Chapter

Miniaturization

Authors:
  • Museu Nacional
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Evolutionary reduction of adult body size (miniaturization) has profound consequences for organismal biology and is an important subject of evolutionary research. Based on two individuals we describe a new, extremely miniaturized chameleon, which may be the world’s smallest reptile species. The male holotype of Brookesia nana sp. nov. has a snout–vent length of 13.5 mm (total length 21.6 mm) and has large, apparently fully developed hemipenes, making it apparently the smallest mature male amniote ever recorded. The female paratype measures 19.2 mm snout–vent length (total length 28.9 mm) and a micro-CT scan revealed developing eggs in the body cavity, likewise indicating sexual maturity. The new chameleon is only known from a degraded montane rainforest in northern Madagascar and might be threatened by extinction. Molecular phylogenetic analyses place it as sister to B. karchei , the largest species in the clade of miniaturized Brookesia species, for which we resurrect Evoluticauda Angel, 1942 as subgenus name. The genetic divergence of B. nana sp. nov. is rather strong (9.9‒14.9% to all other Evoluticauda species in the 16S rRNA gene). A comparative study of genital length in Malagasy chameleons revealed a tendency for the smallest chameleons to have the relatively largest hemipenes, which might be a consequence of a reversed sexual size dimorphism with males substantially smaller than females in the smallest species. The miniaturized males may need larger hemipenes to enable a better mechanical fit with female genitals during copulation. Comprehensive studies of female genitalia are needed to test this hypothesis and to better understand the evolution of genitalia in reptiles.
Preprint
Full-text available
Comparative osteological analyses of extant organisms provide key insight into major evolutionary transitions and phylogenetic hypotheses. This is especially true for snakes, given their unique morphology relative to other squamates and the persistent controversy regarding their evolutionary origins. However, the osteology of several major snake groups remains undescribed, thus hindering efforts to accurately reconstruct the phylogeny of snakes. One such group is the Atractaspididae, a family of fossorial colubroids. We herein present the first detailed description of the atractaspidid skull, based on fully segmented micro-computed tomography (micro-CT) scans of Atractaspis irregularis. The skull of Atractaspis presents a highly unique morphology influenced by both fossoriality and paedomorphosis. This paedomorphosis is especially evident in the jaws, palate, and suspensorium, the major elements associated with macrostomy (large-gaped feeding in snakes). Comparison to scolecophidians—a group of blind, fossorial, miniaturized snakes—in turn sheds light on current hypotheses of snake phylogeny. Features of both the naso-frontal joint and the morpho-functional system related to macrostomy refute the traditional notion that scolecophidians are fundamentally different from alethinophidians (all other extant snakes). Instead, these features support the controversial hypothesis of scolecophidians as ‘regressed alethinophidians,’ in contrast to their traditional placement as the earliest-diverging snake lineage. We propose that Atractaspis and scolecophidians fall along a morphological continuum, characterized by differing degrees of paedomorphosis. Altogether, a combination of heterochrony and miniaturization provides a mechanism for the derivation of the scolecophidian skull from an ancestral fossorial alethinophidian morphotype, exemplified by the non-miniaturized and less extreme paedomorph Atractaspis.
Article
Full-text available
Volcanoes serve as natural laboratories expanding our understanding of the recent and past ecological and evolutionary processes. Here, we present data elucidating the developmental and phenotypic transformations providing rapid adaptation for the salmonid fish, Salvelinus malma, to volcanic impact. After being isolated by the mudflow in 1996, the locked descendants of sea-run charr managed to survive in the highly turbid and toxic environment. Initially, the population underwent a phase of high developmental instability accompanied by a surge in morphological deviations. Further, selection targeted the fish prone to migrate into the most toxic mainstream favoring a sedentary lifestyle at the less toxic spawning tributaries. In five–seven generations, the sedentary population recovered developmental homeostasis but diverged into a small-sized short-cycled form with low phenotypic variability. In response to toxicosis, the fish displayed an accelerated metabolic rate and precocious maturations. The spawners possessed fry morphology with no spawning dress. Sedentary fish also exhibited a decreased fecundity and did not build spawning nests. Thus, under the volcanic impact, S. malma demonstrated a rapid paedomorphic miniaturization, an evolutionary mechanism enabling to complete the reproductive cycle under the conditions of high risks of reaching the adaptive capacity limits.
