twig essential oil was constituted mainly of sesquiterpenoids (46,45%) and aliphatic
compounds (18,77%), with a minor quantity of monoterpenoids (6,84%). The major compounds
found were cis-calamenene (11,31%), hexadecanoic acid (7,99%), (E)-caryophyllene (4,68%), 𝛿-
cadinene (3,28%), cubenol (3,24%), (Z)-caryophyllene oxide (2,94%), 1-epi-cubenol (2,45%), α-
humulene (2,38%), and α-copaene (2,19%). The aliphatic mixture of compounds was constituted of
acids (palmitic acid as the main compound), aldehydes, alcohols, esters, and hydrocarbons. [See the
total ion chromatogram (TIC) in Fig 2].
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
Fig. 2. GC-MS chromatogram (TIC) of Myrcianthes storkii twig essential oil [1. α-pinene; 2. myrcene; 3. p-
cymene; 4. limonene; 5. α-copaene; 6. (E)-caryophyllene; 7. α-humulene; 8. δ-cadinene; 9. cis-calamenene;
10. (E)-caryophyllene oxide; 11. cubenol; 12. palmitic acid; 13. (E)-phytol].
Fig. 3. Structures of some constituents of the essential oils of Myrcianthes storkii from Costa Rica.
DISCUSSION
Analyzing the data in Table 1, the chemical composition of essential oils obtained from
leaves of Myrcianthes is very varied. However, there seem to be some common, widespread
compounds, such as the monoterpenes α-pinene, β-pinene, p-cymene, and limonene; the
sesquiterpenes (E)-caryophyllene and α-humulene, and the terpenoids 1,8-cineole, linalool,
terpinen-4-ol, α-terpineol, and (E)-caryophyllene oxide. Some of them are ubiquitous natural
products that display ecological roles such as assisting in pollinator attraction, deterrent action
against certain herbivores, and antimicrobial or allelopathic activities (Anaya et al., 2001;
Gershenzon & Dudareva, 2007; Yazaki et al., 2017; Boncan et al., 2020; Escobar-Bravo et al., 2023).
Observing the data provided in Table 1, differences are found in the composition of the
essential oils of samples of the same species that grow in different places. The oils of M. fragrans
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
from Jamaica (Tucker et al., 1992) and Cuba (Pino et al., 2000) were rich in limonene, α-pinene, α-
terpineol, and 1,8-cineole, whereas the essential oil from Venezuela (Mora et al., 2009) was rich in
myrcene, β-caryophyllene, and other sesquiterpenoids. The oil from Ecuador (Armijos et al., 2018)
differed from all the other samples and species in that it contained large amounts of geranial and
neral. The two Costa Rican samples of this species gave oils with the unique fact of presenting as
main compounds the benzenoid 1,3,5-trimethoxybenzene and (E)-methyl isoeugenol (Cole et al.,
2008) and the phenylpropanoid ester, methyl (E)-cinnamate (Chaverri & Cicció, 2017).
The essential oil of M. storkii leaves is mainly constituted of terpenoids (87,75%) and small
amounts of aliphatic compounds (2,55%) and benzenoids (0,91%). This oil is characterized by the
dominant compounds myrcene (17,44%) and cis-calamenene (12,60%). In the studies conducted to
date, only the oils of M. rhopaloides and M. leucoxyla from Colombia (Silva et al., 2016; Quijano-
Célis et al., 2016), and M. fragrans from Venezuela (Mora et al., 2009) presented myrcene in
significant quantities (17,7%, 17,4% and 8,9% respectively). Myrcene possesses sedative and
anxiolytic properties (Rao et al., 1990), anti-inflammatory (Rufino et al., 2015), as well as antioxidant
and cytoprotective properties (Xanthis et al., 2021); it also has anti-aging properties (Surendran et
al., 2021) and anti-invasive activity on a human breast cancer epithelial cell line, MDA-MB-231 (Lee
et al., 2015). This compound is a valuable renewable material for the industrially sustainable
synthesis of many fine chemical products, which have high added value and are used in multiple
applications (Behr & Johnen, 2009).
cis-Calamenene appears to be a distinctive compound in the essential oils of M. storkii from
Costa Rica, accompanied by a large amount of myrcene. Of the studied species, only M. rhopaloides
from Costa Rica (Cole et al., 2008) and M. myrsinoides from Ecuador (Montalván et al., 2018)
presented significant amounts of the diastereoisomer, trans-calamenene (2,5% and 15,9%
respectively). The cis-calamenene, an aromatic cadinene, is a major constituent (2,1-9,1%) of the
essential oil of Cupressus bakeri Jeps. (Cupressaceae) foliage (Rafii et al., 1992; Kim et al., 1994) and
is present in the commercial Baccharis dracunculifolia DC. essential oil (1,0%) (Weyerstahl et al.,
1996). Also, this compound was identified in cuticular waxes of the stingless bees Nannotrigona
testaceicornis and Plebeia droryana (Pianaro et al., 2009).
In summary, we have shown, for the first time, the chemical composition of Myrcianthes
storkii essential oil from different morphological parts (leaves, flower buds, and twigs). The presence
of a high amount of myrcene and cis-calamenene in the essential oils seems to be characteristic of
this species.
ACKNOWLEDGEMENTS
The authors are grateful to Vicerrectoría de Investigación (UCR) for financial support
(Project No. 809- B 9-170) and to Luis J. Poveda Álvarez (earlier in Herbarium JVR) for his help in the
collection and identification of the species. The authors also thank the anonymous reviewers for
their critical reading and valuable suggestions.
ETHICAL, CONFLICT OF INTEREST AND FINANCIAL STATEMENTS
The authors declare that they have fully complied with all pertinent ethical and legal
requirements, both during the study and in the production of the manuscript; that there are no
conflicts of interest of any kind; that all financial sources are fully and clearly stated in the
Acknowledgements section; and that they fully agree with the final edited version of the article. A
signed document has been filed in the journal archives.
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
REFERENCES
Adams, R. P. (2007). Identification of Essential Oil Components by Gas Chromatography/ Quadrupole Mass Spectrometry,
(4th ed.). Allured Publishig Corporation.
Anaya, A. L., Espinosa-García, F., Cruz-Ortega, R. (Eds.). (2001). Relaciones químicas entre organismos: aspectos básicos y
perspectivas de su aplicación. Plaza y Valdés México.
Apel, M. A., Sobral, M., & Henriques, A. T. (2006). Composição química do oleo volatile de Myrcianthes nativas da região
sul do Brasil. Revista Brasileira de Farmacognosia, 16(3), 402-407. https://doi.org/10.1590/S0102-
695X2006000300019
Araujo, L., Rondón, M., Morillo, A., Páes, E., & Rojas-Fermín, L. (2017). Antimicrobial activity of the essential oil of
Myrcianthes myrcinoides (Kunth) Grifo (Myrtaceae) collected in the Venezuelan Andes. PharmacologyOnLine, 2,
200-204. https://tinyurl.com/ynnzyf83
Armijos, C., Valarezo, E., Cartuche, L., Zaragoza, T., Finzi, P. V., Mellerio, G. G., & Vidari, G. (2018). Chemical composition
and antimicrobial activity of Myrcianthes fragrans essential oil, a natural aromatizer of the traditional
Ecuadorian beverage colada morada. Journal of Ethnopharmacology, 225, 319-326.
https://doi.org/10.1016/j.jep.2018.07.018
Barrie, F. R. (2007). Myrtaceae. In B. E. Hammel, M. H. Grayum, C. Herrera, & N. Zamora (Eds.). Manual de Plantas de Costa
Rica. Vol. 6. (pp. 728-784). Missouri Botanical Garden Press.
Behr, A., & Johnen, L. (2009). Myrcene as a natural base chemical in sustainable chemistry: a critical review.
ChemSusChem: Chemistry-Sustainability-Energy-Materials, 2(12), 1072-1095.
Boncan, D. A. T., Tsang, S. S. K., Li, C., Lee, I. H. T., Lam, H.-M., Chan, T.-F., & Hui, J. H. L. (2020). Terpenes and terpenoids
in plants: Interactions with environment and insects. International Journal of Molecular Sciences, 21(19), 7382.
https://doi.org/10.3390/ijms21197382
Carmen, P., De La Torre, C., & Retamar, J. A. (1972). Essential oil of Myrcianthes callicoma. Essenze e Derivati Agrumari,
42, 429-432.
Chaverri, C., & Cicció, J. F. (2017). Essential oil from leaves of Myrcianthes fragrans (Myrtaceae) from Costa Rica. A new
chemotype? Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 16(4), 385-397.
https://www.redalyc.org/pdf/856/85651256004.pdf
Cole, R. A., Haber, W. A., Lawton, R. O., & Setzer, W. N. (2008). Leaf essential oil composition of three species of
Myrcianthes from Monteverde, Costa Rica. Chemistry and Biodiversity, 5(7), 1327-1334.
https://doi.org/10.1002/cbdv.200890120
Collin, G., Garneau, F.-X., Gagnon, H., Pichette, A., & Lavoie, S. (2010). Analysis of cymenes in essential oils: the case of
Lepechinia meyeni (Walp.) Epling. Journal of Essential Oil Research, 22(4), 310-313.
https://doi.org/10.1080/10412905.2010.9700333
de Jesús, R. A., de Oliveira, H. L. M., Bortolucci, W. de C., Campo, C. F. de A. A., Faria, M. G. I., Goncalves, J. E., Colauto, N.
