PreprintPDF Available

Morphological and molecular identification for four new species of wood-inhabiting macrofungi (Basidiomycota, Hydnodontaceae) from Yunnan-Guizhou Plateau, China

Authors:
Preprints and early-stage research may not have been peer reviewed yet.

Abstract

Four new wood-inhabiting fungi, Trechispora albofarinosa , T. rhizomorpha , T. stipitata and T. wenshanensis spp. nov., are proposed based on a combination of morphological features and molecular evidence. Trechispora albofarinosa is characterized by the farinosa basidiomata with flocculence hymenial surface, a monomitic hyphal system with clamped generative hyphae, and ellipsoid, warted basidiospores. Trechispora rhizomorpha is characterized by the membranous basidiomata with odontioid hymenial surface, rhizomorphic sterile margin, barrelled basidia and subglobose to broad ellipsoid, smooth basidiospores. Trechispora stipitata is characterized by the solitary or imbricate, laterally stipitate basidiomata, fan shaped pileus, radially striatecovered the surface with appressed scales, odontioid hymenophore surface, and subglobose to broad ellipsoid, thin-walled, smooth basidiospores. Trechispora wenshanensis is characterized by a cottony basidiomata with a smooth hymenial surface, and ellipsoid, thin-walled, warted basidiospores. Sequences of ITS, nLSU, mt-SSU, GAPDH, RPB1, RPB2 markers of the studied samples were generated and phylogenetic analyses were performed with the maximum likelihood, maximum parsimony, and Bayesian inference methods. The phylogram based on the ITS+nLSU rDNA gene regions included fourteen orders within Agaricomycetes ( Basidiomycota ), in which the new species of Trechispora were grouped within the order Trechisporales . The phylogenetic tree inferred from the ITS sequences and the topology ITS+nLSU+mt-SSU+GAPDH+RPB1+RPB2 dataset highlighted that four new species were grouped into the genus Trechispora .
Page 1/33
Morphological and molecular identication for four new species of
wood-inhabiting macrofungi (Basidiomycota, Hydnodontaceae) from
Yunnan-Guizhou Plateau, China
Kaiyue Luo
Southwest Forestry University
Jiangqing Su
Southwest Forestry University
Zhuoyue Chen
Southwest Forestry University
Lijun Cheng
Zhaotong University
Changlin Zhao ( fungichanglinz@163.com )
Southwest Forestry University https://orcid.org/0000-0002-8668-1075
Research Article
Keywords: Molecular systematics, taxonomy, Trechispora, wood-inhabiting fungi, Yunnan–Guizhou Plateau
Posted Date: September 13th, 2023
DOI: https://doi.org/10.21203/rs.3.rs-3252284/v1
License: This work is licensed under a Creative Commons Attribution 4.0 International License.  Read Full License
Page 2/33
Abstract
Four new wood-inhabiting fungi,
Trechispora albofarinosa
,
T. rhizomorpha
,
T. stipitata
and
T. wenshanensis
spp. nov., are proposed based on a
combination of morphological features and molecular evidence.
Trechispora albofarinosa
is characterized by the farinosa basidiomata with
occulence hymenial surface, a monomitic hyphal system with clamped generative hyphae, and ellipsoid, warted basidiospores.
Trechispora
rhizomorpha
is characterized by the membranous basidiomata with odontioid hymenial surface, rhizomorphic sterile margin, barrelled basidia
and subglobose to broad ellipsoid, smooth basidiospores.
Trechispora stipitata
is characterized by the solitary or imbricate, laterally stipitate
basidiomata, fan shaped pileus, radially striatecovered the surface with appressed scales, odontioid hymenophore surface, and subglobose to
broad ellipsoid, thin-walled, smooth basidiospores.
Trechispora wenshanensis
is characterized by a cottony basidiomata with a smooth
hymenial surface, and ellipsoid, thin-walled, warted basidiospores. Sequences of ITS, nLSU, mt-SSU, GAPDH, RPB1, RPB2 markers of the studied
samples were generated and phylogenetic analyses were performed with the maximum likelihood, maximum parsimony, and Bayesian inference
methods. The phylogram based on the ITS+nLSU rDNA gene regions included fourteen orders within
Agaricomycetes
(
Basidiomycota
), in which
the new species of
Trechispora
were grouped within the order
Trechisporales
. The phylogenetic tree inferred from the ITS sequences and the
topology ITS+nLSU+mt-SSU+GAPDH+RPB1+RPB2 dataset highlighted that four new species were grouped into the genus
Trechispora
.
Introduction
Fungi represent one of the most diverse groups of organisms on the earth, with an indispensable role in the processes and functioning of
ecosystems (Hyde 2022). Wood-inhabiting fungi play an important role in the carbon cycle (Dai et al. 2015; Spirin et al. 2017; Wu et al. 2017; Ma
and Zhao 2019; Huang and Zhao 2020; Lima et al. 2020; Luo and Zhao 2022a; Yu et al. 2023; Zhao et al. 2023). The wood-inhabiting fungal
order
Trechisporales
K.H. Larss. is a species-poor order, compared with most other orders within
Agaricomycetes
,
Basidiomycota
(Wijayawardene
et al. 2022).
Trechispora
P. Karst. (
Hydnodontaceae
) typied by
T. onusta
P. Karst., which is characterized by resupinate to effused basidiomata; a smooth to
hydnoid to poroid hymenophore; ampullaceous septa; short cylindric basidia; and smooth to verrucose or aculeate basidiospores (Karsten 1890;
Bernicchia and Gorjón 2010). Currently, MycoBank and Index Fungorum have registered 160 recorded and 149 recorded intraspecic names in
Trechispora
, respectively. About 100 species are currently accepted in
Trechispora
worldwide (Karsten 1890; Bondartsev and Singer 1941; Rogers
and Jackson 1943; Rogers 1944; Bondartsev 1953; Parker-Rhodes 1954; Liberta 1966, 1973; Parmasto 1968; Burdsall and Gilbertson 1982;
Gilbertson and Budington 1970; Jülich 1975, 1976; Ryvarden 1975; Ryvarden and Liberta 1978; Hallenberg 1978, 1980; Jülich and Stalpers 1980;
Rauschert 1987; Vries 1987; Larsson 1992, 1994, 1995, 1996; Hjortstam and Larsson 1995; Ryvarden 2002; Trichies and Schultheis 2002;
Ryvarden et al. 2003; Miettinen and Larsson 2006; Dai 2011; Yuan and Dai 2012; Ordynets et al. 2015; Phookamsak et al. 2019; Xu et al. 2019;
Chikowski et al. 2020; Haelewaters et al. 2020; Crous et al. 2021; de Meiras-Ottoni et al. 2021; Zhao and Zhao 2021; Liu et al. 2022; Luo and Zhao
2022a; Sommai et al. 2023), of which 31 species of the genus have been found in China (Dai 2011; Yuan and Dai 2012; Xu et al. 2019; Zhao and
Zhao 2021; Luo and Zhao 2022a).
The high phylogenetic diversity on the corticioid
Agaricomycetes
based on two genes, 5.8S and 28S showed that nine taxa of
Trechispora
nested
into trechisporoid clade (Larsson et al. 2004). The molecular systematics suggested that
Trechispora
belonged to
Hydnodontaceae
and was
related to genera
Brevicellicium
K.H. Larss. & Hjortstam,
Porpomyces
Jülich,
Sistotremastrum
J. Erikss., and
Subulicystidium
Parmasto (Telleria
et al. 2013). Based on the ITS and nLSU datasets, the phylogenetic study of
Trechispora
reported two new
Trechispora
species as
T. cyatheae
Ordynets, Langer & K.H. Larss. and
T. echinocristallina
Ordynets, Langer & K.H. Larss., in La Réunion Island (Ordynets et al. 2015). The phylogeny
of
Trechisporales
was inferred from a combined ITS-nLSU sequences, which revealed that two related genera
Porpomyces
,
Scytinopogon
Singer,
grouped closely together with
Trechispora
and all of them nested within
Hydnodontaceae
(Liu et al. 2019). Based on ITS dataset, the three new
species of
Trechispora
were described and used to evaluate the phylogenetic relationship with other species of this genus, in which
T. murina
was retrieved as a sister to
T. bambusicola
with moderate supports, and
T. odontioidea
formed a single lineage and then grouped with
T.
mbriata
and
T. nivea
, while
T. olivacea
formed a monophyletic lineage with
T. farinacea
,
T. hondurensis
, and
T. mollis
(Luo and Zhao 2022a).
Recently, based on the morphological features and molecular evidence, three new species of
Trechispora
has been reported from Northern and
Northeastern Thailand (Sommai et al. 2023).
During investigations on the wood-inhabiting fungi in the Yunnan–Guizhou Plateau of China, samples representing four additional species
belonging to genus
Trechispora
were collected. To clarify the placement and relationships of the four species, we carried out a phylogenetic and
taxonomic study on
Trechispora
, based on the ITS, nLSU, mt-SSU, GAPDH, RPB1, RPB2 sequences.
Materials and methods
Morphology
Page 3/33
The specimens studied were deposited at the herbarium of Southwest Forestry University (SWFC), Kunming, Yunnan Province, P.R. China. The
macromorphological descriptions were based on eld notes and photos captured in the eld and laboratory. Color, texture, taste and odor of
basidiomata were mostly based on authors’ eld trips. Color terminology followed Kornerup and Wanscher (1978). All materials were examined
under a Nikon 80i microscope. Drawings were made with the aid of a drawing tube. The measurements and drawings of the microscopic
structures were made (Wu et al. 2022). The following abbreviations were used: KOH = 5% potassium hydroxide water solution, CB = cotton blue,
CB– = acyanophilous, IKI = Melzer’s reagent, IKI– = both inamyloid and indextrinoid, L = spore length (arithmetic average for all spores), W = spore
width (arithmetic average for all spores), Q = L/W ratios of the specimens studied, and n = a/b (a = total number of spores measured, from b = 
number of specimens).
