Preprint

Pandemic preparedness through genomic surveillance: Overview of mutations in SARS-CoV-2 over the course of COVID-19 outbreak

Authors:
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.

Abstract

Genomic surveillance is a vital strategy for preparedness against the spread of infectious diseases and to aid in development of new treatments. In an unprecedented effort, millions of samples from COVID-19 patients have been sequenced worldwide for SARS-CoV-2. Using more than 8 million sequences that are currently available in GenBank SARS-CoV-2 database, we report a comprehensive overview of mutations in all 26 proteins and open reading frames (ORFs) from the virus. The results indicate that the spike protein, NSP6, nucleocapsid protein, envelope protein and ORF7b have shown the highest mutational propensities so far (in that order). In particular, the spike protein has shown rapid acceleration in mutations in the post-vaccination period. Monitoring the rate of non-synonymous mutations (Ka) provides a fairly reliable signal for genomic surveillance, successfully predicting surges in 2022. Further, the external proteins (spike, membrane, envelope, and nucleocapsid proteins) show a significant number of mutations compared to the NSPs. Interestingly, these four proteins showed significant changes in Ka typically 2 to 4 weeks before the increase in number of human infections (surges). Therefore, our analysis provides real time surveillance of mutations of SARS-CoV-2, accessible through the project website http://pandemics.okstate.edu/covid19/. Based on ongoing mutation trends of the virus, predictions of what proteins are likely to mutate next are also made possible by our approach. The proposed framework is general and is thus applicable to other pathogens. The approach is fully automated and provides the needed genomic surveillance to address a fast-moving pandemic such as COVID-19.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
COVID19 has aptly revealed that airborne viruses such as SARS-CoV-2 with the ability to rapidly mutate combined with high rates of transmission and fatality can cause a deadly worldwide pandemic in a matter of weeks (Plato et al., 2021). Apart from vaccines and post-infection treatment options, strategies for preparedness will be vital in responding to the current and future pandemics. Therefore, there is wide interest in approaches that allow predictions of increase in infections ('surges') before they occur. We describe here real-time genomic surveillance particularly based on mutation analysis, of viral proteins as a methodology for a priori determination of surge in number of infection cases. The full results are available for SARS-CoV-2 at http://pandemics.okstate. edu/covid19/, and are updated daily as new virus sequences become available. This approach is generic and will also be applicable to other pathogens. Editor's evaluation This paper details the creation and data behind the website http:// pandemics. okstate. edu/ covid19/. The authors explore if there is a cause and effect between the detection of unusually increased mutation activity in the genomic surveillance databases and subsequent near-term surges in SARS-CoV-2 case numbers.
Article
Full-text available
COVID-19 cases caused by new variants of highly mutable SARS-CoV-2 continue to be identified worldwide. Effective control of the spread of new variants can be achieved through targeting of conserved viral epitopes. In this regard, the SARS-CoV-2 nucleocapsid (N) protein, which is much more conserved than the evolutionarily influenced spike protein (S), is a suitable antigen. The recombinant N protein can be considered not only as a screening antigen but also as a basis for the development of next-generation COVID-19 vaccines, but little is known about induction of an-tibodies against the N protein via different SARS-CoV-2 variants. In addition, it is important to understand how antibodies produced against the antigen of one variant can react with the N proteins of other variants. Here, we used recombinant N proteins from five SARS-CoV-2 strains to investigate their immunogenicity and antigenicity in a mouse model and to obtain and characterize a panel of hybridoma-derived monoclonal anti-N antibodies. We also analyzed the variable epitopes of the N protein that are potentially involved in differential recognition of antiviral antibodies. These results will further deepen our knowledge of the cross-reactivity of the humoral immune response in COVID-19.
Article
Full-text available
The SARS-CoV-2 Omicron variant is more immune-evasive and less virulent than other major viral variants recognized to date1-12. Omicron spike (S), with an unusually large number of mutations, is considered the major driver of these phenotypes. We generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron (BA.1 lineage) in the backbone of an ancestral SARS-CoV-2 isolate and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escaped vaccine-induced humoral immunity, mainly due to mutations in the receptor-binding motif (RBM), yet unlike naturally occurring Omicron, efficiently replicated in cell lines and primary-like distal lung cells. Similarly, in K18-hACE2 mice, although Omicron S-carrying virus caused less severe disease compared to the ancestral virus, it failed to achieve the attenuation level of Omicron. Further investigation showed that mutating nsp6 in addition to S was sufficient to recapitulate the attenuated phenotype of Omicron. This indicates that while the vaccine escape of Omicron is driven by mutations in S, the pathogenicity of Omicron is determined by mutations both in and outside of S.
Article
Full-text available
The SARS-CoV-2 virion is composed of four structural proteins: spike (S), nucleocapsid (N), membrane (M), and envelope (E). E spans the membrane a single time and is the smallest, yet most enigmatic of the structural proteins. E is conserved among coronaviruses and has an essential role in virus-mediated pathogenesis. We found that ectopic expression of E had deleterious effects on the host cell as it activated stress responses, leading to LC3 lipidation and phosphorylation of the translation initiation factor eIF2α that resulted in host translational shutoff. During infection E is highly expressed, although only a small fraction is incorporated into virions, suggesting that E activity is regulated and harnessed by the virus to its benefit. Consistently, we found that proteins from heterologous viruses, such as the γ1 34.5 protein of herpes simplex virus 1, prevented deleterious effects of E on the host cell and allowed for E protein accumulation. This observation prompted us to investigate whether other SARS-CoV-2 structural proteins regulate E. We found that the N and M proteins enabled E protein accumulation, whereas S did not. While γ1 34.5 protein prevented deleterious effects of E on the host cells, it had a negative effect on SARS-CoV-2 replication. The negative effect of γ1 34.5 was most likely associated with failure of SARS-CoV-2 to divert the translational machinery and with deregulation of autophagy. Overall, our data suggest that SARS-CoV-2 causes stress responses and subjugates these pathways, including host protein synthesis (phosphorylated eIF2α) and autophagy, to support optimal virus replication. IMPORTANCE In late 2019, a new β-coronavirus, SARS-CoV-2, entered the human population causing a pandemic that has resulted in over 6 million deaths worldwide. Although closely related to SARS-CoV, the mechanisms of SARS-CoV-2 pathogenesis are not fully understood. We found that ectopic expression of the SARS-CoV-2 E protein had detrimental effects on the host cell, causing metabolic alterations, including shutoff of protein synthesis and mobilization of cellular resources through autophagy activation. Coexpression of E with viral proteins known to subvert host antiviral responses such as autophagy and translational inhibition, either from SARS-CoV-2 or from heterologous viruses, increased cell survival and E protein accumulation. However, such factors were found to negatively impact SARS-CoV-2 infection, as autophagy contributes to formation of viral membrane factories and translational control offers an advantage for viral gene expression. Overall, SARS-CoV-2 has evolved mechanisms to harness host functions that are essential for virus replication.
