ArticlePDF Available

Abstract and Figures

Thoraco-abdominal aortic aneurysm (TAAA) open repair is a high-risk surgery further burdened with both mortality and morbidity. Despite numerous experimental endeavors and technical advancements, spinal cord ischemia (SCI) is still the most formidable morbidity to be resolved, irrespective of the open or endovascular surgical approach. It presents a spectrum of severity, ranging from temporary or permanent paraparesis to paraplegia with or without autonomic dysfunction. The timing of SCI occurrence is a crucial factor, with approximately 15% of cases manifesting intraoperatively, 50% within 48 h post-surgery, and the remaining 35% classified as late SCI, occurring more than 48 h after the procedure. The mechanism responsible for SCI is complex and multifactorial; hence, understanding its underlying pathophysiology is essential for its effective management. Over the last decade, strategies to enhance spinal cord perfusion and minimize the risk of SCI during TAAA open repair have been implemented. These include optimization of hemodynamics, hemoglobin levels, cardiac function, and cerebrospinal fluid pressure, ensuring collateral vascular network stability and distal aortic perfusion and intrathecal administration of drugs. A multimodal approach involving anesthesiologists and surgeons can lead to improved neurological recovery and a reduced incidence and severity of SCI.
This content is subject to copyright. Terms and conditions apply.
Monaco et al. Vessel Plus 2023;7:23
DOI: 10.20517/2574-1209.2023.113 Vessel Plus
© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing,
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as
long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.
www.oaepublish.com/vp
Open AccessReview
A multimodal approach to prevent spinal cord
ischemia in patients undergoing thoracoabdominal
aortic aneurism repair - from pathophysiology to
anesthesiological management
Fabrizio Monaco, Jacopo D'Andria Ursoleo, Gaia Barucco, Margherita Licheri, Carolina Faustini, Stefano
Lazzari, Ambra Licia Di Prima
Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.
Correspondence to: Dr. Fabrizio Monaco, Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute,
Via Olgettina 60, Milan 20132, Italy. E-mail: monaco.fabrizio@hsr.it
How to cite this article: Monaco F, D'Andria Ursoleo J, Barucco G, Licheri M, Faustini C, Lazzari S, Di Prima AL. A multimodal
approach to prevent spinal cord ischemia in patients undergoing thoracoabdominal aortic aneurism repair - from
pathophysiology to anesthesiological management. Vessel Plus 2023;7:23. https://dx.doi.org/10.20517/2574-1209.2023.113
Received: 27 Aug 2023 First Decision: 26 Sep 2023 Revised: 6 Oct 2023 Accepted: 19 Oct 2023 Published: 27 Oct 2023
Academic Editors: Narasimham L. Parinandi, Paolo Nardi Copy Editor: Fangyuan Liu Production Editor: Fangyuan Liu
Abstract
Thoraco-abdominal aortic aneurysm (TAAA) open repair is a high-risk surgery further burdened with both
mortality and morbidity. Despite numerous experimental endeavors and technical advancements, spinal cord
ischemia (SCI) is still the most formidable morbidity to be resolved, irrespective of the open or endovascular
surgical approach. It presents a spectrum of severity, ranging from temporary or permanent paraparesis to
paraplegia with or without autonomic dysfunction. The timing of SCI occurrence is a crucial factor, with
approximately 15% of cases manifesting intraoperatively, 50% within 48 h post-surgery, and the remaining 35%
classified as late SCI, occurring more than 48 h after the procedure. The mechanism responsible for SCI is complex
and multifactorial; hence, understanding its underlying pathophysiology is essential for its effective management.
Over the last decade, strategies to enhance spinal cord perfusion and minimize the risk of SCI during TAAA open
repair have been implemented. These include optimization of hemodynamics, hemoglobin levels, cardiac function,
and cerebrospinal fluid pressure, ensuring collateral vascular network stability and distal aortic perfusion and
intrathecal administration of drugs. A multimodal approach involving anesthesiologists and surgeons can lead to
improved neurological recovery and a reduced incidence and severity of SCI.
Keywords: Thoraco-abdominal aorta aneurysm, spinal cord ischemia, aneurysm repair, anesthetic management,
aortic surgery, cerebrospinal fluid drainage, collateral network, partial left heart bypass, cardiac function
Page 2 of Monaco et al. Vessel Plus 2023;7:23 https://dx.doi.org/10.20517/2574-1209.2023.113
14
INTRODUCTION
Spinal cord ischemia (SCI) is one of the most devastating complications in the repair of thoraco-abdominal
aortic aneurysms (TAAA) in both the open and endovascular approaches. When it occurs, it carries a poor
prognosis, leading to patients’ reduced quality of life, high complication and mortality rate, and prolonged
duration of intensive care unit (ICU) and hospital stays[1,2]. The incidence of SCI in the repair of TAAA
ranges between as low as 2%-3% and 10%, while the one-year survival of those who suffer this complication
is as low as 40%[3,4]. SCI encompasses a spectrum of severity that extends from temporary or permanent
paraparesis to paraplegia with or without autonomic dysfunction. SCI can manifest at various time points.
Approximately 15% of cases occur intraoperatively, meaning the injury takes place during the surgical
procedure. Around 50% of cases fall into the intermediate category, with symptoms manifesting within 48 h
following the procedure. The remaining 35% are classified as late SCI, with symptoms arising more than 48
h after surgery[5]. These timing distinctions reflect the underlying pathophysiology of SCI. Intraoperative
SCI is directly linked to the interruption of blood flow, while postoperative SCI is influenced by
hemodynamic management, particularly through the establishment and stabilization of the collateral blood
flow.
Intermediate paraplegia, which occurs within 48 h after surgery, is more insidious in nature. Its
development is intricately tied to the recruitment of the collateral network that is supplied by the
hypogastric and intercostal arteries, as well as branches of the subclavian artery. The management of SCI is
grounded in a deep understanding of its pathophysiology and requires a multimodal approach [Figure 1]. In
fact, multiple strategies are implemented for preventing and addressing SCI, including the placement of
cerebrospinal fluid (CSF) drainage, distal aortic perfusion, optimization of blood pressure, restoration of
blood flow in collateral network vessels, embolization and reimplantation of segmental arteries according to
the monitoring of motor (MEP) and somatosensory-evoked potentials (SSEP).
By employing these strategies, anesthesiologists and surgeons can work towards minimizing the occurrence
and severity of SCI and maximizing the chances of neurological recovery[6]. The present review discusses the
evolution of strategies that can be applied to maximize spinal cord perfusion and decrease the risk of SCI
during thoracoabdominal aortic aneurysm repair.
VASCULAR ANATOMY OF THE SPINAL CORD
The spinal cord (SC) vasculature consists of very small vessels running in intricate, three-dimensional
planes with substantial regional and inter-individual variability. SC vasculature was originally visualized
with routine contrast-enhanced CT scanning back in 1994, yet information about the SC circulation has, for
the most part, been gained from post-mortem studies. The first accurate anatomical descriptions were
provided in 1881 by Adamkiewicz and Kady. They described the vascular system of the SC as consisting of
one anterior and two posterolateral anastomotic trunks running longitudinally. Inflow vessels to the SC
include: the subclavian artery (through the vertebral artery), the thyrocervical trunk, and the costocervical
trunk; several segmental feeders from the intercostal and lumbar arteries; the hypogastric arteries (through
the lateral sacral and iliolumbar arteries). Arteries directly nourishing the SC (intrinsic arterial system) are
divided into two different systems: a central (centrifugal) system fed by the sulcal arteries; and a peripheral
(centripetal) system, the pial plexus (or pial network), which gives origin to perforating branches. The pial
network forms an impressive secondary anastomotic system along the entire length of the SC between the
anterior and posterolateral longitudinal vessels. The anterior spinal artery (ASA) is ultimately an
anastomotic channel between ascending and descending branches of neighboring anterior radicular arteries.
Page 3 of Monaco et al. Vessel Plus 2023;7:23 https://dx.doi.org/10.20517/2574-1209.2023.113
14
Figure 1. The multimodal approach for SCI prevention is based on MAP, CVP and CSFP modulation. MAP: Mean arterial pressure; CVP:
central venous pressure; CSFP: cerebrospinal fluid pressure.