B., Gazim, Z. C. & Linde, G. A. (2021). Antioxidant and antibacterial activity of Myrcianthes pungens leaf essential
oil. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 20(2), 147-161.
https://doi.org/10.37360/blacpma.21.20.2.12
Demo, M. S., Oliva, M. M., Zunino, M. P., López, M. L., & Zygadlo, J. A. (2002). Aromatic plants from Yungas. Part IV:
Composition and antimicrobial activity of Myrcianthes pseudo-mato essential oil. Pharmaceutical Biology, 40(7),
481-484. https://doi.org/10.1076/phbi.40.7.481.14689
Escobar-Bravo, R., Lin, P-A., Waterman, J. M., & Erb, M. (2023). Dynamic environmental interactions shaped by vegetative
plant volatiles. Natural Product Reports, 40, 840-865. https://doi.org/10.1039/d2np00061j
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
Gershenzon, J., & Dudareva, N. (2007). The function of terpene natural products in the natural world. Nature Chemical
Biology, 3(7), 408-414. https://doi.org/10.1038/nchembio.2007.5
Granados, C., Yáñez, X., & Acevedo, D. (2014). Evaluación de la actividad antioxidante del aceite esencial foliar de
Myrcianthes leucoxyla de norte de Santander (Colombia). Información Tecnológica, 25(3), 11-16.
https://doi.org/10.4067/S0718-07642014000300003
Kim, Y-K., Cool, L. G., & Zavarin, E. cis-Calamenene-related sesquiterpenoids from Cupressus bakeri foliage.
Phytochemistry, 36(4), 961-965.
Lee, J.-H., Lee, K., Lee, D.H., Shin, S. Y., Yong, Y., & Lee, Y. H. (2015). Anti-invasive effect of β-myrcene, a component of the
essential oil from Pinus koraiensis cones, in metastatic MDA-MB-231 human breast cancer cells. Journal of the
Korean Society for Applied Biological Chemistry, 58(4), 563-569. https://doi.org/10.1007/s13765-015-0081-3
Lopez, J. B., Jean, F. I., Gagnon, H., Collin, G., Garneau, F.X., & Pichette, A. (2005). Essential Oils from Bolivia. VII. Myrtaceae:
Myrcianthes osteomeloides (Rusby) McVaugh and Myrcianthes pseudomato (Legrand) McVaugh. Journal of
Essential Oil Research, 17(1), 64-65. https://doi.org/10.1080/10412905.2005.9698832
Lorenzo, D., Dellacassa, E., Bonaccorsi, I., & Mondello, L. (2001). Uruguayan essential oils. Composition of leaf oil of
Myrcianthes cisplatensis (Camb.) Berg. ("Guayabo colorado") (Myrtaceae). Flavour and Fragrance Journal, 16(2),
97-99. https://doi.org/10.1002/1099-1026(200103/04)16:2<97::AID-FFJ952>3.0.CO;2-C
Malagón, O., Vila, R., Iglesias, J., Zaragoza, T., & Cañigueral, S. (2003). Composition of the essential oils of four medicinal
plants from Ecuador. Flavour and Fragrance Journal, 18(6), 527-531. https://doi.org/10.1002/ffj.1262
Marin, R., Apel, M. A., Limberger, R. P., Raseira, M. C. B., Pereira, J. F. M., Zuanazzi, J. A. S., & Henriques, A. T. (2008).
Volatile components and antioxidant activity from some myrtaceous fruits cultivated in Southern Brazil. Latin
American Journal of Pharmacy, 27(2), 172-177. https://tinyurl.com/yo24maef
McVaugh, R. (1963). Tropical American Myrtaceae, II. Notes on generic concepts and descritions of previously
unrecognized species. Fieldiana Botany, 29(8), 395-532.
https://www.biodiversitylibrary.org/item/19982#page/111/mode/1up
Montalván, M., Peñafiel, M. A., Ramírez, J., Cumbicus, N., Bec, N., Larroque, C., Bicchi, C., & Gilardoni, G. (2019). Chemical
composition, enantiomeric distribution, and sensory evaluation of the essential oils distilled from the Ecuadorian
species Myrcianthes myrcinoides (Kunth) Grifo and Myrcia mollis (Kunth) DC. (Myrtaceae). Plants, 8, 511.
https://doi.org/10.3390/plants8110511
Mora, V. F. D., Rojas, L. B., Usubillaga, A., Carmona, J., & Silva, B. (2009). Composición química del aceite esencial de
Myrcianthes fragrans (Sw.) McVaugh de los Andes venezolanos. Revista de la Facultad de Farmacia, 51(1), 20-
23.
Pianaro, A., Menezes, C., Kerr, W. E., Singer, R. B., Patricio, E. F., Marsaioli, A. J. (2009). Stingless bees: Chemical differences
and potential functions in Nannotrigona testaceicornis and Plebeia droryana males and workers. Journal of
Chemical Ecology, 35, 1117-1128. https://doi.org/10.1007/s10886-009-9679-4
Pino, J. A., Rosado, A., Bello, A., Urquiola, A., & García, G. (2000). Essential oil of Myrcianthes fragrans (Sw.) McVaugh from
Cuba. Journal of Essential Oil Research, 12(2), 225-226. https://doi.org/10.1080/10412905.2000.9699503
Pombo, L. M., Borrego, P., Matulevich, J. Teheran, A. A., & Barajas, L. (2016). Composition and antimicrobial activity of the
essential oils of three plant species from the Sabana of Bogotá (Colombia): Myrcianthes leucoxyla, Vallea
stipularis and Phyllanthus salviifolius. Natural Products Communications, 11(12), 1913-1918.
https://doi.org/10.1177/1934578X1601101234
Quijano-Célis, C., Pino, J. A., Echeverri, D., & Morales, G. (2016). Essential oil of Myrcianthes leucoxyla (Ortega) McVaugh
leaves from Colombia. Journal of Essential Oil Bearing Plants, 19(6), 1510-1515.
https://doi.org/10.1080/0972060X.2016.1224687
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
Rafii, Z., Cool, L. G., & Zavarin, E. (1992). Variability of foliar mono- and sesquiterpenoids of Cupressus bakeri. Biochemical
Systematics and Ecology, 20(2), 123-131.
Rao, V. S., Menezes, A. M., & Viana, G. S. (1990). Effect of myrcene on nociception in mice. Journal of Pharmacy and
Pharmacology, 42(12), 877-878. https://doi.org/10.1111/j.2042-7158.1990.tb07046.x
Romanenko, E. P. & Tkachev, A. V. (2006). Identification by GC-MS of cymene isomers and 3,7,7-trimethylcyclohepta-1,3,5-
triene in essential oils. Chemistry of Natural Compounds, 42(6), 699-701. https://doi.org/10.1007/s10600-006-
0256-6
Romero, D., Cartuche, L., Valarezo, E., Cumbicus, N., & Morocho, V. (2023). Chemical profiling, anticholinesterase,
antioxidant, and antibacterial potential of the essential oil from Myrcianthes discolor (Kunth) McVaugh, an
aromatic tree from Southern Ecuador. Antibiotics, 12(4), 677. https://doi.org/10.3390/antibiotics12040677
Rufino, A. T., Ribeiro, M., Sousa, C., Judas, F., Salgueiro, L., Cavaleiro, C., & Mendes, A. F. (2015). Evaluation of the anti-
inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model
of osteoarthritis. European Journal of Pharmacology, 750, 141-150.
https://doi.org/10.1016/j.ejphar.2015.01.018
Setzer, W. N., Setzer, M. C., Moriarity, D. M., Bates, R. B., & Haber, W. A. (1999). Biological activity of the essential oil of
Myrcianthes sp. nov. “Black Fruit” from Monteverde, Costa Rica. Planta Medica, 65(5), 468-469.
https://doi.org/10.1055/s-2006-960816
Silva, D. A., Matulevich, J. A., & Devia, B. O. (2016). Composición química del aceite esencial de hojas de Myrcianthes
rhopaloides (Kunt) McVaugh (Myrtaceae). Revista Facultad de Ciencias Básicas, 12(1), 84-91.
https://doi.org/10.18359/rfcb.1857
Surendran, S., Qassadi, F., Surendran, G., Lilley, D., & Heinrich, M. (2021). Myrcene - What are the potential health benefits
of this flavouring and aroma agent? Frontiers in Nutrition, 8, 699666. https://doi.org/10.3389/fnut.2021.699666
Taher, H. A., Santi de Bongioanni, M. N., & Talenti, E. C. J. (1983). Study of the essential oil of Myrcianthes cisplatensis
(Cambassedes) Berg. Essenze e Derivati Agrumari , 53, 13-25.
Toloza, A. C., Zygadlo, J., Cueto, G. M., Biurrun, F., Zerba, E., & Picollo. M. I. (2006). Fumigant and repellent properties of
essential oils and component compounds against permethrin-resistant Pediculus humanus capitis (Anoplura:
Pediculidae) from Argentina. Journal of Medical Entomology, 43(5), 889-895.
https://doi.org/10.1093/jmedent/43.5.889
Tucker, A. O., Maciarello, M. J., & Landrum, L. R. (1992). Volatile leaf oils of Caribbean Myrtaceae. VI. Myrcianthes fragrans
(Sw.) McVaugh of Jamaica. Journal of Essential Oil Research, 4(3), 313-314.
https://doi.org/10.1080/10412905.1992.9698071
Tucker, A. O., Maciarello, M. J., & Landrum, L. R. (2002). Volatile leaf oil of Myrcianthes coquimbensis (Barnéoud) Landrum
et Grifo (Myrtaceae) of Chile. Journal of Essential Oil Research, 14(1), 40-41.
https://doi.org/10.1080/10412905.2002.9699756
Ubiergo, G., Taher, H. A., & Talenti, E. C. (1986). Mono and sesquiterpenoids from the essential oil of Myrcianthes pungens.
