ArticlePDF Available

Diversity and Ecology of the Soil-and Litter-dwelling Invertebrates and the Plant Associations in the Habitats of the Saskhori Limestone Quarry and Adjacent Areas, Eastern Georgia, Caucasus

Authors:

Abstract and Figures

This case study is aimed to investigate the invertebrate fauna and distribution features of the faunal and floral diversity in seven habitats represented on the territory of the Saskhori limestone quarry and its adjacent territories (Eastern Georgia, Caucasus). Totally, 122 species of invertebrates and 131 species of plants were registered. The isopod species Chaetophiloscia hastata Verhoeff, 1928 (Malacostraca: Isopoda) is recorded in Georgia for the first time. Three oribatid mites, i.e. Lucoppia burrowsi (Michael, 1890), Mi-crozetorchestes emeryi (Coggi, 1898) and Nothrus parvus Sitnikova, 1975 (Arachnida: Oribatida), were recorded in Saskhori Quarry for the first time. Four invertebrate species were cosmopolitan and were found in all sampling sites. The ecological analysis demonstrated the difference in the vegetation and invertebrate diversity of the natural and degraded landscapes of the Saskhori Quarry differentiated by Principal Component Analysis (PCA). Cluster analysis based on the Jaccard similarity coefficient separated the diversity of the degraded landscapes (1) using combined data of the vegetation and invertebrate diversity and (2) using only the diversity data of invertebrates. The latter analyses, along with the other statistical methods used (SIMPER and ISA), proved the habitat specificity of the invertebrate species by revealing their specific distribution in the natural and degraded landscapes.
Content may be subject to copyright.
315
ACTA ZOOLOGICA BULGARICA
Terrestrial Ecology and Behaviour
Research Article
*Corresponding author: shalva.barjadze@iliauni.edu.ge
Acta Zool. Bulg., 75 (3), September 2023: 315-330
Published online 28 August 2023
https://www.acta-zoologica-bulgarica.eu/2023/002693
Diversity and Ecology of the Soil- and Litter-dwelling
Invertebrates and the Plant Associations in the Habitats
of the Saskhori Limestone Quarry and Adjacent Areas,
Eastern Georgia, Caucasus
Zezva Asanidze1, Tea Arabuli2, Eter Maghradze2, Lado Shavadze2, Mariam Gogshelidze2,
Naia Modebadze2, Eleonora Kiria2, Nana Barnaveli3 & Shalva Barjadze2*
1Institute of Ecology, Ilia State University, Giorgi Tsereteli 1, 0162, Tbilisi, Georgia
2Institute of Zoology, Ilia State University, Giorgi Tsereteli 3, 0162, Tbilisi, Georgia
3Department of Biology, Ivane Javakishvili Tbilisi State University, Universiteti 13, 0186, Tbilisi, Georgia
Abstract: This case study is aimed to investigate the invertebrate fauna and distribution features of the faunal and
-
cent territories (Eastern Georgia, Caucasus). Totally, 122 species of invertebrates and 131 species of plants
were registered. The isopod species Chaetophiloscia hastata 
Lucoppia burrowsi  Mi-
crozetorchestes emeryi  and Nothrus parvus 
         
            
           
  -
rated the diversity of the degraded landscapes (1) using combined data of the vegetation and invertebrate
diversity and (2) using only the diversity data of invertebrates. The latter analyses, along with the other


Key words: Semiarid landscapes; species richness; indicator species; vegetation; South Caucasus
Introduction
The Caucasus ecoregion is one of 36 worldwide wild-

species and ecosystem biodiversity, high endemism
and high risk of biodiversity loss ( et al. 2000,
-
gia has devised a National Biodiversity Strategy and
Action Plan of Development (National Biodiversity
Strategy and Action Plan – Georgia, NBSAP, 2014–
2020) that establishes high priorities for the develop-
ment of inventories of animal species and resources.
      
     -
316
Asanidze Z., Arabuli T., Maghradze E., Shavadze L., Gogshelidze M., Modebadze N., Kiria E., Barnaveli N. & Barjadze S.

-

  
(       
dwelling invertebrates such as springtails (Collem-
bola), arachnids (Arachnida: Araneae, Pseudoscor-
    

Isopoda) and beetles (Insecta: Coleoptera) have not
-
ries. The abovementioned invertebrates are widely
distributed and have an important role in the func-
tioning of ecosystems. They participate in the pro-
cesses of soil formation and most of them represent
bioindicators of heavy metals pollution in the soil
(     &  2004,
 &  2010).
The goal of this project was to conduct taxo-
nomic, faunistic and ecological investigations of
soil- and litter-dwelling invertebrates and their as-
sociations with vegetation in seven selected sites of

Materials and Methods
We placed sampling sites in various habitat types
represented on the territory of the Saskhori lime-

maximum representativeness of the sample for the
study area. The total number of sampling sites was
       
and structurally arranged for continuous sample col-
lection during the active phenological period of the

samples were collected in each selected site (sites
1-7). Isolation of invertebrates from the samples
was made using Berlese and Winkler’s extractors.
The isolated invertebrates were preserved in 70 %
-
malin were used for sampling invertebrates. Inver-
tebrates’ mounting and pinning process and species
   -
evant methodologies for each animal group.
Studied invertebrate groups are mites, spiders,
harvestmen, pseudoscorpions, isopods, millipedes,
centipedes, collembolans and beetles.
Sampling sites were visited thirteen times. We
         -
tiation of the invertebrate diversity between the de-
graded and natural habitats in the study territory.
Vegetation diversity was sampled in each sam-
pling site, in plots with a size of 5 × 5 m, in ac-
cordance with the sample size corresponding to the
level of plant diversity in the semiarid shrublands
in the Caucasus Ecoregion ( et al.
     -

and July, when the species richness reaches its maxi-
mum in semiarid habitats. We sampled plant species
richness and abundance of each species of vascular
plant in the vegetation survey plots using the meth-

data on the plant species abundance were converted
into percentage data following the methodology ex-
plained by  &  (2013).

