ArticlePDF Available

Identification of some fungal species in Chaetomiaceae and Didymellaceae families associated with foliar and trunk diseases symptoms on forest trees in the Zagrosian region

Authors:

Abstract

Mountains of Shahiyoon and Salandkooh (Dezful, Khuzestan), Kabirkooh (Abdanan, Ilam) and ZazoMahroo (Aligoodarz, Lorestan) are a very small area of Zagrosian forests in Iran. During 2020-2022, 50 symptomatic samples from forest trees including Acer sp., Amygdalus scoparia, Crataegus sp., Pistacia atlantica, Quercus brantii and Ziziphus sp., showing leaf blight, leaf spot, fruit rot, drying, decline and dieback, were collected. Totally, 153 fungal isolates were obtained on potato–dextrose–agar medium (PDA), of which 17 were identified at species level based on combination of morphological characteristics and sequence data of marker genes. Morphological characteristics and growth rate were evualted on oat – leaf - agar (OA) and PDA. The ITS-rDNA region (in some isolates) and part of the tub2 (in all isolates) and rpb2 (in some isolates) genes were amplified and sequenced. The obtained sequences were compared using BLASTn search algorithm in NCBI database and their phylogenetic analyses were performed based on single or multiple genemic regions. Accordingly, the isolates were identified as follow: Chaetomium anastomosans, C. ascotrichoides, C. subglobosum, Didymella pomorum, D. prolaticolla, and Paramicrosphaeropsis iranica. Based on literature, this is the first record of C. anastomosans, C. subglobosum and D. prolaticolla for the mycobiota of Iran. In addition, new hosts for C. Anastomosans (P. atlantica, Q. brantii and Crataegus sp.), C. Ascotrichoides (Acer sp.), C. subglobosum (Q. brantii) and P. iranica (A. scoparia and P. atlantica) are reported. Journal of Applied Research in Plant Protection

 

Journal of Applied Research in Plant Protection 12 (3): 239256 (2023)-Research Article
How to cite:
Artand S, Mehrabi-Koushki M, Tabein S, 2023. Identification of some fungal species in Chaetomiaceae and
Didymellaceae families associated with foliar and trunk diseases symptoms on forest trees in the Zagrosian region.
Journal of Applied Research in Plant Protection 12 (3): 239256.
https://dx.doi.org/10.22034/arpp.2023.16635
ChaetomiaceaeDidymellaceae