PATHOPHYSIOLOGY OF SPINAL CORD ISCHEMIA
Risk factors associated with spinal cord ischemia
A greater understanding of the anatomy and physiology of spinal cord perfusion has led to the recognition
of several risk factors associated with spinal cord ischemia (SCI). The extent of aortic replacement is the
most important predictor, with the highest rates observed for Extent II (10%-20% and Extent I TAAAs and
the lowest rates for Extent IV TAAAs (1%-5%))[7-9]. In addition, occlusion of the collateral network
(hypogastric and/or vertebral artery) is associated with a higher rate of immediate paraplegia and a lack of
improvement in motor function following remedial maneuvers[10]. Other determinants include prior aortic
replacement, chronic kidney disease, chronic obstructive pulmonary disease, and age[10,11].
Spinal cord collateral network
The artery of Adamkiewicz is a significant branch of a segmental artery (SA) found in the lower thoracic or
upper lumbar region, originating from T8-L1. It possesses a distinct hairpin turn and plays a crucial role in
supplying blood to the anterior spinal artery (ASA). In the treatment of extensive TAAAs, careful
identification and subsequent reimplantation of the SA have been considered the most effective strategy to
prevent severe neurological complications. However, the experience gained in endovascular treatment of
TAAAs has shown that SCI is a potentially avoidable outcome, even when there is a significant sacrifice of
the segmental arteries. This has led to a shift from the traditional anatomical paradigm, where the absence
of blood flow was considered synonymous with SCI, to a pathophysiological approach. As a consequence,
the need for a comprehensive understanding of spinal cord circulation is often overlooked, and the focus
shifted to hemodynamic and metabolic variables as the main determinants of SCI prevention. In this
approach, factors related to blood flow dynamics, such as blood pressure optimization and collateral vessel
recruitment, as well as metabolic factors affecting spinal cord tissue oxygenation and energy supply, are
considered crucial for preventing SCI. Lazorthes et al. detailed the multiple vessels that contributed to the
spinal cord blood supply and first implemented Adamkiewicz’s original anatomical observations[12]. They
Page 4 of Monaco et al. Vessel Plus 2023;7:23 https://dx.doi.org/10.20517/2574-1209.2023.113
14
described the existence of a rich collateral pathway of vessels in both the perivertebral space and alongside
paraspinal muscles that anastomose outside the spinal canal, generating the spinal cord collateral network.
It consists of an axial network of small arteries in the spinal canal, perivertebral tissues, and paraspinal
muscles that anastomose with each other and with the nutrient arteries of the spinal cord. Inputs come from
segmental, subclavian, and hypogastric arteries and their branches (originating from the internal iliac artery,
namely the iliolumbar artery and lateral sacral arteries). Hence, the blood supply to the spinal cord can be
either increased from one source when another is reduced or decreased when a low-resistance pathway is
opened, leading to the steal phenomenon. This event is discernible and becomes apparent when utilizing an
aortic cross-clamp in the thoracic district while incising the aneurysmal thoracic aorta, as noted by
Christiansson and colleagues. Such action establishes a gradient between the spinal cord and the aorta,
causing retrograde bleeding from the intercostal arteries into the exposed aorta. As a result, this impacts the
spinal cord perfusion pressure (SCPP) and can potentially lead to anemia and hemodynamic instability[13].
Hence, there is the need to limit the back-flow from the intercostal arteries by the rapid insertion of
occlusive pegs, balloons, and tourniquets in the segmental vessels within the aorta. In particular,
Griepp et al. employed a method in which they clamp and divide the segmental vessels entering the aorta
within the segment to be excised prior to cross-clamping or opening the aorta, which resulted in a 2%
incidence of paraplegia[14]. As virtually all clinical approaches to thoracic and thoracoabdominal aneurysm
resection unavoidably entail periods of cord ischemia, the importance of meticulous monitoring of
perfusion variables has become crucial to ensure sufficient blood flow through the spinal cord collateral
network.
Mechanisms of injury
From a pathophysiological perspective, an imbalance between oxygen demand and delivery (DO2) at the
spinal cord level following interruption of blood flow in the intercostal arteries during thoracic aortic
surgery causes SCI. Thoracic aorta cross-clamping leads to a reduction in perfusion pressure to the vascular
network supplying the central nervous system (CNS). Consequently, clamping time plays a pivotal role in
the development of ischemia since its lengthening triggers cellular and molecular alterations (e.g., shift from
aerobic to anaerobic metabolism), which in turn result in local and systemic alterations, ultimately leading
to ischemia. Noteworthy, the combination of both a direct (interruption of blood flow) and an indirect
effect which is in addition to the former (derived from the production of oxygen free radicals, lipid
peroxidation, intracellular calcium accumulation, leukocyte activation, inflammatory response) ultimately
results in neuronal apoptosis. More specifically, since visceral tissues in the district distal to the aortic clamp
shift from an aerobic to an anaerobic metabolism, lactates are produced and cellular membranes increase
their permeability, resulting in cellular swelling. Furthermore, the production of reactive oxygen species
(ROS) and nitric oxide (NO) coupled with lipid peroxidation suppress adenosine triphosphate (ATP)
synthesis, inactivate homeostatic metabolic enzymes, deplete antioxidant reserves, disrupt cellular and
mitochondrial membranes and further boost the phenomenon of apoptosis by means of intracellular
electrolytes derangement[15]. All these factors acting simultaneously lead to the destruction of the blood-
spinal cord barrier, with spinal cord edema, increased leukocyte infiltration, amplification of inflammation,
and oxidative stress[16]. Even reperfusion, causing inflammation, hyperemia, and edema, worsens overall
cellular damage and contributes to an irreversible clinical presentation of paraplegia. In daily clinical
practice, interrupting blood flow to the spinal cord does not always result in the development of SCI.
Furthermore, while reimplantation of intercostal arteries during TAAA repair is desirable, it is not always
feasible. Therefore, it might be plausible to replace an “anatomical paradigm” where sacrificing the
intercostal arteries inevitably leads to spinal cord ischemia with a “pathophysiological” paradigm, in which
spinal cord circulation is essentially ignored, and cardiac function, systemic arterial perfusion, DO2, and
cellular metabolism become the therapeutic targets to prevent neurological damage [Table 1].
Page 5 of Monaco et al. Vessel Plus 2023;7:23 https://dx.doi.org/10.20517/2574-1209.2023.113
14
Table 1. Physiologic determinants, target values and potential therapeutic interventions to avoid spinal cord ischemia (SCI) during
thoracoabdominal aortic aneurysms (TAAA) repair
Determinant Target value Potential therapeutic intervention
MAP 85-100 mmHg Increase volemia
Vasoactive drugs infusion
Reduce clamping time
Gradual clamp release
Avoid abrupt pressure variations
CSFP 8-10 mmHg Place external CSF drainage
CVP < 10 mmHg Implement diuretic therapy
If RV dysfunction is present:
Optimize gas exchange by increasing FiO2
Moderate hyperventilation
Dobutamine/adrenaline infusion
DO21,000 mL/min Improve SaO2
Keep Hb > 10 g/dL
Ensure CI > 2.5 L/min
Body temperature 32-34 °C Mild hypothermia
300 mL cold saline infusion in each of the renal arteries
Cold saline infusion with dual-lumen catheter in epidural space
MAP: Mean arterial pressure; CSFP: cerebrospinal fluid pressure; CSF: cerebrospinal fluid; CVP: central venous pressure; RV: right ventricular;
FiO2: inspired fraction of oxygen; DO2: oxygen delivery; SaO2: arterial oxygen saturation; Hb: hemoglobin; CI: cardiac index.
PERIOPERATIVE MONITORING OF SPINAL CORD ISCHEMIA
Open TAAA surgery benefits from intraoperative neurophysiological monitoring (IONM) for the
identification of SCI. Descending and ascending spinal pathways are evaluated by means of motor (MEPs)
and somatosensory evoked potentials (SSEPs), respectively. SSEPs are elicited by stimulation of posterior
tibial nerves at the ankle and/or median nerves using subdermal needle electrode pairs. Similarly, MEPs are
elicited in the upper extremities with a needle electrode in the abductor pollicis brevis or the first dorsal
interosseus muscle and both tibialis anterior and abductor hallucis muscles in the lower ones. Limitations of
neurophysiologic monitoring include the inability to differentiate between medium and severe SCI and that
it can be influenced by lower limb ischemia resulting from vascular introducers[17].
