ArticlePDF Available

Taxonomic and phylogenetic characterisations of six species of Pleosporales (in Didymosphaeriaceae, Roussoellaceae and Nigrogranaceae) from China

Pensoft Publishers
Mycokeys
Authors:

Abstract and Figures

Pleosporales comprise a diverse group of fungi with a global distribution and significant ecological importance. A survey on Pleosporales (in Didymosphaeriaceae, Roussoellaceae and Nigrogranaceae) in Guizhou Province, China, was conducted. Specimens were identified, based on morphological characteristics and phylogenetic analyses using a dataset composed of ITS, LSU, SSU, tef 1 and rpb 2 loci. Maximum Likelihood (ML) and Bayesian analyses were performed. As a result, three new species ( Neokalmusia karka , Nigrograna schinifolium and N. trachycarpus ) have been discovered, along with two new records for China ( Roussoella neopustulans and R. doimaesalongensis ) and a known species ( Roussoella pseudohysterioides ). Morphologically similar species and phylogenetically close taxa are compared and discussed. This study provides detailed information and descriptions of all newly-identified taxa.
This content is subject to copyright. Terms and conditions apply.
123
Taxonomic and phylogenetic characterisations of six species
of Pleosporales (in Didymosphaeriaceae, Roussoellaceae and
Nigrogranaceae) from China
Hongmin Hu1,2* , Minghui He1,2*, Youpeng Wu1, Sihan Long1, Xu Zhang1, Lili Liu3, Xiangchun Shen1,2,
Nalin N. Wijayawardene4,5 , Zebin Meng6, Qingde Long1, Jichuan Kang7, Qirui Li1,2
1 State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou province, China
2 TheHighEcacyApplicationofNaturalMedicinalResourcesEngineeringCenterofGuizhouProvince(TheKeyLaboratoryofOptimalUtilizationofNatural
MedicineResources),SchoolofPharmaceuticalSciences,GuizhouMedicalUniversity,UniversityTown,GuianNewDistrict,Guiyang,Guizhouprovince,China
3 KeyLaboratoryofInfectiousImmuneandAntibodyEngineeringofGuizhouProvince,CellularImmunotherapyEngineeringResearchCenterofGuizhou
Province,ImmuneCellsandAntibodyEngineeringResearchCenterofGuizhouProvince,SchoolofBiologyandEngineering,GuizhouMedicalUniversity,
Guiyang, Guizhou province, China
4 CenterforYunnanPlateauBiologicalResourcesProtectionandUtilization,CollegeofBiologicalResourceandFoodEngineering,QujingNormalUniversity,
Qujing,Yunnanprovince,China
5 TropicalMicrobiologyResearchFoundation,96/N/10,MeemanagodaRoad,10230Pannipitiya,SriLanka
6 GuizhouTeaSeedResourceUtilizationEngineeringResearchCenter,GuizhouEducationUniversity,Guiyang,Guizhouprovince,China
7 TheEngineeringandResearchCenterforSouthwestBio-PharmaceuticalResourcesofNationalEducationMinistryofChina,GuizhouUniversity,Guiyang,Guizhou
province, China
Correspondingauthors:QiruiLi(lqrnd2008@163.com);QingdeLong(longqingde@gmc.edu.cn)
Copyright: © Hongmin Hu et al.
This is an open access article distributed under
terms of the Creative Commons Attribution
License (Attribution 4.0 International –
CC BY 4.0).
Research Article
Abstract

ecological importance. A survey on Pleosporales (in Didymosphaeriaceae, Roussoel-
laceae and Nigrogranaceae) in Guizhou Province, China, was conducted. Specimens
-
ing a dataset composed of ITS, LSU, SSU, tef1 and rpb2 loci. Maximum Likelihood (ML)
and Bayesian analyses were performed. As a result, three new species (Neokalmusia
karka, Nigrograna schinifolium and N. trachycarpus) have been discovered, along with
two new records for China (Roussoella neopustulans and R. doimaesalongensis) and a
known species (Roussoella pseudohysterioides). Morphologically similar species and
phylogenetically close taxa are compared and discussed. This study provides detailed

Key words: phylogeny, saprophytic fungi, taxonomy, three new taxa
Introduction
The order Pleosporales was formally established by Luttrell and Barr (1987)
and is characterised by perithecioid ascomata with a papillate apex, ostioles
with or without periphyses, cellular pseudoparaphyses, bitunicate asci and as-
cospores of varying shapes, pigmentation and septation (Zhang et al. 2012).
Academic editor: J. Luangsa-ard
Received:
12 July 2023
Accepted:
27 October 2023
Published:
29 November 2023
Citation: Hu H, He M, Wu Y, Long S,
Zhang X, Liu L, Shen X, Wijayawardene
NN, Meng Z, Long Q, Kang J, Li Q
(2023) Taxonomic and phylogenetic
characterisations of six species of
Pleosporales (in Didymosphaeriaceae,
Roussoellaceae and Nigrogranaceae)
from China. MycoKeys 100:
123–151. https://doi.org/10.3897/
mycokeys.100.109423
MycoKeys 100: 123–151 (2023)
DOI: 10.3897/mycokeys.100.109423
 
124
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
As one of the largest orders in the Dothideomycetes, it comprises a quarter of
all dothideomycetous species (Ahmed et al. 2014b). Species in this order are
found in various habitats and can be epiphytes, endophytes or parasites of liv-
ing leaves or stems, hyperparasites on fungi or insects, lichenised or saprobes
of dead plant stems, leaves or bark (Ramesh 2003; Kruys et al. 2006). In this
    
families Didymosphaeriaceae Munk, Nigrogranaceae Jaklitsch & Voglmayr and
Roussoellaceae Jian et al. in Guizhou, China (Wijayawardene et al. 2022).

Didymosphaeria fuckeliana, can be placed in the order Pleosporales. Neokal-
musia was introduced to Didymosphaeriaceae by Ariyawansa et al. (2014a).
Currently, only eight Neokalmusia species are listed in Index Fungorum (acces-
sion date: 25 July 2023). Members of Didymosphaeriaceae are known to form
numerous different types of life modes, including saprobes, pathogens or en-
dophytes and can be found both on land and in water (Gonçalves et al. 2019;
Hongsanan et al. 2020). In the study of this paper, Neokalmusia karka is tak-
en from the dead culms of the Phragmites karka (Retz.) Trin. ex Steud. Shilihe
Beach Park, Huaxi, Guizhou Province, China.
Roussoellaceae was established to accommodate three genera, Neorous-
soella Jian K. Liu et al., Roussoella Sacc. and Roussoellopsis I. Hino & Katum.,
based on molecular phylogenetic studies (Liu et al. 2014). The genus Rous-
soella has cylindrical asci with Cytoplea asexual morphs, which distinguishes it
from other genera (Liu et al. 2014). Another feature reported for the genus Rous-
soella is the high stability of the ascal exotunica, particularly in 3% potassium
hydroxide (KOH). This is quite common for nearly all fungi treated here, while
only in Nigrograna
(Jaklitsch and Voglmayr 2016). Nigrogranaceae was established to accommo-
date Nigrograna, with N. mackinnonii (Borelli) Gruyter et al. as the type species
(Jaklitsch and Voglmayr 2016). As the only genus in the family Nigrogranaceae,
Nigrograna was established despite lacking strong bootstrap values support
in ITS/tef
Zhang et al. 2020a; Wijayawardene et al. 2020). Species of Nigrograna may be
interpreted as a result of cryptic speciation, as, morphologically, they show only
subtle differences (Jaklitsch and Voglmayr 2016). Twenty-three Nigrograna
species are listed in Index Fungorum (accession date: 25 July 2023).
In this study, we collected dead branches in Guizhou Province, China. Examina-
tion of the wood revealed three novel fungal species, two species that are newly
recorded in China and one known species of Pleosporales. To elucidate their tax-
onomic placement and relationships with related species, we conducted mor-
phological observations and phylogenetic analyses, based on combined ITS, LSU,
SSU, tef1, and rpb2 sequences. Detailed descriptions of the morphological fea-
tures of these species along with their molecular characterisation are provided.
Materials and methods
Fungal sampling, isolating and morphology
Fresh fungal specimens were collected in Duyun, Zunyi, Qiannan Prefecture and
Guiyang, Guizhou Province and were brought back to the laboratory in self-seal-
125
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
ing bags. The specimens were then examined for their macroscopic charac-
teristics using a Nikon SMZ 745 series stereomicroscope and photographed,
using a Canon 700D digital camera. Micro-morphological structures were pho-
tographed using a Nikon digital camera (Canon 700D) that was attached to a
light microscope (Nikon Ni). Melzer’s iodine reagent was used to test the apical
apparatus structures for amyloid reaction. Measurements of the specimens
were registered using Tarosoft (R) Image FrameWork 80 software. The photo
plates were arranged and improved using Adobe Photoshop CS6 software. Pure
cultures were obtained with the single spore isolation method (Long et al. 2019)
and the cultures were grown on potato dextrose agar (PDA) for preservation
and observation of the anamorph (Rogers and Ju 1996). The specimens were
deposited in the Herbaria of Guizhou Medical University (GMB) and Kunming
Institute of Botany, Chinese Academy of Sciences (KUN-HKAS). Living cultures
were deposited at the Guizhou Medical University Culture Collection (GMBC).
DNA extraction, polymerase chain reaction (PCR) amplication
The pure cultures were cultivated on potato dextrose agar (PDA) medium (Weigh
40.1g of potato dextrose agar (Shanghai Bowei Microbial Technology Co., Ltd.),
add 1L of sterile water, and dissolve by heating until boiling. After dissolution,
     
sterilizer for sterilization. Sterilization conditions are set at 121 degrees Celsius
for 30 minutes. After sterilization, add a small amount of injectable potassium
penicillin (Huamu) and injectable streptomycin sulfate (Huamu) into the culture
medium and mix well. Pour the mixture into disposable culture dishes for later

hood.) at 25 °C in the dark for 15–20 days. Fresh mycelium was collected by
scraping it with a surgical knife and then transferred to a 1.5 ml centrifuge tube.
DNA extraction was performed according to the instructions provided in the
Biospin Fungus Genomic DNA Extraction Kit (BIOMIGA®).

(SSU), large subunit rDNA (LSU), translation elongation factor 1-gene region
(tef1) and RNA polymerase II second largest subunit (rpb2) was achieved using
ITS5/ITS4, NS1/NS4, LR0R/LR5, EF1-938F/EF1-2218R and fRPB2-5f/fRPB2-7cr
primers (Tibpromma et al. 2018; Vu et al. 2019; Wijesinghe et al. 2020; Dissan-

ITS, SSU, LSU, tef1 and rpb2 loci were performed using the Eppendorf Master-
cycler nexus (SimpliAmp Thermal Cycler, A24811, SimpliAmp, China) gradient
          