Article
Full-text available
Non-structural protein 1 (Nsp1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major virulence factor and thus an attractive drug target. The last 33 amino acids of Nsp1 have been shown to bind within the mRNA entry tunnel of the 40S ribosomal subunit, shutting off host gene expression. Here, we report the solution-state structure of full-length Nsp1, which features an α/β fold formed by a six-stranded, capped β-barrel-like globular domain (N-terminal domain [NTD]), flanked by short N-terminal and long C-terminal flexible tails. The NTD has been found to be critical for 40S-mediated viral mRNA recognition and promotion of viral gene expression. We find that in free Nsp1, the NTD mRNA-binding surface is occluded by interactions with the acidic C-terminal tail, suggesting a mechanism of activity regulation based on the interplay between the folded NTD and the disordered C-terminal region. These results are relevant for drug-design efforts targeting Nsp1.
Article
Full-text available
In recent years, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as the cause of the coronavirus disease (COVID-19) global pandemic, and its variants, especially those with higher transmissibility and substantial immune evasion, have highlighted the imperative for developing novel therapeutics as sustainable solutions other than vaccination to combat coronaviruses (CoVs). Beside receptor recognition and virus entry, members of the SARS-CoV-2 replication/transcription complex are promising targets for designing antivirals. Here, the interacting residues that mediate protein–protein interactions (PPIs) of nsp10 with nsp16 and nsp14 were comprehensively analyzed, and the key residues’ interaction maps, interaction energies, structural networks, and dynamics were investigated. Nsp10 stimulates both nsp14’s exoribonuclease (ExoN) and nsp16’s 2′O-methyltransferase (2′O-MTase). Nsp14 ExoN is an RNA proofreading enzyme that supports replication fidelity. Nsp16 2′O-MTase is responsible for the completion of RNA capping to ensure efficient replication and translation and escape from the host cell’s innate immune system. The results of the PPIs analysis proposed crucial information with implications for designing SARS-CoV-2 antiviral drugs. Based on the predicted shared protein–protein interfaces of the nsp16-nsp10 and nsp14-nsp10 interactions, a set of dual-target peptide inhibitors was designed. The designed peptides were evaluated by molecular docking, peptide–protein interaction analysis, and free energy calculations, and then further optimized by in silico saturation mutagenesis. Based on the predicted evolutionary conservation of the interacted target residues among CoVs, the designed peptides have the potential to be developed as dual target pan-coronavirus inhibitors.
Article
Full-text available
The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small-molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic, there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high-resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 153 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated conformational changes within the active site, and key inhibitor motifs that will template future drug development against Mac1.
Article
Full-text available
Major histocompatibility complex class I (MHC-I) molecules, which are dimers of a glycosylated polymorphic transmembrane heavy chain and the small-protein β 2 -microglobulin (β 2 m), bind peptides in the endoplasmic reticulum that are generated by the cytosolic turnover of cellular proteins. In virus-infected cells, these peptides may include those derived from viral proteins. Peptide-MHC-I complexes then traffic through the secretory pathway and are displayed at the cell surface where those containing viral peptides can be detected by CD8 ⁺ T lymphocytes that kill infected cells. Many viruses enhance their in vivo survival by encoding genes that down-regulate MHC-I expression to avoid CD8 ⁺ T cell recognition. Here, we report that two accessory proteins encoded by SARS-CoV-2, the causative agent of the ongoing COVID-19 pandemic, down-regulate MHC-I expression using distinct mechanisms. First, ORF3a, a viroporin, reduces the global trafficking of proteins, including MHC-I, through the secretory pathway. The second, ORF7a, interacts specifically with the MHC-I heavy chain, acting as a molecular mimic of β 2 m to inhibit its association. This slows the exit of properly assembled MHC-I molecules from the endoplasmic reticulum. We demonstrate that ORF7a reduces antigen presentation by the human MHC-I allele HLA-A*02:01. Thus, both ORF3a and ORF7a act post-translationally in the secretory pathway to lower surface MHC-I expression, with ORF7a exhibiting a specific mechanism that allows immune evasion by SARS-CoV-2.
Article
Full-text available
CTL-mediated killing of virally infected or malignant cells is orchestrated at the immune synapse (IS). We hypothesized that SARS-CoV-2 may target lytic IS assembly to escape elimination. We show that human CD8+ T cells upregulate the expression of ACE2, the Spike receptor, during differentiation to CTLs. CTL preincubation with the Wuhan or Omicron Spike variants inhibits IS assembly and function, as shown by defective synaptic accumulation of TCRs and tyrosine phosphoproteins as well as defective centrosome and lytic granule polarization to the IS, resulting in impaired target cell killing and cytokine production. These defects were reversed by anti-Spike antibodies interfering with ACE2 binding and reproduced by ACE2 engagement by angiotensin II or anti-ACE2 antibodies, but not by the ACE2 product Ang (1-7). IS defects were also observed ex vivo in CTLs from COVID-19 patients. These results highlight a new strategy of immune evasion by SARS-CoV-2 based on the Spike-dependent, ACE2-mediated targeting of the lytic IS to prevent elimination of infected cells.
Article
Full-text available
SARS-CoV-2 encodes four structural proteins incorporated into virions, spike (S), envelope (E), nucleocapsid (N), and membrane (M). M plays an essential role in viral assembly by organizing other structural proteins through physical interactions and directing them to sites of viral budding. As the most abundant protein in the viral envelope and a target of patient antibodies, M is a compelling target for vaccines and therapeutics. Still, the structure of M and molecular basis for its role in virion formation are unknown. Here, we present the cryo-EM structure of SARS-CoV-2 M in lipid nanodiscs to 3.5 Å resolution. M forms a 50 kDa homodimer that is structurally related to the SARS-CoV-2 ORF3a viroporin, suggesting a shared ancestral origin. Structural comparisons reveal how intersubunit gaps create a small, enclosed pocket in M and large open cavity in ORF3a, consistent with a structural role and ion channel activity, respectively. M displays a strikingly electropositive cytosolic surface that may be important for interactions with N, S, and viral RNA. Molecular dynamics simulations show a high degree of structural rigidity in a simple lipid bilayer and support a role for M homodimers in scaffolding viral assembly. Together, these results provide insight into roles for M in coronavirus assembly and structure.
Article
Full-text available
We performed a meta-analysis on SARS-CoV-2 genomes categorized by collection month and identified several significant mutations. Pearson correlation analysis of these significant mutations identified 16 comutations having absolute correlation coefficients of >0.4 and a frequency of >30% in the genomes used in this study.