mhdmhrb@scu.ac.ir





PDA

OAPDAITS-rDNA
tub2rpb2
NCBI
   Chaetomium anastomosans

C. ascotrichoides

C. subglobosum
Didymella pomorum

D. prolaticolla
Paramicrosphaeropsis iranica

C. anastomosans

C. subglobosum
D. prolaticolla


     C. anastomosans   C. ascotrichoides C.
subglobosum

P. iranica
ChaetomiumDidymellaParamicrosphaeropsis
Identification of some fungal species in Chaetomiaceae and Didymellaceae families associated
with foliar and trunk diseases symptoms on forest trees in the Zagrosian region
Saeid Artand1, Mehdi Mehrabi-Koushki2 and Saeid Tabein3
1Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran. 2Department
of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran. 3Department of Plant
Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
mhdmhrb@scu.ac.ir
Received: 4 July 2022 Revised: 18 December 2022 Accepted: 20 December 2022
Abstract
Mountains of Shahiyoon and Salandkooh (Dezful, Khuzestan), Kabirkooh (Abdanan, Ilam) and ZazoMahroo
(Aligoodarz, Lorestan) constitute small parts of the Zagrosian forests in Iran. During 2020-2022, 50 symptomatic samples
from forest trees including Acer sp., Amygdalus scoparia, Crataegus sp., Pistacia atlantica, Quercus brantii and Ziziphus
sp., showing leaf blight, leaf spot, fruit rot, decline and dieback, were collected. Totally, 153 fungal isolates were obtained
on potatodextroseagar medium (PDA), of which 17 were identified at species level based on combination of
morphological characteristics and sequence data of marker genes. Morphological characteristics and growth rate were
evaluated on oat -meal - agar (OA) and PDA. The ITS-rDNA region (in some isolates) and part of the tub2 (in all isolates)
and rpb2 (in some isolates) genes were amplified and sequenced. The obtained sequences were compared using BLASTn
search algorithm in NCBI database and their phylogenetic analyses were performed based on single or multiple genomic
regions. Accordingly, the isolates were identified as follow: Chaetomium anastomosans, C. ascotrichoides, C.
subglobosum, Didymella pomorum, D. prolaticolla, and Paramicrosphaeropsis iranica. Based on literature, this is the
first record of C. anastomosans, C. subglobosum and D. prolaticolla for the mycobiota of Iran. In addition, new hosts for
C. anastomosans (P. atlantica, Q. brantii and Crataegus sp.), C. ascotrichoides (Acer sp.), C. subglobosum (Q. brantii)
and P. iranica (A. scoparia and P. atlantica) are reported.
Keywords: Didymella, Chaetomium, Fungal Diversity, Molecular Phylogeny, Paramicrosphaeropsis.

240
J Appl Res Plant Prot




Sabernasab et al. 2019


  
Ghobad-Nejad
2016

Sabernasab et al. 2019

 Acer sp.  Amygdalus scoparia
SpachQuercus brantii Lindl.Pistacia
atlantica Desf.Daphne sp.Crataegus
sp.P. khinjuk StocksGhobad-Nejad
2016
      
      
Tubakia sp.(Lee et al.
2018)Inonotus krawtzewii
(Pilát) PilátGhobad-Nejad 2016Libertella quercina
Grove
Mehrabi & Hemati 2013 Cytospora
intermedia Sacc.
(Fotouhifar et al. 2010)  
 Neoscytalidium dimidiatum (Penz.) Crous &
SlippersObolarina persica Mirabolfathy, Ju, Hsieh &
RogersAlidadi et al. 2019    
Biscogniauxia mediterranea (De Not.) Kuntze
Arzanlou et al. 2016
        
  Ghasemi-Esfahlan et al.
2019  
         
Wilsonomyces carpophilus (Lév.) Adask, J.M. Ogawa &
E.E. ButlerThyrostroma cornicola Crous & H.D. Shin
Collophorina paarla (Damm & Crous) Damm & Crous
B. mediterranea
  Rostamian et al.
2016; Mirabdolahi-shamsi et al. 2019Eremothecium
coryli (Peglion) Kurtzman(Ershad
2022)   
W. carpophilus
Ahmadpour et al. 2011
 Colletotrichum gloeosporioides (Penz.)
Penz. & Sacc.Nieto-López et al. 2018
Neofusicoccum luteum (Pennycook
& Samuels) Crous, Slippers & A.J.L. Phillips
(Adesemoye et al. 2013)
 Alternaria arborescens E.G.
Simmons Fusarium equiseti (Corda) Sacc.


Gymnosporangium globosum (Farl.) Farl. G.
Cooke & Peck clavipes

 Monilinia johnsonii (Ellis & Everh.) Honey
 (Salazar-Cerezo et al. 2020)
Acaulospora Gerdemann & Trappe
Glomus
Tulasne & C. Tulasne
 Crataegus pontica
Mirzaei et al. 2014
Valsaria insitiva (Tode) Ces. & De Not.
Massaria vindobonensis Voglmayr & JaklitschM.
mediterranea Voglmayr & JaklitschStegonsporium
opalus (Voglmayr & Jaklitsch) Voglmayr & Jaklitsch 
Taphrina inositophila (Á. Fonseca, J. Inácio & M.G.
Rodrigues) Yurkov & BuzzinErysiphe paradoxa
(Simonyan) U. Braun & S. TakamSawadaea bicornis
(Wallr.) Homma
S. tulasnei (Fuckel) Homma