-
tion conditions using the Polymerase Chain Reaction is shown in Table 2. The
obtained sequences were deposited in GenBank and are listed in Table 3.
Phylogenetic analysis
BioEdit v.7.0 was used to verify the quality of sequences (Hall TA 1999) and
MAFFT v.7.215 (http://mafft.cbrc.jp/alignment/server/index.html) was em-

format was converted using ALTER (Alignment Transformation Environment)
126
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Table 1. PCR conditions used for ITS, SSU, LSU, tef1 and rpb2 loci.
Genes Initial period Cycles, denaturation, annealing and elongation Final extension
ITS, LSU,
SSU, tef1
95°C for 5 min 35 cycles of denaturation at 94 °C for 1 min, annealing at
52°C for 1 min, elongation at 72°C for 1.5 min
72°C for 10 minutes
rpb2 95°C for 5 min 35 cycles of denaturation at 95°C for 1 minute, annealing
at 54°C for 2 minutes, elongation at 72°C for 1.5 minutes
72°C for 10 minutes
Table 2. Composition of PCR reaction system.
Components Volumetry Concentration
2× Tap PCR Mix 
Primer 1  -1
Primer  -1
DNA template  -1
ddH2O
Table 3. Taxa and corresponding GenBank accession numbers of sequences used in the phylogenetic analysis of Didy-
mosphaeriaceae, Roussoellaceae and Nigrogranaceae.
Species Strain GenBank Accession Numbers References
ITS SSU LSU tef1rpb2
Alloconiothyrium camelliaeNTUCC 17-032-1TMT112294 MT071221 MT071270 MT232967 
Arthopyrenia sp. UTHSC DI16–362 LT796905 LN907505 LT797145 LT797065 (Crous et al. 2015)
Austropleospora ochracea KUMCC 20-0020TMT799859 MT808321 MT799860 MT872714 (Dissanayake et al. 2021)
A. keteleeriae MFLUCC 18-1551TNR_163349 MK347910 NG_070075 MK360045 (Mapook et al. 2020)
Biatriospora antibiotica CCF 1998 LT221894 
B. carollii CCF 4484TLN626657 LN626668 
B. mackinnonii E9303e LN626673 
B. peruviensis CCF 4485TLN626658 LN626671 
Bimuria omanensis SQUCC 15280TNR_173301 NG_071257 MT279046 (Wijesinghe et al. 2020)
B. novae-zelandiae CBS 107.79TMH861181 AY016338 AY016356 DQ471087 (Vu et al. 2019)
Chromolaenicola nanensis MFLUCC 17-1477 MN325014 MN325008 MN325002 MN335647 (Liu et al. 2014)
C. siamensis MFLUCC 17-2527TNR_163337 MK347866 NG_066311 MK360048 (Mapook et al. 2020)
C. thailandensis MFLUCC 17-1475 MN325019 MN325013 MN325007 MN335652 (Liu et al. 2014)
C. lampangensis MFLUCC 17-1462TMN325016 MN325010 MN325004 MN335649 (Liu et al. 2014)
Cylindroaseptospora leucaenae MFLUCC 17-2424 NR_163333 MK347856 NG_066310 MK360047 (Mapook et al. 2020)
Deniquelata hypolithi CBS 146988TMZ064429 NG_076735 MZ078250 (Ariyawansa et al. 2020b)
D. barringtoniae MFLUCC 16-0271 MH275059 MH260291 MH412766 (Tibpromma et al. 2018)
Didymocrea sadasivanii CBS 438.65 MH858658 DQ384066 DQ384103 (Vu et al. 2019)
Didymosphaeria rubi-ulmifolii MFLUCC 14-0023TNG_063557 KJ436586 (Jayasiri et al. 2019)
Kalmusia erioi MFLU 18-0832TMN473058 MN473046 MN473052 MN481599 (Vu et al. 2019)
K. italica MFLUCC 13-0066TKP325440 KP325442 KP325441 (Vu et al. 2019)
K. variisporum CBS 121517TNR_145165 JX496143 (Wijesinghe et al. 2020)
K. ebuli CBS 123120TKF796674 JN851818 JN644073 (Dissanayake et al. 2021)
Kalmusibambusa triseptata MFLUCC 13-0232 KY682697 KY682696 KY682695 (Tibpromma et al. 2018)
Karstenula rhodostoma CBS 690.94 GU296154 GU301821 GU349067 (Crous et al. 2021)
Laburnicola hawksworthii MFLUCC 13-0602TKU743194 KU743196 KU743195 (Ariyawansa et al. 2014)
Letendraea helminthicola CBS 884.85 MK404145 AY016345 AY016362 MK404174 (Tibpromma et al. 2018)
L. muriformis MFLUCC 16-0290TKU743197 KU743199 KU743198 KU743213 (Ariyawansa et al. 2014)
L. padouk CBS 485.70 GU296162 AY849951 (Zhang et al. 2013)
L. cordylinicola MFLUCC 11 0148TNR_154118 KM214001 NG_059530 (Wijayawardene et al. 2020)
Montagnula chromolaenicola MFLUCC 17-1469TNR_168866 NG_070157 NG_070948 MT235773 (Liu et al. 2014)
M. cirsii MFLUCC 13 0680 KX274242 KX274255 KX274249 KX284707 (Hyde et al. 2020)
M. krabiensis MFLUCC 16-0250TMH275070 MH260343 MH260303 MH412776 (Tibpromma et al. 2018)
127
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Species Strain GenBank Accession Numbers References
ITS SSU LSU tef1rpb2
M. thailandica MFLUCC 17-1508TMT214352 NG_070158 NG_070949 MT235774 (Liu et al. 2014)
M. bellevaliae MFLUCC 14-0924TNR_155377 KT443904 KT443902 KX949743 (Ariyawansa et al. 2014)
Neoroussoella alishanense FU31016 MK503816 MK503822 MK336181 MN037756 (Verkley et al. 2014)
N. bambusae MFLUCC 11–0124 KJ474827 KJ474839 KJ474848 KJ474856 (Dissanayake et al. 2021)
N. brevispora KT2313TLC014574 AB524460 AB524601 AB539113 (Tanaka et al. 2015)
N. brevispora KT1466 LC014573 AB524459 AB524600 AB539112 (Tanaka et al. 2015)
N. heveae MFLUCC 17–1983 MH590693 MH590689 (Wanasinghe et al. 2018)
N. jonahhulmei KUMCC 21-0819 ON007044 ON007040 ON007049 ON009134 (Wanasinghe et al. 2016)
N. karka GMB0494TOR120445 OR120442 OR120432 OR150020 This study
N. karka GMB0500 OR120438 OR120433 OR120443 OR150021 This study
N. kunmingensis KUMCC 18-0120TMK079886 MK079887 MK079889 MK070172 (Vu et al. 2019)
N. lenispora GZCC 16-0020TKX791431 (Hyde et al. 2020)
N. scabrispora KT1023 LC014575 AB524452 AB524593 AB539106 (Tanaka et al. 2015)
N. solani CPC 26331TKX228261 KX228312 (Wijayawardene et al. 2014)
N. thailandica MFLUCC 16-0405TNR_154255 KY706137 NG_059792 KY706145 (Thambugala et al. 2015)
Neokalmusia arundinis MFLUCC 15-0463TNR_165852 NG_068372 NG_068237 KY244024 (Thambugala et al. 2015)
Nigrograna antibiotica CCF 4378TJX570932 JX570934 
Nigrograna cangshanensis MFLUCC15-0253TKY511063 KY511066 (Crous et al. 2015)
N. chromolaenae MFLUCC 17-1437TMT214379 MT235801 (Liu et al. 2014)
N. didymospora MFLUCC 11-0613 KP091435 KP091434 (Haridas et al. 2020)
N. fuscidula CBS 141556TKX650550 KX650525 (Feng et al. 2019)
N. fuscidula CBS 141476 KX650547 KX650522 (Feng et al. 2019)
N. hydei GZCC 19-0050TNR_172415 MN389249 (Zhang et al. 2020)
N. impatientis GZCC 19-0042TNR_172416 MN389250 (Zhang et al. 2020)
N. leucaenae MFLUCC 18–1544 MK347767 MK347984 MK360067 MK434876 (Mapook et al. 2020)
N. locuta-pollinis CGMCC 3.18784 MF939601 MF939613 (Ahmed et al. 2014)
N. locuta-pollinis LC11690 MF939603 MF939614 (Ahmed et al. 2014)
N. mackinnonii CBS 674.75TNR_132037 KF407986 (Ariyawansa et al. 2015)
N. mackinnonii E5202H JX264157 JX264154 (Phukhamsakda et al. 2018)
N. magnoliae GZCC 17-0057 MF399066 MF498583 (Zhang et al. 2020)
N. magnoliae MFLUCC 20-0020TMT159628 MT159605 (Liu et al. 2014)
N. mycophila CBS 141478TKX650553 KX650526 (Feng et al. 2019)
N. mycophila CBS 141483 KX650555 KX650528 (Feng et al. 2019)
N. norvegica CBS 141485TKX650556 (Feng et al. 2019)
N. obliqua CBS 141477TKX650560 KX650531 (Feng et al. 2019)
N. obliqua CBS 141475 KX650558 KX650530 (Feng et al. 2019)
N. rhizophorae MFLUCC 18-0397TMN047085 MN077064 (Poli et al. 2020)
N. samueliana NFCCI-4383TMK358817 MK330937 (Poli et al. 2020)
N. schinifolium GMB0498TOR120434 OR150022 This study
N. schinifolium GMB0504 OR120441 OR150023 This study
N. thymi MFLUCC 14-1096TKY775576 KY775578 (Crous et al. 2015)
N. trachycarpus GMB0499TOR120437 OR150024 This study
N. trachycarpus GMB0505 OR120440 OR150025 This study
N. yasuniana YU.101026THQ108005 LN626670 
Occultibambusa pustula MFLUCC 11-0502TKU940126 (Crous et al. 2014)
O. bambusae MFLUCC 13-0855TKU940123 KU940193 (Crous et al. 2014)
Paracamarosporium fagi CPC 24890TNR_154318 NG_070630 (Ariyawansa et al. 2014)
P. cyclothyrioides CBS 972.95 JX496119 AY642524 JX496232 (Schoch et al. 2009)
P. estuarinum CBS 109850TJX496016 AY642522 JX496129 (Verkley et al. 2014)
P. hawaiiense CBS 120025TJX496027 EU295655 JX496140 (Verkley et al. 2014)
P. robiniae MFLUCC 14–1119TKY511142 KY511141 KY549682 (Crous et al. 2015)
P. rosarum MFLUCC 17–6054TNR_157529 NG_059872 MG829224 (Hyde et al. 2016)
P. rosicola MFLUCC 15-0042 NR_157528 MG829153 MG829047 (Hyde et al. 2016)
128
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Species Strain GenBank Accession Numbers References
ITS SSU LSU tef1rpb2
Paramassariosphaeria
anthostomoides
CBS 615.86 MH862005 GU205246 GU205223 (Vu et al. 2019)
Paraphaeosphaeria rosae MFLUCC 17-2547TMG828935 MG829150 MG829044 MG829222 (Hyde et al. 2016)
Pararoussoella mukdahanensis KUMCC 18-0121 MH453489 MH453485 MH453478 MH453482 (Flakus et al. 2019)
Parathyridaria ramulicola CBS 141479TKX650565 KX650565 KX650536 KX650584 (Feng et al. 2019)
Phaeodothis winteri CBS 182.58 GU296183 GU301857 (Zhang et al. 2013)
Pseudocamarosporium
propinquum
MFLUCC 13-0544TKJ747049 KJ819949 KJ813280 (Thambugala et al. 2017)
Pseudodidymocyrtis lobariellae KRAM Flakus
25130T
NR_169714 NG_070349 NG_068933 (Tanaka et al. 2015)
Pseudoneoconiothyrium
euonymi
CBS 143426TMH107915 MH107961 MH108007 (Valenzuela-Lopez et al. 2017)
Pseudopithomyces entadae MFLUCC 17-0917TMK347835 NG_066305 MK360083 (Mapook et al. 2020)
Pseudoroussoella chromo-
laenae
MFLUCC 17–1492TMT214345 MT214439 MT235769 (Liu et al. 2014)
P. elaeicola MFLUCC 15–0276a MH742329 MH742326 (Liu et al. 2014)
P. kunmingnensis MFLUCC 17-0314 MF173607 MF173606 MF173605 (Mapook et al. 2020)
P. pteleae MFLUCC 17-0724TNR_157536 MG829166 MG829061 MG829233 (Hyde et al. 2016)
P. rosae MFLUCC 15-0035TMG828953 MG829168 MG829064 (Hyde et al. 2016)
P. ulmi-minoris MFLUCC 17-0671TNR_157537 MG829167 MG829062 (Hyde et al. 2016)
Roussoella acaciae CBS:138873TKP004469 KP004497 (Karunarathna et al. 2019)
R. aquatic MFLUCC 18-1040TNR171975 NG073797 (Liu et al. 2014)
R. chiangraina MFLUCC 10-0556TNR155712 NG059510 (Dissanayake et al. 2021)
R. doimaesalongensis MFLUCC 14-0584TNR165856 NG068241 KY651249 KY678394 (Thambugala et al. 2015)
R. doimaesalongensis GMB0497 OR116188 OR117732 OR150026 This study
R. doimaesalongensis GMB0503 OR120435 OR120444 OR150027 This study
R. elaeicola MFLUCC 15-15-0276a MH742329 MH742326 (Crous et al. 2015)
R. euonymi CBS:143426TMH107915 MH107961 MH108007 (Valenzuela-Lopez et al. 2017)
R. guttulata MFLUCC 20-0102TNR172428 NG075383 (Senwanna et al. 2018)
R. hysterioides CBS 546.94 MH862484 MH874129 KF443399 KF443392 (Vilgalys et al. 1990)
R. intermedia CBS 170.96 KF443407 KF443382 KF443398 KF443394 (Crous et al. 2013)
R. japanensis MAFF 239636TNR155713 (Dissanayake et al. 2021)
R. kunmingensis HKAS 101773TMH453491 MH453487 MH453480 MH453484 (Flakus et al. 2019)
R. magnatum MFLUCC 15-0185TKT281980 (Jiang et al. 2019)
R. mangrovei MFLU 17-1542TMH025951 MH023318 MH028246 MH028250 (Jaklitsch and Voglmayr 2016)
R. margidorensis MUT 5329TNR169906 MN556322 MN605897 MN605917 (Tibpromma et al. 2017)
R. mediterranea MUT5369TKU314947 MN556324 MN605899 MN605919 (Tibpromma et al. 2017)
R. mexicana CPC 25355TKT950848 KT950862 (Crous et al. 2015a)
R. mukdahanensis MFLU 11-0237TNR155722 (Crous et al. 2014)
R. multiplex GMB0316TON479891 ON479892 (Dong et al. 2020)
R. neopustulans MFLUCC 11-0609TKJ474833 KJ474841 KJ474850 (Dissanayake et al. 2021)
R. neopustulans GMB0496 OR120436 OR120446 This study
R. neopustulans GMB0502 OR116176 OR117714 This study
R. nitidula MFLUCC 11-0634 KJ474834 KJ474842 KJ474851 KJ474858 (Dissanayake et al. 2021)
R. padinae MUT 5503TMN556327 MN605902 MN605922 (Tibpromma et al. 2017)
R. percutanea CBS 868.95 KF322118 KF366449 KF407987 KF366452 (Ahmed et al. 2014a)
R. pseudohysterioides GMBC0009TMW881445 MW881451 MW883345 (Zhang et al. 2020)
R. pseudohysterioides GMB0495 OR116175 OR117737 OR150028 This study
R. pseudohysterioides GMB0501 OR120447 OR120439 OR150029 This study
R. pustulans KT 1709 AB524623 AB539116 AB539103 (Zhang et al. 2020)
R. scabrispora MFLUCC 14-0582 KY026583 KY000660 (Zhang et al. 2020)
R. siamensis MFLUCC 11-0149TKJ474837 KJ474845 KJ474854 KJ474861 (Dissanayake et al. 2021)
R. thailandica MFLUCC 11-0621TKJ474838 KJ474846 (Dissanayake et al. 2021)
R. tuberculata MFLUCC 13-0854TKU940132 KU863121 KU940199 (Crous et al. 2014)
R. verrucispora CBS 125434TKJ474832 (Dissanayake et al. 2021)
129
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Species Strain GenBank Accession Numbers References
ITS SSU LSU tef1rpb2
R. yunnanensis HKAS 101762 MH453492 MH453488 MH453481 (Flakus et al. 2019)
Roussoellopsis macrospora MFLUCC 12-0005 KJ474847 KJ474855 KJ474862 (Dissanayake et al. 2021)
R. tosaensis KT 1659 AB524625 AB539117 AB539104 (Zhang et al. 2020)
Setoarthopyrenia chromolaenae MFLUCC 17–1444 MT214344 MT214438 MT235768 MT235805 (Liu et al. 2014)
Spegazzinia deightonii yone 212 AB797292 AB807582 AB808558 (Tanaka et al. 2015)
S. radermacherae MFLUCC 17-2285TMK347740 MK347848 MK347957 MK360088 (Mapook et al. 2020)
S. tessarthra NRRL 54913 JQ673429 AB797294 AB807584 AB808560 (Tanaka et al. 2015)
Thyridaria acaciae CBS 138873 KP004469 KP004497 (Liu et al. 2014)
T. broussonetiae CBS 141481 NR_147658 KX650568 KX650539 KX650586 (Karunarathna et al. 2019)
Torula herbarum CBS 111855 KF443409 KF443386 KF443403 KF443396 (Crous et al. 2013)
T. hollandica CBS 220.69 KF443406 KF443384 KF443393 (Crous et al. 2013)
Tremateia arundicola MFLU 16-1275 KX274241 KX274254 KX274248 KX284706 (Hyde et al. 2020)
T. chromolaenae MFLUCC 17-1425TNR_168868 NG_070160 NG_068710 MT235778 (Tanaka et al. 2015)
T. guiyangensis GZAAS01 KX274240 KX274253 KX274247 KX284705 (Hyde et al. 2020)
T. murispora GZCC 18-2787 NR_165916 MK972750 MK972751 MK986482 (Feng et al. 2019)
T. thailandensis MFLUCC 17-1430TNR_168869 NG_070161 NG_068711 MT235781 (Liu et al. 2014)
Verrucoconiothyrium nitidae CBS:119209 EU552112 EU552112 (Wanasinghe et al. 2018)
Xenocamarosporium acaciae CPC 24755TNR_137982 NG_058163 (Crous et al. 2015b)
Xenoroussoella triseptata MFLUCC 17–1438 MT214343 MT214437 MT235767 MT235804 (Liu et al. 2014)
Notes: Type specimens or Ex-type specimens are marked with T; “–”: indicates no sequence available in GenBank; newly-generated sequences are indi-
cated in bold.
Abbreviations: CBS: Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; CPC: Culture collection of Pedro Crous, housed at the Westerdijk
Fungal Biodiversity Institute; GMB: Culture collection of Guizhou Medical University; HKAS: Herbarium of Cryptogams Kunming Institute of Botany Aca-
demia Sinica, Chinese Academy of Sciences, Kunming, China; HKUCC: Hong Kong University Culture Collection; KT: K. Tanaka; KUMCC: Kunming Institute
of Botany Culture Collection, Chinese Science Academy, Kunming, China; MAFF: Ministry of Agriculture, Forestry and Fisheries, Japan; MFLUCC: Mae Fah
Luang University Culture Collection, Chiang Rai, Thailand; NFCCI: National Fungal Culture Collection of India; Others: information not available.
(http://www.sing-group.org/ALTER/). Maximum Likelihood (ML) analyses and
Bayesian posterior probabilities (BYPP), based on a combination of ITS, LSU,
tef1 and rpb2 sequence data, were performed using RAxML-HPC BlackBox
and MrBayes v. 3.2.7a tools in the CIPRES Science Gateway platform (Liang
           