Article
Full-text available
RNA‐dependent RNA polymerase (RdRp) plays a key role in the replication of RNA viruses, including SARS‐CoV‐2. Processive RNA synthesis by RdRp is crucial for successful genome replication and expression, especially in the case of very long coronaviral genomes. Here, we analysed the activity of SARS‐CoV‐2 RdRp (the nsp12–nsp7–nsp8 complex) on synthetic primer–templates of various structures, including substrates with mismatched primers or template RNA modifications. It has been shown that RdRp cannot efficiently extend RNA primers containing mismatches and has no intrinsic RNA cleavage activity to remove the primer 3′‐end, thus necessitating the action of exoribonuclease for proofreading. Similar to DNA‐dependent RNA polymerases, RdRp can perform processive pyrophosphorolysis of the nascent RNA product but this reaction is also blocked in the presence of mismatches. Furthermore, we have demonstrated that several natural post‐transcriptional modifications in the RNA template, which do not prevent complementary interactions (N6‐methyladenosine, 5‐methylcytosine, inosine and pseudouridine), do not change RdRp processivity. At the same time, certain modifications of RNA bases and ribose residues strongly block RNA synthesis, either prior to nucleotide incorporation (3‐methyluridine and 1‐methylguanosine) or immediately after it (2'‐O‐methylation). The results demonstrate that the activity of SARS‐CoV‐2 RdRp can be strongly inhibited by common modifications of the RNA template suggesting a way to design novel antiviral compounds.
Article
Full-text available
The SARS-CoV-2 nucleocapsid protein (N) is responsible for RNA binding. Here we report the crystal structure of the C-terminal domain (NCTD) in open and closed conformations and in complex with guanine triphosphate, GTP. The crystal structure and biochemical studies reveal a specific interaction between the guanine, a nucleotide enriched in the packaging signals regions of coronaviruses, and a highly conserved tryptophan residue (W330). In addition, EMSA assays with SARS-CoV-2 derived RNA hairpin loops from a putative viral packaging sequence showed the preference interaction of the N-CTD to RNA oligonucleotides containing G and the loss of the specificity in the mutant W330A. Here we propose that this interaction may facilitate the viral assembly process. In summary, we have identified a specific guanine-binding pocket in the N protein that may be used to design viral assembly inhibitors. The molecular basis of GTP binding to the N protein from SARS-CoV-2 is presented, providing a framework for drug design and disruption of the RNA packing function in the N protein.
Article
Full-text available
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is responsible for the COVID-19 pandemic that has caused unprecedented loss of life and economic trouble all over the world, though the mechanism of its replication remains poorly understood. In this study, antibodies were generated and used to systematically determine the expression profile and subcellular distribution of 11 SARS-CoV-2 nonstructural replicase proteins (nsp1, nsp2, nsp3, nsp5, nsp7, nsp8, nsp9, nsp10, nsp13, nsp14, and nsp15) by Western blot and immunofluorescence assay. Nsp3, nsp5, and nsp8 were detected in perinuclear foci at different time points, with diffusion and stronger fluorescence observed over time. In particular, colocalization of nsp8 and nsp13 with different replicase proteins suggested viral protein-protein interaction, which may be key to understanding their functions and potential molecular mechanisms. Viral intermediate dsRNA was detected in perinuclear foci as early as 2-h postinfection, indicating the initiation of virus replication. With the passage of time, these perinuclear dsRNA foci became larger and brighter, and nearly all colocalized with N protein, consistent with viral growth over time. Thus, the development of these anti-nsp antibodies provides basic tools for the further study of replication and diagnosis of SARS-CoV-2. IMPORTANCE The intracellular localization of SARS-CoV-2 replicase nonstructural proteins (nsp) during infection has not been fully elucidated. In this study, we systematically analyzed the expression and subcellular localization of 11 distinct viral nsp and dsRNA over time in SARS-CoV-2-infected cells by using individual antibody against these replicase proteins. The data indicated that nsp gene expression is highly regulated in space and time, which could be useful to understand the function of viral replicases and future development of diagnostics and potential antiviral strategies against SARS-CoV-2.
Article
Full-text available
There is an urgent need for a molecular understanding of how SARS-CoV-2 influences the machineries of the host cell. Herein, we focused our attention on the capacity of the SARS-CoV-2 protein NSP2 to bind the human 4EHP-GIGYF2 complex, a key factor involved in microRNA-mediated silencing of gene expression. Using in vitro interaction assays, our data demonstrate that NSP2 physically associates with both 4EHP and a central segment in GIGYF2 in the cytoplasm. We also provide functional evidence showing that NSP2 impairs the function of GIGYF2 in mediating translation repression using reporter-based assays. Collectively, these data reveal the potential impact of NSP2 on the post-transcriptional silencing of gene expression in human cells, pointing out 4EHP-GIGYF2 targeting as a possible strategy of SARS-CoV-2 to take over the silencing machinery and to suppress host defenses.
Preprint
Full-text available
Background The Coronavirus 2019 (COVID-19) was named by the World Health Organization (WHO) due to its rapid transmittable potential and high mortality rate. Based on the critical role of None Structural Proteins (NSP), NSP3, NSP4, and NSP6 in COVID-19, this study attempts to investigate the superior natural selection mutations and Epistasis among these none structural proteins. Methods Approximately 6.5 million SARS-CoV-2 protein sequences of each NSP3, NSP4, and NSP6 nonstructural protein were analyzed from January 2020 to January 2022. Python programming language was utilized to preprocess and apply inclusion criteria on the FASTA file to prepare a list of suitable samples. NSP3, NSP4, and NSP6 were aligned to the reference sequence to compare and identify mutation patterns categorized based on frequency, geographical zone distribution, and date. To discover epistasis situations, linear regression between mutation frequency and date among candidate genes was performed to determine correlations. Results The rate of NSP3, NSP4, and NSP6 mutations in divided geographical areas was different. Based on continental studies, P1228L (54.48%), P1469S (54.41%), and A488S (53.86%) mutations in NSP3, T492I (54.84%), and V167L (52.81%) in NSP4 and T77A (69.85%) mutation in NSP6 increased over time, especially in recent months. For NSP3, Europe had the highest P1228L, P1469S, and A488S mutations. For NSP4, Oceania had the highest T492I and V167L mutations, and for NSP6, Europe had the highest T77A mutation. Hot spot regions for NSP3, NSP4, and NSP6 were 1358 to 1552 AA, 150 to 200 AA, and 58 to 87 AA, respectively. Our results showed a significant correlation and co-occurrence between NSP3, NSP4, and NSP6 mutations. Conclusion We conclude that the effect of mutations on virus stability and replication can be predicted by examining the amino acid changes of P1228L, P1469S, A488S, T492I, V167L and T77A mutations. Also, these mutations can possibly be effective on the function of proteins and their targets in the host cell.