Article
Full-text available
In contrast to the vast majority of reptiles, the skulls of adult crown birds are characterized by a high degree of integration due to bone fusion, e.g., an ontogenetic event generating a net reduction in the number of bones. To understand this process in an evolutionary context, we investigate postnatal ontogenetic changes in the skulls of crown bird and non-avian ther-opods using anatomical network analysis (AnNA). Due to the greater number of bones and bone contacts, early juvenile crown birds have less integrated skulls, resembling their non-avian theropod ancestors, including Archaeopteryx lithographica and Ichthyornis dispars. Phy-logenetic comparisons indicate that skull bone fusion and the resulting modular integration represent a peramorphosis (developmental exaggeration of the ancestral adult trait) that evolved late during avialan evolution, at the origin of crown-birds. Succeeding the general paedomorphic shape trend, the occurrence of an additional peramorphosis reflects the mosaic complexity of the avian skull evolution.
Article
Full-text available
Frogs (Anura) are one of the most diverse vertebrate orders, comprising more than 7,000 species with a worldwide distribution and extensive ecological diversity. In contrast to other tetrapods, frogs have a highly derived body plan and simplified skull. In many lineages of anurans, increased mineralization has led to hyperossified skulls, but the function of this trait and its relationship with other aspects of head morphology are largely unexplored. Using three-dimensional morphological data from 158 species representing all frog families, we assessed wide-scale patterns of shape variation across all major lineages, reconstructed the evolutionary history of cranial hyperossification across the anuran phylogeny, and tested for relationships between ecology, skull shape, and hyperossification. Although many frogs share a conserved skull shape, several extreme forms have repeatedly evolved that commonly are associated with hyperossification, which has evolved independently more than 25 times. Variation in cranial shape is not explained by phylogenetic relatedness but is correlated with shifts in body size and ecology. The species with highly divergent, hyperossified skulls often have a specialized diet or a unique predator defense mechanism. Thus, the evolution of hyperossification has repeatedly facilitated the expansion of the head into multiple new shapes and functions.
Article
Full-text available
The evolution of endothermy represents a major transition in vertebrate history, yet how and why endothermy evolved in birds and mammals remains controversial. Here, we combine a heat transfer model with theropod body size data to reconstruct the evolution of metabolic rates along the bird stem lineage. Results suggest that a reduction in size constitutes the path of least resistance for endothermy to evolve, maximizing thermal niche expansion while obviating the costs of elevated energy requirements. In this scenario, metabolism would have increased with the miniaturization observed in the Early-Middle Jurassic (~180 to 170 million years ago), resulting in a gradient of metabolic levels in the theropod phylogeny. Whereas basal theropods would exhibit lower metabolic rates, more recent nonavian lineages were likely decent thermoregulators with elevated metabolism. These analyses provide a tentative temporal sequence of the key evolutionary transitions that resulted in the emergence of small, endothermic, feathered flying dinosaurs.
Article
Full-text available
A common allometric pattern called Haller's Rule states that small species have relatively larger brains and eyes than larger species of the same taxonomic group. This pattern imposes drastic structural changes and energetic costs on small species to produce and maintain a disproportionate amount of nervous tissue. Indeed, several studies have shown the significant metabolic costs of having relatively larger brains; however, little is known about the structural constraints and adaptations required for housing these relatively larger brains and eyes. Because hummingbirds include the smallest birds, they are ideal for exploring how small species evolve morphological adaptations for housing relatively larger brain and eyes. We here present results from a comparative study of hummingbirds and show that the smallest species have the lowest levels of ossification, the most compact braincases, and relatively larger eye sockets, but lower eye/head proportion, than larger species. In contrast to Passerines, skull ossification in hummingbirds correlates with body and brain size but not with age. Correlation of these skull traits with body size might represent adaptations to facilitate housing relatively larger brain and eyes, rather than just heterochronic effects related to change in body size. These structural changes in skull traits allow small animals to accommodate disproportionately larger brains and eyes without further increasing overall head size.