ModelTest2 on XSEDE v.2.1.6. (Posada and Crandall 1998).
Bayesian Inference (BI) analysis was conducted using MrBayes v.3.2.7a
(Ronquist et al. 2012) and posterior probabilities (PP) were determined through
Markov Chain Monte Carlo sampling (MCMC). Six simultaneous Markov chains for
3,000,000 generations were run and trees were sampled every 1,000th generation.
The trees were visualised using FigTree v,1.4.4, and formatted using Adobe
Illustrator CS v.6. Branches with Maximum-Likelihood bootstrap values (MLBP)
equal to or greater than 75% and Bayesian posterior probabilities (BYPP) great-
er than 0.95 are indicated. The combined loci alignment and resulting phylo-
genetic trees were submitted to TreeBASE (https://www.treebase.org, submis-
sion number: ID 30482; ID 30483; ID 30484).
Results
Phylogenetic analyses
Phylogenetic analyses of Didymosphaeriaceae (Fig. 1), Roussoellaceae (Fig. 2),
and Nigrogranaceae (Fig. 3) were performed separately, with corresponding pa-
rameters presented in Table 4.
130
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Figure 1. RAxML phylogram of Didymosphaeriaceae, based on a combined dataset of partial ITS, LSU, SSU and tef1
DNA sequences. The tree is rooted by Bimuria novae-zelandiae (CBS 107.79) and Bimuria omanensis (SQUCC 15280).

the branches. Sequences from newly-generated isolates are in red, bold letters, while those of ex-type isolates are shown
in black, bold letters.
131
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Figure 2. RAxML phylogram of Roussoellaceae, based on a combined dataset of partial ITS, LSU, tef1 and rpb2 DNA
sequences. The tree is rooted by Torula hollandica (CBS 220.69) and T. herbarum (CBS 111855). Bootstrap supports ML

from newly-generated isolates are in red, bold letters, while those of ex-type isolates are shown in black, bold letters.
132
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Figure 3. RAxML phylogram of Nigrogranaceae, based on a combined dataset of ITS and tef1 DNA sequences. The tree
is rooted by Occultibambusa pustula (MFLUCC 11-0502) and O. bambusae (MFLUCC 13-0855). Bootstrap supports ML

from newly-generated isolates are in red, bold letters, while those of ex-type isolates are shown in black, bold letters.
Table 4. Results of Maximum-Likelihood (ML) and Bayesian (BI) analyses for each sequenced dataset.
Analyses Didymosphaeriaceae Roussoellaceae Nigrogranaceae
Number of taxa 64 59 32
Gene regions ITS, LSU, SSU and tef1 ITS, LSU, tef1 and rpb2 ITS and tef1
Number of character positions (including gaps) 2423 2267 868
ML optimisation likelihood value -13324.603084 -16237.062124 -3695.409391
Distinct alignment patterns in the matrix 584 773 240
Number of undetermined characters or gaps (%) 14.26% 27.45% 7.87%
Estimated base frequencies A 0.237970 0.240773 0.229686
C 0.246811 0.255815 0.293625
G 0.277468 0.276383 0.242370
T 0.237752 0.227030 0.234319
Substitution rates AC 1.764988 2.186105 1.598706
AG 2.187844 5.410475 2.533043
AT 1.416956 2.441301 1.640025
CG 1.132266 1.384067 0.752494
CT 7.848138 11.885781 8.062830
GT 1.000000 1.000000 1.000000
Proportion of invariable sites (I) 0.595845 0.544120 0.487317
Gamma distribution shape parameter (a) 0.516792 0.502253 0.634309
Number of generated trees in BI 14806 10678 9932
Average standard deviation of split frequencies 0.006852 0.004431 0.004939
133
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Taxonomy
Didymosphaeriaceae Munk, 1953
Neokalmusia Ariyawansa & K.D. Hyde, Fungal Diversity 68: 92 (2014b)
MycoBank No: 550700
Notes. Neokalmusia was established by Ariyawansa et al. (2014b) to accom-
modate two bambusicolous taxa, N. brevispora and N. scabrispora, previously
referred to Kalmusia. Members of Neokalmusia are characterised by solitary
sphaeroid ascomata, a peridium of small pseudoparenchymatous cells, clavate
basal asci with very long pedicels, very thin pseudoparaphyses and distosep-
tate, smooth-walled ascospores (Ariyawansa et al. 2014b; Zhang et al. 2020a).
In this study, we introduce a new species of Neokalmusia, based on a combina-
tion of morphological and molecular analyses (Fig. 1).
Neokalmusia karka H. M. Hu & Q. R. Li, sp. nov.
MycoBank No: 851046
Fig. 4
Type material. Holotype: GMB0494.
Etymology. In reference to the host, Phragmites karka (Retz.) Trin. ex Steud.
Description. Saprobic on dead culms of P. karka.
Sexual morph: Clypeus visible as black dots on the host surface, breaking
through slightly raised cracks at the centre. Ascomata

small groups, black, oval, with ostiole. Peridium
few layers of thin-walled, brown to dark brown, cells of textura angularis. Hamath-
ecium-
bedded in a mucilaginous matrix. Asci
  
pedicel, apically rounded with an indistinct ocular chamber, with a J-subapical
ring. Ascospores
1–2-seriate, fusiform, pale brown to brown, 1-septate, constricted at the septum,
often enlarged near septum in the upper cell, distinctly verrucose on the surface,
without a mucilaginous sheath. Asexual morph: undetermined.
Culture characters. After 4 weeks of cultivation at 25 °C, the colonies on PDA
measure around 2–2.5 cm in diameter. The surface appears smooth to velvety
with an entire or slightly irregular margin, ranging from white to grey olivaceous.