Anesthetic agents
Anesthesia shows a profound influence on evoked potentials. Volatile anesthetics reduce the amplitude of
SSEP, increase their latency, and impair cortical waves; hence, their administration should not exceed 0.5
MAC[18,19]. Intravenous anesthetics (e.g., propofol and remifentanil infusions), combined with low
concentrations of volatile anesthetic agents if appropriate, represent the first line of choice when the
monitoring of evoked potentials is in place[20].
Neuromuscular blockers
Careful attention must also be given to the administration of neuromuscular blockers to safeguard
appropriate muscle relaxation and an adequate response of MEPs. IONM also proved to be beneficial for
categorizing patients based on their risk of SCI when the vascular phase of surgery is over. Bianchi et al.
used a multimodal IONM approach, combining MEP, SEP, and peripheral nerve monitoring techniques in
100 consecutive patients undergoing TAAA open repair[21]. The study showed a notably higher rate of
immediate postoperative motor deficits consistent with SCI, particularly in cases with irreversible MEP
deteriorations compared to reversible ones. The authors concluded that implementing a multimodal IONM
protocol could improve MEP interpretation and assist surgeons in making informed decisions before
concluding vascular maneuvers. Although IONM has the potential to detect SCI during surgery, during the
timeframe between the end of the surgical procedure and the subsequent neurological clinical evaluation,
limited information about the presence of SCI is available for clinicians. In order to address this gap, von
Page 6 of Monaco et al. Vessel Plus 2023;7:23 https://dx.doi.org/10.20517/2574-1209.2023.113
14
Aspern et al. have employed collateral network near-infrared spectroscopy (cnNIRS)[20]. By monitoring the
perfusion of the paraspinal muscles at both thoracic and lumbar levels, cnNIRS can serve as an indirect
measure of the perfusion of the spinal cord collateral network by assessing its oxygenation patterns[22].
Nevertheless, NIRS still lacks clinical validation in this setting and its routine utilization is not yet
recommended[23,24].
ANESTHESIOLOGIC STRATEGIES
The main objective of anesthesia management is to avoid abrupt hemodynamic changes that can critically
reduce spinal cord perfusion. The main factors that alter hemodynamics in patients undergoing TAAA are:
cardiac function, the level of aortic clamping, hemoglobin levels, distal aortic perfusion with partial left
heart bypass (PLHB) circulatory assistance, patient’s body temperature, intrathecal administration of
medications and cerebrospinal fluid (CSF) pressure. Hence, by acting on the above-mentioned factors, a
goal-directed hemodynamic strategy is mandatory for the anesthesiologist to achieve adequate spinal cord
oxygenation and perfusion.
It is logical to think that mean arterial pressure (MAP) serves as the driving pressure, and higher values of
systemic pressure lead to a lower risk of paraplegia. However, it is not the MAP as an “absolute value” that
reduces the risk of paraplegia but the difference compared to its preoperative baseline value[5]. For instance,
patients with a preoperative history of hypertension require significantly higher MAP during the
perioperative period compared with normotensive patients. Within this pathophysiological approach to
spinal cord perfusion, central venous pressure (CVP) also plays a quintessential role[5]. Indeed, the outflow
from the spinal cord relies on the systemic venous pressure and therefore the CVP. Since the vertebral
venous plexus is functionally a large single plexus with high-capacity vessels that extend along the entire
spinal cord, an increase in CVP is associated with increased pressure in the vertebral venous plexus. As the
spinal canal is a non-expandable space, increased pressure in the vertebral plexus directly causes an
elevation of cerebrospinal fluid pressure (CSFP). The effect of elevated CVP is irrelevant when
vascularization is intact but is crucial in cases of extensive sacrifice of intercostal arteries. In their experience
with monitoring of MEP and SSEP during repair of TAA/A in 100 consecutive patients in whom spinal
cord artery reattachment was (with 1 exception) not carried out, Etz et al. reported that spinal cord
perfusion proved to be profoundly unstable under the above-mentioned conditions, with spinal cord
perfusion pressure (SCPP), defined by the difference between mean arterial pressure distal to clamp
(MAPd) and CSFP, being around 20 mmHg in the hours and days following surgery[25]. With such a low
driving pressure value, elevated CVP can significantly increase CSFP and reduce spinal cord outflow,
leading to SCI. Because spinal arteries cross the vertebral venous plexus, congestion of this plexus,
secondary to high cardiac preload, exhibits a compressive effect on the segmental arteries that nourish the
spinal cord.
Cardiac function
Cardiac function is the main determinant of MAP and CVP, which in turn are modulated by the right (RV)
and left ventricle (LV). Transesophageal echocardiography allows for early identification of right and left
heart dysfunction and its determinants (preload, contractility, or afterload).
Right ventricular dysfunction
Right ventricular (RV) dysfunction is one of the causes of CVP elevation; hence, cardiac function must be
constantly monitored and supported in the event of a decline in performance. Echocardiographic criteria of
RV dysfunction are summarized in Table 2.
Page 7 of Monaco et al. Vessel Plus 2023;7:23 https://dx.doi.org/10.20517/2574-1209.2023.113
14
Table 2. Overall view of the main echocardiographic criteria of right and left ventricular (RV and LV, respectively) dysfunction
Criteria of ventricular dysfunction
Right (RV) Left (LV)
RVFAC < 30%
Tricuspid annular plane systolic excursion < 16 mm
Tissue Doppler index < 10 cm/s
RV/LV > 0.6
PAOP > 15 mmHg
EF < 50%
LVOT VTI < 20 cm/s with good RV function
RVFAC: Right ventricular fractional area change; RV/LV: right ventricular to left ventricular diameter ratio; PAOP: pulmonary artery occlusion
pressure; EF: ejection fraction; LVOT VTI: left ventricular outflow tract (LVOT) velocity time integral (VTI); RV: right ventricular.
The RV is particularly sensitive to increased pulmonary resistance from vasoconstriction secondary to
hypercapnia, hypoxia, acidosis, and polytransfusion. Therefore, the first-line treatment of RV dysfunction is
the optimization of gas exchange with a high fraction of inspired oxygen (FiO2) and moderate
hyperventilation.
When moderate pulmonary hypertension (Tricuspid Annular Plane Systolic Excursion [TAPSE] > 16 mm
or Tissue Doppler Imaging [TDI] > 10 cm/s and Pulmonary artery systolic pressure [PAPs] > 30 mmHg)
with preserved systolic function (ejection fraction [EF] > 60%) and low preload (CVP < 10 mmHg) occurs,
fluid challenge is recommended. High CVP (> 15mmHg) should be treated aggressively with diuretic
therapy. Poor RV contractility (TAPSE < 16 mm or TDI < 10 cm/s) may be associated with poor inotropism
secondary to pre-existing coronary artery disease (CAD), and myocardial hypoperfusion due to low
coronary artery gradient from left-sided dysfunction.
In cases of moderate RV dysfunction, dobutamine infusion is the first-line treatment. Adrenaline is
indicated in cases of biventricular dysfunction, hypotension, or severe RV dysfunction. In patients with RV
failure and low pulmonary vascular resistance but no pre-existing pulmonary hypertension, norepinephrine
is effective in maintaining adequate coronary perfusion pressure (CPP). Therapeutic targets are summarized
in Figure 2.
Left ventricular dysfunction
LV function is equally of paramount importance in preventing SCI. The development of low cardiac output
syndrome (LCOS) with refractory and prolonged hypotension has catastrophic effects on spinal cord
perfusion. Early recognition and treatment can mitigate its effects. The criteria for LV dysfunction are
summarized in Table 2.
In particular, reduced ejection fraction (EF < 50%) in the postoperative period due to ischemic events or the
onset of supraventricular arrhythmias is a relatively frequent cause of hypotension during the days following
surgery, and may be a direct cause of the development of SCI[26].
The presence of atrial fibrillation (AF) is associated with prolonged hospitalization, higher in-hospital
mortality, and reduced mid-term survival[27]. As observed by Coselli et al. in a series of more than 1,000
patients undergoing type II TAAA, the presence of preoperative CAD is one of the main predictors of SCI
on multivariate analysis, increasing the risk of paraplegia in the postoperative period by 80%[26].
