Conference Paper

Early Prediction of Sepsis using ML Algorithms on Clinical Data

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Sepsis is a highly lethal syndrome with heterogeneous clinical manifestation that can be hard to identify and treat. Early diagnosis and appropriate treatment are critical to reduce mortality and promote survival in suspected cases and improve the outcomes. Several screening prediction systems have been proposed for evaluating the early detection of patient deterioration, but the efficacy is still limited at individual level. The increasing amount and the versatility of healthcare data suggest implementing machine learning techniques to develop models for predicting sepsis. This work presents an experimental study of some machine-learning-based models for sepsis prediction considering vital signs, laboratory test results, and demographics using Medical Information Mart for Intensive Care III (MIMIC-III) (v1.4), a publicly available dataset. The experimental results demonstrate an overall higher performance of machine learning models over the commonly used Sequential Organ Failure Assessment (SOFA) and Quick SOFA (qSOFA) scoring systems at the time of sepsis onset.
Article
Full-text available
In today’s scenario, sepsis is impacting millions of patients in the intensive care unit due to the fact that the mortality rate is increased exponentially and has become a major challenge in the field of healthcare. Such peoples require determinant care which increases the cost of the treatment by using a large number of resources because of the nonavailability of the resources. The treatment of sepsis is available in the early state, but treatment is not started at the right time, and then it converts to the advanced level of sepsis and increases the fatalities. Thus, an intensive analysis is required to detect and identify sepsis at the early stage. There are some models available that work based on the manual score and based on only the biomark features, but these are not fully automated. Some machine learning-based models are also available, which can reduce the mortality rate, but accuracy is not up to date. This paper proposes a machine learning model for early detecting and predicting sepsis in intensive care unit patients. Various models, random forest (RF), linear regression (LR), support vector machine (SVM), naive Bayes (NB), ensemble (of SVM, RF, NB, and LR), XGBoost, and proposed ensemble (of SVM, RF, NB, LR, and XGBoost), are simulated by using the collected data from intensive care unit patient’s database that is based on the clinical laboratory values and vital signs. The performance of the models is evaluated by considering the same datasets. The balanced accuracy of RF, LR, SVM, NB, ensemble (of SVM, RF, NB, and LR), XGBoost, and proposed ensemble (of SVM, RF, NB, LR, and XGBoost) is 0.90, 0.73, 0.93, 0.74, 0.94, 0.95, and 0.96, respectively. It is also evident from the experimental results that the proposed ensemble model performs well as compared to the other models.
Article
Full-text available
Background: Early prediction of the clinical outcome of patients with sepsis is of great significance and can guide treatment and reduce the mortality of patients. However, it is clinically difficult for clinicians. Methods: A total of 2,224 patients with sepsis were involved over a 3-year period (2016–2018) in the intensive care unit (ICU) of Peking Union Medical College Hospital. With all the key medical data from the first 6 h in the ICU, three machine learning models, logistic regression, random forest, and XGBoost, were used to predict mortality, severity (sepsis/septic shock), and length of ICU stay (LOS) (>6 days, ≤ 6 days). Missing data imputation and oversampling were completed on the dataset before introduction into the models. Results: Compared to the mortality and LOS predictions, the severity prediction achieved the best classification results, based on the area under the operating receiver characteristics (AUC), with the random forest classifier (sensitivity = 0.65, specificity = 0.73, F1 score = 0.72, AUC = 0.79). The random forest model also showed the best overall performance (mortality prediction: sensitivity = 0.50, specificity = 0.84, F1 score = 0.66, AUC = 0.74; LOS prediction: sensitivity = 0.79, specificity = 0.66, F1 score = 0.69, AUC = 0.76) among the three models. The predictive ability of the SOFA score itself was inferior to that of the above three models. Conclusions: Using the random forest classifier in the first 6 h of ICU admission can provide a comprehensive early warning of sepsis, which will contribute to the formulation and management of clinical decisions and the allocation and management of resources.