Voglmayr & Jaklitsch. 2011, 2014; Jiang et al.
2018      Alternaria
alternata (Fries) KeisslerBotryosphaeria obtusa
(Schwein.) ShoemakerVerticillium dahlia Klebahn
Morgan et al. 1992; Swart et al. 1995;
Ozkilinc et al. 2017
  
     
    










J Appl Res Plant Prot


ChaetomiaceaeDidymellaceae





 






   
-Potato Dextrose Agar
PDA 
Alexopoulos & Beneke 1962; Paripour et al. 2023 

  
      


    
Oatmeal AgarOAPDA
   
     
    
 

    
OA
±



DNA

         
  PDA    
         
 DNA   Raeder & Broda (1985 
Ahmadpour et al. 2017a 
   18S  ITS15.8S ITS2
28S rDNA ITS-
rDNA

  Didymellaceae
ITS1White et al. 1990NL4
O’Donnell 1993
T1/Btub4Rd

Chaetomium KunzeBtub2Fd/T2
DidymellaParamicrosphaeropsis
O’Donnell & Cigelnik 1997; Groenewald et al.
2013RNA
 II Paramicrosphaeropsis L.W. Hou,
L. Cai & Crous  RPB2-5F2
fRPB2-
7cR
 Liu et al. 1999; Sung et al. 2007
  Polymerase
chain reactionPCR   

      
      
ITS 
tub2  rpb2   


Safi et al. 2020,
2021; Aghyl et al. 2022; Ahmadpour et al. 2022b
PCR      


 
Geneall
biotechnology   
    
BioEdit ver 4.0.6.2Hall 1999
DNA Baser ver3.5.0www.DnaBaser.com





242
J Appl Res Plant Prot
ML, Maximum liklihood 
MP, Maximum parsimony   BI,
Bayesian inference
ChaetomiumAsgari & Zare 2011; Wang et al. 2016a,
b; Aghyl et al. 2021  Didymella
ParamicrosphaeropsisChen et al. 2015, 2017; Hou et
al. 2020; Ahmadpour et al. 2022a
NCBI .
RAxMLGUI 2.0Edler et al. 2021   
 MEGATamura et al. 2013  
MrBayes v.3.2.6Ronquist et al.
2012
jModelTest 2Darriba et
al. 2012        

Bootstrapping, BS
  Posterior probability, BPP  
        
        

BS
BPP




     Chaetomiaceae
Didymellaceae     
Chaetomium anastomosans M. Raza & L. CaiC.
ascotrichoides CalvielloC. subglobosum Wang et al.

Didymella pomorum (Thum) Chen & L. CaiD.
prolaticolla L.W. Hou, L. Cai & Crous

Paramicrosphaeropsis iranica Ahmadpour et al.

NCBI
Table 1. Data of the isolates under study and their accession numbers in NCBI GenBank.


NCBIChaetomium
   tub2rpb2   
Species name
Isolate numbers
Isolation source
origin
accession numbers in NCBI
Chaetomium anastomosans
SCUA-Ar-B9B
Quercus brantii
-
ON383186
-
C. anastomosans
SCUA-Ar-SK1C
Pistacia atlantica
-
ON383187
-
C. anastomosans
SCUA-Ar-SK12A
Pistacia atlantica
-
ON383188
-
C. anastomosans
SCUA-Ar-Z8A
Crataegus sp.
-
ON383189
-
C. anastomosans
SCUA-Ar-Z8B
Crataegus sp.
-
ON383190
-
C. subglobosum
SCUA-Ar-Kb6B2
Quercus brantii
-
ON383192
-
C. ascotrichoides
SCUA-Ar-KK4A
Acer sp.
-
ON383191
-
Didymella pomorum
SCUA-Ar-S4B
Ziziphus sp.
ON847318
ON383195
-
D. prolaticolla
SCUA-Ar-S9A
Unknown plant
ON847319
ON383196
-
Paramicrosphaeropsis iranica
SCUA-Ar-K11A
Pistacia atlantica
-
MZ747189
-
P. iranica
SCUA-Ar-KS6-7
Quercus brantii
-
MZ747191
-
P. iranica
SCUA-Ar-K12C
Pistacia atlantica
MZ746104
MZ747185
MZ747198
P. iranica
SCUA-Ar-B7DA
Quercus brantii
-
MZ747188
-
P. iranica
SCUA-Ar-SB5B
Quercus brantii
-
MZ747192
-
P. iranica
SCUA-Ar-KB1A
Amygdalus scoparia
-
MZ747190
-
P. iranica
SCUA-Ar-B2F2
Quercus brantii
-
MZ747187
-
P. iranica
SCUA-Ar-B2A1
Quercus brantii
-
MZ747186
-