With regard to treatment, the evaluation of myocardial contractility and wall motion abnormalities should
be conducted following preload optimization. Poor contractility is managed with adrenaline and
dobutamine infusion. MAP is also critical in regard to coronary perfusion; in fact, it is not uncommon to
observe MAP-dependent ST abnormalities.
Page 8 of Monaco et al. Vessel Plus 2023;7:23 https://dx.doi.org/10.20517/2574-1209.2023.113
14
Figure 2. Main therapeutic targets and decision-making algorithm in the occurrence of right ventricular (RV) dysfunction. RV: Right
ventricular; CVP: central venous pressure.
If increased afterload is associated with systolic ventricular dysfunction, infusion of inodilators is indicated.
Conversely, increased afterload associated with normal systolic contraction benefits from the use of short-
acting vasodilators. The therapeutic targets are summarized in Figure 3.
Aortic clamping
Pressure changes can be extreme during clamping, yielding different effects on systemic blood pressure
depending on the level of aortic clamping[28].
In particular, if the clamping occurs at the supraceliac level, blood is displaced from the vascular bed distal
to the aortic clamping to that proximal to the clamping, due to decreased venous capacitance and the
venoconstrictor effect exhibited by catecholamines[29]. Conversely, if the clamping is subceliac, the blood
moves into the splanchnic circulation, causing a decrease in cardiac preload if the splanchnic venous tone is
low, or an increase in preload if the venous tone is high[30]. The increase in preload and afterload as a result
of aortic clamping leads to an increase in cardiac contractility and cardiac output[29].The increase in left
ventricular end-systole (LV ESP) and end-diastole pressure (LV EDP) as a result of increased aortic
impedance leads to transient subendocardial ischemia that stimulates increased coronary flow and
contractility (ARPNER’s effect)[31]. If coronary flow reserve (CFR) is poor (e.g., due to pre-existing coronary
artery disease), the patient will not be able to increase coronary flow, resulting in low flow, cardiac ischemia,
and systemic hypotension, which correlate with an increased risk of SCI.
An early etiological diagnosis with intraoperative transesophageal echocardiography makes it possible to
distinguish whether the hypotension is caused by hypovolemia, cardiac dysfunction, or peripheral
vasodilatation[32]. Based on this, it may be indicated to administer vasodilators to reduce afterload, preload
and induce coronary vasodilation, to increase cardiac contractility with inotropic drugs, or simply to expand
the blood volume with fluids in the case of reduced preload.
At the time of declamping, because of volume redistribution in the lower limbs and wash-out of vasoactive
and myocardial-depressor metabolites from the ischemic areas, hypotension sets in, resulting in central
hypovolemia and reduced cardiac output[28]. At this stage, the risk of SCI is particularly high due to the
Page 9 of Monaco et al. Vessel Plus 2023;7:23 https://dx.doi.org/10.20517/2574-1209.2023.113
14
Figure 3. Main therapeutic targets and decision-making algorithm in the occurrence of left ventricular (LV) dysfunction. LV: Left
ventricular; CVP: central venous pressure; RWMA: regional wall motion abnormalities.
decrease in SCPP secondary to decreased MAP and active bleeding. Hypotension following declamping can
be corrected through various means, including increasing blood volume, infusing vasoactive drugs,
reducing the clamp time, or employing a gradual release of the clamp. Rapid treatment of metabolic
alterations may prove useful.
Partial left heart bypass
To date, partial left heart bypass (PLHB) is considered the best technique to reduce ischemia time in tissues
vascularized by arteries originating downstream of the aortic clamp, to support left ventricular function and
to control hypertension during TAAA correction surgery[33].
Dynamic use of PLHB makes it possible to modulate the perfusion pressure in the district proximal and
distal to the clamp by keeping it between 85 mmHg and 100 mmHg for the whole duration of the surgical
procedure and ensuring adequate SCPP. If the MAP falls below 60 mmHg, the perfusion pressure in the
collateral medullary network is proportionally reduced. The use of PLHB has been associated with a
reduced risk of paraplegia[34]. Safi et al. report that the use of PLHB in patients undergoing TAAA repair also
improves the outcome in Crawford type I and II by reducing the risk of paraplegia when used in
combination with CSF drainage[35]. Furthermore, although heparin is routinely administered to prevent
intraoperative thrombosis, when PLHB is used, a higher degree of anticoagulation compared with the
“clamp-and-go” technique is required. This may eventually worsen both the underlying TAAA-related
coagulopathy and bleeding.
Cerebrospinal fluid drainage
Cerebrospinal fluid (CSF) drainage is the most effective procedure in preventing SCI after aortic repair[36].
The pathophysiological rationale behind the use of CSF drainage is the need to lower cerebrospinal fluid
pressure (CSFP) by increasing SCPP. In light of this, the use of CSF drainage has entered clinical practice.
CSF drainage positioning was found to significantly reduce the risk of paraplegia in a randomized
controlled trial of 145 patients undergoing extent I and II TAA surgery[37]. These data are further supported
by clinical practice. The use of CSF drainage as a rescue in patients who have developed neurological deficits
following surgical interventions is able to reverse paraplegia and paresis by decreasing the CSFP. Hence, its
use has become an essential tool in the multimodal approach for the prevention of SCI, in combination with
the above-mentioned hemodynamic optimization strategies. Preventing catheter obstruction and deflecting
any complications may be achieved by continuous monitoring of CSFP, even if this procedure carries its
Page 10 of Monaco et al. Vessel Plus 2023;7:23 https://dx.doi.org/10.20517/2574-1209.2023.113
14
own risks and complications. The risk of developing subarachnoid hemorrhage due to excessive loss of CSF
in a short time is lower with intermittent CSF drainage compared to continuous CSF drainage. Meningitis
(0.1%), subdural hematoma (1.7%), and intracranial hemorrhage (1.8%) are the most severe
complications[38], while subdural hematoma is associated with excessive CSF drainage and tearing of the
dural veins. A CSF pressure 10 mmHg is recommended in the absence of ischemia or to perform an
intermittent drainage of 10-20 mL/h with continuous systemic blood pressure monitoring. Patients with
cerebral atrophy, arteriovenous malformations, brain aneurysms, and a history of previous subdural
hematoma are particularly prone to developing cerebral hemorrhage[39].
Anemia
Monitoring of hemoglobin levels is particularly relevant as it directly affects DO2. In situations where
cardiac output is suboptimal, maintaining maximum arterial oxygen saturation and hemoglobin levels
above 10 g/dL can be beneficial[40]. The combination of bleeding, anemia, and hypotension can worsen SCI.
A decrease in the oxygen content of arterial blood (CaO2) leads to a reduction in the ratio of DO2 to oxygen
consumption (VO2) < 2. When DO2 falls below this threshold, VO2 becomes dependent on DO2, leading to a
shift from aerobic to anaerobic metabolism, resulting in lactate production and metabolic acidosis. Thus, it
is crucial to manage bleeding by ensuring meticulous surgical hemostasis and employing viscoelastic tests.
Studies have shown that the use of rotational thromboelastometry significantly reduces the need for fresh
frozen plasma (FFP) administration. Reduced FFP usage is associated with less hemodilution and anemia,
which can help mitigate the negative effects on oxygen delivery and prevent further complications of SCI[41].
Hypothermia
Several experimental studies have demonstrated the protective effect of mild hypothermia on the prevention
of SCI by reducing both nerve tissue metabolism and the release of excitatory neurotransmitters[42]. This
constitutes the pathophysiological rationale for the use of regional hypothermia during aortic clamping[43].
Cambria et al. report a protective effect of regional hypothermia of the spinal cord through epidural cooling
when it is used in combination with CSF drainage and intercostal artery repletion[44]. Shimizu et al. confirm
these findings but propose the use of a double-lumen catheter inserted into the peridural space into which
cold saline is infused[45].The risk of inserting a catheter of significant size (16 gouges in diameter and 30 cm
in length) into the peridural space, together with disputed scientific evidence, has ultimately limited the use
of techniques for regional cooling of the medulla to local experience.