Anales de la Asociación Química Argentina, 74, 567-569.
van den Dool, H., & Kratz, P. D. (1963). A generalization of the retention index including linear temperature programmed
gas-liquid partition chromatography. Journal of Chromatography A, 11, 463-471.
https://doi.org/10.1016/S0021-9673(01)80947-X
Vasconcelos, T. N. C., Proença, C. E. B., Ahmad, B., Aguilar, D. S., Aguilar, R., Amorim, B. S., Campbell, K., Costa, I. R., De-
Carvalho, P. S., Faria, J. E. Q., Giaretta, A., Kooij, P. W., Lima, D. F., Mazine, F. F., Peguero, B., Prenner, G., Santos,
M. F., Soewarto, J., Wingler, A., & Lucas, E. J. (2017). Myrteae phylogeny, calibration, biogeography and
diversification patterns: Increased understanding in the most species rich tribe of Myrtaceae. Molecular
Phylogenetics and Evolution, 109, 113-137. https://doi.org/10.1016/j.ympev.2017.01.002
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
Wallace, W. E. (2021). Mass spectra (by NIST Mass Spec Data Center). In P.J. Linstrom & W.G. Mallard (Eds.), Nits Chemistry
WebBook: NIST Standard Reference Database Number 69. National Institute of Standards and Technology.
http://webbook.nist.gov
Werka, J. S., Boehme, A. K., & Setzer, W. N. (2007). Biological activities of essential oils from Monteverde, Costa Rica.
Natural Product Communications, 2(12), 1215-1219. https://doi.org/10.1177/1934578X0700201204
Weyerstahl, P., Christiansen, C., & Marschall, H. (1996). Constituents of Brazilian vassoura oil. Flavour and Fragrance
Journal, 11(1), 15-23. https://doi.org/10.1002/(SICI)1099-1026(199601)11:1%3C15::AID-FFJ541%3E3.0.CO;2-H
World Flora Online (WFO). (2023). Myrcianthes O. Berg. https://tinyurl.com/yogu523b
Wilson, P. G. (2011). Myrtaceae. In Kubitzki, K. (ed.). Families and genera of vascular plants. Vol. 10. Flowering plants:
Eudicots-Sapindales, Cucurbitales, Myrtaceae. Springer-Verlag.
Xanthis, V., Fitsiou, E., Voulgaridou, G. P., Bogadakis, A., Chlichlia, K., Galanis, A., & Pappa, A. (2021). Antioxidant and
cytoprotective potential of the essential oil Pistacia lentiscus var. chia and its major components myrcene and
α-pinene. Antioxidants, 10, 127. https://doi.org/10.3390/antiox10010127
Yáñez, X., Granados, C., Durán, M. (2013). Composición química y actividad antibacteriana del aceite esencial de
Myrcianthes leucoxyla de Pamplona (Colombia). @limentech Ciencia y Tecnología Alimentaria, 11(1), 79-84.
https://doi.org/10.240/16927125.v1.n1.2013.497
Yazaki, K., Arimura, G-I., Ohnishi, T. (2017). ’Hidden’ terpenoids in plants: Their biosynthesis, location and ecological roles.
Plant Cell Physiology, 58(10), 1615-1621. https://doi.org/10.1093/pcp/pcx123
Zygadlo, J. A., Rotman, A. D., Perez-Alonso, M. J., & Velasco-Negueruela, A. (1997). Leaf oils of two Myrcianthes species
from Argentina: M. pungens (Berg.) Legrand and M. cisplatensis (Camb.) Berg. Journal of Essential Oil Research,
9(2), 237-239. https://doi.org/10.1080/10412905.1997.9699470
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
APPENDIX
TABLE 1
Major compounds present in some Myrcianthes spp. essential oils.
Species
Country, location
Essential oil constituents (>2,0%)
Biological
observations
M. callicoma
McVaugh
Argentina
α-Pinene, limonene, and 1,8-
cineole.
M. cisplatensis
(Camb.) Berg
Argentina
1,8-Cineole (13,5%), and geraniol
(8,4%).
M. cisplatensis
(Camb.) Berg
Argentina,
Catamarca.
(Air-dried leaves)
(0,15%)
1,8-Cineole (40,7%), limonene
(22,1%), α-terpineol (7,7%),
linalool (4,8%), and α-pinene
(4,3%).
M. cisplatensis
(Camb.) Berg
Uruguay, ‘Cerros
pelados’,
Canelones.
(Air-dried leaves)
1,8-Cineole (53,8%), α-pinene
(16,6%), α-terpineol (4,2%),
limonene (4,1%), and thujopsan-
4α-ol (2,0%).
M. cisplatensis
Camb.) Berg
Brazil, Alegrete,
Rio Grande do Sul.
(Fresh leaves)
(0,2%)
1,8-Cineole (29,8%), limonene
(10,9%), β-caryophyllene (10,8%),
α-pinene (8,9%), α-terpineol
(5,7%), guaiol (4,9%), globulol
(4,8%), α-selinene (2,7%),
aromadendrene (2,5%), and α-
humulene (2,0%).
M. cisplatensis
(Camb.) Berg
Argentina
(Dried leaves)
1,8-Cineole (45,7%), limonene
(27,1%), α-terpineol (7,7%),
linalool (4,8%), α-pinene (4,3%),
and δ-cadinene (2,3%).
Fumigant and
repellent properties
against permethrin-
resistant head lice.
M. coquimbensis
(Barnèoud) L.R.
Landrum & Grifo
Chile, La Serena.
(Air-dried leaves)
Limonene (14,5%), carvone
(8,7%), α-pinene (7,2%), β-pinene
(5,7%), p-cymene (5,3%), trans-
carveol (4,9%), cis-pinocarveol
(4,3%), linalool (4,1%), trans-
linalool oxide (furanoid) (3,6%),
myrtenal (3,4%), pinocarvone
(3,2%), verbenone (2,9%), cis-
linalool oxide (furanoid) (2,8%),
and myrtenol (2,2%).
M. discolor
(Kunth) McVaugh
Ecuador, Loja-
Chuquiribamba
Road, Loja.
(Fresh leaves)
(0,08%)
β-Caryophyllene (29,40%),
bicyclogermacrene (7,45%), β-
elemene (6,93%), α-cubebene
(6,06%), α-humulene (3,96%), 𝛿-
cadinene (3,2%), limonene
(2,63%), and amorpha-4,7(11)-
diene (2,28%).
Strong inhibitory
effect against
acetylcholinesterase
(AChE) and
moderate
antiradical effect.
M. fragrans (Sw.)
McVaugh
Jamaica, Douglas
Castle, St. Ann.
(Air-dried leaves)
Limonene (56,0%), α-terpineol
(10,9%), 1,8-cineole (7,1%), α-
pinene (6,9%), and β-pinene
(2,0%).
M. fragrans (Sw.)
McVaugh
Cuba, Pinar del
Río.
(Leaves and stalks)
(1,4%)
α-Pinene (41,8%), limonene
(30,0%), 1,8-cineole (6,5%), α-
terpineol (5,7%), and cis-piperityl
acetate (2,1%).
M. fragrans (Sw.)
McVaugh
Costa Rica,
Monteverde.
(Fresh leaves)
(See Cole et al., 2008).
Cytotoxic to Hep G2
and SK-Mel-28 cells.
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
M. fragrans (Sw.)
McVaugh
Costa Rica,
Monteverde.
(Fresh leaves)
(0,03%)
1,3,5-Trimethoxybenzene
(15,7%), α-cadinol (10,4%), (Z)-
hex-3-en-1-ol (10,0%), eudesma-
4(15),7-dien-1β-ol (9,0%),
caryophyllene oxide (7,8%),
spathulenol (7,5%), muurola-
4,10(14)-dien-1β-ol (4,7%),
caryophylla-4(12),8(13)-dien-5β-
ol (4,2%), humulene epoxide II
(3,9%), τ-muurolol (3,5%), α-
muurolol (3,2%), and (E)-
methylisoeugenol (2,5%).
M. fragrans (Sw.)
McVaugh
Venezuela, Aldea
Llanetes, Táchira.
(Fresh leaves)
(0,08%)
β-Caryophyllene (11,5%),
myrcene (8,9%), phellandrene/
limonene (8,7%), α-humulene
(6,7%), α-copaen-8-ol (6,7%),
globulol (4,9%), viridiflorol (4,7%),
bicyclogermacrene (4,4%), α-
copaene (3,5%), δ-cadinol (2,8%),
δ-cadinene (2,6%), linalool (2,3%),
and τ-cadinol (2,1%).
M. fragrans (Sw.)
McVaugh
Costa Rica, Santo
Domingo, Heredia
(Fresh leaves)
(0,5%)
Methyl (E)-cinnamate (39,6%),
limonene (34,6%), α-pinene
(6,8%), linalool (6,8%), and
heptan-2-ol (2,0%).
M. fragrans (Sw.)
McVaugh
Ecuador, Cerro
Villonaco, Loja.