Flora of Geor-
gia ( &   
modern plant taxonomic data were obtained from
recent literature ( et al. 2005, -
 et al. 2018) and Web sources ( 
22006-2021).
     -
     &
      
European Nature Information System (EUNIS)
( et al. 2004).
Habitat and environmental characteristics of the
localities of the placement of the sample collection
     -
khori and its adjacent areas are provided in Table 1.
In statistical analysis, we estimated the Shan-
non Diversity Index and Evenness of the vegetation
diversity and diversity of the studied invertebrate
groups for each sampling site. The estimated data
were averaged to the unit of the sampling site in or-
der to simplify the introduction of the results of the

was avoided in the recent step of the data analysis.

low within-group variability of the variables caused
by the close allocation of the sampling plots on the
site. We consider this approach as being correct due

Sørensen–Dice index (  
        
used to compare the results of our study with the
diversity data obtained from the literature sources
concerning the diversity of the plant and inverte-
brate communities distributed on the territories of
      
index was converted into a percentage of the simi-
larity by multiplying its numeric values by 100.
We used the method of the principal compo-
nent analysis (PCA) for the ordination of the veg-
etation and invertebrate diversity measured in the
sampling plots where PCs with the highest loads of
Diversity and Ecology of the Soil- and Litter-dwelling Invertebrates and the Plant Associations...
317
Table 1. Environmental characteristics of the localities of the placement of the sample collection sites on the territory

Site
ID Latitude Longitude
Geo-
graphic
position
Habitat Landscape feature
1 41.84584 44.51863 N

drought-resistant shrubbery (similar to ‘Pseudo-
-

Shrubland in the adjacent area to

2 41.84526 44.5173 N Extremely degraded habitat poor in vegetation Landscape with a bare surface of

3 41.84536 44.51661 E
Xero-thermophilous oak forest (similar to the
Quercus, Carpinus, Fraxi-
nus, Acer, Tilia, Ulmus, and related woodland

(habitat code: G 1. A)
Landscape with a degraded forest
in the adjacent area to the lime-

4 41.84706 44.51566 N

drought-resistant shrubbery (similar to ‘Pseudo-
-

Shrubland in the adjacent area to

5 41.84321  SE

land with unmixed crops grown by low-intensi-
ty agricultural methods” recognized by EUNIS

A landscape dominated by crop-
land – Almond garden
6 41.84655 44.50885 W
-
-
ciduous drought-resistant shrubbery (similar to


Degraded forest in small and dry
ravine adjacent to the limestone

7  S
-
riochloeto-Stipeto-Artemisieto steppes (similar

(Artemisia sp.) steppes recognized by EUNIS

The landscape of the abandoned


vegetation dominated by ruderal
and invasive plants
Fig. 1.
adjacent areas.
318
Asanidze Z., Arabuli T., Maghradze E., Shavadze L., Gogshelidze M., Modebadze N., Kiria E., Barnaveli N. & Barjadze S.
the analysed variables were used as the ordination
factors. PCA was done using abundance data of veg-
etation and invertebrate diversity.
We included united incidence data of plant and
invertebrate species in the cluster analysis and con-
ducted it using the algorithm of Unweighted Pair
     
and Jaccard similarity index as a method of dis-
tance measurement between the cluster groups. In
the graph visualizing the results of this analysis, we
also provided the average similarity of the diversity
of a particular surveyed site to the beta diversity or

task, we averaged the Jaccard similarity index of in-
dividual sites showing their similarity to the other
six sites and multiplied it by a hundred to convert it
into a percentage value of the similarity.
The means of the variables used in the cluster
analysis were compared using a two-tailed t-test be-
tween the cluster groups separated in the PCA. We
also employed an analysis of the similarity percent-
   -
age percent contribution of separate plant and inver-
tebrate species in the formation of the communities
 
the extraction of limestone.
Indicator Species Analysis (ISA) was used for
the clearer attribution of the plant and invertebrate
species to the clusters of the natural and degraded
landscapes of the study area. In ISA, species indica-
    -
cance of correlations of the species were calculated
using a randomization test with a bootstrap setting
-
er than 0.6 % were removed from the results of the
analysis to ensure the reliability of the results. The
analysis followed the methodology of  &
     & 

Statistical analysis and illustration of the re-
sults were conducted using the software PAST v.
4.40 ( et al. 2001); SPSS v. 21 (

 2013,  &  2016).
Results
Taxonomic diversity
-
jacent territories, we registered 122 species of inver-
tebrates, of which 17 taxa of spiders; 8 centipedes,
millipedes and collembolans, 26 beetles, 4 isopods
and pseudoscorpions, 2 harvestmen and 45 oribatid
mites. Totally, 131 species of plants were recorded
in the studied territories, of which 18 species of
woody plants, 15 species of grasses, 2 sedges, 8 leg-
umes and 88 herbs (Appendix, Table A1).
The isopod Chaetophiloscia hastata Verho-
 
  et al. 2023). Besides, three
oribatid mite species – Lucoppia burrowsi 
 Microzetorchestes emeryi  and
Nothrus parvus     
       
number of invertebrate species (52 species) was
found at sites Nos. 1 and 7, followed by 48, 46 and 45
species in sites Nos. 6, 4 and 3, respectively. In addi-
tion, 40 and 28 species were registered at sites Nos.
5 and 2, respectively (see Appendix, Table A2). Ex-
pectedly, invertebrate species richness was higher on
the landscapes including local natural habitats than in
-
tebrate species, i.e. Armadillidium vulgare (Latreille,
1804) and Trachelipus sp. (Isopoda), Phalangium
punctipes      
Aleurodamaeus setosus (Berlese, 1883) and Schelori-
bates laevigatus-
mopolite species, were found in all sampling sites.
Ecological traits
The results of the PCA showed that the abundance
of each individual invertebrate group had the great-

appeared to be an important factor for the ordination
as most of the surveyed sites were occupied by a
        
abundance of the invertebrate groups and the spe-
cies richness of the herbaceous plants had the high-
est eigenvalues of loading on PC1 and PC2 (Table

diversity of woody plants, grasses, sedges and herbs
from the vegetation components as well as the di-
versity of invertebrate species represented by the
    
Chordeumatida had the discriminative impact on the
    
PC, with eigenvalues > 20, explained 82.3 % of the
variation of the diversity of the vegetation and hab-


PCA separated vegetation and invertebrates’
diversity of the degraded habitats (Site 2 – limestone
    -
       
  
(sites 1, 3, 4 and 6). Cluster A comprised closely al-
located sites that were surveyed on the natural land-
scapes of the study area, and Cluster B united sites
Diversity and Ecology of the Soil- and Litter-dwelling Invertebrates and the Plant Associations...