Molecular phylogeny
The CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd, Beijing) was used to obtain genomic DNA from the dried
specimens following the manufacturer’s instructions (Zhao and Wu 2017). The nuclear ribosomal ITS region was amplied with the primers ITS5
and ITS4 (White et al. 1990). The nuclear ribosomal LSU gene was amplied with the primers LR0R and LR7 (Vilgalys and Hester 1990; Rehner
and Samuels 1994). The mt-SSU region with the primers MS1 and MS2 (White et al. 1990). The GAPDH region with the primers GAPDH-F and
GAPDH-R (Kuuskeri et al. 2015). The RPB1 region with the primers RPB1-Af and RPB1-Cf (Matheny et al. 2002), and the RPB2 region with the
primers bRPB2-6F and bRPB2-7.1R (Matheny 2005). The PCR procedure for ITS was as follows: initial denaturation at 95 C for 3 min, followed
by 35 cycles at 94 C for 40 s, 58 C for 45 s and 72 C for 1 min, and a nal extension of 72 C for 10 min. The PCR procedure for nLSU was as
follows: initial denaturation at 94 C for 1 min, followed by 35 cycles at 94 C for 30 s, 48 C for 1 min and 72 C for 1.5 min, and a nal
extension of 72 C for 10 min. The PCR procedure for mt-SSU was as follows: initial denaturation at 94 C for 2 min, followed by 36 cycles at 94
C for 45 s, 52 C for 45 s and 72 C for 1 min, and a nal extension of 72 C for 10 min. The PCR procedure for GAPDH was as follows: initial
denaturation at 95 C for 3 min, followed by 35 cycles at 94 C for 40 s, 50 C for 45 s and 72 C for 1 min, and a nal extension of 72 C for 10
min. The PCR procedure for RPB1 was as follows: (1) initial denaturation at 94 C for 2 min, (2) denaturation at 94 C for 40 s, (3) annealing at
60 C for 40 s, (4) extension at 72 C for 2 min, (5) repeat for 10 cycles starting at step 2, (6) denaturation at 94 C for 45 s, (7) annealing at 55
C for 1.5 min, (8) extension at 72 C for 2 min, (9) repeat for 37 cycles starting at step 6, (10) leave at 72 C for 10 min. The PCR procedure for
RPB2 was as follows: (1) initial denaturation at 95 C for 2.5 min, (2) denaturation at 95 C for 30 s, (3) annealing at 52 C for 1 min, (4)
extension at 72 C for 1 min (add 1 C per cycle), (5) repeat for 40 cycles starting at step 2, (6) extension at 72 C for 1.5 min, (7) repeat for 40
cycles starting at step 6, (8) leave at 72 C for 5 min. The PCR products were puried and directly sequenced at Kunming Tsingke Biological
Technology Limited Company, Yunnan Province, China. All newly-generated sequences were deposited in NCBI GenBank (Table1).
Page 4/33
Table 1
List of species, specimens and GenBank accession numbers of sequences used in this study. [New species are shown in bold; * type material].
Species name Specimen No. GenBank accession No. References
ITS LSU mt-SSU GAPDH RPB1 RPB2
Aleurobotrys
botryosus
CBS 336.66 MH858812 MH870451 Vu et al.
(2019)
Amaurodon
viridis
TAA 149664 AY463374 AY586625 Larsson et
al. (2004)
Athelia epiphylla
EL 1298 AY463382 AY586633 Larsson et
al. (2004)
Athelopsis
subinconspicua
KHL 8490 AY463383 AY586634 Larsson et
al. (2004)
Chaetodermella
luna
NH 8482 EU118615 Larsson
(2007)
Clavulina cristata
EL 9597 AY463398 AY586648 Larsson et
al. (2004)
Columnocystis
abietina
KHL 12474 EU118619 Larsson
(2007)
Cystostereum
murrayi
KHL 12496 EU118623 Larsson
(2007)
Dacrymyces
stillatus
CBS 195.48 MH856306 MH867857 Vu et al.
(2019)
Dacryopinax
spathularia
Miettinen 20559 MW191976 MW159092 Unpublished
Erythricium
laetum
NH 14530 AY463407 AY586655 Larsson et
al. (2004)
Fibrodontia alba
TNM F24944 NR153983 NG060401 Yurchenko
and Wu
(2014)
Fibrodontia
brevidens
TNMF 9008 KC928276 KC928277 Yurchenko
and Wu
(2014)
Haplotrichum
conspersum
KHL 11063 AY463409 AY586657 Larsson et
al. (2004)
Hymenochaete
cinnamomea
EL 699 AY463416 AY586664 Larsson et
al. (2004)
Hyphodontia
aspera
KHL 8530 AY463427 AY586675 Larsson et
al. (2004)
Inonotus radiatus
TW 704 AF311018 Wagner and
Fischer
(2001)
Kavinia
alboviridis
EL 1698 AY463434 Larsson et
al. (2004)
Kavinia himantia
LL 98 AY463435 AY586682 Larsson et
al. (2004)
Lentaria
dendroidea
SJ 98012 EU118640 EU118641 Larsson
(2007)
Lignosus
hainanensis
Dai 10670 NR154112 GU580886 Cui et al.
(2011)
Merulicium
fusisporum
Hjm s.n. EU118647 Larsson
(2007)
Phellinus
chrysoloma
TN 4008 AF311026 Wagner and
Fischer
(2001)
Page 5/33
Species name Specimen No. GenBank accession No. References
ITS LSU mt-SSU GAPDH RPB1 RPB2
Polyporus
tubiformis
WD 1839 AB587634 AB368101 Sotome et
al. (2011)
Punctularia
strigosozonata
LR 40885 AY463456 AY586702 Larsson et
al. (2004)
Sistotrema
alboluteum
TAA 167982 AY463467 AY586713 Larsson et
al. (2004)
Stereum hirsutum
NH 7960 AF506479 Larsson and
Larsson
(2003)
Tomentellopsis
echinospora
KHL 8459 AY463472 AY586718 Larsson et
al. (2004)
Trametes
suaveolens
CBS 279.28 MH855012 MH866480 Vu et al.
(2019)
Trechispora
albofarinosa
CLZhao 4356 OQ241383 OQ282703 This study
Trechispora
alnicola
AFTOL-ID 665 DQ411529 Unpublished
Trechispora
araneosa
KHL 8570 AF347084 Larsson et
al. (2004)
Trechispora
bambusicola
CLZhao 3302 MW544021 MW520171 OQ252938 OQ472008 Zhao and
Zhao (2021)
Trechispora
bambusicola
CLZhao 3305 MW544022 MW520172 OQ686801 Zhao and
Zhao (2021)
Trechispora
bispora
CBS:142.63 MH858241 MH869842 Larsson et
al. (2004)
Trechispora
byssinella
UC 2023068 KP814481 Unpublished
Trechispora
chartacea
FLOR 56185 MK458775 Unpublished
Trechispora
clancularis
FRDBI 4426619 MW487976 Unpublished
Trechispora
cohaerens
PDD 119021 MW740327 Unpublished
Trechispora
cohaerens
HHB 19445 MW740327 Unpublished
Trechispora
copiosa
AMO427 MN701015 MN687973 de Meiras-
Ottoni et al.
(2021)
Trechispora
copiosa
AMO450 MN701017 MN687974 de Meiras-
Ottoni et al.
(2021)
Trechispora
copiosa
AMO453 MN701018 MN687975 de Meiras-
Ottoni et al.
(2021)
Trechispora
copiosa
AMO456 MN701019 MN687976 de Meiras-
Ottoni et al.
(2021)
Trechispora
dentata
Dai 22565 OK298491 OM049408 Liu et al.
(2022b)
Trechispora
dimitiella
Dai 21181 OK298493 OK298949 Liu et al.
(2022b)
Trechispora
dimitiella
Dai 21931 OK298492 OK298948 Liu et al.
(2022b)
Page 6/33
Species name Specimen No. GenBank accession No. References
ITS LSU mt-SSU GAPDH RPB1 RPB2
Trechispora
echinospora
MA-Fungi
82485a JX392845 JX392846 Telleria et
al. (2013)
Trechispora
echinospora
MA-Fungi
82485b JX392847 JX392848 Telleria et
al. (2013)
Trechispora
echinospora
MA-Fungi
82486a JX392850 JX392851 Telleria et
al. (2013)
Trechispora
echinospora
MA-Fungi
82486b JX392853 JX392854 Telleria et
al. (2013)
Trechispora
farinacea
KHL 8451 AF347082 Unpublished
Trechispora
farinacea
KHL 8454 AF347083 Unpublished
Trechispora
farinacea
KHL 8793 AF347089 Larsson et
al. (2004)
Trechispora
farinacea
MA-Fungi
79474 JX392855 JX392856 Telleria et
al. (2013)
Trechispora
brillosa
FRDBI
13394362 MW487977 Unpublished
Trechispora
mbriata
CLZhao 7969 MW544024 MW520174 OQ686802 Zhao and
Zhao (2021)
Trechispora
mbriata
CLZhao 9006 MW544025 MW520175 OQ787422 Zhao and
Zhao (2021)
Trechispora
mbriata
CLZhao 4154 MW544023 MW520173 OQ787420 Zhao and
Zhao (2021)
Trechispora
mbriata
CLZhao 9102 OQ241384 Zhao and
Zhao (2021)
Trechispora
mbriata
CLZhao 10297 MT159997 OQ282705 OQ787424 Zhao and
Zhao (2021)
Trechispora
mbriata
CLZhao 10154 MT159996 OQ282704 Zhao and
Zhao (2021)
Trechispora
mbriata
CLZhao 10373 MT159998 OQ282706 OQ766943 Zhao and
Zhao (2021)
Trechispora
mbriata
CLZhao 10389 MT159999 OQ282707 OQ766944 Zhao and
Zhao (2021)
Trechispora
mbriata
CLZhao 10398 MT160000 OQ282708 Zhao and
Zhao (2021)
Trechispora
mbriata
CLZhao 10442 MT160001 OQ282709 OQ252939 OQ766945 Zhao and
Zhao (2021)
Trechispora
mbriata
CLZhao 15857 OQ241385 OQ282710 OQ252940 Zhao and
Zhao (2021)
Trechispora
mbriata
CLZhao 16478 MW581205 OQ252941 Zhao and
Zhao (2021)
Trechispora
ssurata
CLZhao 995 MW544026 MW520176 Zhao and
Zhao (2021)
Trechispora
ssurata
CLZhao 4571 MW544027 MW520177 OQ252942 OQ766958 OQ787423 OQ472007 Zhao and
Zhao (2021)
Trechispora
fragilis
Dai 20535 OK298494 OK298950 Liu et al.
(2022b)
Trechispora
gelatinosa
AMO824 MN701020 MN687977 de Meiras-
Ottoni et al.
(2021)
Page 7/33
Species name Specimen No. GenBank accession No. References
ITS LSU mt-SSU GAPDH RPB1 RPB2
Trechispora
gelatinosa
AMO1139 MN701021 MN687978 de Meiras-
Ottoni et al.
(2021)
Trechispora
havencampii
SFSU DED8300 NR154418 NG059993 Desjardin
and Perry
(2015)
Trechispora
hondurensis
PUL
HONDURAS19-
F016
NR178152 NG081479 Haelewaters
et al. (2020)
Trechispora
hondurensis
PUL
HONDURAS19-
F016a
MT571523 MT636540 Haelewaters
et al. (2020)
Trechispora
hymenocystis
KHL 8795 AF347090 Unpublished
Trechispora
hymenocystis
KHL 16444 MT816397 Larsson
(2020)
Trechispora
incisa
GB0090521 KU747093 KU747086 Unpublished
Trechispora
incisa
GB0105526 KU747094 Unpublished
Trechispora
incisa
GB0090648 KU747095 KU747087 Unpublished
Trechispora
invisitata
5425_537 ON963772 Unpublished
Trechispora
invisitata
UC2023088 KP814425 Unpublished
Trechispora
invisitata
UC2022935 KP814182 Unpublished
Trechispora
kavinioides
KGN 981002 AF347086 Unpublished
Trechispora
laevispora
Dai 21655 OK298495 OM108710 Liu et al.