The reverse side of the colonies black to greenish-olivaceous.
Specimens examined. , Guizhou Province, Zunyi City, Suiyang County,
Kuanqwashui Nature Reserve (28°31'51.04"N, 107°9'33.65"E), 1544 m elev., on
decaying culms, 12 October 2022, Y.P Wu and H.M Hu, 2022KKS49 (GMB0494,
holotype; GMBC0494, ex-type; KUN-HKAS 129179, isotype).
Other examined material. , Guizhou Province, Huaxi District, Shilihetan Wet-
land Park (26°41'34.3"N, 106°67'68.8"E), 1500 m elev., on decaying culms, 8 Octo-
ber 2022, Y.P Wu and H.M Hu, 2022SLZH11 (GMB0500; GMBC0500, living culture).
134
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Figure 4. Neokalmusia karka (GMB0494, holotype) A type specimen B, C appearance of ascomata on substrate D, E lon-
gitudinal section of an ascoma F peridium G pseudoparaphyses H–K asci L–N ascospores O, J ascus subapical ring in
Melzer’s Reagent. Scale bars: 0.5 mm (B–DE–O).
135
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Notes. This fungus shares morphological characters similar to Neokalmusia
in having immersed ascomata, a clypeus-like structure composed of thin-walled
cells and verrucose ascospores (Tanaka et al. 2009; Ariyawansa et al. 2014b).
Other than Neokalmusia karka, only two species, N. arundinis Thambug. & K.D.
Hyde and N. didymospora D.Q. Dai & K.D. Hyde have been reported with 1-sep-
tate ascospores. However, N. karka can be distinguished, based on differences
in asci size (N. karka    N. arundinis 60–85 × (7.5–) 8.5–
N. didymospora
of its ascomata (Wanasinghe et al. 2018; Flakus et al. 2019). In our phylogram,
Neokalmusia karka formed a well-supported separate clade (100% ML, 1 BYPP;
Fig. 1) in a sister relationship with N. arundinis and N. didymospora. The macro
and micro-morphological differences and phylogenetic analyses support the
recognition of N. karka as a new species (Fig. 1).
Roussoellaceae Jian K. Liu, Phook., D.Q. Dai & K.D. Hyde 2014
Roussoella Sacc., Atti Inst. Veneto Sci. lett., ed Arti, Sér. 6 6: 410 (1888)
MycoBank No: 541317
Notes. the genus Roussoella was introduced by Saccardo et al. (1888), with
R. nitidula Sacc. & Paol. as the type species, which was collected from bam-
boo in Malaysia. This family is characterised as having semi-immersed to im-
mersed, solitary or gregarious, clypeate ascostromata containing trabeculate
pseudoparaphyses embedded in a gel matrix, long cylindrical to clavate bituni-

ornamented ascospores (Liu et al. 2014). In this study, we introduce three new
records of Roussoella species, based on morpho-anatomical and molecular
analyses (Fig. 2).
Roussoella pseudohysterioides D.Q. Dai & K.D. Hyde, in Dai et al., Fungal
Diversity 82(1): 37 (2017)
MycoBank No: 552026
Fig. 5
Descriptions. See Dai et al. (2017).
Specimen examined. , Guizhou Province, Huaxi District, Shilihetan
Wetland Park (26°43'34.3"N, 106°67'68.8"E), 1542 m elev., on decaying bam-
boo, 8 October 2022, Y.P Wu and H.M Hu, 2022SLZH6 (GMB0495; GMBC0495,
living culture).
Notes. Phylogenetic analyses of the combined ITS, LSU, tef1 and rpb2 gene
sequences showed that the sequence from our 2022SLZH6 collection clus-
ters together with Roussoella pseudohysterioides (MFLU 15-1209), with strong
support (100% ML, 1 BYPP; Fig. 2). The morphological characteristics of our
specimen are also consistent with those of R. pseudohysterioides, which was
originally described from decaying bamboo culms in Thailand (Dai et al. 2017).
In China, it had previously been reported from Yunnan Province (Jiang et al.
2019). This is the second report of this species in China, representing a new
record for Guizhou Province.
136
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Figure 5. Roussoella pseudohysterioides (GMB0495) A specimen B, C appearance of ascomata on substrate D cross-sec-
tion of ascostromata E longitudinal section of an ascoma F peridium G pseudoparaphyses H–I asci J–M ascospores.
Scale bars: 0.5 mm (B–D)E–M).
Roussoella neopustulans D.Q. Dai, J.K. Liu & K.D. Hyde, in Liu et al. Phytotaxa
181(1): 15 (2014)
MycoBank No: 550664
Fig. 6
Descriptions. See Liu et al. (2014).
Specimens examined. , Guizhou Province, Huaxi District, Guiyang Huaxi
National Urban Wetland Park (26°2'2.34"N, 106°34'16.22"E), on dead branch
137
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
of bamboo, 12 October 2022, 1130 m elev., Y.P Wu and H.M Hu, 2022HX25
(GMB0496; GMBC0496, living culture).
Notes. The sequence of our Roussoella neopustulans (2022HX25) forms a
well-supported clade (85% ML, 0.92 BYPP; Fig. 2) with R. neopustulan (MFLUCC
11-0609). Roussoella neopustulans was originally introduced by Liu et al. (2014),
with a description of the sexual morph only. Dai et al. (2017) provided a compre-
hensive description and illustrations for both the sexual and asexual morphs of
this species. Our collection exhibits identical morphological characteristics to

Roussoella doimaesalongensis Thambug. & K.D. Hyde, Mycosphere 8 (4):
782 (2017)
MycoBank No: 553169
Fig. 7
Descriptions. See Thambugala et al. (2017).
Specimen examined. , Guizhou Province, Huaxi District, Shilihetan
Wetland Park (26°23'23.4"N, 106°67'56.4"E), 1511 m elev., on dead bamboo
branches, 8 October 2022, Y.P Wu and H.M Hu, 2022SLHT14 (GMB0497;
GMBC0497, living culture).
Notes. In our phylogram (Fig. 2), the sequence of our collection clustered
with Roussoella doimaesalongensis with robust support (100% ML, 1 BYPP).
Roussoella doimaesalongensis was originally found on decaying bamboo
culms in Thailand (Thambugala et al. 2017). Morphologically, our specimens
match the description provided by Thambugala et al. (2017) and this species

Nigrogranaceae Jaklitsch & Voglmayr, 2016
Nigrograna Gruyter, Verkley & Crous, Stud. Mycol. 75: 31 (2012) [2013]
MycoBank No: 564794
Notes. Nigrograna was described by De Gruyter et al. (2012) as a monotypic
genus. Nigrograna is characterised by black ascomata, clavate, short pedicel-
late asci and pale to chocolate brown, asymmetric, fusoid to narrowly ellipsoid,
septate ascospores (Zhang et al. 2020a).
Nigrograna schinifolium H. M. Hu & Q. R. Li, sp. nov.
MycoBank No: 849204
Fig. 8
Type material. Holotype. GMB0498.
Etymology. With reference to the host, Zanthoxylum schinifolium Sieb. & Zucc.
Description. Saprobic on dead stem of Z. Schinifolium.
Sexual morph: Ascomata
aggregated in small groups, black, semi-immersed, appearing as slightly raised
regions. Ostioles are black, lined with paraphyses. Peridium 
138
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Figure 6. Roussoella neopustulans (GMB0496) A specimen B, C appearance of ascomata on substrate D cross-section
of ascostromata E longitudinal section of an ascoma F peridium G pseudoparaphyses H–K asci L–O ascospores. Scale
bars: 0.5 mm (B–DE–O).
139
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Figure 7. Roussoella doimaesalongensis (GMB0497) A specimen B appearance of ascomata on substrate C cross-sec-
tion of ascostromata D longitudinal section of an ascoma E peridium F pseudoparaphyses G–I asci J–M ascospores.
Scale bars: 0.5 mm (B–C)D–M).
140
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Figure 8. Nigrograna schinifolium (GMB0498) A specimen B appearance of ascomata on substrate C cross-section of
ascomata D longitudinal section of an ascoma E peridium F pseudoparaphyses GI asci J–L ascospores M, N culture
on PDA. Scale bars: 0.5 mm (B–CD–L).
141
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
comprising several fused layers of "textura angularis", thin-walled and pale
brown at the interior, becoming darker and thicker-walled to the outside.
Hamathecium
pseudoparaphyses, embedded in a gelatinous matrix. Asci


a minute ocular chamber. Ascospores    
    
cell slightly enlarged, straight or slightly curved, with obtuse to rounded ends,
hyaline when immature, becoming brown to dark brown at maturity, 3-eusep-
tate, slightly constricted at the median septum. Asexual morph: undetermined.
Culture characters. After 4 weeks at 25 °C, colonies on PDA have a diameter
of 2–2.5 cm and are circular, slightly raised to umbonate and dull with an entire
           
to cellular respiration, water formation or antibiotic production. Colonies from
the upper region have brown to cream-coloured margins and blackish-brown
centres, while their reverse is white to yellowish-brown at the margin and black-
ish-brown in the centre.
Specimen examined. , Guizhou Province, Qiannan Prefecture, San-
du Shui Autonomous County, Yao Man Mountain National Forest Park
        Zanthoxylum
schinifolium, 28 September 2022, Y.P. Wu, 2022YRS36 (GMB0498, holotype,
GMBC0498, ex-type; KUN-HKAS 12983, isotype).
Other examined material. , Guizhou Province, Huaxi District, Shili-
hetan Wetland Park (26°23'13.4"N, 106°66'56.4"E), 1501 m elev., on branches
of Zanthoxylum schinifolium, 8 October 2022, Y.P Wu and H.M Hu, 2022SLHT44
(GMB0504; GMBC0504, living culture).
Notes. Nigrograna schinifolium and N. thymi Mapook et al. form a monophy-
letic clade with moderate support (MPBP 48%, BYPP 0.83, Fig. 3). However,
N. schinifolium is distinguished by having 3-septate ascospores (Hyde et al.
2017). Morphologically, N. schinifolium can be distinguished from other spe-
cies of Nigrograna by its shorter asci and ascospores (Hyde et al. 2017; Zhao
          N. schinifolium is a
new species.
Nigrograna trachycarpus H. M. Hu & Q. R. Li, sp. nov.
MycoBank No: 849205
Fig. 9
Type material. Holotype: GMB0499.
Etymology. Named after the host genus Trachycarpus from which the fungus
was isolated.
Description. Saprobic or parasitic on dead culms of Trachycarpus sp.
Sexual morph: Ascomata       
to globose, scattered or clustered in small groups, black, immersed, the base
remaining immersed in the substrate, smooth, with ostiole. Ostiole single,
Peridium
wide, multi-layered, composed of 4–6 rows of heavily pigmented, light brown
142
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Figure 9. Nigrograna trachycarpus (GMB0499) A specimen B, C appearance of ascomata on substrate D, E longitudinal
section of an ascoma F peridium G–I asci J pseudoparaphyses K J-ascus subapical ring in Melzer’s L–O ascospores.
Scale bars: 0.5 mm (B–DE–O).
143
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
to dark brown cells of textura angularis. Hamathecium comprising numer-
       
pseudoparaphyses. Asci
       
shortly pedicellate, apically rounded, with an ocular chamber, with a J-subapi-
cal ring. Ascospores
to yellow brown, 2–3-septate, deeply constricted at second septum, tapering to
each end, the widest point at second cell from apex, smooth-walled, distinctly
guttulate, without a sheath or appendages. Asexual morph: undetermined.
Culture characteristics. After 4 weeks at 25 °C on PDA, colonies typically
reach 2–2.5 cm in diameter. They present a circular shape with a dense and el-
evated centre, while appearing sparse and radiating at the margin. The colonies
exhibit colours ranging from dark grey to pale olivaceous when viewed from
above and from dark olivaceous to black on reverse.
Specimen examined. , Guizhou Province, Guiyang Huaxi National Ur-
ban Wetland Park (26°2'2.34"N, 106°34'16.22"E), 1130 m elev., on decaying
culms of Trachycarpus sp., 12 October 2022, Y.P Wu and H.M Hu, 2022 HXGY11
(GMB0499, holotype, GMBC0499, ex-type; KUN-HKAS 12984, isotype).
Other examined material. , Guizhou Province, Qiannan Prefecture,
Sandu Shui Autonomous County, Yao Man Mountain National Forest Park
        
of Trachycarpus sp.; 28 September 2022; Y.P. Wu, 2022YRS50 (GMB050;
GMBC0505, living culture).
Notes. In the phylogenetic analysis, Nigrograna trachycarpus and N. locu-
ta-pollinis F. Liu & L. Cai formed a monophyletic branch within the Nigrograna
genus, with a bootstrap support value of 31% (Fig. 3). However, this relationship
remained consistent in repeated phylogenetic analyses. Sequences generated
from the cultures of N. trachycarpus are similar to sharing an ITS similarity of
70.7% (with 57/488 gaps) and a tef1 similarity of 89.8% (with 0/481 gaps).
Morphologically, N. trachycarpus can be distinguished by its larger ascospores,
  N. schinifolium’s ascospores, 11.6 ×
N. impatientis J.F. Zhang, J.K. Liu & Z.Y.
Liu, but the latter typically has ascocarps in groups of 2–6 with ostiole necks
penetrating the host surface together. Moreover, the N. trachycarpus a possess-