Article
Full-text available
Sepsis is a leading cause of death in hospitals. Early prediction and diagnosis of sepsis, which is critical in reducing mortality, is challenging as many of its signs and symptoms are similar to other less critical conditions. We develop an artificial intelligence algorithm, SERA algorithm, which uses both structured data and unstructured clinical notes to predict and diagnose sepsis. We test this algorithm with independent, clinical notes and achieve high predictive accuracy 12 hours before the onset of sepsis (AUC 0.94, sensitivity 0.87 and specificity 0.87). We compare the SERA algorithm against physician predictions and show the algorithm’s potential to increase the early detection of sepsis by up to 32% and reduce false positives by up to 17%. Mining unstructured clinical notes is shown to improve the algorithm’s accuracy compared to using only clinical measures for early warning 12 to 48 hours before the onset of sepsis.
Article
Full-text available
One of the diseases which is life-threatening is Sepsis. The unbalanced body reaction to some chemicals which is released by the body into its blood stream in response to fighting an infection is the main cause of Sepsis. Early sepsis prediction is a necessity in order to decrease the mortality rates of ICU patients. The accuracy of early prediction of sepsis can be enhanced using the machine learning techniques. This paper presents an Ensemble model that can early predict sepsis. This model is applied to dataset provided by PhysioNet/Computing in Cardiology Challenge 2019. This model achieved an accuracy of 98%.
Article
Full-text available
Background: Sepsis is life-threatening organ dysfunction due to a dysregulated host response to infection. It is considered a major cause of health loss, but data for the global burden of sepsis are limited. As a syndrome caused by underlying infection, sepsis is not part of standard Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) estimates. Accurate estimates are important to inform and monitor health policy interventions, allocation of resources, and clinical treatment initiatives. We estimated the global, regional, and national incidence of sepsis and mortality from this disorder using data from GBD 2017. Methods: We used multiple cause-of-death data from 109 million individual death records to calculate mortality related to sepsis among each of the 282 underlying causes of death in GBD 2017. The percentage of sepsis-related deaths by underlying GBD cause in each location worldwide was modelled using mixed-effects linear regression. Sepsis-related mortality for each age group, sex, location, GBD cause, and year (1990-2017) was estimated by applying modelled cause-specific fractions to GBD 2017 cause-of-death estimates. We used data for 8·7 million individual hospital records to calculate in-hospital sepsis-associated case-fatality, stratified by underlying GBD cause. In-hospital sepsis-associated case-fatality was modelled for each location using linear regression, and sepsis incidence was estimated by applying modelled case-fatality to sepsis-related mortality estimates. Findings: In 2017, an estimated 48·9 million (95% uncertainty interval [UI] 38·9-62·9) incident cases of sepsis were recorded worldwide and 11·0 million (10·1-12·0) sepsis-related deaths were reported, representing 19·7% (18·2-21·4) of all global deaths. Age-standardised sepsis incidence fell by 37·0% (95% UI 11·8-54·5) and mortality decreased by 52·8% (47·7-57·5) from 1990 to 2017. Sepsis incidence and mortality varied substantially across regions, with the highest burden in sub-Saharan Africa, Oceania, south Asia, east Asia, and southeast Asia. Interpretation: Despite declining age-standardised incidence and mortality, sepsis remains a major cause of health loss worldwide and has an especially high health-related burden in sub-Saharan Africa. Funding: The Bill & Melinda Gates Foundation, the National Institutes of Health, the University of Pittsburgh, the British Columbia Children's Hospital Foundation, the Wellcome Trust, and the Fleming Fund.
Article
Full-text available
Objectives: We performed a national cross-sectional survey to determine the epidemiologic characteristics of patients with sepsis in ICU in China. Design: A cross-section survey study. Setting: Forty-four hospitals in mainland China from December 1, 2015, to January 31, 2016. Patients: All septic patients diagnosed according sepsis-1 criteria admitted to participating ICU. Interventions: None. Measurements and main results: We recorded demographic, physiologic, and microbiological data with follow-up for 90 days or death, if sooner. The frequency of sepsis and 90-day mortality rate were computed, and the relationship with gross domestic product determined. Multivariate logistic regression analysis was used to determine risk factors for 90-day mortality in patients with sepsis. Two-thousand three-hundred twenty-two patients with sepsis were included in the analysis, of whom 786 patients (33.9%) had hospital-acquired sepsis. The most common infection site was the lung (68.2%), followed by abdomen (26.6%) and bloodstream (7.8%). The frequency of sepsis in the ICU was 20.6 cases per 100 ICU admissions (95% CI, 15.8-25.4) with a 90-day mortality of 35.5%. The proportion of sepsis, severe sepsis, and septic shock were 3.10%, 43.6%, and 53.3% with a 90-day mortality of 2.78%, 17.69%, and 51.94%, respectively. Older age, low body weight, higher Sequential Organ Failure Assessment score, the number of systemic inflammatory response syndrome criteria, comorbid with heart failure, hematologic cancer, immunosuppression, higher level of lactate, infection site (pneumonia and bloodstream) were associated with 90-day mortality. Conclusions: Sepsis affects a fifth of patients admitted to ICUs in mainland China with a 90-day mortality rate of 35.5%. Our findings indicate that a large burden of sepsis, and we need to focus on sepsis as a quality improvement target in China given the high mortality. In addition, further studies are needed to delineate the epidemiology of sepsis outside the ICU.