(2022b)
Trechispora
mellina
URM85756 MH280000 Unpublished
Trechispora
microspora
FRDBI
18772216 OL828778 Unpublished
Trechispora
mollis
URM85884 MK514945 MK514945 Unpublished
Trechispora
mollusca
iNAT 30809943 MZ269232 Unpublished
Trechispora
mollusca
CFMR:DLL2011-
186 KJ140681 Unpublished
Trechispora
murina
CLZhao 11736 OL615003 OQ282712 OQ252943 OQ787425 OQ686800 Luo and
Zhao
(2022a)
Trechispora
murina
CLZhao 11752 OL615004 OL615009 Luo and
Zhao
(2022a)
Trechispora nivea
MA-Fungi
76238 JX392824 JX392825 Telleria et
al. (2013)
Trechispora nivea
MA-Fungi
76257 JX392826 JX392827 Telleria et
al. (2013)
Page 8/33
Species name Specimen No. GenBank accession No. References
ITS LSU mt-SSU GAPDH RPB1 RPB2
Trechispora nivea
MA-Fungi
82480 JX392829 JX392830 Telleria et
al. (2013)
Trechispora nivea
MA-Fungi
74044 JX392832 JX392833 Telleria et
al. (2013)
Trechispora
odontioidea
CLZhao 17890 ON417458 OQ282713 OQ787427 Luo and
Zhao
(2022a)
Trechispora
olivacea
CLZhao 17826 ON417457 OQ282714 OQ252944 OQ787426 Luo and
Zhao
(2022a)
Trechispora
pallescens
He442 MK204553 Liu et al.
(2019)
Trechispora
pallescens
FLOR56184 MK458767 Unpublished
Trechispora
pallescens
FLOR56188 MK458774 Unpublished
Trechispora
papillosa
AMO713 MN701022 MN687979 de Meiras-
Ottoni et al.
(2021)
Trechispora
papillosa
AMO795 MN701023 MN687981 de Meiras-
Ottoni et al.
(2021)
Trechispora
patawaensis
VPapp-GF1901 OL314550 OL314546 Unpublished
Trechispora
praefocata
FRDBI
18819116 OL828784 Unpublished
Trechispora
regularis
KHL 10881 AF347087 Unpublished
Trechispora
rhizomorpha
CLZhao 2522 * OQ241386 This study
Trechispora
rhizomorpha
CLZhao 7870 OQ241387 This study
Trechispora rigida
URM85754 MT406381 MH279999 Unpublished
Trechispora
stellulata
14153 MW023104 Unpublished
Trechispora
stellulata
MICH:352202 ON364078 Unpublished
Trechispora
stellulata
UC2023099 KP814451 Unpublished
Trechispora
stellulata
UC2023230 KP814491 Unpublished
Trechispora
stevensonii
MA-Fungi
70669 JX392841 JX392842 Telleria et
al. (2013)
Trechispora
stevensonii
MA-Fungi
70645 JX392843 JX392844 Telleria et
al. (2013)
Trechispora
stipitata
CLZhao 4456 OQ241388 OQ282715 OQ787421 This study
Trechispora
subhelvetica
Tom Hellik
Hofton 06435 JN710601 Unpublished
Trechispora
subregularis
VPapp-GF2103 OL331097 OL314548 Unpublished
Page 9/33
Species name Specimen No. GenBank accession No. References
ITS LSU mt-SSU GAPDH RPB1 RPB2
Trechispora
subsphaerospora
KHL 8511 AF347080 Unpublished
Trechispora
termitophila
AMO396 MN701025 MN687983 de Meiras-
Ottoni et al.
(2021)
Trechispora
termitophila
AMO893 MN701026 MN687984 de Meiras-
Ottoni et al.
(2021)
Trechispora
termitophila
AMO1165 MN701027 MN687985 de Meiras-
Ottoni et al.
(2021)
Trechispora
termitophila
AMO1169 MN701028 MN687986 de Meiras-
Ottoni et al.
(2021)
Trechispora
torrendii
URM85886 MK515148 MH280004 Unpublished
Trechispora
torrendii
KHL 15384 MH290760 Unpublished
Trechispora
wenshanensis
CLZhao 11649 OQ241389 OQ282716 OQ686803 This study
Trechispora
yunnanensis
CLZhao 210 NR177488 MN654918 Xu et al.
(2019)
Trechispora
yunnanensis
CLZhao 214 MN654922 MN654919 Xu et al.
(2019)
Trechispora
yunnanensis
CLZhao 215 MN654923 MN654920 OQ252945 Xu et al.
(2019)
Vuilleminia
comedens
EL 199 AY463482 AY586725 Larsson et
al. (2004)
Xenasmatella
ailaoshanensis
CLZhao 4839 MN487106 Huang et al.
(2019)
Xenasmatella
ardosiaca
CLZhao 10450 OQ241391 OQ766941 OQ787435 OQ686805 Unpublished
Xenasmatella
bambusicola
CLZhao 10985 OQ371469 OQ147009 OQ252949 OQ766942 Yuan et al.
(2023)
Xenasmatella
borealis
UC2023132 KP814274 Unpublished
Xenasmatella
christiansenii
TASM:YG-G36 MT526342 Gafforov et
al. (2020)
Xenasmatella
gossypina
CLZhao 4316 MW545959 OQ282722 OQ252953 Zong and
Zhao (2021)
Xenasmatella
nigroidea
CLZhao 18300 OK045679 OK045677 Luo and
Zhao (2022)
Xenasmatella
rhizomorpha
CLZhao 9979 OQ241403 OQ282731 OQ766954 OQ685934 OQ686814 Unpublished
Xenasmatella
roseobubalina
Dai 20506 OM855607 Liu and
Yuan (2022)
Xenasmatella
tenuis
CLZhao 4528 MT832960 Zong et al.
(2021)
Xenasmatella
vaga
DK 1566 OL436894 Unpublished
Xenasmatella
wuliangshanensis
CLZhao 4080 MW545962 Zong and
Zhao (2021)
Page 10/33
Species name Specimen No. GenBank accession No. References
ITS LSU mt-SSU GAPDH RPB1 RPB2
Xenasmatella
xinpingensis
CLZhao 2216 MT832961 Zong et al.
(2021)
Xerocomus
chrysenteron
KGP 62 DQ822793 Peay et al.
(2007)
The sequences were aligned in MAFFT version 7 (Katoh et al. 2019) using the G-INS-i strategy. The alignment was adjusted manually using
AliView version 1.27 (Larsson 2014). Each dataset was aligned separately at rst and then the ITS, nLSU, mt-SSU, GAPDH, RPB1 and RPB2
regions were combined with Mesquite version 3.51. The combined dataset was deposited in TreeBASE (submission ID 30665). Sequences of
Dacrymyces stillatus
Nees and
Dacryopinax spathularia
(Schwein.) G.W. Martin retrieved from GenBank were used as an outgroup in the ITS + 
nLSU analysis (Fig.1) (Luo and Zhao 2022b); Sequences of
Fibrodontia alba
Yurchenko & Sheng H. Wu and
F. brevidens
(Pat.) Hjortstam &
Ryvarden retrieved from GenBank were used as an outgroup in the ITS analysis (Fig.2) (Luo and Zhao 2022a); Sequences of
Fibrodontia alba
and
F. brevidens
retrieved from GenBank were used as an outgroup in the ITS + nLSU + mt-SSU + GAPDH + RPB1 + RPB2 analysis (Fig.3) (Luo
and Zhao 2022a).
Maximum parsimony analysis in PAUP* version 4.0a169 (http://phylosolutions.com/paup-test/) was applied to ITS and the combined ITS + 
nLSU datasets following a previous study (Zhao and Wu 2017). All characters were equally weighted and gaps were treated as missing data.
Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Max-trees were set to
5,000, branches of zero length were collapsed and all parsimonious trees were saved. Clade robustness was assessed using bootstrap (BT)
analysis with 1,000 pseudo replicates (Felsenstein 1985). Descriptive tree statistics - tree length (TL), composite consistency index (CI),
composite retention index (RI), composite rescaled consistency index (RC) and composite homoplasy index (HI) - were calculated for each
maximum parsimonious tree generated. The combined dataset was also analysed using Maximum Likelihood (ML) in RAxML-HPC2 through the
CIPRES Science Gateway (Miller et al. 2012). Branch support (BS) for the ML analysis was determined by 1000 bootstrap pseudoreplicates.
MrModeltest 2.3 (Nylander 2004) was used to determine the best-t evolution model for each dataset for the purposes of Bayesian inference (BI),
Bayesian inference was performed using MrBayes 3.2.7a with a GTR + I + G model of DNA substitution and a gamma distribution rate variation
across sites (Ronquist et al. 2012). A total of four Markov chains were run for two runs from random starting trees for 4.5million generations for
ITS + nLSU (Fig.1); 7million generations for ITS (Fig.2) and 4million generations for ITS + nLSU + mt-SSU + GAPDH + RPB1 + RPB2 (Fig.3) with
trees and parameters sampled every 1,000 generations. The rst quarter of all of the generations were discarded as burn-ins. A majority rule
consensus tree was computed from the remaining trees. Branches were considered as signicantly supported if they received a maximum
likelihood bootstrap support value (BS) of > 70%, a maximum parsimony bootstrap support value (BT) of > 70% or a Bayesian posterior
probability (BPP) of > 0.95.
Results
Molecular phylogeny
The ITS+nLSU dataset (Fig. 1) comprised sequences from 89 fungal specimens representing 89 taxa. The dataset had an aligned length of
2,137 characters, of which 1,016 characters were constant, 225 were variable and parsimony-uninformative and 896 (42%) were parsimony-
informative. Maximum parsimony analysis yielded 5,000 equally parsimonious tree (TL = 6,686, CI = 0.3086, HI = 0.6914, RI = 0.5044 and RC =
0.1557). The best model of nucleotide evolution for the ITS + nLSU dataset estimated and applied in the Bayesian analysis was found to be
GTR+I+G. Bayesian analysis and ML analysis resulted in a similar topology as in the MP analysis. The Bayesian analysis had an average
standard deviation of split frequencies = 0.020839 (BI) and the effective sample size (ESS) across the two runs is double the average ESS (avg.
ESS) = 270.5.The phylogram based on the ITS+nLSU rDNA gene regions (Fig. 1) include 14 orders within
Agaricomycetes
(
Basidiomycota
),
which are
Agaricales
,
Atheliales
,
Boletales
,
Cantharellales
,
Corticiales
,
Gloeophyllales
,
Gomphales
,
Hymenochaetales
,
Polyporales
,
Russulales
,
Thelephorales
,
Trechisporales
,
Xenasmatales
,
Dacrymycetes
, in which
Trechispora
was grouped within the order
Trechisporales
.
The ITS dataset (Fig. 2) comprised sequences from 97 fungal specimens representing 50 taxa. The dataset had an aligned length of 641
characters, of which 191 characters were constant, 56 were variable and parsimony-uninformative and 394 (61%) were parsimony-informative.
Maximum parsimony analysis yielded 5,000 equally parsimonious tree (TL = 3,545, CI = 0.2795, HI = 0.7205, RI = 0.6493 and RC = 0.1815). The
best model of nucleotide evolution for the ITS dataset estimated and applied in the Bayesian analysis was found to be GTR + I + G. Bayesian
analysis and ML analysis resulted in a similar topology as in the MP analysis. The Bayesian analysis had an average standard deviation of split
frequencies = 0.007750 (BI) and the effective sample size (ESS) across the two runs is double the average ESS (avg. ESS) = 718. The
phylogenetic tree (Fig. 2), inferred from the ITS sequences, highlighted that four new species were grouped into the genus
Trechispora
.