N. impatientis (asci measuring 48 × 8, ascospores mea-

Discussion
In this study, based on phylogenetic trees of combined ITS, LSU, SSU, tef1
and rpb2 sequences and morphology, we described and illustrated three new
species of micro-fungi on dead woody litter, viz., Neokalmusia karka (Didymo-
sphaeriaceae), Nigrograna schinifolium and N. trachycarpus (Nigrogranaceae)
and records of three species of Roussoella (Roussoellaceae). Didymosphaeri-
aceae was introduced by Munk (1953) and is one of the most diverse families
within the Pleosporales, with a total of 33 genera (Thambugala et al. 2015; Ha-
ridas et al. 2020). We included all of these Didymosphaeriaceae genera in our
phylogenetic analysis. We used a dataset that combines ITS, LSU, SSU, tef1
144
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
and rpb2 genes for this purpose. Neokalmusia formed a well-supported mono-
phyletic clade within Didymosphaeriaceae, while the newly-discovered species,
N. karka, exhibited a distinct separation from other known Neokalmusia spe-
cies, supported by strong phylogenetic values.
Nigrograna, which is the only genus within Nigrogranaceae, is globally dis-
tributed and ecologically diverse. Amongst its species, N. mackinnonii is the
most widely distributed species, mainly found in deciduous forests in Canada
and northern USA. Nigrograna bergmaniae is mainly distributed in Europe, while
N. novae-zelandiae was discovered in New Zealand. Approximately one-quarter
of existing species live as saprotrophs on the bark or corticated twigs of var-
ious hardwoods (Phukhamsakda et al. 2018; Jayasiri et al. 2019). Nigrograna
schinifolium was collected from rotten wood, while N. trachycarpus was ob-
tained from decaying culms. Notably, several Nigrograna species have been es-

suggests that these two species, N. schinifolium and N. trachycarpus, belong to
the genus Nigrograna
This study unveils valuable insights about saprophytic fungi, shedding light

three new species, which are important for the study of fungal taxonomy and
further enriches our understanding of these microscopic organisms. More-
over, the study highlights the ongoing instability within the existing taxonom-
ic system, emphasising the necessity for addressing these taxonomic chal-

of samples.
Additional information
Conict of interest
The authors have declared that no competing interests exist.
Ethical statement
No ethical statement was reported.
Funding
This research was supported by National Natural Science Foundation of China
(31960005, 32000009 and 32170019); Science and Technology Department Foundation
of Guizhou Province ([2018]2322); Qianhe Talents, Science and Technology Department

Research Project for Higher Education Institutions ([2022]064); National Natural Science
Foundation of China Karst Centre Project U1812403-4-4.
Author contributions
Conceptualization, Jichuan Kang, Qirui Li, Xiangchun Shen; investigation, Hongmin Hu,
Youpeng Wu, Qingde Long; morpho-logical examinations, molecular sequencing, and

Hongmin Hu and Qirui Li; writing—original draft preparation, Hongmin Hu, Minghui He;
writing—review and editing, Nalin N. Wijayawardene, Zebin Meng; supervision, Qirui Li.
All authors have read and agreed to the published version of the manuscript.
145
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Author ORCIDs
Hongmin Hu https://orcid.org/0000-0003-3894-3269
Sihan Long https://orcid.org/0000-0002-8346-3646
Nalin N. Wijayawardene https://orcid.org/0000-0003-0522-5498
Data availability

References
Ahmed SA, Stevens DA, van de Sande WW, Meis JF, De Hoog GJ (2014a) Roussoella per-
cutanea, a novel opportunistic pathogen causing subcutaneous mycoses. Medical
Mycology 52(7): 689–698. https://doi.org/10.1093/mmy/myu035
Ahmed SA, Van De Sande W, Stevens DA, Fahal A, Van Diepeningen A, Menken S, De
Hoog GS (2014b) Revision of agents of black-grain eumycetoma in the order Pleo-
sporales. Persoonia 33(1): 141–154. https://doi.org/10.3767/003158514X684744
Ariyawansa HA, Camporesi E, Thambugala KM, Mapook A, Kang JC, Alias SA, Chukeat-
irote E, Thines M, McKenzie EH, Hyde KD (2014a) Confusion surrounding Didymos-
phaeria–phylogenetic and morphological evidence suggest Didymosphaeriaceae is
not a distinct family. Phytotaxa 176. https://doi.org/10.11646/phytotaxa.176.1.12
Ariyawansa HA, Tanaka K, Thambugala KM, Phookamsak R, Tian Q, Camporesi E, Hyde KD
(2014b) A molecular phylogenetic reappraisal of the Didymosphaeriaceae (= Montag-
nulaceae). Fungal Diversity 68(1): 69–104. https://doi.org/10.1007/s13225-014-0305-6
Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Chethana KT, Dai DQ, Dai YC, Daranagama
DA, Jayawardena RS, Lücking R, Ghobad-Nejhad M, Niskanen T, Thambugala KM,
Voigt K, Zhao RL, Li G-J, Doilom M, Boonmee S, Yang ZL, Cai Q, Cui Y-Y, Bahkali
AH, Chen J, Cui BK, Chen JJ, Dayarathne MC, Dissanayake AJ, Ekanayaka AH,
Hashimoto A, Hongsanan S, Jones EBG, Larsson E, Li WJ, Li Q-R, Liu JK, Luo ZL,
Maharachchikumbura SSN, Mapook A, McKenzie EHC, Norphanphoun C, Konta S,
Pang KL, Perera RH, Phookamsak R, Phukhamsakda C, Pinruan U, Randrianjohany
E, Singtripop C, Tanaka K, Tian CM, Tibpromma S, Abdel-Wahab MA, Wanasinghe
DN, Wijayawardene NN, Zhang J-F, Zhang H, Abdel-Aziz FA, Wedin M, Westberg M,
Ammirati JF, Bulgakov TS, Lima DX, Callaghan TM, Callac P, Chang C-H, Coca LF,
  
Jeewon R, Kang JC, Wen T-C, Kirk PM, Kytövuori I, Lawrey JD, Xing J, Li H, Liu ZY, Liu
XZ, Liimatainen K, Lumbsch HT, Matsumura M, Moncada B, Nuankaew S, Parnmen S,
de Azevedo Santiago ALCM, Sommai S, Song Y, de Souza CAF, de Souza-Motta CM,
Su HY, Suetrong S, Wang Y, Wei S-F, Wen TC, Yuan HS, Zhou LW, Réblová M, Fournier
J, Camporesi E, Luangsa-ard JJ, Tasanathai K, Khonsanit A, Thanakitpipattana D,
Somrithipol S, Diederich P, Millanes AM, Common RS, Stadler M, Yan JY, Li XH, Lee
HW, Nguyen TTT, Lee HB, Battistin E, Marsico O, Vizzini A, Vila J, Ercole E, Eberhardt
U, Simonini G, Wen H-A, Chen X-H, Miettinen O, Spirin V, Hernawati (2015) Fungal
diversity notes 111–252–Taxonomic and phylogenetic contributions to fungal taxa.
Fungal Diversity 75(1): 27–274. https://doi.org/10.1007/s13225-015-0346-5
Ariyawansa HA, Tsai I, Thambugala KM, Chuang WY, Lin SR, Hozzein WN, Cheewang-
koon R (2020) Species diversity of Pleosporalean taxa associated with Camellia sin-
ensishttps://doi.org/10.1038/
s41598-020-69718-0
146
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Barr, Margaret E (1987) Prodromus to Class Loculoascomycetes. Amherst. University of
Massachusetts, Massachusetts.

Dima B, Brandrud TE, Groenewald JZ (2021) Fungal planet description sheets: 1182–
1283. Persoonia. Molecular Phylogeny and Evolution of Fungi 46: 313. https://doi.
org/10.3767/persoonia.2021.46.11
    
P, Boekhout T, Dimitrov R, Groenewald JZ (2015b) Fungal planet description sheets:
320–370. Persoonia 34(1): 167–266. https://doi.org/10.3767/003158515X688433

AM, Cano-Lira JF, Roux J, Madrid H, Damm U, Wood AR, Shuttleworth LA, Hodges
CS, Munster M, de Jesús Yáñez-Morales M, Zúñiga-Estrada L, Cruywagen EM, De
Hoog GS, Silvera C, Najafzadeh J, Davison EM, Davison PJN, Barrett MD, Barrett RL,
Manamgoda DS, Minnis AM, Kleczewski NM, Flory SL, Castlebury LA, Clay K, Hyde KD,




JZ (2013) Fungal planet description sheets: 154–213. Persoonia 31(1): 188–296.
https://doi.org/10.3767/003158513X675925

P, Edwards J, Moreno G, Sharma R, Sonawane MS, Tan YP, Altés A, Barasubiye T,
Barnes CW, Blanchette RA, Boertmann D, Bogo A, Carlavilla JR, Cheewangkoon R,
Daniel R, de Beer ZW, Yáñez-Morales M de Jesús, Duong TA, Fernández-Vicente J,
Geering ADW, Guest DI, Held BW, Heykoop M, Hubka V, Ismail AM, Kajale SC, Khem-
 
JL, Marincowitz S, Mohedano JM, Nováková A, Oberlies NH, Otto EC, Paguigan ND,
 
Scarlett K, Shouche YS, Shuttleworth LA, Taylor PWJ, Thorn RG, Vawdrey LL, So-
lano-Vidal R, Voitk A, Wong PTW, Wood AR, Zamora JC, Groenewald JZ (2015a)
Fungal planet description sheets: 371–399. Persoonia 35: 264–327. https://doi.
org/10.3767/003158515X690269
        