(Aerial parts)
(0,28-0,38%)
Geranial (23,6-31,1%), neral
(17,8-24,3%), β-pinene (3,9-
7,5%), α-pinene (2,8-5,9%),
(2E,6E)-farnesal (3,2-8,0%),
(2Z,6E)-farnesal (3,0-6,7%), and
geraniol (2,5-3,1%).
Antimicrobial
activity against
Klebsiella
pneumoniae,
Candida albicans,
and Saccharomyces
cerevisiae
M. gigantea (D.
Legrand) D.
Legrand
Brazil, Espumoso,
Rio Grande do Sul.
(Fresh leaves)
(0,1%)
Spathulenol (28,9%), iso-
spathulenol (9,5%, α-cadinol
(7,0%), caryophyllene oxide
(6,7%), limonene (4,5%), α-pinene
(3,5%), β-pinene (2.8%), globulol
(2,8%), α-copaene (2,6%), β-
selinene (2,5%), and (Z)-hex-3-en-
1-ol (2,4%).
M. leucoxyla
(Ortega)
McVaugh
Colombia,
Pamplona,
Santander.
(Dried leaves)
(0,3%)
α-Pinene (28,4%), 1,8-cineole
(15,7%), β-caryophyllene (8,8%),
spathulenol (3,3%), guaiol (3,1%),
β-humulene (3,0%), and
caryophyllene oxide (3,0%).
Antimicrobial
activity against
Staphylococcus
aureus.
Antioxidant activity.
M. leucoxyla
(Ortega)
McVaugh
Colombia,
Andean Plateau,
Sabana de Bogotá
(Fresh leaves)
(0,1%)
Caryophyllene oxide (21,7%), α-
terpineol (8.0%), linalool (7,8%),
1,8-cineole (6,3%), geraniol
(5,1%), epi-globulol (3,4%),
geranyl acetate (3,2%),
germacrene D (3,2%), 2-carene
(2,9%), and τ-cadinol (2,7%).
Antimicrobial
activity against
Pseudomonas
aeruginosa and
Salmonella
typhimurium.
M. leucoxyla
(Ortega)
McVaugh
Colombia,
Bogotá
(Young fresh
leaves)
(0,1%)
Limonene (21,2%), myrcene
(17,4%), spathulenol (7,1%), β-
pinene (8,4%), α-pinene (5,4%),
caryophyllene oxide (2,7%),
linalool (2,4%), α-terpineol (2,3%),
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
terpinen-4-ol (2,2%), and α-
cadinol (2,2%).
M. myrsinoides
(Kunth) Grifo
Venezuela,
Mérida.
(Leaves)
(0,5%)
Terpinen-4-ol (32,2%), o-cymene
(8,2%), spathulenol (7,6%),
caryophyllene oxide (7,1%), α-
terpineol (4,1%), β-oplopenone
(3,9%), limonene (3,8%),
isoaromadendrene epoxide
(3,8%), humulene epoxide II
(3,0%), and τ-muurolol (2,5%).
Antimicrobial
activity against
Bacillus cereus, B.
subtilis, and
Staphylococcus
epidermidis.
M. myrsinoides
(Kunth) Grifo
Ecuador,
Gonzanamá, Loja.
(Fresh leaves)
(0,3%)
Caryophyllene (16,6%), trans-
calamenene (15,9%), 1,8-cineole
(10,4%), spathulenol (6,2%),
limonene (5,3%), trans-cadina-
1,4-diene (3,5%), cis-muurola-
4(14),5-diene (2,6%), α-pinene
(2,5%), α-copaene (2,1%),
germacrene D (2,1%), and α-
terpineol (2,0%).
M. osteomeloides
(Rusby) McVaugh
Bolivia,
Cochabamba.
(Fresh leaves)
(0,6%)
1,8-Cineole (55,7%), α-pinene
(17,9%), α-terpineol (8,5%), β-
pinene (4,6%), and limonene
(4,1%).
M. pseudo-mato
(D. Legrand)
Mc.Vaugh
Argentina, Oran,
Salta.
(Dried leaves)
(0,3%)
1,8-Cineole (32,5%), β-
caryophyllene (18,9%), sabinene
(6,6%), α-pinene (6,5%),
aromadendrene (5,4%), τ-
muurolol (4,5%), (E)-nerolidol
(3,5%), τ-cadinol (3,4%),
spathulenol (3,3%), α-terpineol
(2,7%), β-eudesmol (2,3%), and α-
humulene (2,1%).
Antimicrobial
activity against
Staphylococcus
aureus, Bacillus
cereus and
Micrococcus luteus.
M. pseudo-mato
(D. Legrand)
Mc.Vaugh
Bolivia,
Cochabamba.
(Fresh leaves)
(0,1%)
1,8-Cineole (24,4%), α-pinene
(17,1%), linalool (11,7%),
limonene (8,5%), γ-terpinene
(7,3%), p-cymene (3,9%), and α-
terpineol (2,4%).
M. pungens
(Berg) D. Legrand
Argentina
(Leaves)
1,8-Cineole (13,5%), pulegone
(9,4%), farnesol (9,0%), nerol
(5,4%), and geraniol (4,5%).
M. pungens
(Berg) D. Legrand
Argentina,
Catamarca.
(Air-dried leaves)
(0,2%)
1,8-Cineole (45,9%), limonene
(17,3%), α-terpineol (8,1%), α-
pinene (3,3%), linalool (3,0%), and
globulol (2,8%).
M. pungens (O.
Berg) D. Legrand
Brazil, Viamão, Rio
Grande do Sul.
(Fresh leaves)
(0,1%)
β-Caryophyllene (10,1%),
spathulenol (9,7%), β-elemene
(9,1%), α-cadinol (8,0%),
bicyclogermacrene (6,9%),
globulol (6,2%), epi-globulol
(4,7%), β-bisabolene (3,3%), (E)-γ-
bisabolene (3,3%), β-selinene
(3,1%), 1,8-cineole (2,7%),
caryophyllene oxide (2,3%), α-
pinene (2,1%), τ-muurolol (2,1%),
α-humulene (2,0%), and δ-
cadinene (2,0%).
M. pungens (O.
Berg) D. Legrand
Brazil, Pelotas, Rio
Grande do Sul.
β-Caryophyllene (32,7%),
germacrene D (14,2%),
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
(Cultivated, fresh
edible, and ripped
fruits)
bicyclogermacrene (11,2%), β-
eudesmol (8,1%), furfural (7,7%),
epi-globulol (3,9%), elemol (3,8%),
α-humulene (3,3%), γ-eudesmol
(2,5%), and α-eudesmol (2,5%).
M. pungens (O.
Berg) D. Legrand
Brazil,
Maringá.
(Dried leaves)
(0,2%)
β-Caryophyllene (11,7%), 1,8-
cineole (10,1%),
bicyclogermacrene (7,9%), 5-epi-
neointermedeol (6,0%),
caryophyllene oxide (5,2%),
limonene (3,5%), β-selinene
(3,4%), (E)-β-ocimene (3,3%), β-
elemene (3,0%), δ-cadinene
(3,0%), α-cubebene (2,8%),
germacrene A (2,3%), and
germacrene B (2,2%).
Antimicrobial
activity against
Staphylococcus
aureus and Bacillus
cereus.
M. rhopaloides
(Kunth) McVaugh
Ecuador, Cerro el
Villonaco, Loja.
(Fresh leaves)
(0,3%)
Geranial (33,7%), neral (25,0%), β-
pinene (9,0%), α-pinene (6,9%),
geranyl acetate (3,0%), and
geraniol (2,3%).
*M. rhopaloides
(Kunth) McVaugh
Costa Rica,
Chomogo,
Monteverde.
(Fresh leaves)
(See Cole et al., 2008).
Cytotoxic to SK-Mel-
28 cells.
*M. rhopaloides
(Kunth) McVaugh
Costa Rica,
Chomogo,
Monteverde.
(Fresh leaves)
(0,02%)
Linalool (17,7%), α-cadinol
(14,4%), spathulenol (11,1%), τ-
cadinol (9,6%), 1-epicubenol
(6,9%), α-muurolol (5,5%),
cyclocolorenone (4,9%), α-
terpineol (3,5%), eudesma-
4(15),7-dien-1β-ol (3,4%),
caryophyllene oxide (3,3%),
tetradecan-1-ol (3,3%), trans-
calamenene (2,5%), and δ-
cadinene (2,2%).
*M. rhopaloides
(Kunth) McVaugh
Costa Rica,
Brillante,
Monteverde.
(Fresh leaves)
(E)-Hex-2-enal (46,1%), 1,8-
cineole (12,5%), linalool (9,1%), α-
cadinol (6,7%), α-terpineol (4,4%),
τ-muurolol (2,6%), and terpinen-
4-ol (2,0%).
M. rhopaloides
(Kunth) McVaugh
Colombia,
Macheta,
Cundinamarca
(Fresh leaves)
(0,28%)
Citronelal (27,3%), myrcene
(17,7%), citronelol (15,5%),
neoisopulegol (6,6%), α-pinene
(4,2%), β-pinene (4,2%), β-
caryophyllene (2,5%), isopulegol
(2,3%), and α-farnesene (2,2%).
M. sp. nov. ‘black
fruit’
Costa Rica,
Monteverde.
(Fresh leaves)
1,8-Cineole (52,8%), α-pinene
(11,8%), α-terpineol (11,7%),
heptan-2-ol (11,1%), β-pinene
(8,4%), and limonene (4,3%).
In vitro citotoxic
activity against Hep-
G2 and SK-Mel-28
human tumor cell
lines.
M. sp. nov. ‘black
fruit’
Costa Rica,
Monteverde.