Page 11/33
The ITS+nLSU+mt-SSU+GAPDH+RPB1+RPB2 dataset (Fig. 3) comprised sequences from 97 fungal specimens representing 50 taxa. The
dataset had an aligned length of 5,571 characters, of which 2,563 characters were constant, 1,635 were variable and parsimony-uninformative
and 1,373 (25%) were parsimony-informative. Maximum parsimony analysis yielded 5,000 equally parsimonious trees (TL = 8,491, CI = 0.5062,
HI = 0.4938, RI = 0.5763 and RC = 0.2917). The best model of nucleotide evolution for the ITS dataset estimated and applied in the Bayesian
analysis was found to be GTR+I+G. Bayesian analysis and ML analysis resulted in a similar topology as in the MP analysis. The Bayesian
analysis had an average standard deviation of split frequencies = 0.031349 (BI) and the effective sample size (ESS) across the two runs is
double the average ESS (avg. ESS) = 413.5. The topology (Fig. 3), based on ITS+nLSU+mt-SSU+GAPDH+RPB1+RPB2 sequences, revealed that
four new species were grouped into the genus
Trechispora
.
Taxonomy
Trechisporaalbofarinosa
K.Y. Luo & C.L. Zhao, sp. nov. (Figs.4, 5 and 6)
MycoBank no.: MB 849463
Holotype
:CHINA, Yunnan Province, Puer, Jingdong County, Huangcaoling, Wuliangshan National Nature Reserve, 24°23′N, 100°45′E, altitude
2350 m a.s.l., on the fallen branch of
Pinus
, leg. C.L. Zhao, 5 October 2017, CLZhao 4356 (SWFC).
Etymology
:
albofarinosa
(Lat.)—referring to thefarinosabasidiomatawith whitehymenial surface.
Fruiting body
: Basidiomata annual, resupinate,farinosa, without odor or taste when fresh, up to 3.5 cm long, 1.5 cm wide, and 300–500 µm
thick. Hymenial surface occulence, white when fresh, white to cream on drying. Sterile margin indistinct, white, and up to 0.5 mm wide.
Hyphalstructure
: Hyphal system monomitic, generative hyphae with clamp connections, colorless, thick-walled, frequently branched, interwoven,
2–3.5 µm in diameter; IKI–, CB–, tissues unchanged in KOH.
Hymenium
: Cystidia and cystidioles are absent; basidia clavate, with four sterigmata and a basal clamp connection, 6.5–10 × 3.5–5 µm.
Spores
: Basediospores ellipsoid, colorless, thin-walled, warted, IKI–, CB–, 2.5–3.5 (–4) × 2–2.5 (–3.5) μm, L = 3.18 µm, W = 2.44 µm, Q = 1.3 (n =
30/1).
Trechisporarhizomorpha
K.Y. Luo & C.L. Zhao, sp. nov. (Figs.7and8)
MycoBank no.: MB 849464
Holotype
:CHINA, Yunnan Province, Yuxi, Xinping County, Mopanshan National Forestry Park, 23°56′N, 101°29′E, altitude 2200 m
a.s.l.,onthetrunkof
Albizia julibrissin
, leg. C.L. Zhao,20 Aguest 2017,CLZhao 2522(SWFC).
Etymology:
rhizomorpha
(Lat.)—referring to the rhizomorphic basidiomata.
Fruiting body
: Basidiomata annual, resupinate, adnate,membranous, without odor or taste when fresh, up to 2.5 cm long, 1.5 cm wide, and 4 mm
thick. Hymenial surface odontioid, cream. Sterile margin indistinct, white,rhizomorphic, and up to 0.5 mm wide.
Hyphalstructure
: Hyphal system monomitic, generative hyphae with clamp connections, colorless, slightly thick-walled, ampullate septa
frequently present in subiculum and hymenium with crystals, up to 6 µm wide, branched, interwoven, 2.5–4 µm in diameter; IKI–, CB–, tissues
unchanged in KOH.
Hymenium
: Cystidia and cystidioles are absent; basidia barrelled, slightly constricted, with four sterigmata and a basal clamp connection, 6.5–
14.5 × 3.5–5.5 µm.
Spores
:Basidiospores subglobose to broad ellipsoid, colorless, slightly thick-walled, smooth, IKI–, CB–, (2–) 2.5–4 × 2–3.5 µm, L = 3.03 µm, W =
2.41 µm, Q = 1.23–1.28 (n = 60/2).
Additional specimen (paratype) examined
:China, Yunnan Province, Yuxi, Xinping County, Mopanshan National Forestry Park, 23°56′N, 101°29′E,
altitude 2200 m a.s.l.,ontheliving tree of angiosperm, leg. C.L. Zhao,19 August 2018, CLZhao7870(SWFC).
Trechisporastipitata
K.Y. Luo & C.L. Zhao, sp. nov. (Figs.9,10and11)
MycoBank no.: MB849465
Holotype
:CHINA, Yunnan Province, Puer, Jingdong County, Wuliangshan National Nature Reserve, 24°23′N, 100°45′E, altitude 2350 m a.s.l., on
the trunk of angiosperm, leg. C.L. Zhao, 6 October 2017, CLZhao 4456 (SWFC).
Page 12/33
Etymology:
stipitata
(Lat.)—referring to the stipitate basidiomata.
Fruiting body
: Basidiomata annual, laterally stipitate, solitary or imbricate. Pileus fan shaped, cortical to cork, up to 1.5 cm long, 1 cm wide, and 2
mm thick, yellowish to yellowish brown, the surface radially striatecovered with appressed scales, azonate; the hymenophore surface odontioid,
yellowish brown, up to 1 mm long. Context cream, 1 mm thick. Sterile margin indistinct, slightly buff, and 0.5 mm wide.
Hyphalstructure
: Hyphal system monomitic, generative hyphae with clamp connections, colorless, thick-walled, frequently branched, interwoven,
2.5–4 µm in diameter, IKI–, CB–, tissues unchanged in KOH.
Hymenium
: Cystidia and cystidioles are absent; basidia subcylindrical, constricted, with four sterigmata and a basal clamp connection, 5–7 ×
2.5–4 µm.
Spores
:Basidiospores subglobose to broad ellipsoid, colorless, thin-walled, smooth, IKI–, CB–, (2.5–) 2.8–5 (–5.5) × (2.5–) 3–4.7 µm, L = 4 µm,
W = 3.56 µm, Q = 1.12 (n = 30/1).
Trechisporawenshanensis
K.Y. Luo & C.L. Zhao, sp. nov. (Figs.12, 13and14)
MycoBank no.: MB849466
Holotype
:CHINA, Yunnan Province, Wenshan, Babao Town, Balao battle site, 23°22′N, 104°15′E, altitude 1300 m a.s.l., on the fallen branch of
angiosperm, leg. C.L. Zhao,19 January 2019,CLZhao 11649(SWFC).
Etymology:wenshanensis
(Lat.)—referring to the locality (Wenshan) of the type specimen.
Fruiting body
: Basidiomata annual, resupinate, adnate, cottony, easily to separate from substrate, without odor or taste when fresh, up to 5.5 cm
long, 4 cm wide, and 200–400 µm thick. Hymenial surface smooth, slightly cream when fresh, cream to buff on drying. Sterile margin indistinct,
cream, and 1–2 mm wide.
Hyphalstructure
: Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin- to thick-walled, branched, interwoven, 1–
2 µm in diameter; IKI–, CB–, tissues unchanged in KOH.
Hymenium
: Cystidia and cystidioles are absent; basidia barrelled, with four sterigmata and a basal clamp connection, 7–10×3–5 μm.
Spores
: Basidiospores ellipsoid, colorless, thin-walled, warted, IKI–, CB–, (2–) 2.5–3.7 (–4) × (1.5–) 2–3 µm, L = 3.02 µm, W = 2.37 µm, Q = 1.27
(n = 30/1).
Discussion
Many recently described wood-inhabiting fungal taxa have been reported in the subtropics and tropics, including in the genus
Trechispora
(Ordynets et al. 2015; Phookamsak et al. 2019; Xu et al. 2019; Chikowski et al. 2020; Haelewaters et al. 2020; Crous et al. 2021; de Meiras-Ottoni
et al. 2021; Zhao and Zhao 2021; Luo and Zhao 2022a;Sommai et al. 2023). The present study reports four new species in
Trechispora
, based
on a combination of morphological features and molecular evidence.
Phylogenetically, the classication of corticioid fungi revealed that two taxa of
Trechispora
farinacea
and
T. hymenocystis
nested into
Trechispora
located in
Hydnodontaceae
(
Trechisporales
) (Larsson 2007). In the present study, based on the ITS+nLSU data (Fig. 1), include 14
orders within
Agaricomycetes
(
Basidiomycota
), in which
Trechispora
was grouped within the order
Trechisporales
.
Based on ITS topology (Fig. 2) and ITS+nLSU+mt-SSU+GAPDH+RPB1+RPB2 phylogenetic tree (Fig. 3), four new species were grouped into the
genus
Trechispora
, in which
T. albofarinosa
was sister to
T. araneosa
(Höhn. & Litsch.) K.H. Larss., and then grouped with the clade comprising
T. hymenocystis
(Berk. & Broome) K.H. Larss. and
T. mollusca
(Pers.) Liberta, However, morphologically,
T. araneosa
can be delimited from
T.
albofarinosa
by its odontioid to poroid hymenial surface and larger basidiospores (5–6.5 × 4–5 µm; Larsson 1995). Further,
T. hymenocystis
differs from
T. albofarinosa
by its poroid hymenophore, shallow pores and and larger basidiospores (4.5–5.5 × 3.5–4.5 µm; Larsson 1994);
T.
mollusca
differs in its poroid hymenial surface, and ovoid to subglobose, broadly basidiospores (3.5–4 × 3–3.5 µm; Liberta 1973). The second
new species
T. rhizomorpha
grouped closely with
T. laevispora
Z.B. Liu, Y.D. Wu & Yuan Yuan, and then clustered with
T. invisitata
(H.S. Jacks.)
Liberta. However, morphologically,
T. laevispora
can be delimited from
T. rhizomorpha
by having the smooth hymenial surface, and thin-walled
basidiospores (Liu et al. 2022);
T.invisitata
is different from
T. rhizomorpha
by its dimitic hyphal system and warted, longer basidiospores (4.5–
5.5 × 3–4 µm; Liberta 1966). The third species
T. stipitata
formed a monophyletic lineage. The species
T.wenshanensis
grouped closely with
T.
rigida
(Berk.) K.H. Larss.and
T.kavinioides
B. de Vries. However, morphologically,
T. rigida
can be delimited from
T.wenshanensis
by having the
tuberculate hymenial surface and broadly ellipsoid, slightly thick-walled, larger basidiospores (5 × 4 µm; Larsson 1996). Further,
T.kavinioides
differs in its odontioid hymenial surface and narrower ellipsoid to lacrymiform basidiospores (BernicchiaandGorjón2010).