Table 2.
values of loadings are shown in bold font in the table
Variables PC 1 PC 2 PC 3 PC 4 PC 5 t-test
Woody plants 0.503  0.001 0.015 -0.005 0.003**
Grasses & Sedges -0.003 -0.684 -0.024 0.010 0.017 0.012*
Legumes 0.000 0.043 -0.013 -0.005  0.183
Herbs -0.042 -0.572  0.051 0.333 0.021*
Vegetation cover in the plot (%)  0.832 -0.037 0.127 -0.370 0.002**
Coleoptera 0.002 0.025 -0.488 0.003 -0.018 0.143
Isopoda 0.908 -0.027 -0.087 -0.018 -0.121 0.001**
Sarcoptiformes  -0.045 0.400 0.036  0.082
Araneae -0.056 0.972 0.112 -0.152 -0.073 0.001**
Polydesmida 0.000 -0.060 -0.001 0.006 0.070 0.122
Julida -0.020 -0.075 0.514 -0.002 -0.120 0.038*
 -0.568 0.062 -0.020 -0.011 0.017 0.034*
Pseudoscorpiones -0.006 0.781 0.102 0.112 0.431 0.013*
Entomobryomorpha 0.002 -0.018 0.104 -0.036 -0.158 0.332
Geophilomorpha 0.612 -0.042 0.018 -0.086 0.025 0.146
Chordeumatida -0.021 -0.521 0.016 -0.388 0.003 0.018*
 0.132 -0.063 0.002 0.321 -0.018 0.233
* Variability of the variable between A and B cluster

** Variability of the variable between A and B cluster


Fig. 2.

320
Asanidze Z., Arabuli T., Maghradze E., Shavadze L., Gogshelidze M., Modebadze N., Kiria E., Barnaveli N. & Barjadze S.
surveyed on the degraded landscapes. Sites included
in Cluster B were more scattered than in Cluster A,
which indicates the existence of a weak relationship
of the diversity between the sites of the degraded

     
vegetation cover (P = 0.032) and species richness of
the vegetation groups (woody plant species, grasses,

or no variability of the abundance and incidence of

The results of the cluster analysis based on the
   
of the invertebrates and vegetation diversity (Den-
drogram A) and particularly just of invertebrate di-
versity (Dendrogram B), also separated the diversity
of the sites of the degraded landscapes from those
      
linked communities of the shrublands closer to each
other (Sites 1 and 4) and slightly separated them
from the communities of the oak-hornbeam (site 3)
and woodland of the dry ravine (site 6) and united it
in the group together. The results of the analysis re-
lated closer the plant and invertebrate communities

to those of the almond garden (site 5) rather than the

by the limestone mining (site 2); however, all these
communities clustered in one group. The results of

of a closer relation to the invertebrate diversity of
the woodlands (sites 3 and 6) and a lower level of
similarity of the invertebrates of shrublands (sites 1
and 4). It also showed the higher similarity of the in-
vertebrate diversity between the sites of the almond
        

Comparing the diversity of vegetation be-
tween the sites of the natural (PCA cluster A) and
degraded (PCA cluster B) landscapes, the Jaccard

     
value 0.548), showing rather low similarity of the
vegetation between the two clusters. In the case of
     


0.623) similarity between the clusters.
     
particular plant and invertebrate species had sig-
    
in communities in both natural and degraded land-
scapes. However, the top 20 species of plants and
invertebrates (Table 3) ranked the most common
-
tebrates in these landscapes. There were no promi-
nent plant species with stronger contribution in the
formation of the vegetation of degraded and natural
-
ences in the mean values of the species contribution

species (Table 3) had higher importance in the for-
mation of the vegetation community of natural land-
scapes; the last four species were most common in
the degraded landscapes.
There was a similar tendency in the results of

the invertebrate communities of the studied land-
scape types. The contribution values of the inver-

Fig. 3. Dendrograms of the relationship between the diversities of the surveyed sites. A. Dendrogram based on com-
bined data of the invertebrate and vegetation diversity. B. Dendrogram based only on the invertebrate diversities.
Diversity and Ecology of the Soil- and Litter-dwelling Invertebrates and the Plant Associations...
321
each other, which indicated that there were no prom-
inent dominant species forming the invertebrate
communities in the natural or degraded landscapes

The results of ISA associated 11 plant species
and 12 invertebrate species to the diversity of the

of invertebrates to the degraded landscapes (Table
4). The attributed species were the most representa-
tive of the linked ecotopes based on their ecology.