(Fresh leaves)
1,8-Cineole (38,3%), α-terpineol
(21,2%), heptan-2-ol (15,5%),
terpinen-4-ol (4,2%), and β-
pinene (3,8%).
* According to Manual de Plantas de Costa Rica, vol. 6, M. rhopaloides (Kunth) McVaugh does not inhabit Costa Rica, and
this name could probably have been used instead of M. storkii (?) (Barrie, 2007, p. 770).
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
TABLE 2
Chemical constituents of the essential oils of Myrcianthes storkii from Costa Rica
aCompound
bRILit
cRIExp
dSw10Exp
Class
(L) Leaf
(%)
(F) Floral
buds (%)
(T) Twigs
(%)
eIM
3-Methylbut-2-enal
790
1 206(F)
A
ftr
2;3
Hexanal
801
1 084(L,F)
A
tr
tr
tr
2;3
(E)-Hex-2-enal
846
841
1 222(L)
A
0,10
0,01
1;2;3
(Z)-Hex-3-enol
850
850
1 384(F)
A
0,65
0,08
1;2;3
(E)-Hex-2-enol
854
853
A
tr
1;3
Hexan-1-ol
863
863
1 352(L,F)
A
0,11
0,02
0,03
1;2;3;4
2-Butyl furan
885
882
Misc.
tr
1;3
Heptan-2-one
889
888
A
tr
1;3
Nonane
900
900
A
0,02
1;3
Bornylene (2-Bornane)
908
1 512(T)
M
tr
2;3
Heptanal
901
900
1 189(T)
A
0,04
tr
0,02
Anisole
913
914
B
0,03
1;3
Tricyclene
921
920
M
0,02
1;3
Cumene
924
924
1 177(L)
B
tr
1;2;3
α-Thujene
924
926
M
0,15
0,16
0,02
1;3
3,5-Dimethylene-1,4,4-
trimethylcyclopentene
931
1 179(F)
IT
tr
2;3
α-Pinene
932
933
1 029(L,F,T)
M
5,48
15,23
1,57
1;2;3;4
α-Fenchene
945
944
1 056(L,F)
M
0,04
tr
1;2;3
Camphene
946
945
1 068(L,F)
M
tr
0,13
1;2;3
(E)-Hept-2-enal
947
946
A
0,03
tr
1;3
Thuja-2,4(10)-diene
953
953
1 128(L,F)
M
tr
0,03
1;2;3
Isobutyl butanoate
958
961
1 159(F)
A
tr
1;2;3
Sabinene
969
972
1 123(F)
M
0,11
1;2;3
Oct-1-en-3-one
972
973
A
0,03
tr
1;3
β-Pinene
974
977
1 112(L,F,T)
M
0,64
0,88
0,15
1;2;3;4
Octan-3-one
979
979
A
tr
1;3
2-Pentylfuran
984
984
1 232(L,T)
Misc.
tr
tr
1;2;3
6-Methylhept-5-en-2-one
987
985
1 337(F)
A
tr
1;2;3
Myrcene
988
990
1 168(L,T)
M
17,44
8,59
1,78
1;2;3
Octanal
998
995
1 292(L,T)
A
0,18
0,06
1;2;3
δ-2-Carene
1 001
1 001
1 138(F)
M
tr
1;2;3
(E)-Hex-3-enyl acetate
1 001
1 000
A
0,06
1;3
α-Phellandrene
1 002
1 006
1 175(T)
M
0,46
0,63
0,13
1;2;3
p-Mentha-1(7),8-diene
1 003
1 172(L,F)
M
tr
tr
2;3
δ-3-Carene
1 008
1 011
1 149(L,F,T)
M
0,66
0,45
0,12
1;2;3
α-Terpinene
1 014
1 017
1 182(L,T)
M
0,13
0,14
0,05
1;2;3
m-Cymene*
1 020
1 021
1 272(L,F,T)
M
tr
tr
0,43
1;2;3
p-Cymene*
1 022
1 024
M
3,71
1,59
1;3
Limonene
1 024
1 029
1 204(L,F,T)
M
3,91
0,10
0,87
1;2;3;4
β-Phellandrene
1 025
1 030
1 212(L,T)
M
2,00
0,10
0,37
1;2;3
1,8-Cineole
1 026
1 031
1 211(L)
OM
2,80
4,26
0,09
1;2;3;4
(Z)-β-Ocimene
1 032
1 035
1 235(L,T)
M
0,94
1,50
0,18
1;2;3
Phenyl acetaldehyde
1 041
1 041
B
0,05
1;3
(E)-β-Ocimene
1 044
1 045
1 252(L,T)
M
0,43
0,22
0,09
1;2;3
(E)-Oct-2-enal
1 049
1 427(L)
A
tr
2;3
Isopentyl butanoate
1 052
1 056
1 270(L,F)
A
tr
tr
1;2;3
γ-Terpinene
1 054
1 058
1 245(L,T)
M
0,44
0,32
0,19
1;2;3
(E)-Oct-2-en-1-ol
1 060
1 064
A
tr
1;3
Octan-1-ol
1 063
1 065
1 559(L,F)
A
0,02
0,02
0,05
1;2;3
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
cis-Linalool oxide
(Furanoid)
1 067
1 439(F)
OM
tr
2;3
p-Cresol
1 071
1 071
B
0,02
1;3
4-Pentenyl butanoate
1 076
1 075
1 341(L)
A
tr
0,32
1;2;3
m-Cymenene
1 082
1 083
1 420(L,F)
M
tr
tr
1;2;3
trans-Linalool oxide
(Furanoid)
1 084
1 468(F)
OM
tr
2;3
p-Mentha-2,4(8)-diene
1 085
1 085
M
0,02
tr
1;3
Terpinolene
1 086
1 089
1 1282(T)
M
0,48
0,51
0,20
1;2;3
Methyl benzoate
1 088
1 091
B
tr
1;3
p-Cymenene
1 089
1 091
1 484(L,F)
M
0,03
tr
0,05
1;2;3
6,7-Epoximyrcene
1 090
1 410(L,F)
OM
tr
tr
2;3
Linalool
1 095
1 097
1 552(L,F,T)
OM
2,05
2,65
0,37
1;2;3;4
Undecane
1 100
1 100(L)
A
tr
2;3;4
Nonanal
1 100
1 104
1 394(L,T)
A
0,22
tr
0,80
1;2;3
Perillene
1 102
1 105
1 420(L,T)
Misc.
tr
0,10
0,05
1;2;3
1,3,8-Menthatriene
1 108
1 218(F)
M
tr
2;3
3-Methyl-3-butenyl
isovalerate
1 112
1 114
A
0,06
1;3
exo-Fenchol
1 118
1 120
OM
0,05
1;3
cis-p-Menth-2-en-1-ol
1 118
1 120
OM
tr
1;3
α-Campholenal
1 122
1 487(F)
OM
tr
2;3
trans-Pinocarveol
1 135
1 646(F)
OM
tr
2;3
trans-p-Menth-2-en-1-ol
1 136
1 139
1 624(L)
OM
tr
0,04
1;2;3
cis-Verbenol
1 137
1 650(F)
OM
tr
2;3
(E)-Epoxy-ocimene
1 137
1 486(L)
OM
tr
2;3
cis-p-Menth-1,8-diene-1-ol
1 138
1 667(F)
OM
tr
2;3
neo-allo-Ocimene
1 140
1 144
M
0,06
1;3
trans-Verbenol
1 140
1 672(F)
OM
tr
2;3
Veratrol
1 141
1 726(F)
OM
tr
2;3
p-Menth-3-en-8-ol
1 145
1 146
OM
tr
1;3
Citronellal
1 148
1 158
OM
0,01
1;3
(E)-Non-2-enal
1 157
1 159
1 531(L,F,T)
A
0,51
0,01
0,24
1;2;3
Pinocarvone
1 160
1 166
1 555(F)
OM
0,01
1;2;3
1,3-Dimetoxybenzene
1 165
1 167
B
0,05
1;3
Ethyl benzoate
1 169
1 170
1 658(F)
B
0,09
1;2;3
Nonan-1-ol
1 172
1 171
A
0,05
1;3
Terpinen-4-ol
1 174
1 178
1 597(L,F)
OM
0,37
0,27
0,05
1;2;3;4
Naphthalene
1 178
1 183
1 721(L)
B
0,43
1;2;3
m-Cymen-8-ol
1 176
1 846(F)
OM
tr
2;3
p-Cymen-8-ol
1 179
1 846(L,F)
OM
tr
tr
2;3
Cryptone
1 183
1 185
IT
0,06
tr
1;3
Methyl salicylate
1 190
1 191
1 760(L,F)
B
0,29
0,37
0,16
1;2;3
α-Terpineol
1 192
1 195
1 693(F)
OM
0,16
0,15
0,07
1;2;3
Myrtenal
1 195
1 614(F)
OM
tr
2;3
trans-p-Menthan-2-one
1 199
1 198
OM
0,15
1;3
Decanal
1 201
1 206
1 497(T)
A
0,04
tr
0,61
1;2;3
Verbenone
1 204
1 688(F)
OM
tr
2;3
trans-Piperitol
1 207
1 209
OM
0,02
0,07
1;3
Octyl acetate
1 211
1 214
A
0,07
1;3
trans-Carveol
1 215
1 219
1 831(F)
OM
tr
1;2;3
(E,E)-2,4-Nonadienal
1 220
1 221
A
0,06
tr
1;3
1-p-Menth-9-al
1 221
1 222
OM
tr
1;3
β-Cyclocitral
1 225
1 222
IT
tr
1;3
cis-Carveol
1 226
1 861(F)
OM
tr
2;3
Nerol
1 227
1 230
OM
0,11
0,02
tr
1;3
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
Cumin aldehyde
1 238
1 237
OM
0,01
1;3
Carvone
1 239
1 719(F)
OM
tr
2;3
(Z)-Dec-3-en-1-ol
1 242
1 245
A
0,04
0,02
0,05
1;3
Geraniol
1 249
1 248
OM
0,06
0,04
0,06
1;3;4
(E)-Dec-4-en-1-ol
1 259
1 252
A
0,03
1;3