Page 13/33
Morphologically,
Trechispora albofarinosa
resembles
T. olivacea
K.Y. Luo & C.L. Zhao and
T. yunnanensis
C.L. Zhao by sharing
thefarinosabasidiomata. However,
T. olivacea
differs from
T. albofarinosa
by olivaceous hymenial surface andthick-walledbasidiospores
(Luoand Zhao 2022a);
T. yunnanensis
can be delimited from
T. albofarinosa
due to itsthick-walled, largerbasidiospores (7–8.5×5–5.5µm;Xu
et al. 2019). The new species
T. albofarinosa
is similar to
T.bambusicola
C.L. Zhao,
T. mbriata
C.L. Zhao,
T.ssurata
C.L. Zhaoand
T.murina
K.Y. Luo & C.L. Zhaoin its presence of ellipsoid basidiospores.
T.bambusicola
can be delimited from
T. albofarinosa
by odontioid hymenial
surface with aculei cylindrical to conical (0.3–0.5 mm long), and thick-walled basidiospores (Zhaoand Zhao 2021);
T. mbriata
can be delimited
from
T. albofarinosa
due to its hydnoid hymenial surface, and thick-walled basidiospores (Zhaoand Zhao 2021);
T.ssurata
is different from
T.
albofarinosa
by hydnoid hymenial surface and thick-walled, broadly basidiospores (3.3–4×2.8–3.5µm;Zhao and Zhao 2021);
T.murina
can be
delimited from
T. albofarinosa
due to its grandinioid hymenial surface and thick-walled basidiospores (Luoand Zhao 2022a).
Trechispora rhizomorpha
is similar to
T.fastidiosa
(Pers.) Libertaby sharing the membranous basidiomata. However,
T.fastidiosa
differs from
T.
rhizomorpha
by smooth hymenial surface and larger basidiospores (6–7× 4.5–5.5µm;BernicchiaandGorjón2010).
T. rhizomorpha
resembles
T.bambusicola
C.L. Zhao,
T. canariensis
Ryvarden & Libertaand
T. christiansenii
(Parmasto) Libertain its monomitic hyphal system and
presence of the crystals. However,
T.bambusicola
differs from
T. rhizomorpha
by its odontioid hymenial surface and ornamented basidiospores
(Zhao and Zhao 2021);
T. canariensis
differs from
T. rhizomorpha
due to its larger basidia (15–20 × 5–6 μm) and thin-walled, larger
basidiospores (5–7 × 3–3.5 μm; Ryvarden and Liberta 1978);
T. christiansenii
can be delimited from
T. rhizomorpha
by its larger basidia (15–20
× 6–7 μm) and larger basidiospores (5.5–7 × 4–4.5 μm; Liberta 1966).
Trechispora stipitata
is similar to
T. byssinella
(Bourdot) Liberta,
T.kavinioides
B. de Vries,
T. silvae-ryae
(J. Erikss. & Ryvarden) K.H. Larss. and
T.
subsphaerospora
(Litsch.) Liberta by sharing smooth basidiospores. However,
T. byssinella
differs from
T. rhizomorpha
by having narrower
ellipsoid basidiospores (Bernicchia and Gorjón 2010);
T.kavinioides
can be delimited from
T. rhizomorpha
by its odontioid hymenial surface, and
narrower ellipsoid to lacrymiform basidiospores (Bernicchia & Gorjón 2010);
T. silvae-ryae
is different from
T. rhizomorpha
by dimitic hyphal
system (Bernicchia and Gorjón 2010);
T. subsphaerospora
differs from
T. rhizomorpha
by having angular basidiospores (Bernicchia and Gorjón
2010).
Trechisporawenshanensis
resembles
T.fastidiosa
and
T. laevispora
Z.B. Liu, Y.D. Wu & Yuan Yuan
by sharing smooth hymenial surface.
However,
T.fastidiosa
differs from
T.wenshanensis
by larger basidiospores (6–7 × 4.5–5.5 µm; Bernicchia and Gorjón 2010);
T. laevispora
differs from
T.wenshanensis
by mbriate margin of the basidiomata and smooth basidiospores (Liu et al. 2022). The new species
T.wenshanensis
is similar to
T.bambusicola
C.L. Zhao,
T. mbriata
C.L. Zhao,
T. ssurata
C.L. Zhao,
T. murina
K.Y. Luo & C.L. Zhao and
T.
yunnanensis
C.L. Zhao due to its ellipsoid basidiospores. However,
T.bambusicola
can be delimited from
T.wenshanensis
by odontioid
hymenial surface, and thick-walled basidiospores (Zhao and Zhao 2021);
T. mbriata
differs from
T.wenshanensis
due to its hydnoid hymenial
surface, and thick-walled basidiospores (Zhao and Zhao 2021);
T.ssurata
is different from
T.wenshanensis
by hydnoid hymenial surface, and
thick-walled, broadly basidiospores (3.3–4 × 2.8–3.5 µm; Zhao and Zhao 2021);
T.murina
can be delimited from
T.wenshanensis
due to its
grandinioid hymenial surface, h and thick-walled basidiospores (Luo and Zhao 2022a);
T.yunnanensis
is different from
T.wenshanensis
by
farinaceous hymenial surface and thick-walled, larger basidiospores (7–8.5 × 5–5.5 µm; Xu et al. 2019).
Key to 35 accepted species of
Trechispora
in China
1.Basidiomata with clavarioid............................................................................................
T. longiramosa
1.Basidiomata without clavarioid.............................................................................................................2
2.Basidiomata pileate-stipitate...................................................................................................
T. stipitata
2.Basidiomata resupinate to effused.........................................................................................................3
3.Hymenophore poroid.............................................................................................................................4
3.Hymenophore smooth, colliculose, irpicoid, grandinioid, odontioid, hydnoid.....................................8
4.Hyphal system dimitic..........................................................................................................
T. dimitiella
4.Hyphal system monomitic.....................................................................................................................5
5.Subicular hyphae thick-walled...............................................................................................................6
5.Subicular hyphae thin-walled.................................................................................................................7
6. Ampullate septa present on subicular hyphae........................................................................
T. mollusca
Page 14/33
6. Ampullate septa absent on subicular hyphae.........................................................................
T. suberosa
7.Crystals in subiculum as numerous rodlets.....................................................................
T. candidissima
7.Crystals in subiculum as rhomboidal plates or various shapes..............................................................8
8. Sphaerocysts present in cords and the adjacent part of subiculum.................................
T. hymenocystis
8. Sphaerocysts absent..................................................................................................
T.subhymenocystis
9. Basidiospores smooth..........................................................................................................................10
9. Basidiospores ornamented...................................................................................................................12
10. Basidiomatawith rhizomorph......................................................................................
T. rhizomorpha
10. Basidiomatawithout rhizomorph.......................................................................................................11
11. Basidiospores subglobose, angular to turbinate...................................................................
.T. connis
11. Basidiospores ellipsoid......................................................................................................
T. laevispora
12. Basidiomata < 50 µm thick....................................................................................................
T. gracilis
12. Basidiomata>50 µm thick................................................................................................................13
13. Hymenophore smooth........................................................................................................................14
13. Hymenophorecolliculose, irpicoid, grandinioid, odontioid, hydnoid...............................................20
14. Basidiosporesslightlycyanophilous........................................................................................
T. incisa
14. Basidiosporesacyanophilous.............................................................................................................15
15. Basidiospores >6.5 µm long..........................................................................................
T. yunnanensis
15. Basidiospores<6.5 µm long.............................................................................................................16
16.Generative hyphae <2 µmindiameter......................................................................
.T. wenshanensis
16.Generative hyphae >2 µmindiameter..............................................................................................17
17.Generative hyphae thin-walled...........................................................................................
.T. larssonii
17.Generative hyphae thick-walled.........................................................................................................18
18.Generative hyphae > 3.5µmindiameter...........................................................................
T. latehypha
18.Generative hyphae < 3.5µmindiameter...........................................................................................19
19. Basidiospores ellipsoid, thin-walled.............................................................................
T. albofarinosa
19. Basidiosporesbroadlyellipsoidto globose, thick-walled....................................................
T. olivacea
20. Hymenial surfacecolliculose, irpicoid or grandinioid.......................................................................21
20. Hymenial surface odontioidor hydnoid.............................................................................................23
21.Generative hyphae thick-walled.............................................................................................
T. murina
21.Generative hyphae thin-walled..........................................................................................................22
22. Growthon bamboo..........................................................................................................
T. taiwanensis
22. Growthon other plant......................................................................................................
.T. crystallina
Page 15/33
23. Tramal hyphae thin-walled or slightly thick-walled..........................................................................24
23. Tramal hyphae distinctly thick-walled...............................................................................................28
24. Crystals absent in trama..........................................................................................................
T. tropica
24. Crystals present in trama....................................................................................................................25
25. Basidiosporessubglobose to globose..............................................................................
T. odontioidea
25. Basidiosporesellipsoidor broadlyellipsoid......................................................................................26
26. Tramal hyphae 3–6 µm wide, spines of basidiospores constricted...................................
.T. constricta
26. Tramal hyphae 2–4 µm wide, spines of basidiospores not constricted..............................................27
27. Cystidia present............................................................................................................
T. chaibuxiensis
27. Cystidia absent..........................................................................................................................
T. nivea
28. Hymenophore aculei > 0.4 mm long..................................................................................................29
28. Hymenophore aculei < 0.4 mm long..................................................................................................32
29. Margin smooth.....................................................................................................................
T. ssurata
29. Margin mbriate................................................................................................................................30
30. Basidiomata irpicoid..............................................................................................................
T. dentata
30.Basidiomataodontioidor hydnoid.....................................................................................................31
31. Hymenophore aculei sparse, cream to buff-yellow when fresh..........................................
T. mbriata
31. Hymenophore aculei dense, white when fresh.......................................................................
T. fragilis
32.Generative hyphae ampullate septa absent....................................................................
T. bambusicola
32.Generative hyphae ampullate septa present.......................................................................................33
33. Basidiospores with sharp spines.....................................................................................
T. subssurata
33. Basidiospores without sharp spines...................................................................................................34
34.Spines of basidiospores constricted.................................................................................
T. subsinensis
34.Spines of basidiospores not constricted.................................................................................
T. sinensis
Declarations
AcknowledgmentsThe research was supported by the National Natural Science Foundation of China (Project No. 32170004), the First Class
Forestry Academic Subject in Yunnan Province, High-level Talents Program of Yunnan Province (YNQR-QNRC-2018-111), and the Research
Project of Yunnan Key Laboratory of
Gastrodia
and Fungal Symbiotic Biology (TMKF2023A03), and the National College Students Innovation
and Entrepreneurship Training Program (No. 202210677020).
Authors' contributionsConceptualization, C.–L.Z.; methodology, C.–L.Z. and K.–Y.L.; software, C.–L.Z. and K.–Y.L.; validation, C.–L.Z. and K.–
Y.L.; formal analysis, C.–L.Z., K.–Y.L. and J.–Q.S.; investigation, C.–L.Z., K.–Y.L. and Z.–Y.C.; resources, C.–L.Z. and L.–J.C; writing—original
draft preparation, C.–L.Z. and K.–Y.L; writing—review and editing, C.–L.Z. and K.–Y.L; visualization, C.–L.Z. and K.–Y.L; supervision, C.–L.Z.;
project administration, C.–L.Z. and L.–J.C; funding acquisition, C.–L.Z. All authors have read and agreed to the published version of the
manuscript.