Intrathecal drugs
Intrathecal administration of different drugs has led to inconclusive results so far. Lima et al. reported that
in 330 patients undergoing TAAA surgery, the addition of 30 mg of papaverine 1% intrathecally 10 min
before aortic clamping exhibited neuroprotective effects[46]. The rationale is its vasodilatory effect on the
arterial circulation, which would increase blood flow to the spinal cord. However, its short duration of
action and the risk of hypotension associated with possible systemic reabsorption have limited its use over
time. Other authors have proposed the use of naloxone, which would have a neuroprotective effect by
decreasing the level of endorphins released during SCI[47]. In particular, Acher et al. observed a significant
reduction in SCI in the 49 patients in whom naloxone was used in conjunction with CSF drainage[47]. Other
drugs such as calcium antagonists, N-methyl-d-aspartate, and edaravone were in animal models, but none
have provided results convincing enough to be implemented in clinical trials[48,49].
CONCLUSION
TAAA repair carries substantial perioperative risks, with spinal cord ischemia being the most common
complication leading to paraplegia. Therefore, each scheduled surgery case requires thorough discussions
between surgeons and anesthesiologists to carefully weigh the benefits and risks specific to the patient’s
Page 11 of Monaco et al. Vessel Plus 2023;7:23 https://dx.doi.org/10.20517/2574-1209.2023.113
14
Figure 4. Multimodal therapeutic algorithm to treat spinal cord ischemia. CSF: Cerebrospinal fluid; CSFP: cerebrospinal fluid pressure;
SpO2: peripheral capillary oxygen saturation; Hb: hemoglobin; MAP: mean arterial pressure; CVP: central venous pressure; CI: cardiac
index; BSA: body surface area; SCPP; spinal cord perfusion pressure.
situation. Several strategies (e.g., perfusion, metabolism, and oxygen delivery to the spinal cord) can be
employed to mitigate the risk of spinal cord ischemia. These are based on acknowledging the most
important factors in protecting the spinal cord during and after thoracic and thoracoabdominal aortic
replacement, both when spinal cord blood flow is significantly reduced and after aortic replacement, while
the co-axial collateral network is recruited to restore resting blood flow to near-normal levels. The
anesthesiologist must ensure adequate spinal cord perfusion by elevating MAP within the range of
90-100 mmHg to promote spinal cord collateral network circulation and reduce CSFP through CSF
drainage. Cardiac output should be maximized to ensure adequate DO2 and CVP should be reduced to < 10
mmHg to avoid a significant increase in CSFP and reduced spinal cord outflow. In addition, Hb levels > 10
g/dL should be maintained, hypoxia and hypercapnia are to be avoided, and arrhythmias (e.g., tachycardia,
which can increase myocardial oxygen demand, ventricular wall tension, and overall myocardial work)
should be prevented and treated. Nonetheless, in the case of SCI occurrence, various strategies can be
implemented as well, involving a thorough and multimodal approach that focuses on CSF drain status, O2
delivery, and comprehensive hemodynamic management, as summarized in Figure 4. By fulfilling the
aforementioned objectives, anesthesiologists can optimize cardiac function and promote favorable
outcomes in patients undergoing TAAA open repair.
DECLARATIONS
Authors’ contributions
Designed the work, drafted the manuscript and revised it critically: Monaco F
Designed the work, collected and analyzed the data and drafted the manuscript: D’Andria Ursoleo J
Collected and analyzed the data and revised the manuscript critically: Barucco G, Licheri M, Faustini C,
Lazzari S
Collected and analyzed the data and drafted the manuscript: Di Prima AL
All authors gave final approval of the version to be published and agree to be accountable for all aspects of
the work in ensuring that questions related to the accuracy or integrity of any part of the work are
appropriately investigated and resolved.
Page 12 of Monaco et al. Vessel Plus 2023;7:23 https://dx.doi.org/10.20517/2574-1209.2023.113
14
Availability of data and materials
Not applicable.
Financial support and sponsorship
None.
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2023.
REFERENCES
Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ. Experience with 1,509 patients undergoing thoracoabdominal aortic
operations. J Vasc Surg 1993;17:357-68. DOI PubMed
1.
Greenberg RK, Lu Q, Roselli EE, et al. Contemporary analysis of descending thoracic and thoracoabdominal aneurysm repair: a
comparison of endovascular and open techniques. Circulation 2008;118:808-17. DOI
2.
Rocha RV, Lindsay TF, Nasir D, et al. Risk factors associated with long-term mortality and complications after thoracoabdominal
aortic aneurysm repair. J Vasc Surg 2022;75:1135-41. DOI
3.
Robertson CE, Brown RD Jr, Wijdicks EF, Rabinstein AA. Recovery after spinal cord infarcts: long-term outcome in 115 patients.
Neurology 2012;78:114-21. DOI PubMed PMC
4.
Etz CD, Luehr M, Kari FA, et al. Paraplegia after extensive thoracic and thoracoabdominal aortic aneurysm repair: does critical spinal
cord ischemia occur postoperatively? J Thorac Cardiovasc Surg 2008;135:324-30. DOI
5.
Chung JC, Lodewyks CL, Forbes TL, et al. Prevention and management of spinal cord ischemia following aortic surgery: a survey of
contemporary practice. J Thorac Cardiovasc Surg 2022;163:16-23. DOI
6.
Feezor RJ, Martin TD, Hess PJ Jr, et al. Extent of aortic coverage and incidence of spinal cord ischemia after thoracic endovascular
aneurysm repair. Ann Thorac Surg 2008;86:1809-14. DOI
7.
Bisdas T, Panuccio G, Sugimoto M, Torsello G, Austermann M. Risk factors for spinal cord ischemia after endovascular repair of
thoracoabdominal aortic aneurysms. J Vasc Surg 2015;61:1408-16. DOI PubMed
8.
Dias NV, Sonesson B, Kristmundsson T, Holm H, Resch T. Short-term outcome of spinal cord ischemia after endovascular repair of
thoracoabdominal aortic aneurysms. Eur J Vasc Endovasc Surg 2015;49:403-9. DOI PubMed
9.
Eagleton MJ, Shah S, Petkosevek D, Mastracci TM, Greenberg RK. Hypogastric and subclavian artery patency affects onset and
recovery of spinal cord ischemia associated with aortic endografting. J Vasc Surg 2014;1:89-94. DOI PubMed
10.
Spanos K, Kölbel T, Kubitz JC, et al. Risk of spinal cord ischemia after fenestrated or branched endovascular repair of complex aortic
aneurysms. J Vasc Surg 2019;69:357-66. DOI
11.
Lazorthes G, Gouaze A, Zadeh JO, Santini JJ, Lazorthes Y, Burdin P. Arterial vascularization of the spinal cord. Recent studies of the
anastomotic substitution pathways. J Neurosurg 1971;35:253-62. DOI PubMed
12.
Christiansson L, Ulus AT, Hellberg A, Bergqvist D, Wiklund L, Karacagil S. Aspects of the spinal cord circulation as assessed by
intrathecal oxygen tension monitoring during various arterial interruptions in the pig. J Thorac Cardiovasc Surg 2001;121:762-72.
DOI PubMed
13.
Griepp RB, Ergin MA, Galla JD, et al. Looking for the artery of Adamkiewicz: a quest to minimize paraplegia after operations for
aneurysms of the descending thoracic and thoracoabdominal aorta. J Thorac Cardiovasc Surg 1996;112:1202-13. DOI
14.
Monaco F, Gaia B, Cristina M, Monica DL. Physiopathology of intraoperative visceral ischemia and anesthesiological management of
supravisceral aortic clamping. In: Tshomba Y, Baccellieri D, Chiesa R, editors. Visceral vessels and aortic repair. Cham: Springer
International Publishing; 2019. pp. 147-61.
15.
Deery SE, Lancaster RT, Baril DT, et al. Contemporary outcomes of open complex abdominal aortic aneurysm repair. J Vasc Surg
2016;63:1195-200. DOI
16.
Haghighi SS, Sirintrapun SJ, Johnson JC, Keller BP, Oro JJ. Suppression of spinal and cortical somatosensory evoked potentials by
desflurane anesthesia. J Neurosurg Anesthesiol 1996;8:148-53. DOI PubMed
17.
DOI
Page 13 of Monaco et al. Vessel Plus 2023;7:23 https://dx.doi.org/10.20517/2574-1209.2023.113
14
Malcharek MJ, Loeffler S, Schiefer D, et al. Transcranial motor evoked potentials during anesthesia with desflurane versus propofol -
a prospective randomized trial. Clin Neurophysiol 2015;126:1825-32. DOI
18.