Article
Full-text available
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ORF6 is an antagonist of interferon (IFN)-mediated antiviral signaling, achieved through the prevention of STAT1 nuclear localization. However, the exact mechanism through which ORF6 prevents STAT1 nuclear trafficking remains unclear. Herein, we demonstrate that ORF6 directly binds to STAT1 with or without IFN stimulation, resulting in the nuclear exclusion of STAT1. ORF6 also recognizes importin α subtypes with different modes, in particular, high affinity to importin α1 but a low affinity to importin α5. Although ORF6 potentially disrupts the importin α/importin β1-mediated nuclear transport, thereby suppressing the nuclear translocation of the other classical nuclear localization signal-containing cargo proteins, the inhibitory effect of ORF6 is modest when compared with that of STAT1. The results indicate that the drastic nuclear exclusion of STAT1 is attributed to the specific binding with ORF6, which is a distinct strategy for the importin α1-mediated pathway. Combined with the results from a newly-produced replicon system and a hamster model, we conclude that SARS-CoV-2 ORF6 acts as a virulence factor via regulation of nucleocytoplasmic trafficking to accelerate viral replication, resulting in disease progression.
Article
Full-text available
This paper presents a molecular characterization of the interaction between the SARS-CoV-2 envelope (E) protein and TLR2. We demonstrated that the E protein, both as a recombinant soluble protein and as a native membrane protein associated with SARS-CoV-2 viral particles, interacts physically with the TLR2 receptor in a specific and dose-dependent manner. Furthermore, we showed that the specific interaction with the TLR2 pathway activates the NF-κB transcription factor and stimulates the production of the CXCL8 inflammatory chemokine. In agreement with the importance of NF-κB in the TLR signaling pathway, we showed that the chemical inhibition of this transcription factor leads to significant inhibition of CXCL8 production, while the blockade of the P38 and ERK1/2 MAP kinases only results in partial CXCL8 inhibition. Overall, our findings propose the envelope (E) protein as a novel molecular target for COVID-19 interventions: either (i) by exploring the therapeutic effect of anti-E blocking/neutralizing antibodies in symptomatic COVID-19 patients, or (ii) as a promising non-spike SARS-CoV-2 antigen candidate for inclusion in the development of next-generation prophylactic vaccines against COVID-19 infection and disease.
Article
Full-text available
Background SARS-CoV-2, the causative agent of COVID-19, has mutated rapidly, enabling it to adapt and evade the immune system of the host. Emerging SARS-CoV-2 variants with crucial mutations pose a global challenge in the context of therapeutic drugs and vaccines developing globally. There are currently no specific therapeutics or vaccines available to combat SARS-CoV-2 devastation. Concerning this, the current study aimed to identify and characterize the mutations found in the Nsp13 of SARS-CoV-2 in Indian isolates. Methods In the present study, the Clustal omega tool was used for mutational analysis. The impact of mutations on protein stability, flexibility, and function was predicted using the DynaMut and PROVEAN tools. Furthermore, B-cell epitopes contributed by Nsp13 were identified using various predictive immunoinformatic tools. Results Non-structural protein Nsp13 sequences from Indian isolates were analyzed by comparing them with the firstly reported Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) protein sequence in Wuhan, China. Out of 825 Nsp13 protein sequences, a total of 38 mutations were observed among Indian isolates. Our data showed that mutations in Nsp13 at various positions (H164Y, A237T, T214I, C309Y, S236I, P419S, V305E, G54S, H290Y, P53S, A308Y, and A308Y) have a significant impact on the protein's stability and flexibility. Moreover, the impact of Nsp13 mutations on protein function was predicted based on the PROVEAN score that indicated 15 mutants as neutral and 23 mutants as deleterious effects. Immunological parameters of Nsp13, such as antigenicity, allergenicity, and toxicity, were evaluated to predict the potential B-cell epitopes. The predicted peptide sequences were correlated with the observed mutants. Our predicted data showed that there are seven high-rank linear epitopes as well as 18 discontinuous B-cell epitopes based on immunoinformatic tools. Moreover, it was observed that out of the total 38 identified mutations among Indian SARS-CoV-2 Nsp13 protein, four mutant residues at positions 142 (E142), 245 (H245), 247 (V247), and 419 (P419) were localised in the predicted B cell epitopic region. Conclusion Altogether, the results of the present in silico study might help to understand the impact of the identified mutations in Nsp13 protein on its stability, flexibility, and function.
Article
Full-text available
The nsp5-encoded 3C-like protease is the main coronavirus protease, playing a vital role in viral replication and immune evasion by cleaving viral polyproteins and host immune-related molecules. We showed that both SARS-CoV-2 nsp5 and SARS-CoV nsp5 cleave the NEMO at multiple sites (E152, Q205, and Q231).
Article
Full-text available
Background SARS-CoV-2 is the causative agent of COVID-19. Overproduction and release of proinflammatory cytokines are the underlying cause of severe COVID-19. Treatment of this condition with JAK inhibitors is a double-edged sword, which might result in the suppression of proinflammatory cytokine storm and the concurrent enhancement of viral infection, since JAK signaling is essential for host antiviral response. Improving the current JAK inhibitor therapy requires a detailed molecular analysis on how SARS-CoV-2 modulates interferon (IFN)-induced activation of JAK-STAT signaling. Results In this study, we focused on the molecular mechanism by which SARS-CoV-2 NSP13 helicase suppresses IFN signaling. Expression of SARS-CoV-2 NSP13 alleviated transcriptional activity driven by type I and type II IFN-responsive enhancer elements. It also prevented nuclear translocation of STAT1 and STAT2. The suppression of NSP13 on IFN signaling occurred at the step of STAT1 phosphorylation. Nucleic acid binding-defective mutant K345A K347A and NTPase-deficient mutant E375A of NSP13 were found to have largely lost the ability to suppress IFN-β-induced STAT1 phosphorylation and transcriptional activation, indicating the requirement of the helicase activity for NSP13-mediated inhibition of STAT1 phosphorylation. NSP13 did not interact with JAK1 nor prevent STAT1-JAK1 complex formation. Mechanistically, NSP13 interacted with STAT1 to prevent JAK1 kinase from phosphorylating STAT1. Conclusion SARS-CoV-2 NSP13 helicase broadly suppresses IFN signaling by targeting JAK1 phosphorylation of STAT1.
Article
Full-text available
SARS-CoV-2, responsible for the ongoing global pandemic, must overcome a conundrum faced by all viruses. To achieve its own replication and spread, it simultaneously depends on and subverts cellular mechanisms. At the early stage of infection, SARS-CoV-2 expresses the viral nonstructural protein 1 (NSP1), which inhibits host translation by blocking the mRNA entry tunnel on the ribosome; this interferes with the binding of cellular mRNAs to the ribosome. Viral mRNAs, on the other hand, overcome this blockade. We show that NSP1 enhances expression of mRNAs containing the SARS-CoV-2 leader. The first stem-loop (SL1) in viral leader is both necessary and sufficient for this enhancement mechanism. Our analysis pinpoints specific residues within SL1 (three cytosine residues at the positions 15, 19 and 20) and another within NSP1 (R124) which are required for viral evasion, and thus might present promising drug targets. We target SL1 with the anti-sense oligo (ASO) to efficiently and specifically downregulate SARS-CoV-2 mRNA. Additionally, we carried out analysis of a functional interactome of NSP1 using BioID and identified components of anti-viral defense pathways. Our analysis therefore suggests a mechanism by which NSP1 inhibits the expression of host genes while enhancing that of viral RNA. This analysis helps reconcile conflicting reports in the literature regarding the mechanisms by which the virus avoids NSP1 silencing.