Data availabilityPublicly available datasets were analyzed in this study. This data can be found here: [https://www.ncbi.nlm.nih.gov/;
https://www.mycobank.org/page/Simple%20 names%20 search].
Page 16/33
Conict of interestThe authors declare that they have no conict of interest.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in
the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
References
1. Bernicchia A, Gorjón SP (2010)
Fungi Europaei
12:
Corticiaceae s.l.
;Edizioni Candusso: Alassio, Italy.
2. Bondartsev AS (1953)
The Polyporaceae of the European USSR and Caucasia
; Jerusalem: Israel Program for Scientic Translations, US, pp
1–896.
3. Bondartsev AS, Singer R (1941) Zur Systematik der Polyporaceen. Ann Mycol 39(1): 43–65.
4. Burdsall HH Jr, Gilbertson RL (1982) New species of
Corticiaceae
(
Basidiomycotina
,
Aphyllophorales
) from Arizona. Mycotaxon 15: 333–
340.
5. Chikowski RS, Larsson KH, Gibertoni TP (2020) Taxonomic novelties in
Trechispora
(
Trechisporales
,
Basidiomycota
) from Brazil. Mycol Prog
19: 1403–1414. https://doi.org/10.1007/s11557-020-01635-y
. Crous PW, Osieck ER, Jurjević Ž (2021) Fungal Planet description sheets. Persoonia 1284–1382.
7. Cui BK, Tang LP, Dai YC (2011) Morphological and molecular evidences for a new species of
Lignosus
(
Polyporales
,
Basidiomycota
) from
tropical China. Mycol Prog 10(3): 267–271. https://doi.org/10.1007/s11557-010-0697-y
. Dai YC (2011) A revised checklist of corticioid and hydnoid fungi in China for 2010. Mycoscience 52(1): 69–79.
https://doi.org/10.1007/S10267-010-0068-1
9. Dai YC (2012) Polypore diversity in China with an annotated checklist of Chinese polypores. Mycoscience 53(1): 49–80.
https://doi.org/10.1007/s10267-011-0134-3
10. Dai YC, Cui BK, Si J, He SH, Hyde KD, Yuan HS, Liu XY, Zhou LW (2015) Dynamics of the worldwide number of fungi with emphasis on
fungal diversity in China. Mycol Prog 14: 62. https://doi.org/10.1007/s11557-015-1084-5
11. Desjardin DE, Perry BA (2015) A new species of
Scytinopogon
from the island of Principe, Republic of Sao Tome and Principe, West Africa.
Mycosphere 6(4): 433–440. https://doi.org/10.5943/mycosphere/6/4/5
12. Felsenstein J (1985) Condence intervals on phylogenetics: An approach using bootstrap. Evolution 39(4): 783–791.
https://doi.org/10.2307/2408678
13. Gafforov Y, Ordynets A, Langer EJ, Yarasheva M, Zhou LW (2020) Species diversity with comprehensive annotations of wood-inhabiting
poroid and corticioid fungi in Uzbekistan. Front Microbiol 11: 598321. https://doi.org/10.3389/fmicb.2020.598321
14. Gilbertson RL, Budington AB (1970) Three new species of wood-rotting fungi in the
Corticiaceae
. Mycologia 62: 673–678.
https://doi.org/10.1080/00275514.1970.12019011
15. Haelewaters D, Dima B, Abdel-Haz AII, Abdel-Wahab M, Abul-Ezz SR, Acar I, Aguirre-Acosta E, Aime MC, Aldemir C, Ali M et al. (2020) Fungal
systematics and evolution: FUSE 6. Sydowia 72: 231–356.
1. Hallenberg N. Wood-fungi (
Corticiaceae
,
Coniophoraceae
,
Lachnocladiaceae
,
Thelephoraceae
) in N. Iran. I. (1978) Iran J Plant Pathol 14:
38–87.
17. Hallenberg N. (1980) New taxa of
Corticiaceae
from N. Iran (
Basidiomycetes
). Mycotaxon 11(2): 447–475.
1. Hjortstam K, Larsson KH (1995) Annotated check-list to genera and species of corticioid fungi (
Aphyllophorales
,
Basidiomycotina
) with
special regards to tropical and subtropical areas. Windahlia 21: 1–75.
19. Huang RX, Chen JZ, Wu JR, Zhao CL (2019)
Phlebiella ailaoshanensis
sp. nov. (
Polyporales
,
Basidiomycota
) described from China.
Phytotaxa 419(1): 105–109. https://doi.org/10.11646/phytotaxa.419.1.8
20. Huang RX, Zhao CL (2020) Three new species of
Phlebia
(
Polyporales
,
Basidiomycota
) based on the evidence from morphology and DNA
sequence data. Mycol Prog 19: 753–767. https://doi.org/10.1007/s11557-020-01591-7
21. Hyde KD (2022) The numbers of fungi. Fungal Divers 114(1): 1. https://doi.org/10.1007/s13225-022-00507-y
22. Jülich W (1975) Studies in resupinate basidiomycetes - III. Persoonia 8(3): 291–305.
23. Jülich W (1976) Studies in resupinate basidiomycetes - IV. Persoonia 8(4): 431–442.
24. Jülich W, Stalpers JA (1980) The resupinate non-poroid
Aphyllophorales
of the temperate northern hemisphere. Verh K Ned Akad Wet Afd
Natuurkd 74: 1–335.
Page 17/33
25. Jülich W (1982) Notes on some
Basidiomycetes
(
Aphyllophorales
and
Heterobasidiomycetes
). Persoonia 11: 421–428.
2. Karsten PA (1890) Fragmenta mycologica XXIX. Hedwigia 29: 147–149.
27. Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization.
Briengs Bioinf 20(4): 1160–1166. https://doi.org/10.1093/bib/bbx108
2. Kornerup A, Wanscher J (1978)
Metheun Hand Book of Colour. 3rd Edition
; Metheun London Ltd.: London, UK, pp. 144–148.
29. Kuuskeri J, Mäkelä MR, Isotalo J, Oksanen I, Lundell T (2015) Lignocellulose-converting enzyme activity proles correlate with molecular
systematics and phylogeny grouping in the incoherent genus
Phlebia
(
Polyporales
,
Basidiomycota
). BMC Microbiol. 15: 217.
https://doi.org/10.1186/s12866-015-0538-x
30. Larsson KH (1992) The genus
Trechispora
(
Corticiaceae
,
Basidiomycetes
). Göteborg: Dept. of Systematic Botany.
31. Larsson KH (1994) Poroid species in
Trechispora
and the use of calcium oxalate crystals for species identication. Mycol Res 98(10):
1153–1172. https://doi.org/10.1016/S0953-7562(09)80200-1
32. Larsson KH (1995) Taxonomy of
Trechispora farinacea
and proposed synonyms I. Species with a grandinioid or hydnoid hymenophore.
Symb Bot Ups 30(3): 101–118.
33. Larsson, KH (1996) New species and combinations in
Trechispora
(
Corticiaceae
,
Basidiomycotina
). Nord J Bot 16: 83–98.
https://doi.org/10.1111/j.1756-1051.1996.tb00218.x
34. Larsson KH (2007) Re-thinking the classication of corticioid fungi. Mycol Res 111(9): 1040–1063.
https://doi.org/10.1016/j.mycres.2007.08.001
35. Larsson A (2014) AliView: A fast and lightweight alignment viewer and editor for large data sets. Bioinformatics (Oxford, England) 30(22):
3276–3278. https://doi.org/10.1093/bioinformatics/btu531
3. Larsson E, Larsson KH (2003) Phylogenetic relationships of russuloid basidiomycetes with emphasis on aphyllophoralean taxa. Mycologia
95: 1037–1065. https://doi.org/10.1080/15572536.2004.11833020
37. Larsson KH, Larsson E, Kõljalg U (2004) High phylogenetic diversity among corticioid homobasidiomycetes. Mycol Res 108(9): 983–1002.
https://doi.org/10.1017/S0953756204000851
3. Larsson KH, Larsson E, Ryvarden L, Spirin V (2020) Some new combinations of corticioid fungi (
Basidiomycota
,
Agaricomycetes
). Synop
Fungorum 40: 113–117.
39. Liberta AE (1973) The genus
Trechispora
(
Basidiomycetes
,
Corticiaceae
). Can J Bot 51: 1871–1892. https://doi.org/10.1139/b73-240
40. Lima VX, Lira C S, Chikowski R S, Santos C, Lima N, Gibertoni T B (2020) Additions to neotropical stereoid fungi (
Polyporales
,
Basidiomycota
): one new species of Lopharia and one new combination in
Phlebiopsis
. Mycol Prog 19: 31–40.
https://doi.org/10.1007/s11557-019-01538-7
41. Liu SL, Ma HX, He SH, Dai YC (2019) Four new corticioid species in
Trechisporales
(
Basidiomycota
) from East Asia and notes on phylogeny
of the order. MycoKeys 48: 97–113. https://doi.org/10.3897/mycokeys.48.31956
42. Liu ZB, Yuan Y (2022) A new species of
Xenasmatella
(
Polyporales
,
Basidiomycota
) from southern China. Phytotaxa 556(2): 185–192.
https://doi.org/10.11646/phytotaxa.556.2.8
43. Liu ZB, Wu YD, Zhao H, Lian YP, Wang YR, Wang CG, Mao WL, Yuan Y (2022) Outline, divergence times, and phylogenetic analyses of
Trechisporales
(
Agaricomycetes
,
Basidiomycota
). Front Microbiol 13: 818358. https://doi.org/10.3389/fmicb.2022.818358
44. Luo KY, Zhao CL (2022a) A molecular systematics and taxonomy research on
Trechispora
(
Hydnodontaceae
,
Trechisporales
): Concentrating
on three new
Trechispora
species from East Asia. J Fungi 8: 1020. https://doi.org/10.3390/jof8101020
45. Luo KY, Zhao CL (2022b) Morphology and multigene phylogeny reveal a new order and a new species of wood-inhabiting basidiomycete
fungi (
Agaricomycetes
). Front Microbiol 13: 970731. https://doi.org/10.3389/fmicb.2022.970731
4. Ma X, Zhao CL (2019)
Crepatura ellipsospora
gen. et sp. nov. in
Phanerochaetaceae
(
Polyporales
,
Basidiomycota
) bearing a tuberculate
hymenial surface. Mycol Prog 18: 785–793. https://doi.org/10.1007/s11557-019-01488-0
47. Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (
Inocybe
,
Agaricales
). Mol
Phylogenet Evol 35: 1–20. https://doi.org/10.1016/j.ympev.2004.11.014
4. Matheny PB, Liu YJ, Ammirati JF, Hallet BD (2002) Using RPBI sequences to improve phylogenetic inference among mushrooms (
Inocybe
,
Agaricales
). Am. J. Bot. 89: 688–698. https://doi.org/10.3732/ajb.89.4.688
49. de Meiras-Ottoni A, Larsson KH, Gibertoni TB (2021) Additions to
Trechispora
and the status of
Scytinopogon
(
Trechisporales
,
Basidiomycota
). Mycol Prog 20: 203–222. https://doi.org/10.1007/s11557-021-01667-y
50. Miller MA, Pfeiffer W, Schwartz T (2012) The CIPRES Science Gateway: Enabling high-impact science for phylogenetics researchers with
limited resources. Assoc Comput Mach 39: 1–8. https://doi.org/10.1145/2335755.2335836
51. Miettinen O, Larsson KH (2006)
Trechispora elongata
species nova from North Europe. Mycotaxon 96: 193–198.