Husain AM, Swaminathan M, McCann RL, Hughes GC. Neurophysiologic intraoperative monitoring during endovascular stent graft
repair of the descending thoracic aorta. J Clin Neurophysiol 2007;24:328-35. DOI PubMed
19.
von Aspern K, Haunschild J, Hoyer A, et al. Non-invasive spinal cord oxygenation monitoring: validating collateral network near-
infrared spectroscopy for thoracoabdominal aortic aneurysm repair. Eur J Cardiothorac Surg 2016;50:675-83. DOI
20.
Bianchi F, Cursi M, Caravati H, et al. Intraoperative neurophysiologic monitoring in thoracoabdominal aortic aneurysm surgery can
provide real-time feedback for strategic decision making. Neurophysiol Clin 2022;52:232-41. DOI
21.
Giustiniano E, Battistini GM, Piccirillo F, et al. May near infra-red spectroscopy and rapid perfusion pressure recovering be enough to
rule out post-operative spinal cord injury? J Clin Monit Comput 2020;34:955-9. DOI
22.
Bobadilla JL, Wynn M, Tefera G, Acher CW. Low incidence of paraplegia after thoracic endovascular aneurysm repair with proactive
spinal cord protective protocols. J Vasc Surg 2013;57:1537-42. DOI PubMed
23.
Luehr M, Bachet J, Mohr FW, Etz CD. Modern temperature management in aortic arch surgery: the dilemma of moderate
hypothermia. Eur J Cardiothorac Surg 2014;45:27-39. DOI PubMed
24.
Etz CD, Halstead JC, Spielvogel D, et al. Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a
waste of time? Ann Thorac Surg 2006;82:1670-7. DOI
25.
Coselli JS, Green SY, Price MD, et al. Spinal cord deficit after 1114 extent II open thoracoabdominal aortic aneurysm repairs. J
Thorac Cardiovasc Surg 2020;159:1-13. DOI
26.
Dolapoglu A, Volguina IV, Price MD, Green SY, Coselli JS, LeMaire SA. Cardiac arrhythmia after open thoracoabdominal aortic
aneurysm repair. Ann Thorac Surg 2017;104:854-60. DOI PubMed
27.
Zammert M, Gelman S. The pathophysiology of aortic cross-clamping. Best Pract Res Clin Anaesthesiol 2016;30:257-69. DOI
PubMed
28.
Gelman S. The pathophysiology of aortic cross-clamping and unclamping. Anesthesiology 1995;82:1026-60. DOI29.
Giulini SM, Bonardelli S, Portolani N, et al. Suprarenal aortic cross-clamping in elective abdominal aortic aneurysm surgery. Eur J
Vasc Endovasc Surg 2000;20:286-9. DOI
30.
Cingolani HE, Pérez NG, Cingolani OH, Ennis IL. The Anrep effect: 100 years later. Am J Physiol Heart Circ Physiol
2013;304:H175-82. DOI PubMed
31.
Kahn RA, Stone ME, Moskowitz DM. Anesthetic consideration for descending thoracic aortic aneurysm repair. Semin Cardiothorac
Vasc Anesth 2007;11:205-23. DOI PubMed
32.
Coselli JS. The use of left heart bypass in the repair of thoracoabdominal aortic aneurysms: current techniques and results. Semin
Thorac Cardiovasc Surg 2003;15:326-32. DOI PubMed
33.
Safi HJ, Estrera AL, Miller CC, et al. Evolution of risk for neurologic deficit after descending and thoracoabdominal aortic repair. Ann
Thorac Surg 2005;80:2173-9. DOI
34.
Safi HJ, Hess KR, Randel M, et al. Cerebrospinal fluid drainage and distal aortic perfusion: reducing neurologic complications in
repair of thoracoabdominal aortic aneurysm types I and II. J Vasc Surg 1996;23:223-8. DOI
35.
Hiratzka LF, Bakris GL, Beckman JA, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the
diagnosis and management of patients with thoracic aortic disease: executive summary. A report of the American college of cardiology
foundation/American heart association task force on practice guidelines, American association for thoracic surgery, American college
of radiology, American stroke association, society of cardiovascular anesthesiologists, society for cardiovascular angiography and
interventions, society of interventional radiology, society of thoracic surgeons, and society for vascular medicine. Catheter Cardiovasc
Interv 2010;76:E43-86. DOI
36.
Coselli JS, LeMaire SA, Köksoy C, Schmittling ZC, Curling PE. Cerebrospinal fluid drainage reduces paraplegia after
thoracoabdominal aortic aneurysm repair: results of a randomized clinical trial. J Vasc Surg 2002;35:631-9. DOI PubMed
37.
Hanna JM, Andersen ND, Aziz H, Shah AA, McCann RL, Hughes GC. Results with selective preoperative lumbar drain placement for
thoracic endovascular aortic repair. Ann Thorac Surg 2013;95:1968-74. DOI PubMed
38.
Weaver KD, Wiseman DB, Farber M, Ewend MG, Marston W, Keagy BA. Complications of lumbar drainage after thoracoabdominal
aortic aneurysm repair. J Vasc Surg 2001;34:623-7. DOI PubMed
39.
Wu WC, Rathore SS, Wang Y, Radford MJ, Krumholz HM. Blood transfusion in elderly patients with acute myocardial infarction. N
Engl J Med 2001;345:1230-6. DOI PubMed
40.
Monaco F, Barucco G, Nardelli P, et al. Editor's Choice - a rotational thromboelastometry driven transfusion strategy reduces allogenic
blood transfusion during open thoraco-abdominal aortic aneurysm repair: a propensity score matched study. Eur J Vasc Endovasc Surg
2019;58:13-22. DOI
41.
Ginsberg MD, Globus MY, Dietrich WD, Busto R. Chapter 2 temperature modulation of ischemic brain injury - a synthesis of recent
advances. In: Kogure K, Hossmann KA, Siesjö BK, Editors. Progress in brain research, neurobiology of ischemic brain damage.
Amsterdam: Elsevier; 1993. pp. 13-22. DOI
42.
Salzano RP Jr, Ellison LH, Altonji PF, Richter J, Deckers PJ. Regional deep hypothermia of the spinal cord protects against ischemic
injury during thoracic aortic cross-clamping. Ann Thorac Surg 1994;57:65-70. DOI PubMed
43.
Cambria RP, Davison JK, Carter C, et al. Epidural cooling for spinal cord protection during thoracoabdominal aneurysm repair: a five-
year experience. J Vasc Surg 2000;31:1093-102. DOI
44.
Page 14 of Monaco et al. Vessel Plus 2023;7:23 https://dx.doi.org/10.20517/2574-1209.2023.113
14
Shimizu H, Mori A, Yamada T, et al. Regional spinal cord cooling using a countercurrent closed-lumen epidural catheter. Ann Thorac
Surg 2010;89:1312-3. DOI
45.
Lima B, Nowicki ER, Blackstone EH, et al. Spinal cord protective strategies during descending and thoracoabdominal aortic aneurysm
repair in the modern era: the role of intrathecal papaverine. J Thorac Cardiovasc Surg 2012;143:945-52. DOI
46.
Acher C, Wynn M. Paraplegia after thoracoabdominal aortic surgery: not just assisted circulation, hypothermic arrest, clamp and sew,
or TEVAR. Ann Cardiothorac Surg 2012;1:365-72. DOI
47.
Ehrlich M, Knolle E, Ciovica R, et al. Memantine for prevention of spinal cord injury in a rabbit model. J Thorac Cardiovasc Surg
1999;117:285-91. DOI
48.
Suzuki K, Kazui T, Terada H, et al. Experimental study on the protective effects of edaravone against ischemic spinal cord injury. J
Thorac Cardiovasc Surg 2005;130:1586-92. DOI
49.
... In their 2021 systematic review and meta-analysis on the occurrence of SCI after TAAA endovascular repair, Pini et al. reported a lower pooled SCI rate after staged compared with non-staged repair (9% vs. 18%, respectively; P = 0.02), independently from the method and timing of staging [5] . More recently, Dias-Neto et al. published an analysis of the data from 24 centers of the ARC, with 1947 extent I-III TAAA electively treated with a staged approach from 2006 to 2021 [35] . The staging strategies (proximal thoracic endografting, TASP, MISACE, and combinations of these) allow lower rates of mortality and/or permanent paraplegia at 30 days or within hospital stay, and higher 1-and 3-year survival. ...