Georgia, occurring in dryland habitats having frag-
mented distribution patterns and occurring in the
eastern part of the country.
Table 3.  
invertebrates having the highest contribution to the formation of the vegetation community and invertebrate diversity
of the natural and degraded landscapes
Taxon Average
dissimilarity
Contribution
%
Cumulative
%
Mean – Natural
landscapes
Mean – Degraded
landscapes
Part A. Plant species
Stipa arabica  2.20 2.20 1.00 0.00
Brachypodium distachyon  2.20 4.40 1.00 0.00
Artemisia caucasica 1.62 1.80 6.20 0.75 0.00
Carex praecox 1.58 1.75  0.75 0.00
Astragalus hirtulus 1.46 1.62  0.75 0.00
Eremopyrum orientale 1.46 1.62  0.75 0.50
Lonicera caprifolium 1.46 1.62 12.81 0.75 0.00
Artemisia lercheana 1.46 1.62 14.42 0.75 0.00
Gentianella acuta 1.46 1.62 15.85 0.75 0.00
Daucus carota  1.43 17.28 0.75 0.00
Falcaria vulgaris  1.43 22.86 0.75 0.00
Aethusa cynapium 1.22 1.35 24.21 0.50 0.00
Setaria verticillata 1.22 1.35 25.56 0.50 0.00
Onobrychis miniata 1.22 1.35  0.50 0.00
Bupleurum exaltatum 1.27 1.41 20.10 0.00 1.00
Bunias orientalis 1.27 1.41 21.50 0.00 1.00
Centaurea solstitialis 1.27 1.41  0.00 1.00
Galium humifusum 1.22 1.35 28.21 0.00 1.00
Erysimum repandum 1.16   0.50 1.00
Part B. Habitat-specic invertebrates
Phalangium punctipes 1.16   0.00 1.00
Anthelephila pedestris 1.16  4.17 1.00 0.00
Armadilidium vulgare  1.62  0.25 1.00
Lithobius cronebergii  1.62 7.41 0.75 0.00
Tectocepheus velatus 0.81 1.46 8.87 0.75 0.00
Haplozetes tenuifusus  1.43 10.30 0.00 0.67
Crypticus quisquilius  1.43 11.73 0.00 0.67
Carabus adamsi  1.43 13.16 0.00 0.67
Trox sp. 1.43  0.00 0.67
Calathus melanocephalus 0.78 1.41 16.00 0.00 0.67
Brachinus crepitans 0.78 1.41 17.40 0.00 0.67
Pseudotorynorrhina sp. 0.74 1.34 18.74 0.00 0.67
Minunthozetes pseudofusiger 0.74 1.34 20.08 0.00 0.67
Lucoppia burrowsi 0.74 1.34 21.42 0.00 0.67
Zetorchestes micronychus 0.70 1.26 22.67 0.75 0.33
Liacarus brevilamellatus  1.25  0.25 0.67
Scytodes thoracica  1.24 25.17 0.75 0.33
Opilio sp.  1.24 26.40 0.75 0.33
322
Asanidze Z., Arabuli T., Maghradze E., Shavadze L., Gogshelidze M., Modebadze N., Kiria E., Barnaveli N. & Barjadze S.
Table 4.
Habitat-specic invertebrates Plant species
Taxa
Natural landscapes Degraded
Taxa
Natural landscapes Degraded
Indicator
values (%) P ≤ Indicator
values (%) P ≤ Indicator
values (%) P ≤ Indicator
values (%) P ≤
Anthelephila pedestris 0.88 0.001 - - Stipa capillata  0.001 - -
Lithobius erythrocephalus 0.76 0.001 - - Brachypodium dis-
tachyon  0.001 - -
Phalangium punctipes 0.62 0.050 0.85 0.001 Artemisia caucasica 0.86 0.001 - -
Armadilidium vulgare 0.87 0.001 0.71 0.01 Carex praecox 0.84 0.01 - -
Crypticus quisquilius - - 0.83 0.001 Eremopyrum orientale 0.72 0.03 0.60 0.05
Neobisium sp. 2 - - 0.82 0.001 Astragalus hirtulus 0.70 0.03 - -
Hister quadrimaculatus - - 0.8 0.001 Onobrychis angustifolia 0.66 0.03 - -
Trachelipus sp. - - 0.78 0.001 Daucus carota 0.64 0.05 - -
Lithobius ferganensis  0.001 - - Jasminum fruticans 0.60 0.05 - -
Carabus cf. maurus - - 0.76 0.01 Paliurus spina-Christi 0.60 0.05 - -
Chthonius sp. - - 0.68 0.01 Bupleurum exaltatum - - 0.88 0.001
Tegenaria sp. 0.73 0.001 0.63 0.03 Bunias orientalis - - 0.87 0.001
Agriotes sp. 0.72 0.001 0.63 0.03 Centaurea solstitialis - - 0.75 0.001
Opilio sp. 0.68 0.030 0.62 0.05 Carduus hamulosus - - 0.74 0.01
Dysdera sp. 0.65 0.050 0.6 0.05 Erysimum repandum - - 0.7 0.03
Geophilus sp. - - 0.6 0.05 Festuca varia 0.68 0.03 0.68 0.03
Gnaphosa sp. - - 0.6 0.05 Psephellus amblyolepis - - 0.64 0.05
Harpalus rupes 0.60 0.050 - - Scutellaria orientalis - - 0.63 0.05
Brachinus crepitans 0.60 0.050 - - Galium humifusum - - 0.63 0.05
Trochosa ruricola 0.60 0.050 - - Agropyron pectinatum - - 0.61 0.05
- - - - - Campanula hohenackeri - - 0.61 0.05
Diversity and Ecology of the Soil- and Litter-dwelling Invertebrates and the Plant Associations...
323
Discussion
The ecological part of our study clearly demonstrat-
  
diversity of the natural and degraded landscapes of
  
test of both plant and invertebrate groups as vari-
      
     
vegetation and invertebrate diversity between natu-
ral and degraded landscapes. However, only some
groups of plants and invertebrate show a high im-
pact on the separation of the clusters of the natural
and degraded landscapes; this is an expected result
as these groups include species of diverse ecological

      
which are linked to either natural or degraded land-

-
  
  -
ever, it also shows that the contribution values of the
species included in the ranked list (Table 3) are not

The results of the PCA also indicate the absence of

their communities. It can be explained by the sam-

      
   
data.
The results of ISA create a clearer picture of
      
invertebrate diversity in the natural and degraded
landscapes of the study area by focusing on the most
representative species of these landscapes (Table 4).
The plant species aggregated to the sites of land-
scapes degraded due to anthropogenic activity (such
as limestone mining and gardening) are Bupleurum
exaltatum, Bunias orientalis, Centaurea solstitialis,
Carduus hamulosus, Erysimum repandum, Festuca
varia, Psephellus amblyolepis, Scutellaria orienta-
lis, Galium humifusum, Agropyron pectinatum and
Campanula hohenackeri. The invertebrate species
characteristic for these degraded habitats are: Geo-
philus sp. (centipede), Chthonius sp., Neobisium sp.
2 (false scorpions), Dysdera sp., Gnaphosa sp. (spi-
ders), Opilio sp., Phalangium punctipes (harvest-
men), Armadilidium vulgare, Trachelipus sp. (iso-
pods), Carabus cf. maurus, Crypticus quisquilius
and Hister quadrimaculatus (beetles).
-
card’s index shows that the diversity of the plant
and invertebrate communities of the degraded land-
scapes (sites 2, 5 and 7) is higher, with values of the
     
sites of the study area) than compared to the natural
landscapes. It means that the sites of degraded land-
scapes are inhabited by trivial species and the sites
of the natural landscapes support higher proportion

result as the species with the strong physiological
    
cosmopolite species, which are well adapted to a
wide range of environmental conditions (
&  2006,  et al. 2006, -
 & 
these species, especially plants, gain a high rank
        
which determines the reliability of the results of
-

are cosmopolite species occurring in a wide range of
habitat and landscape types; however, they are also
characteristic for the habitats of Georgia, as they are
associated with the semiarid vegetation communi-
ties having fragmented distribution and occurring
in the eastern part of the country. These species are

the assimilation of degraded habitats. Their discov-
ery is one of the main results of our study as these
species form the diversity of the primary succession
    
on the degraded landscape with limestone-rich sub-

the entire South Caucasus.
     