Article
Full-text available
Coronaviruses, including the recent pandemic strain SARS-Cov-2, use a multifunctional 2′-O-methyltransferase (2′-O-MTase) to restrict the host defense mechanism and to methylate RNA. The nonstructural protein 16 2′-O-MTase (nsp16) becomes active when nonstructural protein 10 (nsp10) and nsp16 interact. Novel peptide drugs have shown promise in the treatment of numerous diseases and new research has established that nsp10 derived peptides can disrupt viral methyltransferase activity via interaction of nsp16. This study had the goal of optimizing new analogous nsp10 peptides that have the ability to bind nsp16 with equal to or higher affinity than those naturally occurring. The following research demonstrates that in-silico molecular simulations can shed light on peptide structures and predict the potential of new peptides to interrupt methyltransferase activity via the nsp10/nsp16 interface. The simulations suggest that misalignments at residues F68, H80, I81, D94, and Y96 or rotation at H80 abrogate MTase function. We develop a new set of peptides based on conserved regions of the nsp10 protein in the Coronaviridae species and test these to known MTase variant values. This results in the prediction that the H80R variant is a solid new candidate for potential new testing. We envision that this new lead is the beginning of a reputable foundation of a new computational method that combats coronaviruses and that is beneficial for new peptide drug development.
Article
Full-text available
The ongoing COVID-19 pandemic caused by SARS-CoV-2 has claimed over 5.5 million lives with more than 300 million people infected worldwide. While vaccines are effective, the emergence of new viral variants could jeopardize vaccine protection.
Article
Full-text available
Significance SARS-CoV-2 nonstructural protein 14 (nsp14) exoribonuclease (ExoN) plays important roles in the proofreading during viral RNA synthesis and the evasion of host immune responses. We used X-ray crystallography, molecular dynamics simulations, and biochemical assays to investigate the structure, dynamics, and RNA-binding mechanisms of nsp14-ExoN and how its activity is regulated by another viral protein, nsp10. We also demonstrated that nsp14-ExoN can collaborate with the viral RNA polymerase to enable RNA synthesis in the presence of a chain-terminating drug, biochemically recapitulating the proofreading process. Our studies provide mechanistic insights into the functions of a key viral enzyme and a basis for future development of chemical inhibitors.
Article
Full-text available
The pandemic caused by SARS-CoV-2 is not over yet, despite all the efforts from the scientific community. Vaccination is a crucial weapon to fight this virus; however, we still urge the development of antivirals to reduce the severity and progression of the COVID-19 disease. For that, a deep understanding of the mechanisms involved in viral replication is necessary. Nsp15 is an endoribonuclease critical for the degradation of viral polyuridine sequences that activate host immune sensors. This enzyme is known as one of the major interferon antagonists from SARS-CoV-2. In this work, a biochemical characterization of SARS-CoV-2 nsp15 was performed. We saw that nsp15 is active as a hexamer, and zinc can block its activity. The role of conserved residues from SARS-CoV-2 nsp15 was investigated, and N164 was found to be important for protein hexamerization and to contribute to the specificity to degrade uridines. Several chemical groups that impact the activity of this ribonuclease were also identified. Additionally, FDA-approved drugs with the capacity to inhibit the in vitro activity of nsp15 are reported in this work. This study is of utmost importance by adding highly valuable information that can be used for the development and rational design of therapeutic strategies.
Article
Full-text available
Understanding the core replication complex of SARS-CoV-2 is essential to the development of novel coronavirus-specific antiviral therapeutics. Among the proteins required for faithful replication of the SARS-CoV-2 genome are NSP14, a bifunctional enzyme with an N-terminal 3'-to-5' exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), and its accessory protein, NSP10. The difficulty in producing pure, high quantities of the NSP10/14 complex has hampered the biochemical and structural study of these important proteins. We developed a straightforward protocol for the expression and purification of both NSP10 and NSP14 from E. coli and for the in vitro assembly and purification of a stoichiometric NSP10/14 complex with high yields. Using these methods, we observe NSP10 provides a 260-fold increase in kcat/Km in the exoribonucleolytic activity of NSP14 and enhances protein stability. We also probed the effect of two small molecules on NSP10/14 activity, remdesivir monophosphate and the methyltransferase inhibitor S-adenosyl homocysteine (SAH). Our analysis highlights two important factors for drug development: first, unlike other exonucleases, the monophosphate nucleoside analogue intermediate of remdesivir does not inhibit NSP14 activity; and second, SAH modestly activates NSP14 exonuclease activity. In total, our analysis provides insights for future structure-function studies of SARS-CoV-2 replication fidelity for the treatment of COVID-19.
Article
Full-text available
Mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have made this virus more infectious. Previous studies have confirmed that non-structural protein 13 (NSP13) plays an important role in immune evasion by physically interacting with TANK binding kinase 1 (TBK1) to inhibit IFNβ production. Mutations have been reported in NSP13; hence, in the current study, biophysical and structural modeling methodologies were adapted to dissect the influence of major mutations in NSP13, i.e., P77L, Q88H, D260Y, E341D, and M429I, on its binding to the TBK1 and to escape the human immune system. The results revealed that these mutations significantly affected the binding of NSP13 and TBK1 by altering the hydrogen bonding network and dynamic structural features. The stability, flexibility, and compactness of these mutants displayed different dynamic features, which are the basis for immune evasion. Moreover, the binding was further validated using the MM/GBSA approach, revealing that these mutations have higher binding energies than the wild-type (WT) NSP13 protein. These findings thus justify the basis of stronger interactions and evasion for these NSP13 mutants. In conclusion, the current findings explored the key features of the NSP13 WT and its mutant complexes, which can be used to design structure-based inhibitors against the SARS-CoV-2 new variants to rescue the host immune system.
Article
Full-text available
The global coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused severe morbidity and mortality in humans. It is urgent to understand the function of viral genes. However, the function of open reading frame 10 (ORF10), which is uniquely expressed by SARS-CoV-2, remains unclear. In this study, we showed that overexpression of ORF10 markedly suppressed the expression of type I interferon (IFN-I) genes and IFN-stimulated genes. Then, mitochondrial antiviral signaling protein (MAVS) was identified as the target via which ORF10 suppresses the IFN-I signaling pathway, and MAVS was found to be degraded through the ORF10-induced autophagy pathway. Furthermore, overexpression of ORF10 promoted the accumulation of LC3 in mitochondria and induced mitophagy. Mechanistically, ORF10 was translocated to mitochondria by interacting with the mitophagy receptor Nip3-like protein X (NIX) and induced mitophagy through its interaction with both NIX and LC3B. Moreover, knockdown of NIX expression blocked mitophagy activation, MAVS degradation, and IFN-I signaling pathway inhibition by ORF10. Consistent with our observations, in the context of SARS-CoV-2 infection, ORF10 inhibited MAVS expression and facilitated viral replication. In brief, our results reveal a novel mechanism by which SARS-CoV-2 inhibits the innate immune response; that is, ORF10 induces mitophagy-mediated MAVS degradation by binding to NIX.