Pent-4-enyl hexanoate
1 260
1 254
1 534(F)
A
tr
1;2;3
(E)-Dec-2-enal
1 260
1 261
1 638(L,T)
A
0,19
0,07
0,41
1;2;3
trans-Ascaridole glycol
1 266
2 086(F)
OM
tr
2;3
Ethyl salicylate
1 266
1 261
1 796(L)
B
tr
0,06
1;2;3
Nonanoic acid
1 267
1 266
A
0,05
1;3
Dodecanol
1 271
1 271
A
0,50
1;3
Dihydro-linalool acetate
1 272
1 269
OM
tr
1;3
p-Menth-1-en-7-al
(Phellandral)
1 280
1 283
OM
0,02
0,12
1;3
Car-2-en-10-al
1 289
1 281
OM
tr
1;3
p-Cymen-7-ol (Cumic
alcohol)
1 289
2 093(F)
OM
tr
2;3
(2Z,4Z)-Deca-2,4-dienal
1 292
1 292
A
tr
0,05
1;3
Undecan-2-one
1 293
1 293
1 598(T)
A
0,05
1;2;3
Carvacrol
1 298
1 296
OM
0,05
1;3
2-Methylnaphthalene
1 298
1 299
1 830(L)
B
0,06
1;2;3
Undecanal
1 305
1 306
A
0,02
1;3
4-Hydroxy-cryptone
1 314
2 238(F)
IT
tr
2;3
(2E,4E)-Deca-2,4-dienal
1 315
1 317
A
0,10
0,05
0,27
1;3
Myrtenyl acetate
1 324
1 324
OM
tr
1;3
cis-Sabinyl acetate
1 325
1 336
OM
0,01
1;3
α-Cubebene
1 345
1 351
1 453(F,T)
S
2,10
2,14
tr
1;2;3
(E)-Undec-2-enal
1 357
1 363
A
0,20
1;3
Neryl acetate
1 359
1 364
OM
0,04
1;3
Cyclosativene
1 369
1 366
S
tr
1;3
trans-p-menth-6-en-2,8-
diol
1 371
2 314(F)
OM
tr
2;3
α-Ylangene
1 373
1 373
1 473(L,F,T)
S
0,07
0,06
0,11
1;2;3
Isoledene
1 374
1 374
S
0,04
1;3
α-Copaene
1 374
1 378
1 484(L,F,T)
S
2,22
2,24
2,19
1;2;3
Geranyl acetate
1 379
1 382
OM
0,02
1;3
β-Cubebene
1 387
1 385
1 529(L)
S
tr
0,20
1;2;3
β-Bourbonene
1 387
1 387
1 508(L,F,T)
S
0,28
0,14
0,32
1;2;3
α-Bourbonene
1 388
1 388
1 501(L)
S
0,10
1;2;3
β-Elemene
1 389
1 393
1 582(F)
S
0,38
0,41
0,18
1;2;3
Dec-9-enyl acetate
1 399
1 398
A
0,08
0,10
1;3
Tetradecane
1 400
1 400
1 400(T)
A
tr
1;2;3
(Z)-Caryophyllene
1 408
1 407
1 563(F)
S
tr
1;2;3
α-Gurjunene
1 409
1 412
1 517(L,F,T)
S
0,88
0,88
0,76
1;2;3
(E)-Caryophyllene
1 417
1 422
1 584(L,F,T)
S
5,16
0,70
4,68
1;2;3;4
(E)-α-Ionone
1 428
1 431
1 838(L)
IT
0,13
1;2;3
β-Copaene
1 430
1 578(L,F)
S
tr
tr
2;3
α-Muurolene
1 431
1 432
S
0,21
1;3
γ-Elemene
1 434
1 435
S
0,22
0,47
0,21
1;3
cis-Thujopsene
1 435
1 436
S
0,05
1;3
α-Guaiene
1 437
1 438
S
0,08
0,07
0,10
1;3
Aromadendrene
1 439
1 629(L,F,T)
S
tr
tr
tr
2;3
6,9-Guaiadiene
1 442
1 441
S
0,11
1;3
cis-Muurola-3,5-diene
1 448
1 444
S
0,42
1;3
trans-Muurola-3,5-diene
1 451
1 450
1 616(T)
S
0,05
tr
1;2;3
α-Humulene
1 452
1 456
1 674(L,F,T)
S
2,80
3,55
2,38
1;2;3;4
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
Geranyl acetone
1 453
1 457
1 857(L)
IT
0,16
1;2;3
Allo-aromadendrene
1 458
1 463
S
0,48
0,47
0,59
1;3
cis-cadina-1(16),4-diene
1 461
1 464
S
tr
0,76
1;3
cis-Muurola-4(14),5-diene
1 465
1 464
S
tr
1;3
Cabreuva oxide C
1 466
1 737(L)
OS
tr
2;3
trans-cadina-1(16),4-diene
1 475
1 475
1 648(L,T)
S
0,48
0,97
tr
1;2;3
γ-Muurolene
1 478
1 478
1 675(L,F)
S
0,21
0,10
0,31
1;2;3
α-Amorphene
1 483
1 484
S
0,12
1;3
Germacrene D
1 484
1 483
1 693(L)
S
0,80
0,75
1;2;3
(E)-β-Ionone
1 487
1 922(L)
IT
tr
2;3
β-Selinene
1 489
1 489
1 700(L,F)
S
tr
tr
0,31
1;2;3
trans-Muurola-4(14),5-
diene
1 493
1 494
1 695(L)
S
0,16
0,68
0,33
1;2;3
epi-Cubebol
1 493
1 927(L)
OS
tr
2;3
Valencene
1 496
1 718(L)
S
tr
2;3
Viridiflorene
1 496
1 680(L)
S
tr
0,31
2;3
α-Selinene
1 498
1 497
1 706(L)
S
0,32
0,32
1;2;3
Pseudowiddrene
1 498
1 661(L,F)
S
tr
tr
2;3
10,11-Epoxycalamenene
1 498
1 868(F)
OS
tr
2;3
α-Muurolene
1 500
1 500
1 712(L,T)
S
0,54
0,81
1;2;3
Cuparene
1 504
1 502
S
0,05
1;3
β-Bisabolene
1 505
1 504
S
tr
1;3
Germacrene A
1 508
1 508
S
0,43
0,18
0,17
1;3
α-Bulnesene
1 509
1 506
S
tr
1;3
(E,E)-α-Farnesene
1 509
1 509
S
tr
1;3
γ-Cadinene
1 513
1 516
1 748(F,T)
S
0,17
tr
0,14
1;2;3
Cubebol
1 514
1 515
OS
0,18
1;3
Geranyl isobutanoate
1 514
1 857(L,F)
M
tr
tr
2;3
α-dehydro-ar-Himachalene
1 516
1 888(F,T)
S
tr
tr
2;3
7-epi-α-Selinene
1 520
1 760(L)
S
tr
2;3
trans-Calamenene
1 521
1 820(F, T)
S
tr
tr
2;3
δ-Cadinene
1 522
1 524
1 742(L,T)
S
tr
3,28
1;2;3;4
cis-Calamenene
1 528
1 527
1 822(L,F)
S
12,60
12,70
11,31
1;2;3
α-dehydro-ar-himachalene
1 530
1 887(L)
S
tr
2;3
trans-Cadina-1,4-diene
1 533
1 535
1 766(L,T)
S
1,00
1,38
1,40
1;2;3
10-epi-Cubebol
1 533
1 875(L)
S
tr
2;3
α-Cadinene
1 537
1 538
1 776(L)
S
0,16
0,33
1;2;3
α-Calacorene
1 544
1 545
1 896(L,T)
S
0,40
0,41
0,63
1;2;3
cis-Muurolol-5-en-4-β-ol
1 550
1 876(F)
OS
tr
2;3
Germacrene B
1 559
1 560
1 806(L,T)
S
1,94
3,65
0,07
1;2;3
(E)-Nerolidol
1 561
1 565
2 041(L,T)
OS
0,59
0,57
1;2;3;4
β-Calacorene
1 564
1 939(L,F)
S
tr
tr
2;3
Dodecanoic acid
1 565
1 566
A
0,24
1;3
Palustrol
1 567
1 570
OS
tr
1;3
Spathulenol
1 577
2 107(L,F,T)
OS
tr
0,10
tr
2;3
(Z)-Caryophyllene oxide
1 580
1 578
1 949(L,F,T)
OS
tr
tr
tr
1;2;3
(E)-Caryophyllene oxide
1 582
1 586
1 956(L)
OS
2,04
2,93
2,94
1;2;3
Gleenol
1 586
1 587
2 024(L,F,T)
OS
tr
0,27
0,50
1;2;3
Globulol
1 590
2 056(F)
OS
tr
2;3
Viridiflorol
1 592
2 062(L)
OS
tr
2;3
Hexadecane
1 600
1 600(L,T)
A
tr
tr
2;3
Ledol (epi-Globulol)
1 602
1 607
2 005(L,F,T)
OS
0,58
0,28
0,59
1;2;3
Humulene epoxide II
1 608
1 609
2 012(L,F,T)
OS
0,92
0,48
0,93
1;2;3
1,10-di-epi-cubenol
1 618
2 038(L,T)
OS
tr
tr
tr
2;3
Junenol
1 618
1 620
2 031(L,T)
OS
0,07
0,85
0,17
1;2;3
1-epi-Cubenol
1 627
1 632
2 046(L,F,T)
OS
1,87
1,41
2,45
1;2;3
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
Muurola-4,10(14)-dien--
ol
1 630
2 132(L)
OS
tr
2;3
epi-α-Cadinol (tau-Cadinol)
1 638
2 156(L,T)
OS
tr
tr
tr
2;3
Caryophylla-4(12),8(13)-
dien--ol
1 639
1 638
2 278(F)
OS
tr
0,16
0,48
1;2;3
Caryophylla-4(12),8(13)-
dien--ol
1 639
1 641
2 272(F)
OS
0,17
1;2;3
Hinesol
1 640
1 642
OS
2,16
1;3
epi-α-Muurolol
1 640
1 643
2 172(L,F,T)
OS
tr
0,50
tr
1;2;3
α-Muurolol
1 644
1 645
2 186(L,F)
OS
tr
0,65
1;2;3
Cubenol
1 645
1 646
OS
2,45
3,24
1;3
α-Cadinol
1 652
1 658
2 216(L,F,T)
OS