Article
Full-text available
Sepsis is a systemic inflammatory state due to an infection, and is associated with very high mortality and morbidity. Early diagnosis and prompt antibiotic and supportive therapy is associated with improved outcomes. Our objective was to detect the presence of sepsis soon after the patient visits the emergency department. We used Dynamic Bayesian Networks, a temporal probabilistic technique to model a system whose state changes over time. We built, trained and tested the model using data of 3,100 patients admitted to the emergency department, and measured the accuracy of detecting sepsis using data collected within the first 3 hours, 6 hours, 12 hours and 24 hours after admission. The area under the curve was 0.911, 0.915, 0.937 and 0.944 respectively. We describe the data, data preparation techniques, model, results, various statistical measures and the limitations of our experiments. We also briefly discuss techniques to improve accuracy, and the generalizability of our methods to other diseases.
Article
Full-text available
Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.
Article
Full-text available
Sepsis is a complex immunological response to infection characterized by early hyper-inflammation followed by severe and protracted immunosuppression, suggesting that a multi-marker approach has the greatest clinical utility for early detection, within a clinical environment focused on Systemic Inflammatory Response Syndrome (SIRS) differentiation. Pre-clinical research using an equine sepsis model identified a panel of gene expression biomarkers that define the early aberrant immune activation. Thus, the primary objective was to apply these gene expression biomarkers to distinguish patients with sepsis from those who had undergone major open surgery and had clinical outcomes consistent with systemic inflammation due to physical trauma and wound healing. This was a multi-centre, prospective clinical trial conducted across four tertiary critical care settings in Australia. Sepsis patients were recruited if they met the 1992 Consensus Statement criteria and had clinical evidence of systemic infection based on microbiology diagnoses (n = 27). Participants in the post-surgical (PS) group were recruited pre-operatively and blood samples collected within 24 hours following surgery (n = 38). Healthy controls (HC) included hospital staff with no known concurrent illnesses (n = 20). Each participant had minimally 5 ml of PAXgene blood collected for leucocyte RNA isolation and gene expression analyses. Affymetrix array and multiplex tandem (MT)-PCR studies were conducted to evaluate transcriptional profiles in circulating white blood cells applying a set of 42 molecular markers that had been identified a priori. A LogitBoost algorithm was used to create a machine learning diagnostic rule to predict sepsis outcomes. Based on preliminary microarray analyses comparing HC and sepsis groups, a panel of 42-gene expression markers were identified that represented key innate and adaptive immune function, cell cycling, WBC differentiation, extracellular remodelling and immune modulation pathways. Comparisons against GEO data confirmed the definitive separation of the sepsis cohort. Quantitative PCR results suggest the capacity for this test to differentiate severe systemic inflammation from HC is 92%. The area under the curve (AUC) receiver operator characteristics (ROC) curve findings demonstrated sepsis prediction within a mixed inflammatory population, was between 86 and 92%. This novel molecular biomarker test has a clinically relevant sensitivity and specificity profile, and has the capacity for early detection of sepsis via the monitoring of critical care patients.