J Appl Res Plant Prot
Didymella Sacc.Paramicrosphaeropsis
ITStub2rpb2


 Chaetomiumtub2rpb2
 (MLMP
BPP      
Amesia
atrobrunnea
T
Figure 1. Phylogenetic tree constructed for Chatomium isolates based on combination of tub2 and rpb2 sequences. The
isolates in this study are indicated with red-color filled circles. Bootstrap values obtained in maximum likelihood (ML)
and maximum parsimony (MP) analyses 50% and Bayesian posterior probability values (BPP) 0.95 are shown at the
nodes, respectively. The tree was rooted with Amesia atrobrunnea. Letter T indicates the type strain.

244
J Appl Res Plant Prot
DidymellaITStub2rpb2
 (MLMP
BPP      
Neoascochyta argentina
T
Figure 2. Phylogenetic tree constructed for Didymella isolates based onITS, tub2 and rpb2 sequences. The isolates in
this study are indicated with red-color filled circles. Bootstrap values obtained in maximum likelihood (ML) and
maximum parsimony (MP) analyses 50% and Bayesian posterior probability values (BPP) 0.95 are shown at the nodes,
respectively. The tree was rooted with Neoascochyta argentina. Letter T indicates the type strain.



J Appl Res Plant Prot
ParamicrosphaeropsisITStub2rpb2
 (MLMP
BPP      
Ascochyta
rabiei
T
Figure 3. Phylogenetic tree constructed for Paramicrosphaeropsisisolates based on ITS, tub2 and rpb2 sequences. The
isolates in this study are indicated with red-color filled circles. Bootstrap values obtained in maximum likelihood (ML)
and maximum parsimony (MP) analyses 50% and Bayesian posterior probability values (BPP) 0.95 are shown at the
nodes, respectively. The tree was rooted with Ascochyta rabiei. Letter T indicates the type strain.

Chaetomium anastomosans M. Raza & L. Cai,
Fungal Diversity 99: 78 (2019)
OA
±



    




   
      




    SCUA-Ar-SK1C
SCUA-Ar-SK12ASCUA-Ar-
B98SCUA-Ar-Z8A
SCUA-Ar-Z8B

tub2
       C. anastomosans
CGMCC3.19350

tub2rpb2

246
J Appl Res Plant Prot
     LC 13503
CGMCC 3.19350     
MLBP: 86%, MPBP: 94%, BPP: 0.97

CGMCC 3.19350   

Raza et al. 2019
Raza et al. 2019
    Walther et al. 2021  
         C.
anastomosans
         

Chaetomium anastomosans
SCUA-Ar-SK1CA-CD-E
OAFGFG
Figure 4. Chaetomium anastomosans (SCUA-Ar-SK1C): A-C. Substrates (Pistacia atlantica, Quercus brantii
and Crataegus sp.), D-E Colony on OA after 8 days from above and below, F Ascocarps, G. Ascospores (Scale bars: F
= 500 µm, G = 20 µm).