 &  (2014) describes only
the taxonomic diversity of the plant communities

in Georgia. This information allows us to estimate
the similarity of the diversity of the plant commu-

-
pany and their adjacent habitats in the eastern part
of Georgia. According to this source, the vegeta-
-
ries at Dedophlistskaro, which are far east locality
in the country, and Gardabani, which is located in
the southeast part of Georgia, is dominated by the
    -
bery, with fragments of the xerothermophilous oak
forest. These are the most widespread vegetation
of the dry types of woodlands, which occur in the
      
 &  (2014) associate 126
plant species with the Dedophlistskaro and 168
324
Asanidze Z., Arabuli T., Maghradze E., Shavadze L., Gogshelidze M., Modebadze N., Kiria E., Barnaveli N. & Barjadze S.
species with the Gardabani dry type of woodlands,
from which 54 species (36.7 %) are shared between
the communities of these two sites. The similar

(36.7 %) with the communities of Dedophlistskaro
     
(out of 110 species registered in similar plant com-
munities during our study). The comparison also
shows that all plant species associated with the

results of ISA (Table 4) are also represented in the
-
listskaro and Gardabani. This result once again
supports out observations on the successfulness of
 -
tion for the occupation of the degraded landscape

    
3) are widely distributed species and they should
-
     
distributed species are dominating in the degraded
landscapes due their easer adaptation to harsh envi-
ronmental conditions.
      -
      

It is highly desirable to continue with a repetitive
study in the future years in order to observe the dy-
namics of changes in the vegetation and invertebrate
diversity.
In addition, it should be mentioned that orib-
atid mite communities on post-industrial sand and
manganese tailing sites, reclaimed areas, natural
meadows and forests in the Chiatura region were
-
 et al. 2013). Based on Sorensen-Dice index,
the similarity between oribatid mite complexes of

mining area is 35.11 %. All shared oribatid species
are widely distributed and, in our opinion, the deg-
radation of the natural habitats might be the reason
for their high similarity.
Acknowledgments: The investigation was supported by the
project Investigation of soil biodiversity in Saskhori Quarry
with the participation of local school pupils funded by the
Quarry Life Award, Heidelberg Cement, Georgia. We are
        -
        -
 
       
 
     
respectively.
References
 D. 2012. Habitats of Georgia
(Habitats of Natura 2000 in Georgia), Tbilisi. Available at:

-

 S. S. &     
-

 S. L. &  J. S. 2006. Physiological diversity
in insects: ecological and evolutionary contexts. Advances
in Insect Physiology 33: 50–152.
       
changes in community structure. Australian Journal of
Ecology 18 (1): 117–143.
 J., -  A.,  N.,
 L.,  C. & 
      
European Journal of Soil Biology 35 (3): 115–134.
 C. E.,  D. & -

Agency – European Topic Centre on Nature Protection and
Biodiversity, pp. 127–143.
 Ts., -
 L. &  T. 2018. Nomenclatural checklist
        
Georgian).


-

–366.


-

plant diversity. Published at http://ww2.bgbm.org/Euro-


-
cies and groups of sites: indices and statistical inference.

1823.1.
 S. A. 2004. Comparative study of the

and in the laboratory. Ecotoxicology 13: 573–587. https://

 G. &  G. S. 2005. Vas-
cular plants of Georgia: a nomenclatural checklist. Tbilisi:
Universal. 247 p.
   https://doi.org/10.15468/
. Accessed via https://www.gbif.org/spe-
cies/5284517 (August 2022)
 Ø.,  D. A. &  P. D. 2001. PAST: Paleonto-
logical statistics software package for education and data

 P.,  I. &  C. 2014. SPSS ex-

 N. & -

 L. &  T. &  E.
Diversity and Ecology of the Soil- and Litter-dwelling Invertebrates and the Plant Associations...
325

tailing sites. Acarologia 53 (2): 203–215. http://dx.doi.

 N.,  L. & 
    

     
pja.v7i3.37647
 G.,  K.,  E.
&  C. 2017. Plant Diversity in the Central Great Cau-
casus: A Quantitative Assessment. Cham: Springer. 117 p.
,
2014–2020. https://www.cbd.int/doc/world/ge/ge-nbsap-
v2-en.pdf
 W. J.,  B. A.,  A. S., 
D. B.,  J. & -
diversity hotspots may go unrecognized: lessons from the
North American Coastal Plain. Diversity and Distributions
21: 236–244. https://doi.org/10.1111/ddi.12278
         
     E. &
 J. (Eds.): Vegetation Ecology. Second Edition.
Hoboken: Wiley-Blackwell, pp. 28–70.
-
   
Vienna, Austria. .
 C. L.,  N. Z.,  J. &
   
        

 D. W. &  

 L.,  Sh. &  S. 2023. New record of Chae-
tophiloscia hastata
 https://doi.

 Sh. &  T. 2014. Botanical diversity of
  
(Dedophlistskaro, Kavtiskhevi, Gardabani). Publishing

Georgian).

amplitude in plant sociology based on similarity of species
content and its application to analyses of the vegetation on
Danish commons. Biol. Skar. 5: 1–34.
   2010. Version 1. Published on the Internet;