Article
Full-text available
Postoperative or posttraumatic sepsis remains one of the leading causes of morbidity and mortality in hospital populations, especially in populations in intensive care units (ICUs). Central to the successful control of sepsis-associated infections is the ability to rapidly diagnose and treat disease. The ability to identify sepsis patients before they show any symptoms would have major benefits for the health care of ICU patients. For this study, 92 ICU patients who had undergone procedures that increased the risk of developing sepsis were recruited upon admission. Blood samples were taken daily until either a clinical diagnosis of sepsis was made or until the patient was discharged from the ICU. In addition to standard clinical and laboratory parameter testing, the levels of expression of interleukin-1beta (IL-1beta), IL-6, IL-8, and IL-10, tumor necrosis factor-alpha, FasL, and CCL2 mRNA were also measured by real-time reverse transcriptase PCR. The results of the analysis of the data using a nonlinear technique (neural network analysis) demonstrated discernible differences prior to the onset of overt sepsis. Neural networks using cytokine and chemokine data were able to correctly predict patient outcomes in an average of 83.09% of patient cases between 4 and 1 days before clinical diagnosis with high sensitivity and selectivity (91.43% and 80.20%, respectively). The neural network also had a predictive accuracy of 94.55% when data from 22 healthy volunteers was analyzed in conjunction with the ICU patient data. Our observations from this pilot study indicate that it may be possible to predict the onset of sepsis in a mixed patient population by using a panel of just seven biomarkers.
Article
Background: Sepsis is one of the leading causes of death in intensive care unit patients. Early detection of sepsis is vital because mortality increases as the sepsis stage worsens. Objective: This study aimed to develop detection models for the early stage of sepsis using deep learning methodologies, and to compare the feasibility and performance of the new deep learning methodology with those of the regression method with conventional temporal feature extraction. Method: Study group selection adhered to the InSight model. The results of the deep learning-based models and the InSight model were compared. Results: With deep feedforward networks, the area under the ROC curve (AUC) of the models were 0.887 and 0.915 for the InSight and the new feature sets, respectively. For the model with the combined feature set, the AUC was the same as that of the basic feature set (0.915). For the long short-term memory model, only the basic feature set was applied and the AUC improved to 0.929 compared with the existing 0.887 of the InSight model. Conclusions: The contributions of this paper can be summarized in three ways: (i) improved performance without feature extraction using domain knowledge, (ii) verification of feature extraction capability of deep neural networks through comparison with reference features, and (iii) improved performance with feedforward neural networks using long short-term memory, a neural network architecture that can learn sequential patterns.
Article
A boosting-based method of learning a feed-forward artificial neural network (ANN) with a single layer of hidden neurons and a single output neuron is presented. Initially, an algorithm called Boostron is described that learns a single-layer perceptron using AdaBoost and decision stumps. It is then extended to learn weights of a neural network with a single hidden layer of linear neurons. Finally, a novel method is introduced to incorporate non-linear activation functions in artificial neural network learning. The proposed method uses series representation to approximate non-linearity of activation functions, learns the coefficients of nonlinear terms by AdaBoost. It adapts the network parameters by a layer-wise iterative traversal of neurons and an appropriate reduction of the problem. A detailed performances comparison of various neural network models learned the proposed methods and those learned using the Least Mean Squared learning (LMS) and the resilient back-propagation (RPROP) is provided in this paper. Several favorable results are reported for 17 synthetic and real-world datasets with different degrees of difficulties for both binary and multi-class problems.