Chaetomium ascotrichoides Calviello, Bernardino
Rivadavia 3: 372 (1972)
tub2
 CBS 113.83 


tub2rpb2
   CGMCC 3.11378CBS
110.83
         
MLBP: 97%, MPBP: 100%, BPP: 1.0
CBS 113.83
      
     

   Wang et al.
2016b      





J Appl Res Plant Prot
SCUA-Ar-KK4A

C. ascotrichoides
    
Wang et al. 2016b
Larki et al. 2019
C. ascotrichoides
Chaetomium ascotrichoides
SCUA-Ar-KK4A
AB-C
OAD-FG)DEFG
(
Figure 5. Chaetomium ascotrichoides (SCUA-Ar-KK4A): A Host (Acer sp.), B-C. Colony on OA after 8 days from
above and below, D-F. Ascomata, G. Ascospores (Scale bars: D = 500 µm, E = 200 µm, F = 105 µm, G = 20 µm).

Chaetomium subglobosum Wang et al, Perssonia 36: 83-133 (2016)

OA±

       

     
    



   
      
       
    

      
    
 SCUA-
Ar-Kb6B2 .

248
J Appl Res Plant Prot
Chaetomium subglobosum
SCUA-Ar-Kb6B2
A-BC-D
OAE-GHIE-FGH-I

Figure 6. Chaetomium subglobosum (SCUA-Ar-Kb6B2): A-B. Host (Quercus brantii), C-D. Colony on OA after 8 days
from above and below, E-G. Ascomata, H. Ascospores, I. Ascus(Scale bars: E-F = 500 µm, G = 200 µm, H-I = 20 µm)
   tub2
C. subglobosum MCUL
18694 
tub2rpb2
MCUL 18694
     
MLBP: 100%, MPBP: 97%, BPP: 1.0 
     MCUL
18694 
     

 

Wang et al. 2016b
C. subglobosum


Didymella pomorum (Thum) Chen & L. Cai, Studies
in Mycology 82: 179 (2015)
     Boerema et al. (2004)
ITS
tub2D. pomorum CBS 286.76

ITStub2

rpb2
CBS 286.76
MLBP: 100%,
MPBP: 100% 
CBS 539.66Boerema et al. 2004
SCUA-Ar-S4B 




D. pomorum
   Phoma Pomorum



J Appl Res Plant Prot
Thüm.Boerema et al. 2004
DidymellaChen et al. 2015
       
Chen et al. 2015


Ershad 2022
D. pomorum

Malus spp.Rosa spp.
Havenga et al. 2019; Ilyukhin 2022



Didymella pomorum
SCUA-Ar-S4B
A-BC-DOA
E-FGEFG
Figure 7. Didymella pomorum (SCUA-Ar-S4B): A-B Host (Ziziphus sp.), C-D. Colony on OA after 8 days from above
and below, E-F. Pycnidia, G. Conidia (Scale bars: E = 200 µm, F = 50 µm, G = 20 µm).

Didymella prolaticolla L.W. Hou, L. Cai & Crous,
Studies in Mycology 82: 357 (2020)

OA±



        

      





SCUA-Ar-S9A

     



250
J Appl Res Plant Prot
ITS
tub2         D.
prolaticolla CBS 126182
  ITS
tub2
rpb2

CBS 126182
MLBP: 100%, MPBP: 87%, BPP: 0.99
 

 
Hou et al. 2020

Hou et al. 2020
D. prolaticolla
        
     

Didymella prolaticolla
SCUA-Ar-S9AAB-COA
D-FGHDEF
G-H
Figure 8. Didymella prolaticolla (SCUA-Ar-S9A): A. Host (Daphne sp.), B-C. Colony on OA after 8days from above
and below, D-F. Pycnidia, G. Conidiogenous cells, H. Conidia. Scale bars: D = 500 µm, E = 200 µm, F = 105 µm, G-H
= 20 µm.