Article
Full-text available
The evolution of the mammalian jaw is one of the most important innovations in vertebrate history, and underpins the exceptional radiation and diversification of mammals over the last 220 million years1,2. In particular, the transformation of the mandible into a single tooth-bearing bone and the emergence of a novel jaw joint-while incorporating some of the ancestral jaw bones into the mammalian middle ear-is often cited as a classic example of the repurposing of morphological structures3,4. Although it is remarkably well-documented in the fossil record, the evolution of the mammalian jaw still poses the paradox of how the bones of the ancestral jaw joint could function both as a joint hinge for powerful load-bearing mastication and as a mandibular middle ear that was delicate enough for hearing. Here we use digital reconstructions, computational modelling and biomechanical analyses to demonstrate that the miniaturization of the early mammalian jaw was the primary driver for the transformation of the jaw joint. We show that there is no evidence for a concurrent reduction in jaw-joint stress and increase in bite force in key non-mammaliaform taxa in the cynodont-mammaliaform transition, as previously thought5-8. Although a shift in the recruitment of the jaw musculature occurred during the evolution of modern mammals, the optimization of mandibular function to increase bite force while reducing joint loads did not occur until after the emergence of the neomorphic mammalian jaw joint. This suggests that miniaturization provided a selective regime for the evolution of the mammalian jaw joint, followed by the integration of the postdentary bones into the mammalian middle ear.
Article
Full-text available
The avian skull is distinctive in its construction and in its function. Much of bird anatomical variety is expressed in the beak; but the beak itself, largely formed of the premaxillary bone, is set upon a shortened face and a bulbous, enlarged braincase. Here, we use original anatomical observations and reconstructions to describe the overall form of the avian skull in a larger context and to provide a general account of the evolutionary transformation from the early dinosaur skull—the skull of an archosaurian macropredator—to that of modern birds. Facial shortening, the enlargement of the braincase around an enlarged brain (with consequential reduction of circumorbital elements and the adductor chamber), and general thinning and looser articulation of bones are trends. Many of these owe to juvenilization or paedomorphosis, something that is abundantly evident from comparison of a juvenile early theropod (Coelophysis) to early avialans like Archaeopteryx. Near the avian crown, the premaxilla becomes dramatically enlarged and integrated into the characteristic mobile kinetic system of birds. We posit that this addition of a large element onto the skull may be biomechanically feasible only because of the paedomorphic shortening of the face; and kinesis of the beak only because of the paedomorphic thinning of the bones and loosening of articulations, as played out in reverse during the maturation of Coelophysis. Finally, the beak itself becomes elaborated as the hands are integrated into the wing. There are structural, kinematic, and neurological similarities between avian pecking and primate grasping. The ability to precision-select high-quality food against a complex but depauperate background may have permitted crown birds to survive the end-Cretaceous cataclysm by feeding on insects, seeds, and other detritus after the collapse of higher trophic levels in the food web.