Article
IMPORTANCE: Septic shock currently refers to a state of acute circulatory failure associated with infection. Emerging biological insights and reported variation in epidemiology challenge the validity of this definition. OBJECTIVE: To develop a new definition and clinical criteria for identifying septic shock in adults. DESIGN, SETTING AND PARTICIPANTS: The Society of Critical Care Medicine and the European Society of Intensive Care Medicine convened a task force (19 participants) to revise current sepsis/septic shock definitions. Three sets of studies were conducted: (1) a systematic review and meta-analysis of observational studies in adults published between January 1, 1992, and December 25, 2015, to determine clinical criteria currently reported to identify septic shock and inform the Delphi process; (2) a Delphi study among the task force comprising 3 surveys and discussions of results from the systematic review, surveys, and cohort studies to achieve consensus on a new septic shock definition and clinical criteria; and (3) cohort studies to test variables identified by the Delphi process using Surviving Sepsis Campaign (SSC) (2005-2010; n = 28 150), University of Pittsburgh Medical Center (UPMC) (2010-2012; n = 1 309 025), and Kaiser Permanente Northern California (KPNC) (2009-2013; n = 1 847 165) electronic health record (EHR) data sets. MAIN OUTCOMES AND MEASURES: Evidence for and agreement on septic shock definitions and criteria. RESULTS: The systematic review identified 44 studies reporting septic shock outcomes (total of 166 479 patients) from a total of 92 sepsis epidemiology studies reporting different cutoffs and combinations for blood pressure (BP), fluid resuscitation, vasopressors, serum lactate level, and base deficit to identify septic shock. The septic shock–associated crude mortality was 46.5% (95% CI, 42.7%-50.3%), with significant between-study statistical heterogeneity (I2 = 99.5%; τ2 = 182.5; P < .001). The Delphi process identified hypotension, serum lactate level, and vasopressor therapy as variables to test using cohort studies. Based on these 3 variables alone or in combination, 6 patient groups were generated. Examination of the SSC database demonstrated that the patient group requiring vasopressors to maintain mean BP 65 mm Hg or greater and having a serum lactate level greater than 2 mmol/L (18 mg/dL) after fluid resuscitation had a significantly higher mortality (42.3% [95% CI, 41.2%-43.3%]) in risk-adjusted comparisons with the other 5 groups derived using either serum lactate level greater than 2 mmol/L alone or combinations of hypotension, vasopressors, and serum lactate level 2 mmol/L or lower. These findings were validated in the UPMC and KPNC data sets. CONCLUSIONS AND RELEVANCE: Based on a consensus process using results from a systematic review, surveys, and cohort studies, septic shock is defined as a subset of sepsis in which underlying circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than sepsis alone. Adult patients with septic shock can be identified using the clinical criteria of hypotension requiring vasopressor therapy to maintain mean BP 65 mm Hg or greater and having a serum lactate level greater than 2 mmol/L after adequate fluid resuscitation.
Article
IMPORTANCE: The Third International Consensus Definitions Task Force defined sepsis as “life-threatening organ dysfunction due to a dysregulated host response to infection.” The performance of clinical criteria for this sepsis definition is unknown. OBJECTIVE: To evaluate the validity of clinical criteria to identify patients with suspected infection who are at risk of sepsis. DESIGN, SETTINGS AND POPULATION: Among 1.3 million electronic health record encounters from January 1, 2010, to December 31, 2012, at 12 hospitals in southwestern Pennsylvania, we identified those with suspected infection in whom to compare criteria. Confirmatory analyses were performed in 4 data sets of 706 399 out-of-hospital and hospital encounters at 165 US and non-US hospitals ranging from January 1, 2008, until December 31, 2013. EXPOSURES: Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score, systemic inflammatory response syndrome (SIRS) criteria, Logistic Organ Dysfunction System (LODS) score, and a new model derived using multivariable logistic regression in a split sample, the quick Sequential [Sepsis-related] Organ Failure Assessment (qSOFA) score (range, 0-3 points, with 1 point each for systolic hypotension [≤100 mm Hg], tachypnea [≥22/min], or altered mentation). MAIN OUTCOMES AND MEASURES: For construct validity, pairwise agreement was assessed. For predictive validity, the discrimination for outcomes (primary: in-hospital mortality; secondary: in-hospital mortality or intensive care unit [ICU] length of stay ≥3 days) more common in sepsis than uncomplicated infection was determined. Results were expressed as the fold change in outcome over deciles of baseline risk of death and area under the receiver operating characteristic curve (AUROC). RESULTS: In the primary cohort, 148 907 encounters had suspected infection (n = 74 453 derivation; n = 74 454 validation), of whom 6347 (4%) died. Among ICU encounters in the validation cohort (n = 7932 with suspected infection, of whom 1289 [16%] died), the predictive validity for in-hospital mortality was lower for SIRS (AUROC = 0.64; 95% CI, 0.62-0.66) and qSOFA (AUROC = 0.66; 95% CI, 0.64-0.68) vs SOFA (AUROC = 0.74; 95% CI, 0.73-0.76; P < .001 for both) or LODS (AUROC = 0.75; 95% CI, 0.73-0.76; P < .001 for both). Among non-ICU encounters in the validation cohort (n = 66 522 with suspected infection, of whom 1886 [3%] died), qSOFA had predictive validity (AUROC = 0.81; 95% CI, 0.80-0.82) that was greater than SOFA (AUROC = 0.79; 95% CI, 0.78-0.80; P < .001) and SIRS (AUROC = 0.76; 95% CI, 0.75-0.77; P < .001). Relative to qSOFA scores lower than 2, encounters with qSOFA scores of 2 or higher had a 3- to 14-fold increase in hospital mortality across baseline risk deciles. Findings were similar in external data sets and for the secondary outcome. CONCLUSIONS AND RELEVANCE: Among ICU encounters with suspected infection, the predictive validity for in-hospital mortality of SOFA was not significantly different than the more complex LODS but was statistically greater than SIRS and qSOFA, supporting its use in clinical criteria for sepsis. Among encounters with suspected infection outside of the ICU, the predictive validity for in-hospital mortality of qSOFA was statistically greater than SOFA and SIRS, supporting its use as a prompt to consider possible sepsis.