 D. W. & 
-
ence Publishers, Inc.

Accepted: 21.06.2023
Appendix
Table A1.
N Plant Group Species
Sites of the sample collection
(Site ID)
1234567
1 Woody plants Acer laetum - --
2 Woody plants Carpinus orientalis - - ---
3 Woody plants Cotinus coggygria - ---
4 Woody plants Cotoneaster integerrimus -----
5 Woody plants Crataegus orientalis - - ---
6 Woody plants Ephedra procera - - ---
7 Woody plants Jasminum fruticans - - ----
8 Woody plants Juniperus communis
(syn. J. oblonga) - - ---
Woody plants Ligustrum vulgare ------
10 Woody plants Lonicera caprifolium - ---
11 Woody plants Paliurus spina - Christi - - ---
12 Woody plants Prunus spinosa ----- -
13 Woody plants Prunus dulcis (syn. Amygdalus communis) /
cultivated - - ---
14 Woody plants Quercus petraea subsp. iberica ------
15 Woody plants Rhamnus pallasii ------
16 Woody plants Rosa cannina - - ----
17 Woody plants Rosa spinosissima ------
18 Woody plants Swida australis - - ----
 Grasses Agropyron pectinatum - - -
20 Grasses Bothriochloa ischaemum ------
21 Grasses Brachipodium sylvaticum - - ----
326
Asanidze Z., Arabuli T., Maghradze E., Shavadze L., Gogshelidze M., Modebadze N., Kiria E., Barnaveli N. & Barjadze S.
22 Grasses Brachypodium distachyon ------
23 Grasses Bromus squarrosu ------
24 Grasses Calamagrostis glomerata (Syn C. georgica) --- -
25 Grasses Dactylis glomerata - - ---
26 Grasses Elytrigia repens - - ---
27 Grasses Eremopyrum orientale - ---
28 Grasses Festuca varia -- - - -
 Grasses Lolium temulentum ------
30 Grasses Phleum pratense - - ----
31 Grasses Setaria verticillata  ----
32 Grasses Stipa arabica - - ---
33 Grasses Stipa capillata ----- -
34 Sedges Carex capitata ------
35 Sedges Carex praecox ----- -
36 Legumes Astragalus cyri ------
37 Legumes Astragalus hirtulus - - - - -
38 Legumes Astragalus falcatus - - - - -
 Legumes Lathyrus tuberosus -----
40 Legumes Melilotus ocinalis - - ----
41 Legumes Onobrychis miniata -----
42 Legumes Onobrychis angustifolia - - ---
43 Legumes Trifolium pratense - - ---
44 Herbs Adonis parviora ----- -
45 Herbs Aegopodium podagraria - - ----
46 Herbs Aethusa cynapium -----
47 Herbs Agrimonia eupatoria ----- -
48 Herbs Ajuga chia - - ----
 Herbs Allium albidum ------
50 Herbs Allium atroviolaceum - - ----
51 Herbs Anacamptis pyramidalis ------
52 Herbs Anchusa ocinalis - - - -
53 Herbs Anthemis candidissima - - ----
54 Herbs Arctium lappa - - - - -
55 Herbs Artemisia caucasica ----- -
56 Herbs Artemisia lercheana - ---
57 Herbs Asparagus verticillatus ----- -
58 Herbs Atriplex patula ------
 Herbs Barbarea vulgaris ------
60 Herbs Bunias orientalis - - - -
61 Herbs Bupleurum exaltatum - -
62 Herbs Campanula bononiensis ------
63 Herbs Campanula hohenackeri -- - - -
64 Herbs Carduus hamulosus - - - -
65 Herbs Carthamus lanatus - - -
66 Herbs Centaurea solstitialis - - ---
67 Herbs Cerinthe minor --- -
68 Herbs Cichorium intybus ------
 Herbs Cirsium arvense -----
70 Herbs Clinopodium vulgare ----- -
71 Herbs Consolida orientalis - - ---
72 Herbs Convolvulus cantabrica --- - -
73 Herbs Crepis pannonica ------
74 Herbs Cynoglossum ocinale - - - -
75 Herbs Daucus carota - -  -
76 Herbs Dianthus crinitus ----- -
Diversity and Ecology of the Soil- and Litter-dwelling Invertebrates and the Plant Associations...
327
77 Herbs Dictamnus caucasicus ------
78 Herbs Echinops ruthenicus - - --
 Herbs Echium russicum ----- -
80 Herbs Eryngium caeruleum ------
81 Herbs Erysimum repandum - - ----
82 Herbs Erysimum hieracifolium -- - -
83 Herbs Euphorbia seguieriana - - -- -
84 Herbs Euphrasia pectinata - - -- -
85 Herbs Falcaria vulgaris - - --
86 Herbs Galatella villosa ----- -
87 Herbs Galinsoga parviora -----
88 Herbs Galium album ------
 Herbs Galium humifusum - - ----
 Herbs Gentiana macrophylla ----- -
 Herbs Gentianella acuta - - ---
 Herbs Glaucium corniculatum -----
 Herbs Globularia trichosantha - - ---
 Herbs Gypsophila stevenii - - --
 Herbs Helichrysum plinthocalyx ------
 Herbs Hypericum perforatum ---- -
 Herbs Inula aspera - - ----
 Herbs Isatis costata ------
 Herbs Lactuca serriola - - ---
100 Herbs Lapsana intermedia ------
101 Herbs Linum austriacum ----- -
102 Herbs Lycopsis arvensis ----- -
103 Herbs Mentha arvensis ------
104 Herbs Melampyrum arvense ----- -
105 Herbs Origanum vulgare - - ---
106 Herbs Ornithogalum pyrenaicum ------
107 Herbs Papaver arenarium ------
108 Herbs Petrorhagia prolifera ---- - -
 Herbs Polygonum aviculare ----- -
110 Herbs Prunella vulgaris - - ---
111 Herbs Psephellus amblyolepis - - - -
112 Herbs Psephellus carthalinicus ----- -
113 Herbs Ranunculus repens ------
114 Herbs Rhinanthus minor ------
115 Herbs Rubia tinctorum - - - - -
116 Herbs Salvia viridis - - ---
117 Herbs Sanguisorba ocinalis ------
118 Herbs Scorzonera idae - - - - -
 Herbs Scutellaria orientalis - ----
120 Herbs Senecio vernalis ----- -
121 Herbs Silybum marianum ----- -
122 Herbs Sonchus arvensis - --
123 Herbs Teucrium nuchense - - ---
124 Herbs Teucrium polium - - ---
125 Herbs Traagopogon serotinus ----- -
126 Herbs Veronica ocinalis ----- -
127 Herbs Viola rupestris ----- -
128 Herbs Xanthium spinosum ------
 Herbs Xeranthemum annuum - - ----
130 Herbs Ziziphora acinos - - - - -
131 Herbs Urtica dioica - - - - -
328
Asanidze Z., Arabuli T., Maghradze E., Shavadze L., Gogshelidze M., Modebadze N., Kiria E., Barnaveli N. & Barjadze S.
Table A2.
N Family Species Sites of the sample collection
(Site ID)
Coleoptera 1 2 3 4 5 6 7
1 Anthicidae Anthelephila pedestris -----
2 Carabidae Brachinus crepitans (L., 1758) - - - - -
3 Carabidae Badister sodalis (Duftschmid, 1812) - - - - - -
4 Carabidae Calathus melanocephalus (L., 1758) - - - - -
5 Carabidae Carabus adamsi ---- -
6 Carabidae Carabus cf. maurus (Adams, 1817) - - - - 
7 Carabidae Harpalus rupes (DeGeer, 1774) - - - - - -
8 Carabidae Olisthopus sp. -----
Chrysomelidae Podagrica sp. ------
10 Coccinellidae Coccinella septempunctata (L., 1758) - - - - - -
11 Coccinellidae Coccinella novemnotata ------
12 Curculionidae Anthonomus sp. - - ----
13 Curculionidae Otiorhynchus sp. - - - - -
14 Curculionidae Polydrusus sp. - - - ---
15 Elateridae Agriotes sp. - - - - 
16 Histeridae Hister quadrimaculatus (L., 1758) ---
17  Forcula sp. - - - - - -
18 Lucanidae Dorcus parallelipipedus (L., 1758) ------
 Scarabaeidae Amphimallon solstitiale (L., 1758) - - - - - -
20 Scarabaeidae Oryctes sp. ------
21 Scarabaeidae protaetia sp. - - - - -
22 Silphidae Silpha cf. obscura L., 1758 - - - - - -
23 Tenebrionidae Dendarus sp. ----- -
24 Tenebrionidae Crypticus quisquilius (L., 1760) - - - - - -
25 Tenebrionidae Eleodes sp. ------
26 Trogidae Trox sp. - - - - -
Geophilomorpha 1 2 3 4 5 6 7
27 Dignathodontidae Henia cf. brevis  ------
28 Geophilidae Clinopodes caucasicus  - - ----
 Geophilidae Geophilus sp. ----
Lithobiomorpha 1 2 3 4 5 6 7
30 Lithobiidae Lithobius sp. ------
31 Lithobiidae Lithobius aeruginosus L. Koch, 1862 - - - - -
32 Lithobiidae Lithobius erythrocephalus C.L. Koch, 1847 - - - - - -
33 Lithobiidae Lithobius ferganensis  - -  - -
Scutigeromorpha 1234567
34 Scutigeridae Scutigera coleoptrata L., 1758 - -----
Entomobryomorpha 1234567
35  Orchesella cf. cincta (L., 1758) - 
36 Entomobryidae Lepidocyrtus lignorum  - ---
37 Entomobryidae Entomobrya cf. quinquelineatus  ------
38 Entomobryidae Seira domestica (Nicolet, 1842) - - - - - -
 Tomoceridae Tomocerus vulgaris (Tullberg, 1871) - - ----
40 Isotomidae Isotomurus sp. --- -
Diversity and Ecology of the Soil- and Litter-dwelling Invertebrates and the Plant Associations...