Article
Full-text available
Non-avian saurischian skulls underwent at least 165 million years of evolution and shapes varied from elongated skulls, such as in the theropod Coelophysis , to short and box-shaped skulls, such as in the sauropod Camarasaurus . A number of factors have long been considered to drive skull shape, including phylogeny, dietary preferences and functional constraints. However, heterochrony is increasingly being recognized as an important factor in dinosaur evolution. In order to quantitatively analyse the impact of heterochrony on saurischian skull shape, we analysed five ontogenetic trajectories using two-dimensional geometric morphometrics in a phylogenetic framework. This allowed for the comparative investigation of main ontogenetic shape changes and the evaluation of how heterochrony affected skull shape through both ontogenetic and phylogenetic trajectories. Using principal component analyses and multivariate regressions, it was possible to quantify different ontogenetic trajectories and evaluate them for evidence of heterochronic events allowing testing of previous hypotheses on cranial heterochrony in saurischians. We found that the skull shape of the hypothetical ancestor of Saurischia likely led to basal Sauropodomorpha through paedomorphosis, and to basal Theropoda mainly through peramorphosis. Paedomorphosis then led from Orionides to Avetheropoda, indicating that the paedomorphic trend found by previous authors in advanced coelurosaurs may extend back into the early evolution of Avetheropoda. Not only are changes in saurischian skull shape complex due to the large number of factors that affected it, but heterochrony itself is complex, with a number of possible reversals throughout non-avian saurischian evolution. In general, the sampling of complete ontogenetic trajectories including early juveniles is considerably lower than the sampling of single adult or subadult individuals, which is a major impediment to the study of heterochrony on non-avian dinosaurs. Thus, the current work represents an exploratory analysis. To better understand the cranial ontogeny and the impact of heterochrony on skull evolution in saurischians, the data set that we present here must be expanded and complemented with further sampling from future fossil discoveries, especially of juvenile individuals.
Article
Full-text available
We show-in contrast to the traditional textbook contention-that the first amniote lungs were complex, multichambered organs and that the single-chambered lungs of lizards and snakes represent a secondarily simplified rather than the plesiomorphic condition. We combine comparative anatomical and embryological data and show that shared structural principles of multichamberedness are recognizable in amniotes including all lepidosaurian taxa. Sequential intrapulmonary branching observed during early organogenesis becomes obscured during subsequent growth, resulting in a secondarily simplified, functionally single-chambered lung in lepidosaurian adults. Simplification of pulmonary structure maximized the size of the smallest air spaces and eliminated biophysically compelling surface tension problems that were associated with miniaturization evident among stem lepidosaurmorphs. The remaining amniotes, however, retained the multichambered lungs, which allowed both large surface area and high pulmonary compliance, thus initially providing a strong selective advantage for efficient respiration in terrestrial environments. Branched, multichambered lungs instead of simple, sac-like organs were part and parcel of the respiratory apparatus of the first amniotes and pivotal for their success on dry land, with the sky literally as the limit. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Article
Full-text available
Miniaturization, or the evolution of a dramatically reduced body size compared to related lineages, is an extraordinarily widespread phenomenon among metazoans. Evolutionary biologists have been fascinated by miniaturization because this transition has occurred numerous times, often among close relatives, providing a model system for studying convergent evolution and its underlying mechanisms. Much of the developmental work describing the ontogeny of miniature species suggests that paedomorphosis is the predominant avenue of miniaturization. Nevertheless, specific alterations to ontogeny appear highly variable, so that even related lineages with similar miniaturized traits produce those similarities via distinct ontogenetic paths. One major vertebrate group that has been overlooked in research on miniaturization is turtles. In the present study, we examined patterns of shape change in the plastron (the ventral part of the shell) over the course of ontogeny in a small clade of turtles (Emydinae) aiming to investigate whether two independently evolved diminutive members of the clade (Glyptemys muhlenbergii and Clemmys guttata) should be considered as miniaturized. We employ geometric morphometric methods to quantify the patterns of shape change these potentially miniaturized species and their relatives undergo during ontogeny, and use molecular phylogenetic trees to reconstruct ancestral conditions and provide information on the polarity of shape changes. We find that differing changes in ontogenetic parameters relative to ancestral conditions accompany the evolution of small size in emydines: G. muhlenbergii changes the duration of ontogeny and rate of shape change, whereas C. guttata changes growth rate. The observed ontogenetic repatterning of these species is reminiscent of changes in ontogeny and life history often found in miniaturized taxa. However, we conclude that C. guttata and G. muhlenbergii are not truly miniaturized because they still produce typical adult shell morphologies, and larger emydines display comparable ontogenetic flexibility. Because no emydines carry juvenile shell features forward into adulthood, we speculate that few, if any turtles, will show paedomorphic shell traits without corresponding changes in defensive strategy because such shells may offer insufficient protection. © 2013 The Linnean Society of London