1,42
1,18
0,62
1;2;3
Selin-11-en-4-α-ol
1 658
1 659
2 231(L,F,T)
OS
0,05
tr
tr
1;2;3
cis-Calamenen-10-ol
1 660
2 323(L,F)
OS
tr
tr
2;3
trans-Calamenen-10-ol
1 668
1 666
2 353(L,F)
OS
tr
0,05
1;2;3
Tetradecanol
1 671
1 676
A
1,14
1;3
Cadalene
1 675
1 678
2 198(L,F)
S
0,08
tr
0,62
1;2;3
Mustakone
1 676
2 223(F)
IT
tr
2;3
Muurola-4,10(14)-dien-1-β-
ol
1 686
1 683
OS
0,46
1;3
Eudesma-4(15),7-dien--
ol
1 687
1 683
OS
0,25
0,31
1;3
Pentadecan-2-one
1 697
2 120(T)
A
tr
2;3
Eudesma-7(11)-en-4-ol
(Juniper camphor)
1 694
1 690
OS
tr
0,30
0,18
1;3
Heptadecane
1 700
1 700
A
0,09
1;3
Amorpha-4,9-dien-2-ol
1 700
1 699
2 336(L,F)
OS
0,17
tr
1;2;3
10-nor-Calamenen-10-one
1 702
2 349(F)
OS
tr
2;3
5-Hydroxy-cis-calamenene
1 713
2 325(F)
OS
tr
2;3
(2E,6Z)-Farnesol
1 714
1 712
OS
0,10
0,48
1;3
Nootkatol
1 714
1 717
2 458(L)
OS
0,05
0,30
1;2;3
Pentadecanal
1 717
1 717
A
0,05
1;3
(2Z,6E)-Farnesol
1 722
2 352(T)
OS
tr
2;3
Benzyl benzoate
1 759
1 766
2 603(L,F)
B
0,14
0,47
1;2;3
Tetradecanoic acid
1 762
1 767
2 722(T)
A
0,86
1;2;3
14-Hydroxy-α-muurolene
1 779
1 773
OS
tr
1;3
14-Hydroxy-δ-cadinene
1 803
1 806
OS
0,05
0,05
1;3
Hexadecanal
1 819
1 822
A
0,01
0,05
0,16
1;3
Hexahydrofarnesyl acetone
1 843
1 846
2 125(L)
IT
0,05
tr
0,30
1;2;3
Pentadecanoic acid
1 857
1 858
A
0,11
1;3
Benzyl salicylate
1 864
1 870
2 751(L)
B
0,05
1;2;3
Hexadecan-1-ol
1 874
1 879
2 378(T)
A
0,01
tr
0,12
1;2;3
Nonadec-1-ene
1 895
1 894
A
tr
1;3
Nonadecane
1 900
1 900
1 900(T)
A
0,40
1;2;3
Heptadecan-2-one
1 908
1 908
A
tr
1;3
(5E,9E)-Farnesyl acetone
1 913
1 906
IT
0,06
1;3
Heptadecanal
1 920
1 916
A
tr
1;3
Methyl hexadecanoate
1 921
1 923
A
tr
1;3
Isophytol
1 946
1 947
D
tr
1;3
(Z)-Hexadec-9-enoic acid
1 952
1 949
A
0,20
1;3
Geranyl benzoate
1 958
1 960
M
0,02
tr
1;3
Hexadecanoic acid
(Palmitic acid)
1 959
1 961
2 932(L,F,T)
A
tr
0,06
7,99
1;2;3;4
Ethyl hexadecanoate
1 993
1 990
2 250(T)
A
0,39
1;2;3
Eicosane
2 000
2 000
A
0,06
1;3
Manool oxide
2 009
2 002
D
0,16
1;3
UNED Research Journal, e-ISSN: 1659-441X, Vol. 16: e4863, January-December 2024 (Publicado XX-XX-2024)
Hexadecan-1-ol acetate
2 010
2 009
A
tr
1;3
(E,E)-Geranyl linalool
2 026
2 031
2 535(L,T)
D
0,05
tr
0,28
1;2;3
Heneicosane
2 100
2 100
2 100(T)
A
0,66
1;2;3
Nonadecan-2-one
2 101
2 100
A
tr
1;3
(E)-Phytol
2 107
2 612(L,F,T)
D
tr
tr
1,20
2;3
(Z)-Phytol
2 114
2 113
2 412(L)
D
0,13
0,05
1;2;3
Linoleic acid
2 134
2 132
A
0,08
0,74
1;3
Oleic acid
2 141
2 135
A
0,63
1;3
Palmitaldehyde, diallyl
acetal
2 148
2 147
A
tr
tr
1;3
Ethyl linoleate
2 155
2 162
2 518(T)
A
tr
0,43
1;2;3
Ethyl linolenate
2 169
2 169
A
tr
1;3
Nonadecan-1-ol
2 181
2 188
A
0,06
1;3
Docosane
2 200
2 200
2 200(T)
A
0,25
1;2;3;4
Eicosanal
2 219
2 220
A
tr
1;3
Tricosane
2 300
2 300
2 300(T)
A
0,53
1;2;3;4
Heneicosan-2-one
2 306
2 305
A
0,08
1;3
Tetracosane
2 400
2 400
2 400(T)
A
0,33
1;2;3;4
Pentacosane
2 500
2 500
2 500(T)
A
0,70
1;2;3;4
Hexacosane
2 600
2 600
2 600(T)
A
0,19
1;2;3;4
Heptacosane
2 700
2 700
2 700(T)
A
0,07
1;2;3;4
Octacosane
2 800
2 800
2 800(T)
A
tr
1;2;3;4
Nonacosane
2 900
2 900
2 900(T)
A
tr
1;2;3;4
TOTAL
91,29
86,65
74,56
No. of compounds
160
199
144
Compound class
Total monoterpenoids
42,66
38,63
6,84
Monoterpene
hydrocarbons (M)
36,98
30,75
6,20
Oxygenated monoterpenes
(OM)
5,68
7,88
0,64
Total sesquiterpenoids
44,67
44,69
46,45
Sesquiterpene
hydrocarbons (S)
34,06
32,36
32,84
Oxygenated sesquiterpenes
(OS)
10,61
12,33
13,61
Diterpenoids (D)
0,18
0,05
1,64
Irregular terpenoids (IT)
0,24
tr
0,52
Aliphatics (A)
2,55
2,17
18,77
Benzenoids (B)
0,91
1,01
0,29
Miscellaneous (Misc.)
tr
0,1
0,05
aCompounds listed in order of elution from poly-(5% phenyl 95% dimethylsiloxane) type column. bRILit = DB-5
(Adams, 2007; Wallace, 2021). cRIExp = Retention index relative to C8-C32 n-alkanes on the SLB™-5ms column.
dSw10Exp = Experimental retention index on Supelcowax™ 10. eIM = Identification methods: 1 = Retention
index on poly-(5% phenyl/95% methylsiloxane) type column; 2 = Retention index on Supelcowax™10; 3 = MS
spectra; 4 = Standard. ftr = Traces (<0,005%). *(Romanenko & Tkachev, 2006; Collin et al., 2010). Major
terpenoids are in boldface.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Covering: up to November 2022Plants shape terrestrial ecosystems through physical and chemical interactions. Plant-derived volatile organic compounds in particular influence the behavior and performance of other organisms. In this review, we discuss how vegetative plant volatiles derived from leaves, stems and roots are produced and released into the environment, how their production and release is modified by abiotic and biotic factors, and how they influence other organisms. Vegetative plant volatiles are derived from different biosynthesis and degradation pathways and are released via distinct routes. Both biosynthesis and release are regulated by other organisms as well as abiotic factors. In turn, vegetative plant volatiles modify the physiology and the behavior of a wide range of organisms, from microbes to mammals. Several concepts and frameworks can help to explain and predict the evolution and ecology of vegetative plant volatile emission patterns of specific pathways: multifunctionality of specialized metabolites, chemical communication displays and the information arms race, and volatile physiochemistry. We discuss how these frameworks can be leveraged to understand the evolution and expression patterns of vegetative plant volatiles. The multifaceted roles of vegetative plant volatiles provide fertile grounds to understand ecosystem dynamics and harness their power for sustainable agriculture.