Poduromorpha 1 2 3 4 5 6 7
41 Neanuridae Anurida sp. ------
Symphypleona 1 2 3 4 5 6 7
42 Sminthuridae Sminthurus viridis (L, 1758) - - - -
43 Phalangiidae Opilio sp. - - -
44 Phalangiidae Phalangium punctipes 
Isopoda
45 Armadillidiidae Armadillidium vulgare (Latreille, 1804) 
46 Trachelipodidae Trachelipus sp. 
47 Philosciidae Chaetophiloscia hastata  - - ---
48 Ligiidae Ligidium sp. - - ---
Chordeumatida 1 2 3 4 5 6 7
 Anthroleucosoma-
tidae
Metamastigophorophyllon cf. torsivum 
 - ----
50 Anthroleucosoma-
tidae
Pseudoagellophorella eskovi 
 -----
Polydesmida 1 234567
51 Paradoxosomatidae Strongylosoma sp. - - - - - -
Julida 1 2 34567
52 Julidae Omobrachyiulus caucasicus (Karsch, 1881) - - - - - -
53 Julidae Byzantorhopalum rossicum  - - ----
54 Julidae Cylindroiulus sp. - - - - - -
55 Julidae Leptoiulus tanymorphus  - - --
56 Julidae Syrioiulus adsharicus  ---- -
Pseudoscorpiones 1 2 3 4567
57 Neobisiidae Neobisium sp. 1  -
58 Neobisiidae Neobisium sp. 2 - - --
 Atemnidae Atemnus politus (Simon, 1878) ------
60 Chthoniidae Chthonius sp. - - --
Araneae 1 2 3 4 5 6 7
61 Agelenidae Tegenaria sp. - - -
62 Araneidae Araneus sp. - - - - - -
63 Clubionidae Clubiona sp. - - 
64 Dysderidae Dysdera cf. spasskyi  - --
65 Dysderidae Dysdera sp. 
66 Gnaphosidae Gnaphosa sp. - - 
67 Gnaphosidae Nomisia exornata  - - - -
68 Lycosidae Hogna radiata (Latreille, 1817) - - - ---
 Lycosidae Trochosa ruricola (De Geer, 1778) - - - -
70 Lycosidae Trochosa sp. ----
71 Lycosidae Thanatus sp. - - ---
72 Salticidae Euophrys frontalis (Walckenaer, 1802) ------
73 Scytodidae Scytodes thoracica (Latreille, 1802) -  --
74 Sparassidae Micrommata virescens (Clerck, 1757) - - - - - -
75 Theridiidae Steatoda nobilis (Thorell, 1875) - - - - - -
76 Thomisidae Ozyptila sp. -
77 Thomisidae Xysticus kochi Thorell, 1872 - -
Oribatida 1 2 3 4 5 6 7
78 Nothridae Nothrus parvus  ------
330
Asanidze Z., Arabuli T., Maghradze E., Shavadze L., Gogshelidze M., Modebadze N., Kiria E., Barnaveli N. & Barjadze S.
 Crotoniidae Camisia horrida (Hermann, 1804) - - - - -
80 Crotoniidae Camisia lapponica  -----
81 Euphthiracaridae Acrotritia ardua (Koch, 1841) - - - - - -
82 Phthiracaridae Phthiracarus lentulus (Koch, 1841) ------
83 Phthiracaridae Steganacarus carinatus (Koch, 1841)  -
84  Ramusella clavipectinata  -----
85  Oppiella (Rhinoppia) hygrophila  -----
86 Hermanniellidae Hermanniella punctulata  - -  - -
87 Liacaridae Dorycranosus splendens  -- -
88 Liacaridae Dorycranosus ovatus  - - ----
 Liacaridae Liacarus brevilamellatus  --- -
 Liacaridae Liacarus coracinus (Koch, 1841) - - ----
 Gymnodamaeidae Arthrodamaeus femoratus (C.L.Koch, 1840) - - -
 Aleurodamaeidae Aleurodamaeus setosus (Berlese, 1883) 
 Damaeidae Metabelba monilipeda  ----- -
 Damaeidae Metabelba agelliseta  ------
 Haplozetidae Haplozetes tenuifusus  ---- -
 Scutoverticidae Scutovertex minutus (Koch, 1835) - - ----
 Plateremaeidae Lopheremaeus mirabilis  ------
 Amerobelbidae Amerobelba decedens  ----- -
 Neoliodidae Liodes theleproctus (Hermann, 1804) - - - -
100 Neoliodidae Poroliodes farinosus  ------
101 Ceratozetidae Trichoribates naltschicki  - - -
102 Ceratoppiidae Ceratoppia bipilis (Hermann, 1804)  -
103 Zetorchestidae Microzetorchestes emeryi  -----
104 Zetorchestidae Zetorchestes micronychus (Berlese, 1883) -  - -
105 Xenillidae Xenillus tegeocranus (Hermann, 1804)  -
106  Oribatella berlesei  ------
107 Gustaviidae Gustavia microcephala (Nicolet, 1855)  ---
108 Scheloribatidae Scheloribates laevigatus (Koch, 1835) 
 Phenopelopidae Eupelops acromios (Hermann, 1804) -  ---
110 Phenopelopidae Eupelops torulosus  - - ---
111 Phenopelopidae Eupelops occultus (Koch, 1835) - -----
112 Phenopelopidae Peloptulus phaenotus (Koch, 1841) -----
113  Lucoppia burrowsi  -----
114  Oribatula tibialis (Nicolet, 1855)  -
115  Oribatula (Zygoribatula) cognata  --
116  Zygoribatula exilis (Nicolet, 1855) -----
117 Punctoribatidae Punctoribates punctum  -
118 Punctoribatidae Minunthozetes pseudofusiger  -----
 Carabodidae Austrocarabodes foliaceisetus georgiensis -
vanidze &Weigmann, 2007 -----
120 Tectocepheidae Tectocepheus velatus  - ---
121 Galumnidae Pergalumna nervosa  ------
122 Galumnidae Galumna alata (Hermann, 1804) - -
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Chaetophiloscia hastata Verhoeff, 1928 is recorded from Saskhori limestone quarry (Mtskheta municipality, eastern Georgia). This is the first confirmed record of the genus and species for the Georgian isopod fauna. The species is fully illustrated to facilitate its identification.
Article
Full-text available