... Recent studies focused on the results of different anesthesiological choices in the endovascular repair of TAAA give us several insights into the different available possibilities [35][36] . A detailed discussion of every aspect of a SCI prevention protocol together with the anesthesiology team for each patient is fundamental for clinical success [36] . ...
Article
Full-text available
Aim: Fenestrated/branched endografting (F/B-EVAR) is an established technique to treat thoracoabdominal aortic aneurysms (TAAAs) in high-risk patients. Spinal cord ischemia/infarction (SCI) is a possible postoperative complication leading to deterioration in quality of life and decreased survival. Several strategies have been suggested in order to minimize its occurrence. The aim of this study was to report the outcomes of a dedicated multidisciplinary SCI prevention protocol for elective F/B-EVAR in Crawford’s extent I-III TAAAs. Methods: All consecutive Crawford’s I-III TAAAs undergoing elective F/B-EVAR from 2010 to 2022 (March) in a single center were prospectively collected and retrospectively analyzed. A dedicated SCI prevention protocol was always adopted. The protocol included several surgical precautions, such as the collateral arterial network optimization, the adoption of a staged repair, and the early limbs reperfusion. Routine use of cerebral spinal fluid drainage (CSFD) was embraced. More anesthesiological measures were the maintenance of perioperative mean arterial pressure > 80 mm Hg, and blood hemoglobin levels > 10 mg/dL. Neurological measures were constituted by intraoperative monitoring with motor-evoked (MEPs) and somatosensory-evoked potentials (SSEPs) plus hourly bedside neurological evaluation during ICU stay. Preoperative comorbidity and postoperative complications were classified according to the Society of Vascular Surgery Reporting Standards. SCI, cardiac/pulmonary morbidities, postoperative hemodialysis, and 30-day/in-hospital mortality were assessed as early outcomes. Survival was evaluated during follow-up. Results: Out of 104 patients, there were 6 (6%), 51 (49%), and 47 (45%) Crawford’s extent I, II, and III TAAAs, respectively. A staged TAAA repair, according to endograft design, anatomical and clinical characteristics, was performed in 83 (80%) cases. The mean hospital stay was 25 ± 22 days. Eight (8%) patients developed SCI, 2 (2%) transitory, and 6 (6%) permanent. Among those with permanent deficits, only 3 (3%) patients had permanent paraplegia with inability to walk. Out of 104 patients, 5 (5%) had cerebral hemorrhage, two among SCI patients. Postoperative cardiac and pulmonary morbidity was reported in 6 (6%) and 6 (6%) cases, respectively. Hemodialysis was necessary in 3 (3%) patients. Three patients died within 30 postoperative days and other 4 during a prolonged/complicated hospitalization, for an overall in-hospital mortality of 7%. The mean follow-up was 30 ± 18 months. The overall estimated 3-year survival was 62%, with a significant difference in survival at 2 years between patients with and without postoperative SCI (SCI: 18% vs. no-SCI: 69%; P < 0.001). Conclusions: A dedicated multidisciplinary SCI prevention protocol in elective F/B-EVAR for Crawford’s I-III TAAAs is feasible and safe, with encouraging rates of SCI (8% overall SCI, 6% permanent impairment, and 3% paraplegia). The 30-day mortality (3%), cardiopulmonary morbidities (6%), and dialysis rate (3%) were satisfactory, as well as the estimated survival at 3 years (62%). Patients with SCI had a significantly lower survival (18% vs. 69%) at 2 years.
Article
Objectives Despite the introduction of several adjuncts to improve spinal perfusion, spinal cord ischemia (SCI) remains a devastating complication of thoracoabdominal aortic aneurysm (TAAA) repair. Our aim was to assess the effects on clinical outcome of interventions triggered by motor evoked potentials (MEP) alerts. Furthermore, we want to assess whether a multimodal intraoperative neurophysiologic monitoring (IONM) protocol is helpful for stratifying patients according to the risk of SCI at the end of the vascular phase of surgery. Methods We prospectively studied one-hundred consecutive patients who underwent TAAA repair. We applied a multimodal IONM including MEP, somatosensory evoked potentials (SEP) and peripheral nerve monitoring techniques. Signal deteriorations were classified as reversible/irreversible according to whether they recovered or not at the end of monitoring (EOM), set at the end of the vascular phase of surgery. Significant MEP changes drove a series of corrective measures aimed to improve spinal perfusion. Results The rate of immediate postoperative motor deficits consistent with SCI was significantly higher with irreversible MEP deteriorations compared to reversible ones. The interpretation of MEP findings at the EOM led to the development of risk categories for SCI, based on the association between MEP results and motor outcome. Conclusions Our data seem to justify interventions made to reverse MEP deterioration in order to improve the clinical outcome. A multimodal IONM protocol could improve MEP interpretation at the end of the vascular phase of surgery, supporting the surgeon in their decision-making, before concluding vascular maneuvers.
Article
Objective To determine the risk factors associated with late mortality or complications (Thoracoabdominal aortic Aneurysm Life-altering Events (TALE): composite of mortality, permanent paraplegia, permanent dialysis, and stroke) in patients undergoing endovascular or open thoracoabdominal aortic aneurysm (TAAA) repair. Methods Population-based study of patients undergoing TAAA repair in Ontario, Canada, between 2006 – 2017. The association of baseline risk factors with mortality post repair and complications was examined with Cox hazards models with hospital-specific random effects. The survival of patients undergoing TAAA repair was compared to matched controls who were free from TAAA, matching on age, sex, area of residence, and average annual household income. Type of repair (endovascular vs open) was included in all models. Results We identified 664 adults (mean age 69.3 ± 10.6, 71% men) undergoing TAAA repair. At 5 and 8-years, survival was 55.0% (95% confidence interval (CI) 49.8-60.1) and 44.6% (95% CI 40.4-49.6) for patients undergoing TAAA repair vs 85.6% (95% CI 83.9-87.1) and 76.3% (95% CI 73.8-78.8) for the control population, respectively ((HR 1.97, 95% CI 1.67-2.32, p<.01). In patients undergoing TAAA, freedom from TALE was 49.2% (95% CI 44.7-53.7) and 37.3% (95% CI 33.1- 42.4) at 5 and 8-years of follow-up, respectively. On multivariable analysis, risk factors associated with mortality during follow-up included older age (hazard ratio (HR) 1.21 (per 5-year increase), 95%CI 1.13-1.28), peripheral artery disease (HR 1.46, 95%CI 1.03-2.09), hypertension (HR 1.58, 95%CI 1.03-2.43), congestive heart failure (HR 1.78, 95%CI 1.34-2.36), and urgent procedures (HR 2.27, 95%CI 1.74-3.00). A lower rate of death was observed in those with previous coronary revascularization (HR 0.63, 95%CI 0.41-0.96) and repair at high-volume institutions (>60 TAAA repairs during the study period) (HR 0.71, 95%CI 0.55-0.91). Older age, chronic kidney disease, congestive heart failure, and urgent procedures were associated with higher rate of TALE. The type of repair (endovascular or open) was not associated with mortality or TALE. Conclusions TAAA repair is associated with reduced long-term survival compared to the general population regardless of mode of treatment. Urgent/emergent repair was the most profound risk factor late adverse events. Type of repair (endovascular or open) was not a predictor for long-term death or complications. Previous coronary revascularization and having the procedure performed at a high-volume institution were associated with improved late outcomes in patients undergoing TAAA repair.