Wanasinghe D, Hyde KD, Groenewald JZ (2014) Fungal planet description sheets:
281–319. Persoonia 33(1): 212–289. https://doi.org/10.3767/003158514X685680
Dai DQ, Phookamsak R, Wijayawardene NN, Li WJ, Bhat DJ, Xu JC, Taylor JE, Hyde KD,
Chukeatirote EJ (2017) Bambusicolous fungi. Fungal Diversity 82(1): 1–105. https://
doi.org/10.1007/s13225-016-0367-8
De Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW
(2012) Rediposition of phoma-like anamorphs in Pleosporales. Studies in Mycology
75: 1–36. https://doi.org/10.3114/sim0004
Dissanayake LS, Wijayawardene NN, Samarakoon MC, Hyde KD, Kang JC (2021) The tax-
onomy and phylogeny of Austropleospora ochracea sp. nov. (Didymosphaeriaceae)
from Guizhou, China. Phytotaxa 491(3): 217–229. https://doi.org/10.11646/phyto-
taxa.491.3.2
Dong W, Wang B, Hyde KD, McKenzie EH, Raja HA, Tanaka K, Abdel-Wahab MA, Abdel-Aziz
FA, Doilom M, Zhang H (2020) Freshwater Dothideomycetes. Fungal Diversity 105(1):
319–575. https://doi.org/10.1007/s13225-020-00463-5
147
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Feng Y, Zhang SN, Liu ZY (2019) Tremateia murispora sp. nov. (Didymosphaeriaceae,
Pleosporales) from Guizhou, China. Phytotaxa 416: 79–87. https://doi.org/10.11646/
phytotaxa.416.1.10
Flakus A, Etayo J, Miadlikowska J, Lutzoni F, Kukwa M, Matura N, Rodriguez-Flakus
P (2019) Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in
Andean cloud forests led to one new family, three new genera and 13 new species
of lichenicolous fungi. Plant and Fungal Systematics. 64(2): 283–344. https://doi.
org/10.2478/pfs-2019-0022
Gonçalves MFM, Vicente TFL, Esteves AC, Alves A (2019) Neptunomyces aureus gen.
et sp. nov. (Didymosphaeriaceae, Pleosporales) isolated from algae in Ria de Aveiro,
Portugal. MycoKeys 60: 31–44. https://doi.org/10.3897/mycokeys.60.37931
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis
program for Windows 95/98/NT. In Proceedings of the Nucleic acids symposium
series. Nucleic acids symposium series, 95–98. https://doi.org/10.1021/bk-1999-
0734.ch008
Haridas S, Albert R, Binder M, Bloem J, LaButti K, Salamov A, Andreopoulos B, Baker
S, Barry K, Grigoriev IV (2020) 101 Dothideomycetes genomes: A test case for pre-
dicting lifestyles and emergence of pathogens. Studies in Mycology 96: 141–153.
https://doi.org/10.1016/j.simyco.2020.01.003
Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN, McKenzie EHC, Sarma VV,
Boonmee S, Lücking R, Bhat DJ, Liu NG, Tennakoon DS, Pem D, Karunarathna A,
Jiang SH, Jones EBG, Phillips AJL, Manawasinghe IS, Tibpromma S, Jayasiri SC, San-
damali DS, Jayawardena RS, Wijayawardene NN, Ekanayaka AH, Jeewon R, Lu YZ,
Dissanayake AJ, Zeng XY, Luo ZL, Tian Q, Phukhamsakda C, Thambugala KM, Dai
DQ, Chethana KWT, Samarakoon MC, Ertz D, Bao DF, Doilom M, Liu JK, PérezOrtega
S, Suija A, Senwanna C, Wijesinghe SN, Konta S, Niranjan M, Zhang SN, Ariyawan-
sa HA, Jiang HB, Zhang JF, Norphanphoun C, de Silva NI, Thiyagaraja V, Zhang H,
Bezerra JDP, Miranda-González R, Aptroot A, Kashiwadani H, Harishchandra D, Séru-
siaux E, Aluthmuhandiram JVS, Abeywickrama PD, Devadatha B, Wu HX, Moon KH,
Gueidan C, Schumm F, Bundhun D, Mapook A, Monkai J, Chomnunti P, Suetrong S,
Chaiwan N, Dayarathne MC, Yang J, Rathnayaka AR, Bhunjun CS, Xu JC, Zheng JS,

and Pleosporomycetidae. Mycosphere 11(1): 1553–2107. https://doi.org/10.5943/
mycosphere/11/1/13
Hyde KD, Dong Y, Phookamsak R, Jeewon R, Bhat DJ, Jones EG, Liu NG, Abeywickrama
PD, Mapook A, Sheng J (2020) Fungal diversity notes 1151–1276: Taxonomic and
phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity
100(1): 5–277. https://doi.org/10.1007/s13225-020-00439-5
Hyde KD, Hongsanan S, Jeewon R, Bhat DJ, McKenzie EH, Jones EG, Phookamsak R, Ari-
yawansa HA, Boonmee S, Zhu L (2016) Fungal diversity notes 367–490: Taxonomic
and phylogenetic contributions to fungal taxa. Fungal Diversity 80: 1–270. https://doi.
org/10.1007/s13225-016-0373-x
Hyde KD, Norphanphoun C, Abreu VP, Bazzicalupo A, Thilini Chethana K, Clericuzio
M, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, He MQ, Hongsanan S, Huang
S-K, Jayasiri SC, Jayawardena RS, Karunarathna A, Konta S, Kušan I, Lee H, Li J, Lin
C-G, Liu N-G, Lu Y-Z, Luo Z-L, Manawasinghe IS, Mapook A, Perera RH, Phookamsak
R, Phukhamsakda C, Siedlecki I, Soares AM, Tennakoon DS, Tian Q, Tibpromma S,
Wanasinghe DN, Xiao Y-P, Yang J, Zeng X-Y, Abdel-Aziz FA, Li W-J, Senanayake IC,
148
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Shang Q-J, Daranagama DA, de Silva NI, Thambugala KM, Abdel-Wahab MA, Bahkali
AH, Berbee ML, Boonmee S, Bhat DJ, Bulgakov TS, Buyck B, Camporesi E, Castañeda-
Ruiz RF, Chomnunti P, Doilom M, Dovana F, Gibertoni TB, Jadan M, Jeewon R, Jones
EBG, Kang J-C, Karunarathna SC, Lim YW, Liu J-K, Liu Z-Y, Plautz Jr HL, Lumyong S,

       
Vizzini A, Wen T-C, Wisitrassameewong K, Wrzosek M, Xu J-C, Zhao Q, Zhao R-L,
Mortimer PE (2017) Fungal diversity notes 603–708: Taxonomic and phylogenetic
notes on genera and species. Fungal Diversity 87(1): 1–235. https://doi.org/10.1007/
s13225-017-0391-3
Jaklitsch W, Voglmayr H (2016) Hidden diversity in Thyridaria and a new circumscription
of the Thyridariaceae. Studies in Mycology 85(1): 35–64. https://doi.org/10.1016/j.
simyco.2016.09.002
Jayasiri S, Hyde K, Jones E, McKenzie E, Jeewon R, Phillips A, Bhat D, Wanasinghe D,
Liu J, Karunarathna SC (2019) Diversity, morphology and molecular phylogeny of Do-
thideomycetes on decaying wild seed pods and fruits. Mycosphere 10(1): 1–186.
https://doi.org/10.5943/mycosphere/10/1/1
Jiang HB, Hyde KD, Jayawardena RS, Doilom M, Xu J, Phookamsak R (2019) Taxonomic
and phylogenetic characterizations reveal two new species and two new records of
Roussoella (Roussoellaceae, Pleosporales) from Yunnan, China. Mycological Prog-
ress 18(4): 577–591. https://doi.org/10.1007/s11557-019-01471-9
Karunarathna A, Phookamsak R, Jayawardena RS, Cheewangkoon R, Hyde KD, Kuo
CH (2019) The holomorph of Neoroussoella alishanense sp. nov. (Roussoellaceae,
Pleosporales) on Pennisetum purpureum (Poaceae). Phytotaxa 406(4): 218–236.
https://doi.org/10.11646/phytotaxa.406.4.1
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7:
Improvements in performance and usability. Molecular Biology and Evolution 30(4):
772–780. https://doi.org/10.1093/molbev/mst010
          
genus Nigrograna. Czech Mycology 70(2): 123–126. https://doi.org/10.33585/
cmy.70202
            
Forcina GC, Kang KW, Narváez-Trujillo A (2017) Biatriospora (Ascomycota: Pleospo-
rales) is an ecologically diverse genus including facultative marine fungi and en-
dophytes with biotechnological potential. Plant Systematics and Evolution 303(1):
35–50. https://doi.org/10.1007/s00606-016-1350-2
Kruys S, Eriksson OE, Wedin M (2006) Phylogenetic relationships of coprophilous Pleo-
        -
cate taxa of unknown position. Mycological Research 110(5): 527–536. https://doi.
org/10.1016/j.mycres.2006.03.002
Liang H, Gagné JD, Faye A, Rodrigue D, Brisson J (2020) Ground tire rubber (GTR) sur-
          
GTR/polystyrene (PS) blend. Progress in Rubber, Plastics and Recycling Technology
36(2): 81–101. https://doi.org/10.1177/1477760619895016
Liu JK, Phookamsak R, Dai DQ, Tanaka K, Jones BG, Xu J-C, Chukeatirote E, Hyde KD
(2014) Roussoellaceae, a new pleosporalean family to accommodate the genera
Neoroussoella gen. nov., Roussoella and Roussoellopsis. Phytotaxa 181(1): 1–33.
https://doi.org/10.11646/phytotaxa.181.1.1
149
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Long QD, Liu LL, Zhang X, Wen TC, Kang JC, Hyde KD, Shen XC, Li QR (2019) Contribu-
tions to species of Xylariales in China-1. Durotheca species. Mycological Progress
18(3): 495–510. https://doi.org/10.1007/s11557-018-1458-6
Mapook A, Hyde KD, McKenzie EH, Jones EG, Bhat DJ, Jeewon R, Stadler M, Samara-
koon MC, Malaithong M, Purahong W (2020) Taxonomic and phylogenetic contribu-
tions to fungi associated with the invasive weed Chromolaena odorata (Siam weed).
Fungal Diversity 101(1): 1–175. https://doi.org/10.1007/s13225-020-00444-8
-
tion of the group Sphaeriales sensu Lindau. Dansk Bot Ark 15: 1–163.
Phukhamsakda C, Bhat DJ, Hongsanan S, Xu JC, Stadler M, Hyde KD (2018) Two novel spe-
cies of Neoaquastroma (Parabambusicolaceae, Pleosporales) with their phoma-like
asexual morphs. MycoKeys 34: 47–62. https://doi.org/10.3897/mycokeys.34.25124
Poli A, Bovio E, Ranieri L, Varese GC, Prigione V (2020) News from the sea: A new genus
and seven new species in the Pleosporalean families Roussoellaceae and Thyridari-
aceae. Diversity 12(4): 144. https://doi.org/10.3390/d12040144
Posada D, Crandall KA (1998) MODELTEST: Testing the model of DNA substitution. Bio-
informatics 14(9): 817–818. https://doi.org/10.1093/bioinformatics/14.9.817
Ramesh C, (2003) Loculoascomycetes from India. Frontiers of Fungal Diversity in India:
Prof. Kamal Festschrif, 457–479.
Rogers JD, Ju YM (1996) Entoleuca mammata comb. nov. for Hypoxylon mammatum and the
genus Entoleuca. Mycotaxon 59: 441–448. https://doi.org/10.1007/s11557-017-1311-3
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L,
     
inference and model choice across a large model space. Systematic Biology 61(3):
539–542. https://doi.org/10.1093/sysbio/sys029
Saccardo PA (1888) Sylloge Hymenomyceteae, Vol. VI. Polyporeae, Hydneae, Thelepho-
reae, Clavarieae, Tremellineae. Sylloge Fungorum 6: 1–928.
Schoch CL, Crous PW, Groenewald JZ, Boehm EW, Burgess TI, de Gruyter J, de Hoog
GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T,
Huhndorf SM, Hyde KD, Jones EB, Kohlmeyer J, Kruys A, Li YM, Lücking R, Lumbsch
HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen
MP, Nelson P, Owensby CA, Phillips AJ, Phongpaichit S, Pointing SB, Pujade-Renaud
V, Raja HA, Plata ER, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer
 
MJ, Wood AR, Woudenberg JH, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-
wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64: 1-15S10. https://
doi.org/10.3114/sim.2009.64.01.
Senwanna C, Hyde KD, Phookamsak R, Jones EG, Cheewangkoon R (2018) Coryneum-
heveanum sp. nov. (Coryneaceae, Diaporthales) on twigs of Para rubber in Thailand.
MycoKeys 75: 75–90. https://doi.org/10.3897/mycokeys.43.29365
Seong KL, Kallol D, Soo MH, Sang JS, Seung YL, Hee YJ (2023) Morphological and Phy-
logenetic Analyses Reveal a New Species of Genus Monochaetia Belonging to the
Family Sporocadaceae in Korea. Mycobiology 51(2): 87–93. https://doi.org/10.1080
/12298093.2022.2038843
Tanaka K, Hirayama K, Yonezawa H, Hatakeyama S, Harada Y, Sano T, Shirouzu T, Ho-
soya TJ (2009) Molecular taxonomy of bambusicolous fungi: Tetraplosphaeriaceae,
a new pleosporalean family with Tetraploa-like anamorphs. Studies in Mycology 64:
175–209. https://doi.org/10.3114/sim.2009.64.10
150
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Tanaka K, Hirayama K, Yonezawa H, Sato G, Toriyabe A, Kudo H, Hashimoto A, Matsumura
M, Harada Y, Hosoya T (2015) Revision of the Massarineae (Pleosporales, Dothideo-
mycetes). Studies in Mycology 82(1): 75–136. https://doi.org/10.1016/j.simy-
co.2015.10.002
Thambugala K, Wanasinghe D, Phillips A, Camporesi E, Bulgakov T, Phukhamsakda C,
Ariyawansa H, Goonasekara I, Phookamsak R, Hyde KD (2017) Mycosphere notes
1–50: Grass (Poaceae) inhabiting Dothideomycetes. Mycosphere 8(4): 697–796.
https://doi.org/10.5943/mycosphere/8/4/13
Thambugala KM, Hyde KD, Tanaka K, Tian Q, Wanasinghe DN, Ariyawansa HA, Jayasiri
       
backbone tree for Lophiostomataceae, Floricolaceae, and Amorosiaceae fam. nov.
Fungal Diversity 74(1): 199–266. https://doi.org/10.1007/s13225-015-0348-3
Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SS, Liu JK, Bhat DJ, Jones
EG, McKenzie EH, Camporesi E, Bulgakov TS, Doilom M, de Azevedo Santiago
ALCM, Das K, Manimohan P, Gibertoni TB, Lim YW, Ekanayaka AH, Thongbai B, Lee
HB, Yang J-B, Kirk PM, Sysouphanthong P, Singh SK, Boonmee S, Dong W, Raj KNA,
Latha KPD, Phookamsak R, Phukhamsakda C, Konta S, Jayasiri SC, Norphanphoun C,
Tennakoon DS, Li J, Dayarathne MC, Perera RH, Xiao Y, Wanasinghe DN, Senanayake
IC, Goonasekara ID, de Silva NI, Mapook A, Jayawardena RS, Dissanayake AJ,
Manawasinghe IS, Chethana KWT, Luo Z-L, Hapuarachchi KK, Baghela A, Soares