Article
Full-text available
Nuclear pore complexes (NPC) regulate molecular traffics on nuclear envelope, which plays crucial roles during cell fate specification and diseases. The viral accessory protein NSP9 of SARS-CoV-2 is reported to interact with nucleoporin 62 (NUP62), a structural component of the NPC, but its biological impact on the host cell remain obscure. Here, we established new cell line models with ectopic NSP9 expression and determined the subcellular destination and biological functions of NSP9. Confocal imaging identified NSP9 to be largely localized in close proximity to the endoplasmic reticulum. In agreement with the subcellular distribution of NSP9, association of NSP9 with NUP62 was observed in cytoplasm. Furthermore, the overexpression of NSP9 correlated with a reduction of NUP62 expression on the nuclear envelope, suggesting that attenuating NUP62 expression might have contributed to defective NPC formation. Importantly, the loss of NUP62 impaired translocation of p65, a subunit of NF-κB, upon TNF-α stimulation. Concordantly, NSP9 over-expression blocked p65 nuclear transport. Taken together, these data shed light on the molecular mechanisms underlying the modulation of host cells during SARS-CoV-2 infection.
Article
Full-text available
We present in this work a first X‐ray Absorption Spectroscopy study of the interactions of Zn with human BST2/tetherin and SARS‐CoV‐2 orf7a proteins as well as with some of their complexes. The analysis of the XANES region of the measured spectra shows that Zn binds to BST2, as well as to orf7a, thus resulting in the formation of BST2‐orf7a complexes. This structural information confirms the the conjecture, recently put forward by some of the present Authors, according to which the accessory orf7a (and possibly also orf8) viral protein are capable of interfering with the BST2 antiviral activity. Our explanation for this behavior is that, when BST2 gets in contact with Zn bound to the orf7a Cys15 ligand, it has the ability of displacing the metal owing to the creation of a new disulfide bridge across the two proteins. The formation of this BST2‐orf7a complex destabilizes BST2 dimerization, thus impairing the antiviral activity of the latter. Think zinc! We conjecture that in the case of SARS‐CoV‐2, the orf7a accessory protein acts as a BST2 antagonist. We provide evidence, based on sequence analysis, Molecular Dynamics simulations as well as XAS experiments, that Zn ions play a key role in the SARS‐CoV‐2 virus strategy to escape the immune response mediated by the BST2 host protein.
Article
Full-text available
SARS‐CoV‐2 is evolved into eight fundamental clades where four (G, GH, GR, and GV) are globally prevalent in 2020. To explain plausible epistatic effects of the signature co‐occurring mutations of these circulating clades on viral replication and transmission fitness, we proposed a hypothetical model using in silico approach. Molecular docking and dynamics analyses showed the higher infectiousness of a spike mutant through more favorable binding of G614 with the elastase‐2. RdRp mutation p.P323L significantly increased genome‐wide mutations (p<0.0001), providing that more flexible RdRp (mutated)‐NSP8 interaction may accelerate replication. Superior RNA stability and structural variation at NSP3:C241T might impact protein, RNA interactions, or both. Another silent 5'UTR:C241T mutation might affect translational efficiency and viral packaging. These four G‐clade‐featured co‐occurring mutations might increase viral replication. Sentinel GH‐clade ORF3a:p.Q57H constricted ion‐channel through inter‐transmembrane‐domain interaction of cysteine(C81)‐histidine(H57) and GR‐clade N:p.RG203‐204KR would stabilize RNA interaction by a more flexible and hypo‐phosphorylated SR‐rich region. GV‐clade viruses seemingly gained the evolutionary advantage of the confounding factors; nevertheless, N:p.A220V might modulate RNA binding with no phenotypic effect. Our hypothetical model needs further retrospective and prospective studies to understand detailed molecular events featuring the fitness of SARS‐CoV‐2. This article is protected by copyright. All rights reserved.
Preprint
Full-text available
While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in SARS-CoV-2 nucleocapsid protein. Recreating the alpha variant mutation in an early pandemic (WA-1) background, we found that the R203K/G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. Importantly, the R203K/G204R mutation increases nucleocapsid phosphorylation, providing a molecular basis for these phenotypes. Notably, an analogous alanine substitution mutant also increases SARS-CoV-2 fitness and phosphorylation, suggesting that infection is enhanced through ablation of the ancestral ‘RG’ motif. Overall, these results demonstrate that variant mutations outside spike are also key components in SARS-CoV-2’s continued adaptation to human infection. One-Sentence Summary A mutation in the nucleocapsid gene of the SARS-CoV-2 alpha variant is found to enhance replication, fitness, and pathogenesis.
Article
Full-text available
The accessory proteins of coronaviruses are essential for virus–host interactions and the modulation of host immune responses. It has been reported that accessory protein ORF3a encoded by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can induce apoptosis, and accessory protein ORF6 and ORF8 could be inhibitors of the type-I interferon (IFN) signaling pathway. However, the function of accessory protein ORF7b is largely unknown. We investigated the apoptosis-inducing activity of ORF7b in cells. Cytokine levels and host innate immune responses, including expression of interferon regulatory transcription factor (IRF)-3, signal transducer and activator of transcription (STAT)-1, interferon (IFN)-β, tumor necrosis factor (TNF)-α, and interleukin (IL)-6, were also investigated. We found that ORF7b promoted expression of IFN-β, TNF-α, and IL-6, activated type-I IFN signaling through IRF3 phosphorylation, and activated TNFα-induced apoptosis in HEK293T cells and Vero E6 cells. These results could provide deeper understanding about the pathogenicity of SARS-CoV-2 as well as the interaction between the accessory protein ORF7b with host immune responses.
Article
Full-text available
There is currently a lack of effective drugs to treat people infected with SARS-CoV-2, the cause of the global COVID-19 pandemic. The SARS-CoV-2 Non-structural protein 13 (NSP13) has been identified as a target for anti-virals due to its high sequence conservation and essential role in viral replication. Structural analysis reveals two “druggable” pockets on NSP13 that are among the most conserved sites in the entire SARS-CoV-2 proteome. Here we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and a non-hydrolysable ATP analog. Comparisons of these structures reveal details of conformational changes that provide insights into the helicase mechanism and possible modes of inhibition. To identify starting points for drug development we have performed a crystallographic fragment screen against NSP13. The screen reveals 65 fragment hits across 52 datasets opening the way to structure guided development of novel antiviral agents. The SARS-CoV-2 NSP13 helicase is essential for viral replication and of interest as a drug target. Here, the authors present the crystal structures of NSP13 in the apo form and bound to either phosphate or the non-hydrolysable ATP analog AMP-PNP and discuss the helicase mechanism. They also perform a crystallographic fragment screening and identify 65 bound fragments, which could help in the design of new antiviral agents.