Paramicrosphaeropsis iranica Ahmadpour et al,
Mycological Progress 21:28 (2022)
      ITS
tub2rpb2
IRAN 2929C

   MLBP: 96%, MPBP: 85%

IRAN 2929C
    SCUA-Ar-K12C
SCUA-Ar-K11A     



J Appl Res Plant Prot
SCUA-Ar-B2A1SCUA-Ar-B2F2SCUA-Ar-
B7DASCUA-Ar-KS6-7     
SCUA-Ar-Kb1A
SCUA-Ar-SB5B

Paramicrosphaeropsis iranica

      Ahmadpour et al.
2022a


 Paramicrosphaeropsis
  
Quercus ilex L.

Crataegus sp.Nerium
oleander L.

Pistacia atlantica
P. khinjuk

Quercus
brantii
Ziziphus sp.
  Amygdalus
scopariaCrataegus sp.
Q. brantii
 
  Hou et al. 2020; Ahmadpour et al. 2022a;
Artand et al. 2022     


Paramicrosphaeropsis iranica
SCUA-Ar-K12CA-CD-G
OAD-EPDAF-GH-IJ HI
J
Figure 9. Paramicrosphaeropsis iranica (SCUA-Ar-K12C): A-C. Hosts (Amgydalus
scoparia, Quercus brantii and
Pistacia atlantica), D-G. Colony on OA (D-E)and PDA (F-G) after 8-days from above and below, H-I. Pycnidia, J.
Conidia. Scale bars: H = 500 µm, I = 200 µm, J = 20 µm
    C. anastomosans

C.
ascotrichoides

C. subglobosumDidymella pomorum

Dprolaticolla
P. iranica

   Chaetomium


Kamat et al.
2020  
Fatima et al. 2016
Chaetomium
Soytong et al. 2001
   C. ascotrichoides CavielloC.
circinatum ChiversC. crispatum (Fuckel) FuckelC.
cruentatum SörgelC. elatum KunzeC. globisporum

252
J Appl Res Plant Prot
LodhaC. globosum KunzeC. grande Asgari & Zare
C. hispanicum Guarro & ArxC. interruptum Asgari &
ZareC. iranicum M. Mehrabi-Koushki, Aghyl & M.
EsfandC. madrasense NatarajanC. megalocarpum
BainierC. osmaniae P. Rama Rao & Ram ReddyC.
rectangulare Asgari & ZareC. spiralotrichum Lodha
C. undulatulum Asgari & ZareAghyl
et al. 2021; Ershad 2022 Chaetomium
         

     
Chaetomium
Piontelli 2006

Di Pietro et al. 1992
Didymella
D. exigua (Niessl) Sacc.
Holm 1975; Corlett 1981   
Mycosphaerellaceae
Pleosporaceae Phaeosphaeriaceae
Venturiaceae    
Pleosporales
DidymellaceaePleosporales
DothideomycetesDidymella
    
   
Aveskamp et al. 2008, 2010
D. acetosellae (A.L. Sm. &
Ramsb.) Qian Chen & L. CaiD. azollae E. Shams, F.
Dehghanizadeh, A. Pordel & M. Javan-NikkhahD.
bellidis (Neerg.) Qian Chen & L. CaiD. cousiniae Petr
D. cylindrica S.A. Ahmadp., M. Mehrabi-Koushki,
Farokhinejad & AsgariD. glomerata (Corda) Qian
Chen & L. CaiD. iranica PetrD. microchlamydospora
(Aveskamp & Verkley) Qian Chen & L. CaiD.
pinodella (L.K. Jones) Qian Chen & L. CaiD. pisi
Chilvers, J.D. Rogers & PeeverD. tanaceti (R.G.
Shivas, S.J. Pethybr. & S.J. Jones) T.L. Pearce, J.B.
Scott, Crous, S.J. Pethybr. & F.S. Hay
Ahmadpour et al. 2017b, 2022a; Ershad 2022
  Microsphaeropsis 
    Didymellaceae 
Microsphaeropsis
 Montagnulaceae    
MicrosphaeropsidaceaeChen et al. 2015