Article
Full-text available
A new small species of Eocaiman is described on the basis of three anterior left mandibular rami and one isolated tooth. The specimens came from the middle-upper Paleocene Itaboraí Basin (Rio de Janeiro State, Brazil; Itaboraian South American Land Mammal Age). The new taxon differs from the other two Eocaiman species, such as its small size, likely participation of the splenial in the mandibular symphysis, a reduced angle between the longitudinal axis of the symphysis and the mandibular ramus, and enlarged ninth and tenth dentary teeth (in addition to the large first and fourth dentary teeth). The participation of the splenial in the mandibular symphysis is a unique character among caimanines (with the only possible exception being Tsoabichi greenriverensis). The new taxon provides new information on the taxonomic and anatomical diversity of the genus Eocaiman, a taxon of prime importance to understand the evolutionary origins of caimans given its position as the basalmost member of Caimaninae. Furthermore, the new taxon has a relatively small body size in comparison with other species of Eocaiman, a case paralleled by other Itaboraian reptilian groups (e.g. snakes), suggesting that this ecosystem provides critical data to test the relationship between reptilian body size and climate.
Article
Full-text available
Eleutherodactylus iberia is described from the Cuchillas de Moa in eastern Cuba. At approximately 10 mm snout-vent length, it rivals the Brazilian brachycephalid Psyllophryne didactyla in being the smallest species of tetrapod. The new species appears to be most closely related to the Cuban species E. cubanus, E. limbatus, and E. orientalis; and all have the same small clutch size (one). The limbatus group is erected to accommodate these four diminutive leaf-litter species. The smallest species of anurans, representing four families (Brachycephalidae, Leptodactylidae, Microhylidae, and Sooglossidae), are compared to examine the effects of miniaturization on morphological and life-history traits. Digital reduction and loss of vomerine teeth are common, and most diminutive species have a high frequency (> 5 kHz) call and lay one or a few eggs on land that undergo direct development.
Article
Full-text available
Miniaturization, or the evolution of extremely small adult body size, is a widespread phenomenon in animals. It has important consequences for both organismal biology and phyletic diversification above the species level. The miniaturized phenotype is a complex combination of ancestral and derived traits, including reduction and structural simplification, increased variability, and morphological novelty. Many features likely represent secondary consequences of size decrease, which may be the result of selection primarily for small body size or some related attribute such as life history characteristics. In some cases, miniaturization has resulted in novel bauplans associated with the origin of higher taxa. Evaluation of causes and consequences of miniaturization should consider obvious features of physical size as well as less obvious, but biologically important, features such as genome and cell size.
Article
Full-text available
Islands are viewed as natural evolutionary laboratories for terrestrial organisms because they have boundaries that limit dispersal and often reveal evolutionary patterns and mechanisms. One such pattern is that the smallest and largest species of different types of tetrapod animals are frequently found on islands. Here I describe two new diminutive species of snakes of the genus Leptotyphlops from the Lesser Antilles: one from Saint Lucia and the other from Barbados. The one from Barbados is the smallest species of snake and has a total adult length of approximately 100 mm. Limited evidence indicates a clutch size of one and a greatly elongated egg shape (length /width). Comparison of egg shapes in snakes indi-cates that the shape is a packaging phenomenon, related primarily to the shape of the available body cavity and clutch size. For a clutch size of one, expected egg shape is eight whereas expected egg shape drops to two at a clutch size of ten. The body shape of snakes, defined as snout-to-vent length divided by width, also varies and influences the shape of snake eggs. The smallest snakes are typically stout-bodied with shapes of 30–35 whereas the longest snakes usually are more elongate, with shapes of 45–50. The allometry of organ size also affects clutch size and shape, because the smallest snakes have the smallest proportion of body cavity space available for reproduction. The best explanation for the obser-vation of body size extremes on islands is that colonizing species have adapted to open ecological niches that would oth-erwise be occupied on the mainland. Island colonists encounter novel environments and reduced interspecific competition, allowing species to evolve physical traits, including extremes in size, not normally seen on continents. However, the lower limit of adult size appears to be constrained by the allometry of morphology, physiology, and repro-duction. The smallest tetrapods have small clutches, usually one egg or young, and offspring that are relatively large. In the smallest snakes, offspring are one-half of the length of adults, compared with 10% adult length in the case of large species of snakes. Thus the evolutionary tradeoff between number and size of offspring appears to have reached a size boundary in these species, limiting the evolution of yet smaller species.