Article
Full-text available
A proofreader in SARS-CoV-2 Although vaccines provide protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there remains a need for antivirals to treat COVID-19. Nucleotide analog drugs such as remdesivir, which target the viral RNA polymerase, have potential but are compromised by exoribonuclease (ExoN) activity that removes incorrect nucleotides from newly synthesized RNA. Liu et al . determined the structure of the complex that harbors the ExoN activity (nsp10–nsp-14) bound to a mimic of RNA that has incorporated an incorrect nucleotide. The structure shows how the RNA is recognized and suggests how ExoN specifically removes mismatched nucleotides. It also provides clues for designing nucleotide analogs that may evade excision. —VV
Article
Full-text available
SARS-CoV-2 ORF3a is a putative viral ion channel implicated in autophagy inhibition, inflammasome activation and apoptosis. 3a protein and anti-3a antibodies are found in infected patient tissues and plasma. Deletion of 3a in SARS-CoV-1 reduces viral titer and morbidity in mice, suggesting it could be an effective target for vaccines or therapeutics. Here, we present structures of SARS-CoV-2 3a determined by cryo-EM to 2.1-Å resolution. 3a adopts a new fold with a polar cavity that opens to the cytosol and membrane through separate water- and lipid-filled openings. Hydrophilic grooves along outer helices could form ion-conduction paths. Using electrophysiology and fluorescent ion imaging of 3a-reconstituted liposomes, we observe Ca²⁺-permeable, nonselective cation channel activity, identify mutations that alter ion permeability and discover polycationic inhibitors of 3a activity. 3a-like proteins are found across coronavirus lineages that infect bats and humans, suggesting that 3a-targeted approaches could treat COVID-19 and other coronavirus diseases.
Article
Full-text available
The intrinsically disordered proteins/regions (IDPs/IDPRs) are known to be responsible for multiple cellular processes and are associated with many chronic diseases. In viruses, the existence of a disordered proteome is also proven and is related to its conformational dynamics inside the host. The SARS-CoV-2 has a large proteome, in which, structure and functions of all proteins are not known yet, along with non-structural protein 11 (nsp11). In this study, we have performed extensive experimentation on nsp11. Our results based on the CD spectroscopy gives characteristic disordered spectrum for IDPs. Further, we investigated the conformational behavior of nsp11 in the presence of membrane mimetic environment, α-helix inducer, and natural osmolyte. In the presence of negatively charged and neutral liposomes, nsp11 remains disordered. However, with SDS micelle, it adopted an α-helical conformation, suggesting the helical propensity of nsp11. Finally, we again confirmed the IDP behavior of nsp11 using MD simulations. In future, this conformational dynamic study could help to clarify its functional importance in SARS-CoV-2 infection.
Article
Full-text available
While SARS-CoV-2 is causing modern human history’s most serious health crisis and upending our way of life, clinical and basic research on the virus is advancing rapidly, leading to fascinating discoveries. Two studies have revealed how the viral virulence factor, nonstructural protein 1 (Nsp1), binds human ribosomes to inhibit host cell translation. Here, we examine the main conclusions on the molecular activity of Nsp1 and its role in suppressing innate immune responses. We discuss different scenarios potentially explaining how the viral RNA can bypass its own translation blockage and speculate on the suitability of Nsp1 as a therapeutic target. Simeoni et al discuss how recent structural work has improved our understanding of SARS-CoV-2 Nsp1-mediated translation inhibition and how Nsp1 inhibition could impact host immune responses and suppress viral replication.
Article
Purpose To assess, if the SARS-CoV-2 mutate in a similar pattern globally or has a specific pattern in any given population. Results We report, the insertion of TTT at 11085, which adds an extra amino acid, F to the NSP6 at amino acid position 38. The highest occurrence of TTT insertion at 11085 position was found in UK derived samples (65.97%). The second and third highest occurrence of the mutation were found in Australia (8.3%) and USA (4.16%) derived samples, respectively. Another important discovery of this study is the C27945T mutation, which translates into the termination of ORF-8 after 17 amino acids, reveals that the SARS-CoV-2 can replicate without the intact ORF-8 protein. We found that the 97% of C27945T mutation of global occurrence, occurred in Europe and the USA derived samples. Conclusions Two of the reported mutations (11085TTT insertion and C27945T nonsense), which seemed to reduce Type I interferon response are linked to specific geographical locations of the host and implicate region-specific mutations in the virus. The findings of this study signify that SARS-CoV-2 has the potential to adapt differently to different populations.
Article
Background: The ubiquitin system is a modification process with many different cellular functions including immune signaling and antiviral functions. E3 ubiquitin ligases are enzymes that recruit an E2 ubiquitin-conjugating enzyme bound to ubiquitin in order to catalyze the transfer of ubiquitin from the E2 to a protein substrate. The RING E3s, the most abundant type of ubiquitin ligases, are characterized by a zinc (II)-binding domain called RING (Really Interesting New Gene). Viral replication requires modifying and hijacking key cellular pathways within host cells such as cellular ubiquitination. There are well-established examples where a viral proteins bind to RING E3s, redirecting them to degrade otherwise long-lived host proteins or inhibiting E3’s ubiquitination activity. Recently, three binary interactions between SARS-CoV-2 proteins and innate human immune signaling Ε3 RING ligases: NSP15-RNF41, ORF3a-TRIM59 and NSP9-MIB1 have been experimentally established. Methods: In this work, we have investigated the mode of the previous experimentally supported NSP15-RNF41, ORF3a,-TRIM59 and NSP9-MIB1 binary interactions by in silico methodologies intending to provide structural insights of E3-virus interplay that can help identify potential inhibitors that could block SARS-CoV-2 infection of immune cells. Conclusion: In silico methodologies have shown that the above human E3 ligases interact with viral partners through their Zn(II) binding domains. This RING mediated formation of stable SARS-CoV-2-E3 complexes indicates a critical structural role of RING domains in immune system disruption by SARS-CoV-2-infection.
Article
The ongoing pandemic of severe acute respiratory coronavirus 2 (SARS‐CoV‐2) is causing a devastating impact on public health worldwide. However, details concerning the profound impact of SARS‐CoV‐2 on host cells remain elusive. Here, we investigated the effects of SARS‐CoV‐2‐encoded viral proteins on the intracellular activity of long interspersed element 1 (L1) retrotransposons using well‐established reporter systems. Several non‐structural or accessory proteins (Nsps) of SARS‐CoV‐2 (i.e., Nsp1, Nsp3, Nsp5, and Nsp14) significantly suppress human L1 mobility, and these viral L1 inhibitors generate a complex network that modulates L1 transposition. Specifically, Nsp1 and Nsp14 inhibit the intracellular accumulation of L1 open reading frame proteins (ORF1p), whereas Nsp3, Nsp5, and Nsp14 repress the reverse transcriptase activity of L1 ORF2p. Given recent findings concerning the roles of L1 in antiviral immune activation and host genome instability, the anti‐L1 activities mediated by SARS‐CoV‐2‐encoded inhibitors suggest that SARS‐CoV‐2 employs different strategies to optimize the host genetic environment. This article is protected by copyright. All rights reserved.