MicrosphaeropsisDidymellaceae
   
Neomicrosphaeropsis Thambug., Camporesi & K.D.
HydeParamicrosphaeropsisHou et al. 2020
     
   
Paramicrosphaeropsis
   
 Microsphaeropsis Sousa da Câmara,
Oliveira & Luz   Didymellaceae  
    Hou et al. 2020



Paramicrosphaeropsis
P. amygdalus M. Mehrabi-Koushki, S. Artand, K.D.
Hyde & Jayaward.P. ellipsoidea L.W. Hou, L. Cai &
CrousP. iranicaP. pistacicola M. Mehrabi-Koushki,
S. Artand, K.D. Hyde & JayawardP. salandica M.
Mehrabi-Koushki, S. Artand, K.D. Hyde & Jayaward
P. zagrosensis M. Mehrabi-Koushki, S. Artand, K.D.
Hyde & JayawardHou et al. 2020; Ahmadpour et
al. 2022a; Artand et al. 2022P.
ellipsoidea    
Hou et al. 2020



         







J Appl Res Plant Prot


   
SCU.AP1400.294
References
Adesemoye A, Mayorquin J, Eskalen A, 2013.
Neofusicoccum luteum as a pathogen on Tejocote
(Crataegus mexicana). Phytopathologia
Mediterranea 52(1): 123129.
Aghyl H, Mehrabi-Koushki M, Esfandiari M, 2021.
Chaetomium iranicum and Collariella
capillicompacta spp. nov. and notes to new hosts of
Amesia species in Iran. Sydowia 71: 2130.
Aghyl H, Mehrabi-Koushki M, Esfandiari M, 2022. New
records of fungal species associated with insects in
Iran. Journal of Applied Research in Plant Protection
11 (1): 6179. (In Persian with English abstract).
Artand S, Mehrabi-Koushki M, Tabein S, Hyde KD,
Jayawardena RS, 2022. Revision of the
Microsphaeropsis complex with addition of four new
Paramicrosphaeropsis L.W. Hou, L. Cai & Crous
species from Zagrosian forest trees in Iran.
Cryptogamie Mycologie 43 (7): 159175.
Asgari B, Zare R, 2011. The genus Chaetomium in Iran,
a phylogenetic study
including six new species. Mycologia 103:
863882.
Ahmadpour A, Ghosta Y, Javan Nikkhah M, Fattahi R,
Ghazanfari K, 2011. A study on specificity and host
range of Wilsonomyces carpophilus, the causal agent
of shot hole disease of stone fruit trees and evaluation
of relative resistance of some peach cultivars. Iranian
Journal of Plant Protection Science 4: 251259. (In
Persian with English summary).
Ahmadpour SA, Farokhinejad R, Mehrabi-Koushki M,
2017a. Further characterization and pathogenicity of
Didymella microchlamydospora causing stem
necrosis of Morus nigra in Iran. Mycosphere 8(7):
835852.
Ahmadpour SA, Mehrabi-Koushki M, Farokhinejad R,
2017b. Neodidymelliopsis farokhinejadii, a new
fungal species from dead branches of trees in Iran.
Sydowia 69: 171182.
Ahmadpour SA, Mehrabi-Koushki M, Farokhinejad R,
Asgari B, 2022a. New species of the family
Didymellaceae in Iran. Mycological Progress 21(2):
28.
Ahmadpour SA, Mehrabi-Koushki M, Farokhinejad R,
Asgari B, 2022b. Xenodidymella iranica sp. nov. and
new hosts of X. glycyrrhizicola in Iran. Tropical Plant
Pathology 47: 430441.
Alexopoulos CJ, Beneke ES, 1962. Laboratory Manual
for Introductory Mycology. Burgess Pub. Co,
Minneapolis. 199 pp.
Alidadi A, Kowsari M, Javan-Nikkhah M, Karami S,
Ariyawansa H, et al., 2019. Deniquelata quercina sp.
nov.; a new endophyte species from Persian oak in
Iran. Phytotaxa 405 (4): 187194.
Arzanlou M, Ghasemi-esfahlan S, Khodaei S, Tavakoli
M, Babai-ahari A, 2016. Molecular diagnostics of
Biscogniauxia mediterranea, the causal agent of
charcoal rot disease on oak using species-specific
primers. Journal of Applied Research in Plant
Protection 5(2): 175186. (In Persian with English
abstract).
Aveskamp MM, De Gruyter J, Crous PW, 2008. Biology
and recent developments in the systematics of
Phoma, a complex genus of major quarantine
significance. Fungal Diversity 31: 118.
Aveskamp MM, De Gruyter J, Woudenberg JHC,
Verkley GJM, Crous PW, 2010. Highlights of the
Didymellaceae: a polyphasic approach to characterise
Phoma and related pleosporalean genera. Studies in
Mycology 65: 160.
Boerema GH, de Gruyter J, Noordeloos ME, Humers
MEC, 2004. Phoma identification manual.
Differentiation of specific and infra-specific taxa in
culture. CABI Publishing, Wallingford, UK. 470 pp.
Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW, 2015.
Resolving the Phoma enigma. Studies in Mycology
82: 137217.
Chen Q, Hou LW, Duan WJ, Crous PW, Cai L, 2017.
Didymellaceae revisited. Studies in Mycology 87:
105159.
Corlett M, 1981. A taxonomic survey of some species of
Didymella and didymella-like species. Canadian
Journal of Botany 59: 20162042.
Darriba D, Taboada GL, Doallo R, Posada D,
2012.
jModelTest 2
:
more models, new heuristics and