Article
Full-text available
The antioxidant, cytoprotective, and wound-healing potential of the essential oil from the resin of Pistacia lentiscus var. chia (mastic oil) was evaluated, along with that of its major components, myrcene and α-pinene. Antioxidant potential was monitored as: (i) direct antioxidant activity as assessed by 2,2-di-phenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and ABTS assays; (ii) DNA damage protection activity; and (iii) cytoprotective activity as assessed via induction of transcription of genes related to the antioxidant response in human keratinocyte cells (HaCaT). The cytoprotective potential of the test substances was further evaluated against ultraviolet radiation B (UVB)- or H2O2-induced oxidative damage, whereas their regenerative capability was accessed by monitoring the wound closure rate in HaCaT. Μastic oil and major components did not show significant direct antioxidant activity, however they increased the mRNA levels of antioxidant response genes, suggesting indirect antioxidant activity. Treatment of HaCaT with the test substances before and after UVB irradiation resulted in increased cell viability in the cases of pre-treatment with mastic oil or post-treatment with myrcene. Increased cytoprotection was also observed in the case of cell treatment with mastic oil or its major components prior to H2O2 exposure. Finally, mastic oil and myrcene demonstrated a favorable dose-dependent effect for cell migration and wound closure. Collectively, mastic essential oil may exert its promising cytoprotective properties through indirect antioxidant mechanisms.
Article
Full-text available
The interactions of plants with environment and insects are bi-directional and dynamic. Consequently, a myriad of mechanisms has evolved to engage organisms in different types of interactions. These interactions can be mediated by allelochemicals known as volatile organic compounds (VOCs) which include volatile terpenes (VTs). The emission of VTs provides a way for plants to communicate with the environment, including neighboring plants, beneficiaries (e.g., pollinators, seed dispersers), predators, parasitoids, and herbivores, by sending enticing or deterring signals. Understanding terpenoid distribution, biogenesis, and function provides an opportunity for the design and implementation of effective and efficient environmental calamity and pest management strategies. This review provides an overview of plant–environment and plant–insect interactions in the context of terpenes and terpenoids as important chemical mediators of these abiotic and biotic interactions.
Article
Full-text available
Myrcianthes is a Myrtaceous genus of flowering plants of about 30 to 40 species, distributed in the American continent. The aim of this work was to study the chemical composition of the foliar essential oil from M. fragrans growing wild in central Costa Rica. The essential oil was obtained through the steam distillation process in a Clevenger type apparatus. The chemical composition of the oil was performed by capillary gas chromatography with a flame detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS) using the retention indices on a DB-5 type capillary column in addition to mass spectral fragmentation patterns. A total of 98 compounds were identified, accounting for 98.8% of the total amount of the oil. The major constituents in the leaf oil were (E)-methyl cinnamate (39.6%), limonene (34.6%), α-pinene (6.8%), and linalool (6.8%). This is the first report of (E)-methyl cinnamate occurring in oils of this plant genus. These findings appear to suggest a new chemotype of M. fragrans. © 2017 Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas.
Article
Full-text available
Adams, R. P. 2007. Identification of essential oil components by gas chromatography/ mass spectrometry, 4th Edition. Allured Publ., Carol Stream, IL Is out of print, but you can obtain a free pdf of it at www.juniperus.org
Article
Full-text available
Essential oils from Calyptranthes pittieri (Lauraceae), Cinnamomum tonduzii (Lauraceae), Croton niveus and C. monteverdensis (Euphorbiaceae), Dendropanax arboreus (Araliaceae), Eugenia austin-smithii and E. haberi (Myrtaceae), Myrcianthes fragrans and M. rhopaloides (Myrtaceae), Nectandra membranacea (Lauraceae), Ocotea floribunda (Lauraceae), Oreopanax xalapensis (Araliaceae), Piper umbellatum (Piperaceae), Psidium guajava (Myrtaceae), Stauranthus perforatus (Rutaceae), Zanthoxylum acuminatum, Z. melanostictum, Z. monophyllum, and Zanthoxylum sp. nov. "brillante" (Rutaceae), have been screened for cytotoxic activity against a panel of human tumor cell lines, antibacterial activity against Gram-positive and Gram-negative bacteria, as well as brine shrimp (Artemia salina) lethality.
Article
Myrcianthes pungens (Myrtaceae) is a native tree to Brazil known as guabijú. In our study, we described the chemical composition of the essential oil from M. pungens dried leaves, the antioxidant activity by different methods and antibacterial activity against Staphylococcus aureus, Bacillus cereus and Pseudomonas aeruginosa. The chemical identification was done by gas chromatograph coupled to mass spectrometer and antibacterial activity was evaluated by broth microdilution method. The leaf essential oil presented hydrocarbon sesquiterpenes (42.6%) as its main chemical class whose major compounds were β-caryophyllene (11.7%) and 1,8-cineole (10.1%). The best antioxidant protection was from 57.5 to 63.3% of β-carotene. The highest antibacterial activity was against S. aureus (MIC of 78.12 µg/mL). This value was 2.56-fold lower than the positive streptomycin control. M. pungens is a promising source of natural molecules with potential study for the development of pharmacological, cosmetic and food products.
Article
Ethnobotanical and ethnomedicinal relevance: The importance given in Ecuador to the rescue of traditional knowledge and nutritional value of ancestral foods and drinks, has stimulated our investigation of the chemical composition and some biological activities of M. fragrans ('arrayán') essential oil, a natural aromatic additive used in the preparation of the traditional fruit-juice 'colada morada', which is typically drunk in the Day of the Dead or All Soul´s Day. Material and methods: Different essential oils of Myrcianthes fragrans (Sw.) McVaught were obtained by hydrodistillation of the aerial parts of the plant collected in Cerro Villonaco (Loja-Ecuador) at three different phenological growth stages, i.e., during foliation (Fo), flowering (Fl) and fruiting (Fr) stages. The chemical compositions of the essential oils were determined by GC-MS and GC-FID techniques. The antimicrobial activities were determined by the broth microdilution method and reported as minimal inhibitory concentration (MIC, ug/mL). Aims of the study: i) to investigate the traditional uses of arrayán (M. fragrans) in the South region of Ecuador; ii) to identify the main components of the essential oils isolated at different phenological stages; iiì) to test the antimicrobial activity of the essential oils against bacteria and yeasts causing human ailments and a yeast causing food spoilage. Results: 37, 46 and 38 compounds, representing 96.5, 96.2, and 95.6% of the three essential oils (Fo, Fl and Fr), respectively, have been identified. Oxygenated monoterpenes (OM) were the major components with percentages of 63.1 (Fo), 49.4 (Fl), and 61.9% (Fr), respectively. The main constituents of the essential oils were the monoterpene aldehydes geranial (1) and neral (2), the content of which varied, depending on the phenological development stage of the plant, spanning from 31.1 and 23.6% (Fo), to 23.6 and 17.8% (Fl), and 29.7 and 24.3% (Fr), respectively. In vitro antimicrobial tests showed that the essential oils from M. fragrans exhibited good activity against the Gram-negative bacteria, K. pneumoniae, and against the yeasts, C. albicans and S. cerevisiae. Conclusions: The oil is characterized by a high concentration of the monoterpene aldehydes geranial and neral (citral), that make the aroma of colada morada prepared in southern Ecuador quite different from the beverage made in other regions of the country, where other types of myrtles (Myrtaceae spp.) are used. Moreover, the oil may become a new rich source of the important industrial chemical citral. The pleasant aromatic properties and the good in vitro antimicrobial activity of arrayán oil suggest a plausible scientific explanation for the traditional uses of the plant not only as a natural aromatizer of a traditional beverage but also as a natural anti-infective and anti-yeast agent.
Article
Terpenoids are the largest group of plant specialized (secondary) metabolites. These naturally occurring chemical compounds are highly diverse in chemical structure. Although there have been many excellent studies of terpenoids, most have focused on compounds built solely of isoprene units. Plants, however, also contain many "atypical" terpenoids, such as glycosylated volatile terpenes and composite-type terpenoids, the latter of which are synthesized by the coupling of isoprene units on aromatic compounds. This mini review describes these "hidden" terpenoids, providing an overview of their biosynthesis, localisation, and biological and ecological activities.
Article
The essential oil of the aerial parts from Myrcianthes myrsinoides (Kunth) Grifo (Myrtaceae) was analyzed by gas chromatography and gas chromatogrphy-mass spectroscopy (GC/MS). Altogether 28 compounds representing 90.2% of the total of the essential oil were identified. The major constituentes were p-Terpinen-4-ol (32.22%), o-cymene (8.15%), spathulenol (7.59%) and caryophyllene oxide (7.14%). It was tested against Gram positive and Gram negative bacteria at different concentrations and presented an important effect against B. cereus (MIC 100-200 μg/mL; MBC 200 μg/mL); B. subtilis and S. epidermidis (MIC 200-400 μg/mL; MBC 800 μg/mL). This is the first report on the antibacterial activity of the essential oil of M. myrsinoides (Kunth) Grifo. © 2017, SILAE (Italo-Latin American Society of Ethnomedicine). All rights reserved.