Article
Upon entering host cells, β-coronaviruses specifically induce generation of replication organelles (ROs) from the endoplasmic reticulum (ER) through their nonstructural protein 3 (nsp3) and nsp4 for viral genome transcription and replication. The most predominant ROs are double-membrane vesicles (DMVs). The ER-resident proteins VMP1 and TMEM41B, which form a complex to regulate autophagosome and lipid droplet (LD) formation, were recently shown to be essential for β-coronavirus infection. Here we report that VMP1 and TMEM41B contribute to DMV generation but function at different steps. TMEM41B facilitates nsp3-nsp4 interaction and ER zippering, while VMP1 is required for subsequent closing of the paired ER into DMVs. Additionally, inhibition of phosphatidylserine (PS) formation by siPTDSS1 partially reverses the DMV and LD defects in VMP1 KO cells, suggesting that appropriate PS levels also contribute to DMV formation. This work provides clues to the mechanism of how host proteins collaborate with viral proteins for endomembrane reshaping to promote viral infection.
Article
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is closely related to various cellular aspects associated with autophagy. However, how SARS-CoV-2 mediates the subversion of the macroautophagy/autophagy pathway remains largely unclear. In this study, we demonstrate that overexpression of the SARS-CoV-2 ORF7a protein activates LC3-II and leads to the accumulation of autophagosomes in multiple cell lines, while knockdown of the viral ORF7a gene via shRNAs targeting ORF7a sgRNA during SARS-CoV-2 infection decreased autophagy levels. Mechanistically, the ORF7a protein initiates autophagy via the AKT-MTOR-ULK1-mediated pathway, but ORF7a limits the progression of autophagic flux by activating CASP3 (caspase 3) to cleave the SNAP29 protein at aspartic acid residue 30 (D30), ultimately impairing complete autophagy. Importantly, SARS-CoV-2 infection-induced accumulated autophagosomes promote progeny virus production, whereby ORF7a downregulates SNAP29, ultimately resulting in failure of autophagosome fusion with lysosomes to promote viral replication. Taken together, our study reveals a mechanism by which SARS-CoV-2 utilizes the autophagic machinery to facilitate its own propagation via ORF7a.
Article
Enzymes involved in RNA capping of SARS-CoV-2 are essential for the stability of viral RNA, translation of mRNAs, and virus evasion from innate immunity, making them attractive targets for antiviral agents. In this work, we focused on the design and synthesis of nucleoside-derived inhibitors against the SARS-CoV-2 nsp14 (N7-guanine)-methyltransferase (N7-MTase) that catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine (SAM) cofactor to the N7-guanosine cap. Seven compounds out of 39 SAM analogues showed remarkable double-digit nanomolar inhibitory activity against the N7-MTase nsp14. Molecular docking supported the structure-activity relationships of these inhibitors and a bisubstrate-based mechanism of action. The three most potent inhibitors significantly stabilized nsp14 (ΔTm ≈ 11 °C), and the best inhibitor demonstrated high selectivity for nsp14 over human RNA N7-MTase.
Article
Like many pathogenic viruses, SARS-CoV-2 must overcome interferon (IFN)-mediated host defenses for infection establishment. To achieve this, SARS-CoV-2 deploys overlapping mechanisms to antagonize IFN production and signaling. The strongest IFN antagonist is the accessory protein ORF6, which localizes to multiple membranous compartments, including the nuclear envelope, where it directly binds nuclear pore component Nup98–Rae1 to inhibit nuclear translocation of activated STAT1 and IRF3 transcription factors. However, this direct cause-and-effect relationship between ORF6 localization and IFN antagonism has yet to be explored experimentally. Here, we use extensive mutagenesis studies to define the structural determinants required for steady-state localization and demonstrate that mis-localized ORF6 variants still potently inhibit nuclear trafficking and IFN signaling. Additionally, expression of a peptide that mimics the ORF6–Nup98 interaction domain robustly blocked nuclear trafficking. Furthermore, pharmacologic and mutational approaches combined to suggest that ORF6 is likely a peripheral membrane protein, as opposed to being a transmembrane protein as previously speculated. Thus, ORF6 localization and IFN antagonism are independent activities, which raises the possibility that ORF6 may have additional functions within membrane networks to enhance virus replication. This article has an associated First Person interview with the first author of the paper.
Article
The COVID-19 pandemic continues to be a public health threat. Multiple mutations in the spike protein of emerging variants of SARS-CoV-2 appear to impact on the effectiveness of available vaccines. Specific antiviral agents are keenly anticipated but their efficacy may also be compromised in emerging variants. One of the most attractive coronaviral drug targets is the main protease (Mpro). A promising Mpro inhibitor of clinical relevance is the peptidomimetic nirmatrelvir (PF-07321332). We expressed Mpro of six SARS-CoV-2 lineages (C.37 Lambda, B.1.1.318, B.1.2, B.1.351 Beta, B.1.1.529 Omicron, P.2 Zeta), each of which carries a strongly prevalent missense mutation (G15S, T21I, L89F, K90R, P132H, L205V). Enzyme kinetics reveal that these Mpro variants are catalytically competent to a similar degree as the wildtype. We show that nirmatrelvir has similar potency against the variants as the wildtype. Our in vitro data suggest that the efficacy of the specific Mpro inhibitor nirmatrelvir is not compromised in current COVID-19 variants.
Article
Viral entry and egress are important determinants of virus infectivity and pathogenicity. β-Coronaviruses, including the COVID-19 virus SARS-CoV-2 and MHV, exploit the lysosomal exocytosis pathway for egress. Here we show that SARS-CoV-2 ORF3a, but not SARS-CoV ORF3a, promotes lysosomal exocytosis. SARS-CoV-2 ORF3a facilitates lysosomal targeting of the BORC-ARL8b complex, which mediates trafficking of lysosomes to the vicinity of the plasma membrane, and exocytosis-related SNARE proteins. The Ca²⁺ channel TRPML3 is required for SARS-CoV-2 ORF3a-mediatd lysosomal exocytosis. Expression of SARS-CoV-2 ORF3a greatly elevates extracellular viral release in cells infected with the coronavirus MHV-A59 which itself lacks ORF3a. In SARS-CoV-2 ORF3a, Ser171 and Trp193 are critical for promoting lysosomal exocytosis and blocking autophagy. When these residues are introduced into SARS-CoV ORF3a, it acquires the ability to promote lysosomal exocytosis and inhibit autophagy. Our results reveal a mechanism by which SARS-CoV-2 interacts with host factors to promote its extracellular egress.