Conference Paper
Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.
Article
Importance The Third International Consensus Definitions Task Force defined sepsis as “life-threatening organ dysfunction due to a dysregulated host response to infection.” The performance of clinical criteria for this sepsis definition is unknown.Objective To evaluate the validity of clinical criteria to identify patients with suspected infection who are at risk of sepsis.Design, Settings, and Population Among 1.3 million electronic health record encounters from January 1, 2010, to December 31, 2012, at 12 hospitals in southwestern Pennsylvania, we identified those with suspected infection in whom to compare criteria. Confirmatory analyses were performed in 4 data sets of 706 399 out-of-hospital and hospital encounters at 165 US and non-US hospitals ranging from January 1, 2008, until December 31, 2013.Exposures Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score, systemic inflammatory response syndrome (SIRS) criteria, Logistic Organ Dysfunction System (LODS) score, and a new model derived using multivariable logistic regression in a split sample, the quick Sequential [Sepsis-related] Organ Failure Assessment (qSOFA) score (range, 0-3 points, with 1 point each for systolic hypotension [≤100 mm Hg], tachypnea [≥22/min], or altered mentation).Main Outcomes and Measures For construct validity, pairwise agreement was assessed. For predictive validity, the discrimination for outcomes (primary: in-hospital mortality; secondary: in-hospital mortality or intensive care unit [ICU] length of stay ≥3 days) more common in sepsis than uncomplicated infection was determined. Results were expressed as the fold change in outcome over deciles of baseline risk of death and area under the receiver operating characteristic curve (AUROC).Results In the primary cohort, 148 907 encounters had suspected infection (n = 74 453 derivation; n = 74 454 validation), of whom 6347 (4%) died. Among ICU encounters in the validation cohort (n = 7932 with suspected infection, of whom 1289 [16%] died), the predictive validity for in-hospital mortality was lower for SIRS (AUROC = 0.64; 95% CI, 0.62-0.66) and qSOFA (AUROC = 0.66; 95% CI, 0.64-0.68) vs SOFA (AUROC = 0.74; 95% CI, 0.73-0.76; P < .001 for both) or LODS (AUROC = 0.75; 95% CI, 0.73-0.76; P < .001 for both). Among non-ICU encounters in the validation cohort (n = 66 522 with suspected infection, of whom 1886 [3%] died), qSOFA had predictive validity (AUROC = 0.81; 95% CI, 0.80-0.82) that was greater than SOFA (AUROC = 0.79; 95% CI, 0.78-0.80; P < .001) and SIRS (AUROC = 0.76; 95% CI, 0.75-0.77; P < .001). Relative to qSOFA scores lower than 2, encounters with qSOFA scores of 2 or higher had a 3- to 14-fold increase in hospital mortality across baseline risk deciles. Findings were similar in external data sets and for the secondary outcome.Conclusions and Relevance Among ICU encounters with suspected infection, the predictive validity for in-hospital mortality of SOFA was not significantly different than the more complex LODS but was statistically greater than SIRS and qSOFA, supporting its use in clinical criteria for sepsis. Among encounters with suspected infection outside of the ICU, the predictive validity for in-hospital mortality of qSOFA was statistically greater than SOFA and SIRS, supporting its use as a prompt to consider possible sepsis.