Biodiversity hotspots are conservation priorities. We identify the North American Coastal Plain (NACP) as a global hotspot based on the classic definition, a region with > 1500 endemic plant species and > 70% habitat loss. This region has been bypassed in prior designations due to misconceptions and myths about its ecology and history. These fallacies include: (1) young age of the NACP, climatic instability over time and submergence during high sea-level stands; (2) climatic and environmental homogeneity; (3) closed forest as the climax vegetation; and (4) fire regimes that are mostly anthropogenic. We show that the NACP is older and more climatically stable than usually assumed, spatially heterogeneous and extremely rich in species and endemics for its range of latitude, especially within pine savannas and other mostly herbaceous and fire dependent communities. We suspect systematic biases and misconceptions, in addition to missing information, obscure the existence of similarly biologically significant regions world-wide. Potential solutions to this problem include (1) increased field biological surveys and taxonomic determinations, especially within grassy biomes and regions with low soil fertility, which tend to have much overlooked biodiversity; (2) more research on the climatic refugium role of hotspots, given that regions of high endemism often coincide with regions with low velocity of climate change; (3) in low-lying coastal regions, consideration of the heterogeneity in land area generated by historically fluctuating sea levels, which likely enhanced opportunities for evolution of endemic species; and (4) immediate actions to establish new protected areas and implement science-based management to restore evolutionary environmental conditions in newly recognized hotspots.
Article
Full-text available
Bioindicators are broadly used in scientific research to quantify environmental impacts such as the effects of disturbances due to anthropogenic activities. Ground beetles (Coleoptera: Carabidae) are frequently used to indicate habitat alteration since they are affected by anthropogenic activities such as urbanization, crop and forest management, overgrazing by domestic livestock, tourist flow in natural landscapes and soil pollution. Moreover carabids are well known both taxonomically and ecologically, are extremely sensitive to several abiotic and biotic factors, respond quickly to habitat alteration and can be easily and cost-effectively collected by using classic pitfall traps. For these reasons this group of ground-dwelling arthropods are increasingly being used in ecological studies in order to evaluate the environmental impacts of man in terrestrial ecosystems. In this work we present several case studies where carabids were employed as a bioindicator group of metal pollution. KEY WORDS: bioindicators, carabid, environmental impacts, pollution Environmental pollution is the release of chemical waste that causes detrimental effects on the environment. Environmental pollution is often divided into pollution of water supplies, the atmosphere, and the soil. In his book Environmental Chemistry, Manahan (2004) lists several different types of pollutants, including toxic inorganic and organic compounds, high concentrations of normally innocuous compounds, and heat and noise. While much pollution is produced by the chemical industry, domestic sources include human waste and automobile exhaust (http://www.chemistryexplained.com/Di-Fa/Environmental-Pollution.html). Environmental pollution has different effects on different living things, including insect groups. The ground beetles (Coleoptera, Carabidae), as their popular English name implies, are largely confined to the ground. Logically, the influence of soil properties on their distribution soon became the subject of interest and experimental study (Thiele, 1977). Some of the especially important chemical properties of the soil which might exert an influence on the distribution of carabids include pH value, sodium chloride and calcium content (Thiele, 1977). In the context of biodiversity, the term "indicator" is often used with very different definitions. These can be classified into at least four categories: (a) biotic indicators of abiotic conditions (Platen, 1995; Stumpf, 1997); (b) biotic indicators of human practices, including, e.g., pollution sensitive species (Basedow, 1990); (c) goal parameters, which are deducted from normally set nature conservation aims and translate these into measurable features, e.g., species diversity of a certain taxon (May, 1995); (d) correlates of goal parameters, which make it possible to reduce labour and costs in assessing biodiversity and at the same time minimise loss of information (Döring et al., 2003).
Article
Full-text available
A comprehensive, but simple-to-use software package for executing a range of standard numerical analysis and operations used in quantitative paleontology has been developed. The program, called PAST (PAleontological STatistics), runs on standard Windows computers and is available free of charge. PAST integrates spreadsheettype data entry with univariate and multivariate statistics, curve fitting, time-series analysis, data plotting, and simple phylogenetic analysis. Many of the functions are specific to paleontology and ecology, and these functions are not found in standard, more extensive, statistical packages. PAST also includes fourteen case studies (data files and exercises) illustrating use of the program for paleontological problems, making it a complete educational package for courses in quantitative methods.
Article
This chapter covers classification of natural and semi-natural vegetation, including classification frameworks, components of classification, project planning and data acquisition, data preparation and integration, community entitation, cluster assessment, community characterization and determination, classification integration, documentation, and future directions and challenges.