Article
Full-text available
Paedocypris carbunculus, new species, is described from Pangkalan Bun, Kalimantan Tengah on the island of Borneo, Indonesia. It differs from its congeners in the shape of its head blotches. It is readily distinguished further from P. micromegethes in having the middorsal stripe consisting of three rows of chromatophores, head kidney pigment, well developed opercular, subopercular, interopercular, and branchiostegal rows and isthmus and gular pigmentation, chest spots, a well developed chest blotch, and in the presence of a preanal larval fi n fold in adult females. It differs also from P. progenetica in having the median row of the middorsal stripe formed by separated individual chromatophores, and sparsely-pigmented upper and lower lips. KEY WORDS. – Miniature fi shes, Paedocypris carbunculus, new species, sexual dimorphism, breeding behaviour.
Article
Full-text available
Small insectivores and rodents, despite similarities in body size and attributes scaling to body size, exhibit significant differences in other properties, including many life history traits. In this article major differences between life history traits of the two taxa are reviewed, with an indication of contrasting selection pressures related to somewhat different body size, as well as to differences in metabolic rates, diet and exposure to predation. Additionally, since the life history differences between small mammals are particularly well pronounced in highly seasonal habitats, the winter ecology of shrews and rodents is compared. Finally, the two different reproductive strategies typical for soricine shrews and small nonhibernating rodents, are presented. In conclusion, it is proposed that the reproduction delayed to the second calendar year of life in shrews is the result of selection for traits ensuring successful survival in winter, a period that is more perilous for shrews than for rodents. In rodents, in contrast, opportunistic reproduction is the most prominent characteristic which also helps to maximize their reproductive output. This ability for high reproduction seems to be the main antipredatory measure selected for in rodent evolution. Key wordsshrews-rodents-life history traits-predation-seasonality-winter ecology
Article
Full-text available
Living vertebrates vary drastically in body size, yet few taxa reach the extremely minute size of some frogs and teleost fish. Here we describe two new species of diminutive terrestrial frogs from the megadiverse hotspot island of New Guinea, one of which represents the smallest known vertebrate species, attaining an average body size of only 7.7 mm. Both new species are members of the recently described genus Paedophryne, the four species of which are all among the ten smallest known frog species, making Paedophryne the most diminutive genus of anurans. This discovery highlights intriguing ecological similarities among the numerous independent origins of diminutive anurans, suggesting that minute frogs are not mere oddities, but represent a previously unrecognized ecological guild.
Article
Full-text available
Danionella dracula is a new species of sexually dimorphic, miniature and highly developmentally truncated cyprinid fish. Compared with its close relative, the zebrafish Danio rerio, it lacks 44 bones or parts thereof and represents one of the most developmentally truncated vertebrates. Absence of the majority of bones appears to be due to developmental truncation via terminal deletion. In contrast to these larval-like features, D. dracula also shows several hyperossifications. Uniquely, among carp-like fishes, male D. dracula have a series of long, pointed odontoid processes on the jaws greatly resembling the jaw dentition of teleosts with true teeth. The anterior-most process in each jaw is extended as a canine-like fang projecting through the epithelium. True jaw teeth are absent from all 3700 species of cypriniforms and were lost at least in the Upper Eocene. It remains to be investigated, however, whether the conserved pathways to regulate tooth development in cypriniforms have been used in D. dracula to form and pattern the odontoid processes. This new species represents a remarkable example linking progenetic paedomorphosis via heterochronic change in developmental timing to the evolution of morphological novelties.