Article
Importance Septic shock currently refers to a state of acute circulatory failure associated with infection. Emerging biological insights and reported variation in epidemiology challenge the validity of this definition.Objective To develop a new definition and clinical criteria for identifying septic shock in adults.Design, Setting, and Participants The Society of Critical Care Medicine and the European Society of Intensive Care Medicine convened a task force (19 participants) to revise current sepsis/septic shock definitions. Three sets of studies were conducted: (1) a systematic review and meta-analysis of observational studies in adults published between January 1, 1992, and December 25, 2015, to determine clinical criteria currently reported to identify septic shock and inform the Delphi process; (2) a Delphi study among the task force comprising 3 surveys and discussions of results from the systematic review, surveys, and cohort studies to achieve consensus on a new septic shock definition and clinical criteria; and (3) cohort studies to test variables identified by the Delphi process using Surviving Sepsis Campaign (SSC) (2005-2010; n = 28 150), University of Pittsburgh Medical Center (UPMC) (2010-2012; n = 1 309 025), and Kaiser Permanente Northern California (KPNC) (2009-2013; n = 1 847 165) electronic health record (EHR) data sets.Main Outcomes and Measures Evidence for and agreement on septic shock definitions and criteria.Results The systematic review identified 44 studies reporting septic shock outcomes (total of 166 479 patients) from a total of 92 sepsis epidemiology studies reporting different cutoffs and combinations for blood pressure (BP), fluid resuscitation, vasopressors, serum lactate level, and base deficit to identify septic shock. The septic shock–associated crude mortality was 46.5% (95% CI, 42.7%-50.3%), with significant between-study statistical heterogeneity (I2 = 99.5%; τ2 = 182.5; P < .001). The Delphi process identified hypotension, serum lactate level, and vasopressor therapy as variables to test using cohort studies. Based on these 3 variables alone or in combination, 6 patient groups were generated. Examination of the SSC database demonstrated that the patient group requiring vasopressors to maintain mean BP 65 mm Hg or greater and having a serum lactate level greater than 2 mmol/L (18 mg/dL) after fluid resuscitation had a significantly higher mortality (42.3% [95% CI, 41.2%-43.3%]) in risk-adjusted comparisons with the other 5 groups derived using either serum lactate level greater than 2 mmol/L alone or combinations of hypotension, vasopressors, and serum lactate level 2 mmol/L or lower. These findings were validated in the UPMC and KPNC data sets.Conclusions and Relevance Based on a consensus process using results from a systematic review, surveys, and cohort studies, septic shock is defined as a subset of sepsis in which underlying circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than sepsis alone. Adult patients with septic shock can be identified using the clinical criteria of hypotension requiring vasopressor therapy to maintain mean BP 65 mm Hg or greater and having a serum lactate level greater than 2 mmol/L after adequate fluid resuscitation.
Article
Importance Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination.Objective To evaluate and, as needed, update definitions for sepsis and septic shock.Process A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment).Key Findings From Evidence Synthesis Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant.Recommendations Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less.Conclusions and Relevance These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis.
Chapter
BoostingBoosting—( is an approach to machine learning based on the idea of creating a highly accurate prediction rule by combining many relatively weak and inaccurate rules. The AdaBoost algorithm of Freund and Schapire was the first practical boosting algorithm, and remains one of the most widely used and studied, with applications in numerous fields. This chapter aims to review some of the many perspectives and analyses of AdaBoost that have been applied to explain or understand it as a learning method, with comparisons of both the strengths and weaknesses of the various approaches.
Conference Paper
Decision trees are attractive classifiers due to their high execution speed. But trees derived with traditional methods often cannot be grown to arbitrary complexity for possible loss of generalization accuracy on unseen data. The limitation on complexity usually means suboptimal accuracy on training data. Following the principles of stochastic modeling, we propose a method to construct tree-based classifiers whose capacity can be arbitrarily expanded for increases in accuracy for both training and unseen data. The essence of the method is to build multiple trees in randomly selected subspaces of the feature space. Trees in, different subspaces generalize their classification in complementary ways, and their combined classification can be monotonically improved. The validity of the method is demonstrated through experiments on the recognition of handwritten digits
Systemic Inflammatory Response Syndrome. [Updated 2023 Feb 15]
  • Chakraborty
Machine Learning Models for Early Prediction of Sepsis on Large Healthcare Datasets
  • Javier Camacho-Cogollo
  • Enrique
Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare
  • Kim Goh
  • Huat
Python machine learning: Machine learning and deep learning with Python, scikit-learn, and TensorFlow 2
  • Raschka