Article
Objective Spinal cord ischemia (SCI) is a devastating complication of thoracoabdominal aortic aneurysm (TAAA) repair. We aim to characterize current practices pertaining to SCI prevention and treatment across Canada. Methods Two questionnaires were developed by the Canadian Thoracic Aortic Collaborative and the Canadian Cardiovascular Critical Care Society targeting aortic surgeons and intensivists. A list of experts in the management of patients at risk of SCI was developed, with representation from each of the Canadian centers that perform complex aortic surgery. Results The response rate was 91% for both intensivists (21/23), and from cardiac and vascular surgeons (39/43). Most surgeons agreed that staging is important during endovascular repair of extent II TAAA (60%), but not for open repair (34%). All of the surgeons felt prophylactic lumbar drains were effective in reducing SCI, while only 66.7% of intensivists felt that lumbar drains were effective (p<0.001). There was consensus among surgeons over when to employ lumbar drains. A majority of surgeons preferred to keep the hemoglobin over 100 g/L if the patient demonstrated loss of lower extremity function, while most intensivists felt a target of 80 g/L was adequate (p<0.001). Management of perioperative anti-hypertensives, use of intra-operative adjuncts, and management of venous thromboembolism prophylaxis in the presence of a lumbar drain, were highly variable. Conclusions We observed some consensus but considerable variability in the approach to SCI prevention and management across Canada. Future studies focused on the areas of variability may lead to more consistent and improved care for this high-risk population.
Article
Objective: Open repair of thoraco-abdominal aortic aneurysm (TAAA) is a challenging procedure, associated with high rates of peri-operative bleeding and blood product transfusions. A large intra-operative volume transfusion has been associated with higher in hospital mortality and prolonged mechanical ventilation. A propensity score matched study was carried out to assess whether the introduction of a rotational thromboelastometry (ROTEM) based transfusion strategy reduces allogenic blood transfusion and affects morbidity in patients undergoing open TAAA repair. Methods: All patients undergoing open TAAA repair at the San Raffaele Scientific Institute between 2009 and 2017 were included. Until 2016, a protocol based on estimated blood loss and conventional coagulation tests was used. After March 2016 a ROTEM guided transfusion protocol was developed and adopted. To account for selection bias, propensity score matching was performed. Results: Five hundred and forty-seven consecutive patients were included. After propensity score matching, 77 patients in the ROTEM algorithm group were successfully matched with 77 patients in the standard algorithm group. Patients managed with ROTEM received fewer red blood cells units (3.5 [range 0-11] vs. 4 [range 0-17]; p = .026) and a lower volume of fresh frozen plasma (286 ± 496 vs. 2,050 ± 1,120; p < .001). In addition, fewer patients received fresh frozen plasma (35% vs. 97%; p < .001). Patients in the ROTEM group showed a significant decrease in the occurrence of pulmonary complications (44% vs. 83%; p = .01). Cost analysis showed a relevant reduction of per-patient expense after the introduction of ROTEM (€834 ± €577 vs. €1,285 ± €851; p < .001) CONCLUSION: A ROTEM guided transfusion strategy significantly limited the quantity of transfused blood products during open TAAA repair, improving clinical outcomes while reducing costs, allowing for better resource distribution in a setting where blood loss is relevant.
Chapter
Vascular surgery, in which a supraceliac aortic clamp is required, is at highest risk of visceral ischemia and postoperative complications. The interruption of the blood flow to the organs, secondary to the artic cross-clamp, triggers cellular and molecular alterations with local and systemic effects. In particular, the tissues distal to the clamp become ischemic with a shift from aerobic to anaerobic metabolism. Since the reperfusion, following aortic clamp removal, may further increase the organ damage of the ischemic tissues, an ischemia/reperfusion (I/R) injury is usually observed during aortic surgery. The I/R injury is responsible for an extensive systemic inflammatory response which may trigger postoperative multi-organ failure. Polymorphonuclear neutrophils, oxygen radicals, nitric oxide, complement system, and cytokines are mainly involved in this double pathophysiological phenomenon.
Article
Objective: The aim of our study was to analyze the incidence of spinal cord ischemia (SCI) in patients presenting with complex aortic aneurysms treated with endovascular aneurysm repair (EVAR) and to identify risk factors associated with this complication. Methods: A retrospective study was undertaken of prospectively collected data including patients presenting with complex aortic aneurysm (pararenal abdominal aortic aneurysm and thoracoabdominal aortic aneurysm) treated with fenestrated EVAR (F-EVAR) or branched EVAR (B-EVAR). The primary end point was the incidence of SCI and the assessment of any associated factors. Results: Between January 2011 and August 2017, a total of 243 patients (mean aneurysm diameter, 65.2 ± 15.3 mm; mean age, 72.4 ± 7.5 years; 73% male) were treated with F-EVAR or B-EVAR. Asymptomatic patients were treated in 73% of the cases (177/243, in contrast to 27% urgent), and 52% (126/243) were treated for thoracoabdominal aortic aneurysm (in contrast to 48% for pararenal abdominal aortic aneurysm). F-EVAR (mean number of fenestrations, 3.3/case) and B-EVAR (mean number of branches, 3.7/case) were undertaken in 67% (164/243) and 33% (79/243), respectively. The total incidence of SCI was 17.7% [43/243; paraplegia in 4% (10/243) and paraparesis in 13.7% (33/243)]. Most of the patients with SCI presented with immediate postoperative symptoms (72% [31/43]). A spinal drain was preoperatively placed in 53% (130/243) and was associated with the prevention of SCI (SCI with spinal drainage, 12% [16/130]; SCI without spinal drainage, 24% [27/113]; P =.018). The 30-day mortality rate was 9% (21/243). After multiple logistic regression analysis, SCI was associated with preoperative renal function (SCI with preoperative glomerular filtration rate <60 mL/min/1.73 m²: odds ratio [OR], 2.43; 95% confidence interval [CI], 1.18-4.99; P =.016) and the number of vertebral segments covered (SCI with higher position of proximal stent in terms of vertebra: OR, 1.2; 95% CI, 1.1-1.3; P =.000). A similar outcome was derived when the height of the proximal end of the stent graft was replaced by the total length of aortic coverage (SCI with preoperative glomerular filtration rate <60 mL/min/1.73 m²: OR, 2.36 [95% CI, 1.11-5.00; P =.025]; SCI with longer length of aortic coverage: OR, 1.01 [95% CI, 1.003-1.009; P =.000]). Conclusions: The majority of SCI incidence after F-EVAR or B-EVAR of complex aortic aneurysms is manifested immediately postoperatively. The use of preoperative spinal drainage may prevent SCI. Patients with GRF <60 mL/min/1.73 m² and with longer aortic stent graft coverage are at higher risk of SCI.
Article
Background: Cardiac arrhythmias commonly arise after cardiac surgery and are associated with poor prognosis. In thoracoabdominal aortic aneurysm (TAAA) repair, these complications are poorly understood. We assessed characteristics, incidence, outcomes, and potential predictors of postoperative arrhythmia (PA) after open TAAA repair. Methods: From 2010 to 2014, 403 consecutive open TAAA replacement operations were performed in patients without preoperative cardiac rhythm abnormalities at a single tertiary center. We compared preoperative characteristics, operative factors, and postoperative outcomes in patients with and without PA, and we used multivariable logistic regression to identify predictors of PA. Results: PA occurred after 107 (26.5%) procedures. Atrial fibrillation (23%) was the most common type of PA. Length of hospital stay and operative mortality were greater in patients with PA than in patients without it (p < 0.01 for both). Kaplan-Meier cumulative survival for patients with PA was lower than for patients without PA: 69.2% ± 4.6% versus 88.3% ± 2.0% at 1 year and 59.0% ± 5.3% versus 85.0% ± 2.3% at 3 years (p < 0.001 for both). The odds of PA increased with advancing age (1.07 per year; p < 0.001). In addition, the odds of developing PA were higher in patients who received visceral perfusion (odds ratio, 2.58; p = 0.001) and were lower in patients who underwent extent IV repair (odds ratio, 0.44; p = 0.01). Conclusions: Postoperative cardiac arrhythmia was common after open TAAA repair. Older patients and patients who underwent visceral perfusion were more likely to develop PA. Cardiac arrhythmia after TAAA repair was associated with prolonged hospital stay, higher early mortality, and lower midterm survival.
Article
During open aortic surgery, interrupting the blood flow through the aorta by applying a cross-clamp is often a key step to allow for surgical repair. As a consequence, ischemia is induced in parts of the body distal to the clamp site. This significant alteration in the blood flow is almost always associated with hemodynamic changes. Upon release of the cross-clamp, the blood flow is restored, triggering an ischemia-reperfusion response, leading to many pathophysiological processes such as inflammation, humoral changes, and metabolite circulation that could lead to injury in many organ systems and may significantly influence the postoperative outcome. It is therefore important to understand these processes and how they can be treated in order to allow for safe surgical aortic repairs while ensuring the best possible outcomes.