Chakrabarty D, Daranagama DA, Lima DX, Chakraborty D, Ercole E, Wu F, Simonini G,
Vasquez G, da Silva GA, Plautz Jr HL, Ariyawansa HA, Lee H, Kušan I, Song J, Sun J,
Karmakar J, Hu K, Semwal KC, Thambugala KM, Voigt K, Acharya K, Rajeshkumar
           
               
Aamir S, Kaewchai S, Marathe SD, Khan S, Hongsanan S, Adhikari S, Mehmood T,

       
Luangsa-ard J, Xu J, Yan J, Ji-Chuan K, Stadler M, Mortimer PE, Chomnunti P, Zhao Q,
Phillips AJL, Nontachaiyapoom S, Wen T-C, Karunarathna SC (2017) Fungal diversity
notes 491–602: Taxonomic and phylogenetic contributions to fungal taxa. Fungal
Diversity 83(1): 1–261. https://doi.org/10.1007/s13225-017-0378-0
Tibpromma S, Hyde KD, McKenzie EH, Bhat DJ, Phillips AJ, Wanasinghe DN, Samara-
koon MC, Jayawardena RS, Dissanayake AJ, Karunarathna SC (2018) Fungal diversity
notes 840–928: Micro-fungi associated with Pandanaceae. Fungal Diversity 93(1):
1–160. https://doi.org/10.1007/s13225-018-0408-6
Valenzuela-Lopez N, Sutton DA, Cano-Lira JF, Paredes K, Wiederhold N, Guarro J, Stchigel
AM (2017) Coelomycetous fungi in the clinical setting: Morphological convergence
and cryptic diversity. Journal of Clinical Microbiology 55(2): 552–567. https://doi.
org/10.1128/JCM.02221-16
Verkley G, Dukik K, Renfurm R, Göker M, Stielow JB (2014) Novel genera and species of
coniothyrium-like fungi in Montagnulaceae (Ascomycota). Persoonia 32(1): 25–51.
https://doi.org/10.3767/003158514X679191
Vu D, Groenewald M, De Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A,
Groenewald JZ, Cardinali G, Verkley GJ (2019) Large-scale generation and analysis

thresholds for fungal species and higher taxon delimitation. Studies in Mycology
92(1): 135–154. https://doi.org/10.1016/j.simyco.2018.05.001
151
MycoKeys 100: 123–151 (2023), DOI: 10.3897/mycokeys.100.109423
Hongmin Hu et al.: Taxonomic and phylogenetic characterizations of six species of Pleosporales
Wanasinghe DN, Jones EB, Camporesi E, Dissanayake AJ, Kamolhan S, Mortimer PE,
Xu J, Abd-Elsalam KA, Hyde KD (2016) Taxonomy and phylogeny of Laburnicola
gen. nov. and Paramassariosphaeria gen. nov. (Didymosphaeriaceae, Massarineae,
Pleosporales). Fungal Biology 120(11): 1354–1373. https://doi.org/10.1016/j.fun-
bio.2016.06.006
Wanasinghe DN, Phukhamsakda C, Hyde KD, Jeewon R, Lee HB, Gareth Jones E,
Tibpromma S, Tennakoon DS, Dissanayake AJ, Karunarathna SC (2018) Fungal di-
versity notes 709–839: Taxonomic and phylogenetic contributions to fungal taxa
with an emphasis on fungi on Rosaceae. Fungal Diversity 89(1): 1–236. https://doi.
org/10.1007/s13225-018-0395-7
Wijayawardene N, Hyde KD, Al-Ani L, Tedersoo L, Ags SF (2020) Outline of Fungi and
fungi-like taxa. Mycosphere 11(1): 1160–1456. https://doi.org/10.5943/myco-
sphere/11/1/8
Wijayawardene NN, Hyde KD, Bhat DJ, Camporesi E, Schumacher RK, Chethana KT,
Wikee S, Bahkali AH, Wang Y (2014) Camarosporium-like species are polyphyletic
in Pleosporales; introducing Paracamarosporium and Pseudocamarosporium gen.
nov. in Montagnulaceae. Cryptogamie. Mycologie 35(2): 177–198. https://doi.
org/10.7872/crym.v35.iss2.2014.177
      
Outline of Fungi and fungus-like taxa–2021. Mycosphere 13(1): 53–453. https://doi.
org/10.5943/mycosphere/13/1/2
Wijesinghe SN, Wanasinghe DN, Maharachchikumbura SS, Wang Y, Al-Sadi AM, Hyde KD
(2020) Bimuria omanensis sp. nov. (Didymosphaeriaceae, Pleosporales) from Oman.
Phytotaxa 449(2): 97–108. https://doi.org/10.11646/phytotaxa.449.2.1
Zhang JF, Liu JK, Thambugala KM, Yang J, Meng ZH, Liu ZY (2020a) Two new species
and a new record of Nigrograna (Nigrogranaceae, Pleosporales) from China and Thai-
land. Mycological Progress 19(11): 1365–1375. https://doi.org/10.1007/s11557-
020-01633-0
Zhang JY, Phookamsak R, Boonmee S, Hyde KD, Dai DQ, Lu YZ (2020b) Roussoella
guttulata (Roussoellaceae, Pleosporales), a novel bambusicolous ascomycete from
Thailand. Phytotaxa 471: 221–233. https://doi.org/10.11646/phytotaxa.471.3.4
Zhang Y, Crous PW, Hyde SK (2012) Pleosporales. Fungal Diversity 53(1): 1–221.
https://doi.org/10.1007/s13225-011-0117-x
Zhang Y, Fournier J, Phookamsak R, Bahkali AH, Hyde KD (2013) Halotthiaceae fam.
nov. (Pleosporales) accommodates the new genus Phaeoseptum and several other
aquatic genera. Mycologia 105(3): 603–609. https://doi.org/10.3852/11-286
               