Article
Full-text available
Paedocypris is a new genus of paedomorphic cyprinid fish from highly acidic blackwater peat swamps in Southeast Asia. It includes two new species, one of which (Paedocypris progenetica) appears to be the smallest fish and vertebrate known, with the smallest mature female measuring a mere 7.9 mm. Paedocypris has many 'larval' features typically associated with paedomorphic fish (e.g. narrow frontals that leave the brain unprotected dorsally by bone and a precaudal larval-fin-fold), but, uniquely among fishes, males also possess highly modified pelvic fins with hypertrophied muscles and a keratinized pad in front of the pelvic girdle, which, we hypothesize, function together as a clasping or holding device, thereby suggesting an unusual reproductive mode. Unfortunately, habitat destruction jeopardizes the survival of these fishes and thus opportunities for further research.
Chapter
This book deals with a wide range of topics relating to the fascinating biology of tiny vertebrates, concentrating on the smallest representatives of the major vertebrate groups, from neon tetras to minute shrews. The first section deals with aspects of vertebrate structure and function in relation to diminishing body size. The second part of the book takes up an ecological perspective, with chapters on small fish, amphibians, hummingbirds, small terrestrial mammals, and on dwarfing in elephants and deer. The book concludes with a chapter on the psychology of human interest in small vertebrates.
Chapter
Paleontology affords a special signal on evolution of neurosensory systems because many parts of that system require rigid skeletal armatures to function properly. This relationship is traced from the ancestral amniote to the origin of Mammalia. Based on inferences about the skeleton and neurosensory system in the ancestral amniote, evolution of correlated traits is traced that culminated in the origin of Mammalia, establishing a bauplan for subsequent diversification. Peripheral sensory arrays profoundly impacted evolution of the highly encephalized mammalian brain and the emergence of neocortex. The dominant pattern is a cascade following an order-of-magnitude increase in olfactory odorant receptor genes. Hypertrophied innervation of the dentition produced a virtually new peripheral array, and origin of the pelt was also influential. The proximate ancestors of mammals were miniaturized and immersed in a rich new source of information from microhabitats dominated to unprecedented degrees by scents and odors. Many peripheral influences became integrated and centralized with the emergence of orthoretronasal olfaction. Several discrete pulses in encephalization are recorded in the fossil record. Once the brain reached an encephalization quotient of ∼0.5, multiple independent increases in encephalization followed. Variational modality of the brain thus shifted from virtual stasis to repeated independent episodes of encephalization. Independent increases in brain size, particularly in neocortical surface area, would become a dominant pattern in mammalian diversification. Numerous mechanisms have been postulated as driving the origin of Mammalia including enlargement of the brain, emergence of neocortex, fur, endothermy, nocturnality, parental care, miniaturization, enhanced olfaction, and hearing. All were influential at certain periods in pan-mammalian history, but most originated prior to the origin of Mammalia, and others only thereafter.
Article
A tiny skull trapped in 99-million-year-old amber suggests that some of the earliest birds evolved to become miniature. The fossil illustrates how ancient amber can act as a window into the distant past. Fossil of the miniature avian species Oculudentavis khaungraae.