Page 18/33
52. Nylander JAA (2004) MrModeltest v.2. Program Distributed by the Author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden.
53. Ordynets A, Larsson KH, Langer E (2015) Two new
Trechispora
species from La Réunion Island. Mycol Prog 14: 113.
https://doi.org/10.1007/s11557-015-1133-0
54. Parmasto E (1968)
Conspectus Systematis Corticiacearum
; Institutum Zoologicum et Botanicum Academiae Scientiarum R.P.S.S: Tartu,
Estonia, pp 1–97.
55. Peay KG, Bruns TD, Kennedy PG, Bergemann SE, Garbelotto M (2007) A strong species-area relationship for eukaryotic soil microbes: island
size matters for ectomycorrhizal fungi. Soil Ecol Lett 10(6): 470–480. https://doi.org/10.1111/j.1461-0248.2007.01035.x
5. Petersen JH (1996) The Danish Mycological Society’s colour-chart. Foreningen til Svampekundskabens Fremme, Greve.
57. Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Raspe O, Karunarathna SC, Wanasinghe DN,
Hongsanan S (2019) Fungal diversity notes 929–1035, taxonomic and phylogenetic contributions on genera and species of fungi. Fungal
Divers 95: 1–273. https://doi.org/10.1007/s13225-019-00421-w
5. Rauschert S (1987) Nomenklatorische Studien bei Höheren Pilzen IV. Nichtblätterpilze (
Aphyllophorales
) mit Ausschluss der Porlinge.
Feddes Repertorium 98(11–12): 657–664. https://doi.org/10.1002/fedr.4910981116
59. Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences.
Mycol Res 98(6): 625–634. https://doi.org/10.1016/S0953-7562(09)80409-7
0. Ryvarden L (1975) Studies in the
Aphyllophorales
of Africa 3. Three new polypores from Zaïre. Bulletin du Jardin Botanique National de
Belgique 45: 197–203. https://doi.org/10.2307/3667599
1. Ryvarden L, Liberta AE (1978) Contribution to the
Aphyllophoralles
of the Canary Islands 4. Two new species of
Trechispora
and
Xenmastella
. Can J Bot 56(20): 2617–2619. https://doi.org/10.1139/b78-314
2. Ryvarden L (2002) A note on the genus
Hydnodon
Banker. Some neotropical wood-inhabiting fungi. Synop Fungorum 15: 31–33.
3. Ryvarden L, Stokland L, Larsson KH (2003) A critical checklist of Corticoid and Poroid fungi of Norway. Synop Fungorum 17: 1–209.
4. Rogers DP (1944) The genera
Trechispora
and
Galzinia
. Mycologia 36: 70–103. https://doi.org/10.1080/00275514.1944.12017530
5. Rogers DP, Jackson HS (1943) Notes on the synonymy of some North American
Thelephoraceae
and other resupinates. Farlowia 1(2): 263–
328. https://doi.org/10.5962/p.315982
. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2:
Ecient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3): 539–542.
https://doi.org/10.1093/sysbio/sys029
7. Sommai S, Pinruan U, Khamsuntorn P (2023) Three new species of
Trechispora
from Northern and Northeastern Thailand. Mycol Prog 22:
42. https://doi.org/10.1007/s11557-023-01886-5
. Sotome K, Hattori T, Ota Y (2011) Taxonomic study on a threatened polypore,
Polyporus pseudobetulinus
, and a morphologically similar
species,
P. subvarius
. Mycoscience 52: 319–326. https://doi.org/10.1007/S10267-011-0111-X
9. Spirin V Volobuev S Okun M Miettinen O Larsson KH (2017) What is the type species of
Phanerochaete
(
Polyporales
,
Basidiomycota
). Mycol
Prog 16: 171–183. https://doi.org/10.1007/s11557-016-1267-8
70. Telleria MT, Melo I, Dueñas M, Larsson KH, Paz Martín MP (2013) Molecular analyses conrm Brevicellicium in
Trechisporales
. IMA Fungus
4: 21–28. https://doi.org/10.5598/imafungus.2013.04.01.03
71. Trichies G, Schultheis B (2002)
Trechispora antipus
sp. nov., une seconde espèce bisporique du genre
Trechispora
(
Basidiomycota
,
Stereales
). Mycotaxon 82: 453–458.
72. Vilgalys R, Hester M (1990) Rapid genetic identication and mapping of enzymatically amplied ribosomal DNA from several
Cryptococcus
species. J Bacteriol 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
73. Vries BWL de (1987) Some new corticioid fungi. Mycotaxon 28(1): 77–90.
74. Vu D, Groenewald M, Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J et al. (2019) Large-
scale generation and analysis of lamentous fungal DNA barcodes boosts coverage for kingdom Fungi and reveals thresholds for fungal
species and higher taxon delimitation. Stud Mycol 92: 135–154. https://doi.org/10.1016/j.simyco.2018.05.001
75. Wagner T, Fischer M (2001) Natural groups and a revised system for the European poroid
Hymenochaetales
(
Basidiomycota
) supported by
nLSU rDNA sequence data. Mycol Res 105: 773–782. https://doi.org/10.1017/S0953756201004257
7. White TJ, Bruns T, Lee S, Taylor J (1990) “Amplication and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR
protocols: A Guide to Methods And Applications, eds Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J. (San Diego, CA: Academic
Press), 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
77. Wijayawardene NN, Phillips AJL, Pereira DS, Dai DQ, Aptroot A, Monteiro JS, Druzhinina IS, Cai F, Fan X, Selbmann L et al. (2022)
Forecasting the number of species of asexually reproducing fungi (
Ascomycota
and
Basidiomycota
). Fungal Divers 114, 463–490.
https://doi.org/10.1007/s13225-022-00500-5
Page 19/33
7. Wu SH, Chen YP, Wei CL, Floudas D, Dai YC (2017) Two new species of
Phanerochaete
(
Basidiomycota
) and redescription of
P. robusta
.
Mycol Prog 17: 425–435. https://doi.org/10.1007/s11557-017-1368-z
79. Xu TM, Chen YH, Zhao CL (2019)
Trechispora yunnanensis
sp. nov. from China. Phytotaxa 424(4): 253–261.
https://doi.org/10.11646/phytotaxa.424.4.5
0. Yu J, Cai J, Liu HG, Zhao CL (2023) Molecular systematics and taxonomy reveal three new taxa in
Phanerochaete
(
Phanerochaetaceae
,
Polyporales
) from the Yunnan-Guizhou plateau, East Asia. Mycol Prog 22: 59. https://doi.org/10.1007/s11557-023-01903-7
1. Yuan HS, Dai YC (2012) Wood-inhabiting fungi in southern China. 6. Polypores from Guangxi autonomous region. Ann Bot Fenn 49: 341–
351. https://doi.org/10.5735/085.049.0605
2. Yuan Q, Luo KY, Zhang Y, Zhao CL (2023) Morphological characteristics and phylogenetic analyses revealed three new woodinhabiting fungi
(
Agaricomycetes
,
Basidiomycota
) in Southern China. Phytotaxa 592(3): 179–195. https://doi.org/10.11646/phytotaxa.592.3.1
3. Yurchenko E, Wu SH (2014) Three new species of
Hyphodontia
with peg-like hyphal aggregations. Mycol Prog 13(3): 533–545.
https://doi.org/10.1007/s11557-013-0935-1
4. Zhao CL, Qu MH, Huang RX, Karunarathna SC (2023) Multi-gene phylogeny and taxonomy of the wood-rotting fungal genus
Phlebia
sensu
lato (
Polyporales
,
Basidiomycota
). J Fungi 9(3): 1–41. https://doi.org/10.3390/jof9030320
5. Zhao W, Zhao CL (2021) The phylogenetic relationship revealed three new wood-inhabiting fungal species from genus
Trechispora
. Front
Microbiol 12: 650195. https://doi.org/10.3389/fmicb.2021.650195
. Zhao CL, Wu ZQ (2017)
Ceriporiopsis kunmingensis
sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and
phylogenetic analysis. Mycol Prog 16(1): 93–100. https://doi.org/10.1007/s11557-016-1259-8
7. Zong TK, Zhao CL (2021) Morphological and molecular identication of two new species of
Phlebiella
(
Polyporales
,
Basidiomycota
) from
southern China. Nova Hedwigia 112: 501–514. https://doi.org/10.1127/nova_hedwigia/2021/0628
. Zong TK, Wu JR, Zhao CL (2021) Three new
Xenasmatella
(
Polyporales
,
Basidiomycota
) species from China. Phytotaxa 489(2): 111–120.
https://doi.org/10.11646/phytotaxa.489.2.1
Figures
Page 20/33
Figure 1
Maximum parsimony strict consensus tree illustrating the phylogeny of
Trechisporales
and related order in the class
Agaricomycetes
based on
ITS+nLSU sequences.
Page 21/33
Figure 2
Maximum parsimony strict consensus tree illustrating the phylogeny of the four new species and related species in
Trechispora
, based on ITS
sequences. Branches are labelled with maximum likelihood bootstrap values > 70%, parsimony bootstrap values > 50% and Bayesian posterior
probabilities > 0.95, respectively.
Page 22/33
Figure 3
Maximum parsimony strict consensus tree illustrating the phylogeny of the four new species and related species in
Trechispora
, based on
ITS+nLSU+mt-SSU+GAPDH+RPB1+RPB2 sequences. Branches are labelled with maximum likelihood bootstrap values > 70%, parsimony
bootstrap values > 50% and Bayesian posterior probabilities > 0.95, respectively.
Page 23/33
Figure 4
Basidiomata of
Trechispora albofarinosa
(holotype).
Bars: A = 1 cm, B = 1 mm.
Page 24/33
Figure 5
Microscopic structures of
Trechispora albofarinosa
(holotype). A Basidiospores. B Basidia and basidioles. C A section of hymenium. Bars: A = 5
µm, B–C = 10 µm.
Page 25/33
Figure 6
Scanning electron micrograph of basidiospores of
Trechispora albofarinosa
(holotype). Bars: A–B = 1 μm, C = 2 μm; D = 10 μm.
Page 26/33
Figure 7
Basidiomata of
Trechispora rhizomorpha
(holotype).
Bars: A = 1 cm, B = 1 mm.
Page 27/33
Figure 8
Microscopic structures of
Trechispora rhizomorpha
(holotype). A Basidiospores. B Basidia and basidioles. C A section of hymenium. Bars: A = 5
µm, B–C = 10 µm.
Page 28/33
Figure 9
Basidiomata of
Trechispora stipitata
(holotype). A–B The front of the basidiomata.
Bars: A = 0.5 cm, B = 1 mm.