from newly-collected and hive-stored bee pollen. Mycosphere 9(6): 1089–1116.
https://doi.org/10.5943/mycosphere/9/6/3
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
During a survey of plant-inhabiting fungi and water niches from Korea, noteworthy fungi were collected; among them, two new species, Paracamarosporium noviaquum sp. nov. and Phyllosticta gwangjuensis sp. nov., are described based on morphology and multi-gene phylogenies. Paracamarosporium noviaquum was characterized by its production of 1-celled and 2-celled conidia, forming conidiomata on only potato dextrose agar medium. Phyllosticta gwangjuensis was characterized by conidia hyaline, ovoid to ellipsoid shape, rounded at both ends, containing numerous guttulae or with a single large central guttule. Additional species were identified as Cosmospora lavitskiae, Monochaetia cameliae, and Roussoella doimaesalongensis, which are reported as new record species from Korea. Detailed descriptions and illustrations of these taxa are provided herein.
Article
Full-text available
This paper provides an updated classification of the Kingdom Fungi (including fossil fungi) and fungus-like taxa. Five-hundred and twenty-three (535) notes are provided for newly introduced taxa and for changes that have been made since the previous outline. In the discussion, the latest taxonomic changes in Basidiomycota are provided and the classification of Mycosphaerellales are broadly discussed. Genera listed in Mycosphaerellaceae have been confirmed by DNA sequence analyses, while doubtful genera (DNA sequences being unavailable but traditionally accommodated in Mycosphaerellaceae) are listed in the discussion. Problematic genera in Glomeromycota are also discussed based on phylogenetic results.
Article
Full-text available
Novel species of fungi described in this study include those from various countries as follows: Algeria , Phaeoacremonium adelophialidum from Vitis vinifera . Antarctica , Comoclathris antarctica from soil. Australia , Coniochaeta salicifolia as endophyte from healthy leaves of Geijera salicifolia , Eremothecium peggii in fruit of Citrus australis , Microdochium ratticaudae from stem of Sporobolus natalensis , Neocelosporium corymbiae on stems of Corymbia variegata , Phytophthora kelmanii from rhizosphere soil of Ptilotus pyramidatus , Pseudosydowia backhousiae on living leaves of Backhousia citriodora , Pseudosydowia indooroopillyensis , Pseudosydowia louisecottisiae and Pseudosydowia queenslandica on living leaves of Eucalyptus sp. Brazil , Absidia montepascoalis from soil. Chile , Ilyonectria zarorii from soil under Maytenus boaria . Costa Rica , Colletotrichum filicis from an unidentified fern. Croatia , Mollisia endogranulata on deteriorated hardwood. Czech Republic , Arcopilus navicularis from tea bag with fruit tea, Neosetophoma buxi as endophyte from Buxus sempervirens , Xerochrysium bohemicum on surface of biscuits with chocolate glaze and filled with jam. France , Entoloma cyaneobasale on basic to calcareous soil, Fusarium aconidiale from Triticum aestivum , Fusarium juglandicola from buds of Juglans regia . Germany , Tetraploa endophytica as endophyte from Microthlaspi perfoliatum roots. India , Castanediella ambae on leaves of Mangifera indica , Lactifluus kanadii on soil under Castanopsis sp., Penicillium uttarakhandense from soil. Italy , Penicillium ferraniaense from compost. Namibia , Bezerromyces gobabebensis on leaves of unidentified succulent, Cladosporium stipagrostidicola on leaves of Stipagrostis sp., Cymostachys euphorbiae on leaves of Euphorbia sp., Deniquelata hypolithi from hypolith under a rock, Hysterobrevium walvisbayicola on leaves of unidentified tree, Knufia hypolithi and Knufia walvisbayicola from hypolith under a rock, Lapidomyces stipagrostidicola on leaves of Stipagrostis sp., Nothophaeotheca mirabibensis (incl. Nothophaeotheca gen. nov.) on persistent inflorescence remains of Blepharis obmitrata , Paramyrothecium salvadorae on twigs of Salvadora persica , Preussia procaviicola on dung of Procavia sp., Sordaria equicola on zebra dung, Volutella salvadorae on stems of Salvadora persica . Netherlands , Entoloma ammophilum on sandy soil, Entoloma pseudocruentatum on nutrient poor (acid) soil, Entoloma pudens on plant debris, amongst grasses. New Zealand , Amorocoelophoma neoregeliae from leaf spots of Neoregelia sp., Aquilomyces metrosideri and Septoriella callistemonis from stem discolouration and leaf spots of Metrosideros sp., Cadophora neoregeliae from leaf spots of Neoregelia sp., Flexuomyces asteliae (incl. Flexuomyces gen. nov.) and Mollisia asteliae from leaf spots of Astelia chathamica , Ophioceras freycinetiae from leaf spots of Freycinetia banksii , Phaeosphaeria caricis-sectae from leaf spots of Carex secta . Norway , Cuphophyllus flavipesoides on soil in semi-natural grassland, Entoloma coracis on soil in calcareous Pinus and Tilia forests, Entoloma cyaneolilacinum on soil semi-natural grasslands, Inocybe norvegica on gravelly soil. Pakistan , Butyriboletus parachinarensis on soil in association with Quercus baloot . Poland , Hyalodendriella bialowiezensis on debris beneath fallen bark of Norway spruce Picea abies . Russia , Bolbitius sibiricus on а moss covered rotting trunk of Populus tremula , Crepidotus wasseri on debris of Populus tremula , Entoloma isborscanum on soil on calcareous grasslands, Entoloma subcoracis on soil in subalpine grasslands, Hydropus lecythiocystis on rotted wood of Betula pendula , Meruliopsis faginea on fallen dead branches of Fagus orientalis , Metschnikowia taurica from fruits of Ziziphus jujube , Suillus praetermissus on soil, Teunia lichenophila as endophyte from Cladonia rangiferina . Slovakia , Hygrocybe fulgens on mowed grassland, Pleuroflammula pannonica from corticated branches of Quercus sp. South Africa , Acrodontium burrowsianum on leaves of unidentified Poaceae , Castanediella senegaliae on dead pods of Senegalia ataxacantha , Cladophialophora behniae on leaves of Behnia sp., Colletotrichum cliviigenum on leaves of Clivia sp., Diatrype dalbergiae on bark of Dalbergia armata , Falcocladium heteropyxidicola on leaves of Heteropyxis canescens , Lapidomyces aloidendricola as epiphyte on brown stem of Aloidendron dichotomum , Lasionectria sansevieriae and Phaeosphaeriopsis sansevieriae on leaves of Sansevieria hyacinthoides , Lylea dalbergiae on Diatrype dalbergiae on bark of Dalbergia armata , Neochaetothyrina syzygii (incl. Neochaetothyrina gen. nov.) on leaves of Syzygium chordatum , Nothophaeomoniella ekebergiae (incl. Nothophaeomoniella gen. nov.) on leaves of Ekebergia pterophylla , Paracymostachys euphorbiae (incl. Paracymostachys gen. nov.) on leaf litter of Euphorbia ingens , Paramycosphaerella pterocarpi on leaves of Pterocarpus angolensis , Paramycosphaerella syzygii on leaf litter of Syzygium chordatum , Parateichospora phoenicicola (incl. Parateichospora gen. nov.) on leaves of Phoenix reclinata , Seiridium syzygii on twigs of Syzygium chordatum , Setophoma syzygii on leaves of Syzygium sp., Star­merella xylocopis from larval feed of an Afrotropical bee Xylocopa caffra , Teratosphaeria combreti on leaf litter of Combretum kraussii , Teratosphaericola leucadendri on leaves of Leucadendron sp., Toxicocladosporium pterocarpi on pods of Pterocarpus angolensis . Spain , Cortinarius bonachei with Quercus ilex in calcareus soils, Cortinarius brunneovolvatus under Quercus ilex subsp. ballota in calcareous soil, Extremopsis radicicola (incl. Extremopsis gen. nov.) from root-associated soil in a wet heathland, Russula quintanensis on acidic soils, Tubaria vulcanica on volcanic lapilii material, Tuber zambonelliae in calcareus soil. Sweden , Elaphomyces borealis on soil under Pinus sylvestris and Betula pubescens . Tanzania , Curvularia tanzanica on inflorescence of Cyperus aromaticus . Thailand , Simplicillium niveum on Ophiocordyceps camponoti-leonardi on underside of unidentified dicotyledonous leaf. USA , Calonectria californiensis on leaves of Umbellularia californica , Exophiala spartinae from surface sterilised roots of Spartina alterniflora , Neophaeococcomyces oklahomaensis from outside wall of alcohol distillery. Vietnam , Fistulinella aurantioflava on soil. Morphological and culture characteristics are supported by DNA barcodes.
Article
Full-text available
Austropleospora is a genus of Didymosphaeriaceae with only three extant species. A survey of saprobic ascomycetes in Guizhou Province, China, discovered a new Austropleospora species on dead twigs in a terrestrial habitat. The molecular phylogeny based on a combined SSU-LSU-tef1-ITS DNA sequence dataset confirmed the new species’ taxonomic position in Austropleospora. Austropleospora ochracea sp. nov. is characterized by globose to subglobose and uni-loculate ascoma with a centric short papilla, brown to dark brown peridium with cells of textura angularis to textura prismatica and conical, comparatively smaller ascospores with narrowly rounded polar ends. The new taxon is compared with similar species in Austropleospora, and its taxonomic status is briefly discussed.
Article
Full-text available
Freshwater Dothideomycetes are a highly diverse group of fungi, which are mostly saprobic in freshwater habitats worldwide. They are important decomposers of submerged woody debris and leaves in water. In this paper, we outline the genera of freshwater Dothideomycetes with notes and keys to species. Based on multigene analyses and morphology, we introduce nine new genera, viz . Aquimassariosphaeria , Aquatospora , Aquihelicascus , Fusiformiseptata , Neohelicascus , Neojahnula , Pseudojahnula , Purpureofaciens , Submersispora ; 33 new species, viz . Acrocalymma bipolare , Aquimassariosphaeria kunmingensis , Aquatospora cylindrica , Aquihelicascus songkhlaensis , A. yunnanensis , Ascagilis submersa , A. thailandensis , Bambusicola aquatica , Caryospora submersa , Dictyocheirospora thailandica , Fusiformiseptata crocea , Helicosporium thailandense , Hongkongmyces aquaticus , Lentistoma aquaticum , Lentithecium kunmingense , Lindgomyces aquaticus , Longipedicellata aquatica , Neohelicascus submersus , Neohelicomyces dehongensis , N. thailandicus , Neohelicosporium submersum , Nigrograna aquatica , Occultibambusa kunmingensis , Parabambusicola aquatica , Pseudoasteromassaria aquatica , Pseudoastrosphaeriella aquatica , Pseudoxylomyces aquaticus , Purpureofaciens aquatica , Roussoella aquatica , Shrungabeeja aquatica , Submersispora variabilis , Tetraploa puzheheiensis , T. yunnanensis ; 16 new combinations, viz. Aquimassariosphaeria typhicola , Aquihelicascus thalassioideus , Ascagilis guttulaspora , A. queenslandica , A. seychellensis , A. sunyatsenii , Ernakulamia xishuangbannaensis , Neohelicascus aquaticus , N. chiangraiensis , N. egyptiacus , N. elaterascus , N. gallicus , N. unilocularis , N. uniseptatus , Neojahnula australiensis , Pseudojahnula potamophila ; 17 new geographical and habitat records, viz. Aliquandostipite khaoyaiensis , Aquastroma magniostiolata , Caryospora aquatica , C. quercus , Dendryphiella vinosa , Ernakulamia cochinensis , Fissuroma neoaggregatum , Helicotruncatum palmigenum , Jahnula rostrata , Neoroussoella bambusae , N. leucaenae , Occultibambusa pustula , Paramonodictys solitarius , Pleopunctum pseudoellipsoideum , Pseudocapulatispora longiappendiculata , Seriascoma didymosporum , Shrungabeeja vadirajensis and ten new collections from China and Thailand, viz. Amniculicola guttulata , Aquaphila albicans , Berkleasmium latisporum , Clohesyomyces aquaticus , Dictyocheirospora rotunda , Flabellascoma fusiforme , Pseudoastrosphaeriella bambusae , Pseudoxylomyces elegans , Tubeufia aquatica and T. cylindrothecia . Dendryphiella phitsanulokensis and Tubeufia roseohelicospora are synonymized with D. vinosa and T. tectonae , respectively. Six orders, 43 families and 145 genera which belong to freshwater Dothideomycetes are reviewed. Of these, 46 genera occur exclusively in freshwater habitats. A world map illustrates the distribution of freshwater Dothideomycetes.
Article
Full-text available
Based on the morphological and phylogenetic analyses, four specimens, which were collected from China and Thailand respectively, are identified as two novel species Nigrograna hydei and N. obtusispora and a new record N. magnoliae in the present study. These share morphologic characters typical of Nigrograna, and cluster together with existing Nigrograna species in the phylogenetic analyses of a combined ITS-TEF1-α sequence dataset. Illustrations and comprehensive descriptions for these taxa are provided.
Article
Full-text available
The class Dothideomycetes is the largest and most ecologically diverse class of fungi, comprising endophytes, epiphytes, saprobes, human and plant pathogens, lichens, and lichenicolous, nematode trapping and rock-inhabiting taxa. Members of this class are mainly characterized by bitunicate asci with fissitunicate dehiscence, and occur on broad range of hosts in aquatic and terrestrial habitats. Since the last monograph of families of Dothideomycetes in 2013, numerous novel species, genera, families and orders have been discovered. This has expanded information which has led to the modern classification in Dothideomycetes. In this paper, we provide a refined updated document on families of Dothideomycetes with emphasis on Dothideomycetidae and Pleosporomycetidae. We accept three orders with 25 families and four orders with 94 families in Dothideomycetidae and Pleosporomycetidae, respectively. The new family Paralophiostomataceae is introduced in Pleosporales. Each family is provided with an updated description, notes, including figures to represent the morphology, list of accepted genera, and economic and ecological significances. We also provide an overall phylogenetic tree of families in Dothideomycetes based on combined analysis of LSU, SSU, rpb-2 and tef1 sequence data, and phylogenetic trees for each order in Dothideomycetidae and Pleosporomycetidae. Family-level trees are provided for the families which include several genera such as Mycosphaerellaceae and Teratosphaeriaceae. Two new genera (Ligninsphaeriopsis and Paralophiostoma) are introduced. Five new species (Biatrisopora borsei, Comoclathris galatellae, Ligninsphaeriopsis thailandica, Paralophiostoma hysterioides and Torula thailandica) are introduced based on morphology and phylogeny, together with nine new reports and seven new collections from different families.
Article
Full-text available
Pleosporales species are important plant pathogens, saprobes, and endophytes on a wide range of economically important plant hosts. The classification of Pleosporales has undergone various modifications in recent years due to the addition of many families described from multiple habitats with a high level of morphological deviation. Numerous asexual genera have been described in Pleosporales that can be either hyphomyceteous or coelomycetous. Phoma- or coniothyrium-like species are common and have been revealed as polyphyletic in the order Pleosporales and linked with several sexual genera. A total of 31 pleosporalean strains were isolated in different regions of Taiwan between 2017 and 2018 from the leaves of Camellia sinensis plants with symptoms of leaf spot disease. These strains were evaluated morphologically and genotypically using multi-locus sequence analyses of the ITS, LSU, SSU, rpb2, tef1 and tub2 genes. The results demonstrated the affiliation of these strains with the various families in Pleosporales and revealed the presence of one new genus (Neoshiraia) and eight new species (Alloconiothyrium camelliae, Amorocoelophoma camelliae, Leucaenicola camelliae, L. taiwanensis, Neoshiraia camelliae, N. taiwanensis, Paraconiothyrium camelliae and Paraphaeosphaeria camelliae). Furthermore, to the best of our understanding, Didymella segeticola, Ectophoma pomi and Roussoella mexican were reported for the first time from C. sinensis in Taiwan.
Article
Full-text available
Bimuria is a monotypic genus in Didymosphaeriaceae, typified by B. novae-zelandiae collected in terrestrial habitats from New Zealand soil. In our study, Bimuria omanensis, a novel species was isolated from unidentified decaying leaves in Oman. The phylogenetic placement of B. omanensis is resolved based on maximum likelihood, maximum parsimony and Bayesian analyses of combined LSU, ITS and TEF1-α sequence data of Didymosphaeriaceae. The placement of Bimuria omanensis as a distinct species, is confirmed based on phylogeny. This is the first record of an asexual morph in Bimuria and first record of a Bimuria species from Oman. The relationship of this taxon with other phylogenetically closely related Didymosphaeriaceae species is shown.
Article
Roussoella guttulata sp. nov. (Roussoellaceae) was found on bamboo culms collected in the northeast of Thailand. Roussoella guttulata differs from other species in having immersed, gregarious, black pseudoascostromata, single and central ostiole with periphyses, thin-walled peridium composed of cells of textura angularis to textura prismatica and yellowish brown ascospores. The multigene phylogenetic analysis shows that the new species forms a distinct lineage basal to R. hysterioides, R. japanensis, R. scabrispora and R. verrucispora. The new species is compared with closely related Roussoella species. A full description, color photo plates and a phylogenetic tree to show the placement of the new species are provided.