Article
Miniaturization has been defined as the evolution of extremely small adult size in a lineage. It does not simply imply the decrease of the body size but also involves structural modifications to maintain functional efficiency at a strongly reduced size. Miniaturization has been proposed as a key factor in the origin of several major tetrapod clades. Current hypotheses propose that the living amphibians (lissamphibians) originated within a clade of Paleozoic dwarfed dissorophoid temnospondyls. Morphological traits shared by these small dissorophoids have been interpreted as resulting from constraints imposed by the extreme size reduction, but these statements were based only on qualitative observations. Herein, we assess quantitatively morphological changes in the skull previously associated with miniaturization in the lissamphibian stem lineage by comparing evolutionary and ontogenetic allometries in dissorophoids. Our results show that these features are not comparable to the morphological consequences of extreme size reduction as documented in extant miniature amphibians, but instead they resemble immature conditions of larger temnospondyls. We conclude that the truncation of the ancestral ontogeny, and not constraints related to miniaturization, might have been the factor that played a major role in the morphological evolution of small dissorophoids. Based on our results, we discuss the putative role of miniaturization in the origin of lissamphibians within Dissorophoidea.
Article
Testudinidae (tortoises) is an extant clade of terrestrial turtles of worldwide distribution and with a rich fossil record that provides an exceptional context for studying their evolutionary history. Because of the lack of global phylogenetic analyses integrating extinct taxa, our current knowledge of the relationships of the total clade of Testudinidae is rather poor. To resolve this issue, we performed the first total evidence analysis of Pan-Testudinidae. The total evidence trees are congruent with the molecular topology and agree on the dichotomy of derived Testudinidae (=Testudininae; Converted Clade Name) into two previously recognized major clades, Testudona and Geochelona (New Clade Name). The integration of extinct taxa into the analysis allowed the stratigraphic fit of the total evidence trees, indicating that crown Testudininae, Testudona and Geochelona all originated by the Late Eocene, in agreement with recent molecular estimates. Ghost lineage analysis indicates high diversification in the Late Eocene and in the Miocene. The age of crown Testudo is Late Miocene, again in accordance with some molecular dates. Phylogenetic placement of fossils demonstrates that giant body size independently evolved in multiple continental mainland taxa and confirms recent results deduced from living taxa—giantism in Testudinidae is not linked to the insular effect. An unexpected outcome is the recovery of miniaturization in Testudona (<30 cm carapace length) that emerged sometime between the Oligocene and Early Miocene. No clear correlation between body size evolution and climate is apparent, but increased taxon sampling may nevertheless demonstrate the role of cooling and warming as one of many influential variables.
Article
A detailed description of the skull and jaw of the gecko Sphaerodactylus roosevelti is presented. The bones are described articulated and isolated with special consideration given to the type of suture among joining elements. S. roosevelti was compared with 109 gekkotan species to evaluate the osteological variation and to find characters for cladistic analysis. Changes in the skull associated with the miniaturization process are discussed within the sphaerodactylid geckos. A noticeable increase of overlapping sutures was observed in the snout of the smallest sphaerodactylids compared to other gekkotans. This pattern is convergent with that in miniaturized pygopodids and may be attributed to adaptations for decreasing mechanical resistance of the cranium during feeding or burrowing. New cranial characters support Sphaerodactylinae as a monophyletic group and should be useful for resolving questions such as their relationship with other gekkotans.
A new Eocaiman (Alligatoridae, Crocodylia) from the Itaboraí Basin
  • A E P Pinheiro
  • D C Fortier
  • D Pol
  • D A Campos
  • L P Bergqvist
  • AEP Pinheiro
Ontogeny and phylogeny (501 pp)
  • S J Gould
  • SJ Gould
Gould, S. J. (1977). Ontogeny and phylogeny (501 pp). Cambridge: Harvard.
Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds
  • M S Y Lee
  • A Cau
  • D Naish
  • G J Dyke
  • MSY Lee
Lee, M. S. Y., Cau, A., Naish, D., & Dyke, G. J. (2014). Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science, 345, 562-566. https://doi.org/10.1126/science.1252243.
The effect of miniaturized body size on skeletal morphology in frogs
  • J Yeh
Yeh, J. (2002). The effect of miniaturized body size on skeletal morphology in frogs. Evolution, 56, 628-641. https://doi.org/10.1111/j.0014-3820.2002.tb01372.x.