Page 29/33
Figure 10
Basidiomata of
Trechispora stipitata
(holotype). C–D The back of the basidiomata.
Bars: A = 0.5 cm, B = 1 mm.
Page 30/33
Figure 11
Microscopic structures of
Trechispora stipitata
(holotype). A Basidiospores. B Basidia and basidioles. C A section of hymenium. Bars: A = 5 µm,
B–C = 10 µm.
Page 31/33
Figure 12
Basidiomata of
Trechispora wenshanensis
(holotype).
Bars: A = 1 cm, B = 1 mm.
Page 32/33
Figure 13
Microscopic structures of
Trechispora wenshanensis
(holotype). A Basidiospores. B Basidia and basidioles. C A section of hymenium. Bars: A =
5 µm, B–C = 10 µm.
Page 33/33
Figure 14
Scanning electron micrograph of basidiospores of
Trechispora wenshanensis
(holotype). Bars: A = 1 μm; B = 5 μm.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Phlebia s.l. (Polyporales, Basidiomycota) accommodates numerous species of wood-inhabiting fungi within the phylum Basidiomycota. The present study employs the morphological and phylogenetic approaches to revise the generic and species classification of Phlebia s.l. and surveys the species diversity. The phylogenetic analyses were performed using multiple gene regions viz. the internal transcribed spacer (ITS), the large subunit nuclear ribosomal RNA gene (nLSU), the translation elongation factor 1-α (tef1), the small subunit of mitochondrial rRNA gene (mtSSU), the glyceraldehyde 3-phosphate dehydrogenase (GAPDH), RNA polymerase II largest subunit (rpb1), and RNA polymerase II second largest subunit (rpb2). We overall recognize twenty genera of Phlebia s.l., including three new genera viz. Ceriporiopsoides, Phlebicolorata, and Pseudophlebia, seven new species viz. Crustodontia rhododendri, Hydnophlebia fissurata, Luteoporia straminea, Merulius sinensis, My-coaciella brunneospina, Phlebia niveomarginata, and P. poroides and seventeen new combinations viz. to show the placements, and notes of new taxa are provided.
Article
Full-text available
Novel species of fungi described in this study include those from various countries as follows: Argentina , Colletotrichum araujiae on leaves, stems and fruits of Araujia hortorum . Australia , Agaricus pateritonsus on soil, Curvularia fraserae on dying leaf of Bothriochloa insculpta , Curvularia millisiae from yellowing leaf tips of Cyperus aromaticus , Marasmius brunneolorobustus on well-rotted wood, Nigrospora cooperae from necrotic leaf of Heteropogon contortus , Penicillium tealii from the body of a dead spider, Pseudocercospora robertsiorum from leaf spots of Senna tora , Talaromyces atkinsoniae from gills of Marasmius crinis-equi and Zasmidium pearceae from leaf spots of Smilax glyciphylla . Brazil , Preussia bezerrensis from air. Chile , Paraconiothyrium kelleni from the rhizosphere of Fragaria chiloensis subsp. chiloensis f. chiloensis . Finland , Inocybe udicola on soil in mixed forest with Betula pendula , Populus tremula , Picea abies and Alnus incana . France , Myrmecridium normannianum on dead culm of unidentified Poaceae . Germany , Vexillomyces fraxinicola from symptomless stem wood of Fraxinus excelsior . India , Diaporthe limoniae on infected fruit of Limonia acidissima , Didymella naikii on leaves of Cajanus cajan , and Fulvifomes mangroviensis on basal trunk of Aegiceras corniculatum . Indonesia , Penicillium ezekielii from Zea mays kernels. Namibia , Neocamarosporium calicoremae and Neocladosporium calicoremae on stems of Calicorema capitata , and Pleiochaeta adenolobi on symptomatic leaves of Adenolobus pechuelii . Netherlands , Chalara pteridii on stems of Pteridium aquilinum , Neomackenziella juncicola (incl. Neomackenziella gen. nov.) and Sporidesmiella junci from dead culms of Juncus effusus . Pakistan , Inocybe longistipitata on soil in a Quercus forest. Poland , Phytophthora viadrina from rhizosphere soil of Quercus robur , and Septoria krystynae on leaf spots of Viscum album . Portugal (Azores) , Acrogenospora stellata on dead wood or bark. South Africa , Phyllactinia greyiae on leaves of Greyia sutherlandii and Punctelia anae on bark of Vachellia karroo . Spain , Anteaglonium lusitanicum on decaying wood of Prunus lusitanica subsp. lusitanica , Hawksworthiomyces riparius from fluvial sediments, Lophiostoma carabassense endophytic in roots of Limbarda crithmoides , and Tuber mohedanoi from calcareus soils. Spain (Canary Islands) , Mycena laurisilvae on stumps and woody debris. Sweden , Elaphomyces geminus from soil under Quercus robur . Thailand , Lactifluus chiangraiensis on soil under Pinus merkusii , Lactifluus nakhonphanomensis and Xerocomus sisongkhramensis on soil under Dipterocarpus trees. Ukraine , Valsonectria robiniae on dead twigs of Robinia hispida . USA , Spiralomyces americanus (incl. Spiralomyces gen. nov.) from office air. Morphological and culture characteristics are supported by DNA barcodes.
Article
Full-text available
Dead wood-associated fungi play an important role in wood degradation and the recycling of organic matter in the forest ecological system. Xenasmataceae is a cosmopolitan group of wood-rotting fungi that grows on tropical, subtropical, temperate, and boreal vegetation. In this study, a new fungal order, Xenasmatales, is introduced based on both morphology and multigene phylogeny to accommodate Xenasmataceae. According to the internal transcribed spacer and nuclear large subunit (ITS+nLSU) and nLSU-only analyses of 13 orders, Xenasmatales formed a single lineage and then grouped with orders Atheliales, Boletales, and Hymenochaetales. The ITS dataset revealed that the new taxon Xenasmatella nigroidea clustered into Xenasmatella and was closely grouped with Xenasmatella vaga. In the present study, Xenasmatella nigroidea collected from Southern China is proposed as a new taxon, based on a combination of morphology and phylogeny. Additionally, a key to the Xenasmatella worldwide is provided.
Article
Full-text available
A new species of Xenasmatella, based on morphology, and molecular analysis (using the nuc rDNA ITS1-5.8S-ITS2 (ITS) dataset), was found growing on the underside of rotten bamboo in Yunnan Province, China. X. roseobubalina is characterized by annual, resupinate basidioma with a pinkish buff hymenophore, a monomitic hyphal system, thin-walled generative hyphae with clamp connections, abundant crystalline matter among the hyphae, the absence of cystidia and cystidioles, and broadly ellipsoid to subglobose basidiospores measuring 3.8–5 × 3.3–4 μm. We present the new species with illustrated description and comparisons to closest species as well as a key to the species of Xenasmatella known from China.
Article
Phanerochaete is an important genus of wood-inhabiting fungi that can decompose rotten wood in forest ecosystems. In this study, we describe three new species of Phanerochaete viz. P. daliensis, P. subtropica, and P. subtuberculata from the Yunnan-Guizhou Plateau, China. A combination of morphological features and phylogenetic analyses were used to describe these species. Firstly, P. daliensis possesses a cracking basidioma, grandinioid hymenophore with white hymenial surface, monomitic hyphal system with simple septate generative hyphae, and ellipsoid to elongate to cylindrical basidiospores. In comparison, P. subtropica possesses a smooth basidioma with rhizomorphic sterile margins, monomitic hyphal system with subhymenial hyphae densely covered by crystals, and ellipsoid basidiospores. Finally, P. subtuberculata is characterized by a tuberculate basidioma with slightly olivaceous to pale brown hymenial surface, monomitic hyphal system, clavate cystidia with a tapering apex, and ellipsoid basidiospores. Sequences of the ITS and LSU rDNA markers of 12 genera related to the genus Phanerochaete within the family Phanerochaetaceae (Polyporales) were generated and phylogenetic analyses were performed using maximum likelihood, maximum parsimony, and Bayesian inference methods. The results of the phylogenetic analysis indicated that the three new species belong to the genus Phanerochaete. Further, the phylogram inferred from the ITS dataset revealed that P. subtuberculata is a sister group to P. crystallina and that P. subtropica grouped with P. daliensis.
Article
During the rainy season in Thailand, specimens of coral fungi were collected from community forests in Chiang Mai and Kalasin Provinces. The species presented here, Trechispora khokpasiensis, T. saluangensis, and T. sanpapaoensis are characterized by coralloid basidiomata and described as new taxa in Hydnodontaceae (Trechisporales) based on analyses of their morphological characters and phylogenetic relationships from the nuclear ribosomal large subunit (LSU) as well as the internal transcribed spacer regions’ (ITS) sequence data. Morphological descriptions and illustrations, including color photographs, line drawings and phylogenetic trees, are presented. Comparisons with similar species are also provided.
Article
Fungi are one of the most diverse groups of organisms on Earth, among which wood-inhabiting fungi play a crucial role in ecosystem processes and functions. Three wood-inhabiting fungi belonging to the genera Ceraceomyces, Stereopsis, and Xenasmatella were found in Southern China. Combined with morphological characteristics and molecular biological evidence, the present study describes them to be new fungal taxa Ceraceomyces yunnanens, Stereopsis yunnanens, and Xenasmatella bambusicola. Ceraceomyces yunnanens is distinguished by the resupinate basidiomata with merulioid hymenial surface, monomitic hyphal system and cylindrical basidiospores; S. yunnanensis is characterized by the laterally stipitate basidiocarps with greyish brown to brown pilei, monomitic hyphal system and subglobose basidiospores; and X. bambusicola is characterized by the resupinate basidiomata, arachnoid hymenophore with white to greyish hymenial surface and warted basidiospores. Sequences of ITS and nLSU rRNA markers of the studied samples were generated, and phylogenetic analyses were performed with maximum likelihood, maximum parsimony, and Bayesian inference methods. The phylogenetic analyses of ITS+nLSU showed that three new species nested into families Amylocorticiaceae, Stereopsidaceae and Xenasmataceae (Agaricomycetes), in which C. yunnanens grouped sister to C. borealis; S. yunnanensis grouped with S. radicans; and X. bambusicola grouped sister to X. xinpingensis.
Article
Three new wood-inhabiting fungal species, Xenasmatella rhizomorpha, X. tenuis and X. xinpingensis spp. nov., are proposed based on a combination of morphological characteristics and molecular BLAST analyses. Xenasmatella rhizomorpha is characterized by annual, resupinate, gossypine basidiomata with rhizomorphs, a monomitic hyphal system with clamped generative hyphae and ellipsoid, thin-walled, warted basidiospores measuring 3.1–4.9 × 2.3–3.3 µm. Xenasmatella tenuis is characterized by annual, resupinate, very thin basidiomata with ceraceous to membranous, white to lilac hymenial surface, a monomitic hyphal system with clamped generative hyphae and ellipsoid, thin-walled, warted basidiospores. Xenasmatella xinpingensis is characterized by annual, resupinate basidiomata, a monomitic hyphal system with clamped generative hyphae and subglobose to globose, thin-walled, warted basidiospores (3.5–4.9 × 3–4.2 µm).