254
J Appl Res Plant Prot
parallel computing
.
Nature Methods 9: 772
.
Di Pietro, A, GutRella M, Pachlatco JP, Schwinn FJ,
1992. Role of antibiotics produced by Chaetomium
globosum in biocontrol of Pythium ultimum, a causal
agent of damping off. Phytopathology 82 (2): 131
135.
Edler D, Klein J, Antonelli A, Silvestro D,
2021.
raxmlGUI 2
.
0 beta
:
a graphical interface and toolkit
for phylogenetic analyses using RAxMl. Methods in
Ecology & Evolution 12: 373377.
Ershad D, 2022. Fungi and fungal analogues of Iran. 4rd
ed. Iranian Research Institute of Plant Protection,
Tehran. 695 pp.
Fatima N, Muhammad SA, Khan I, Qazi MA, Shahzadi I
et al., 2016. Chaetomium endophytes: a repository of
pharmacologically active metabolites. Acta
Physiologiae Plantarum 38: 136153.
Fotouhifar Kh, Hedjaroude Gh, Leuchtamann A, 2010.
ITS rDNA phylogeny of Iranian strains of Cytospora
and associated teleomorphs. Mycologia 102(6):
13691382.
Ghasemi-Esfahlan S, Arzanlou M, Babai-Ahari A,
Torbati M, Narmani A, 2019. Morphological and
molecular characterization of endophytic fungi from
oak trees in Arasbaran forests. Journal of Applied
Research in Plant Protection 8(1): 116. (In Persian
with English abstract).
Ghobad-Nejad M, 2016. Inonotus krawtzewii causes
noteworthy damage to oak stands in Zagros, western
Asia, with a key to morphologically similar species
worldwide. Nordic Journal of Botany 34(4): 001
005.
Groenewald JZ, Nakashima C, Nishikawa J, Shin HD,
Park JH, Jama AN, Groenewald M, Braun U, Crous
PW, 2013. Species concepts in Cercospora: spotting
the weeds among the roses. Studies in Mycology 75:
11570.
Hall TA, 1999. BioEdit: a user-friendly biological
sequence alignment editor and analysis program for
windows 95/98/NT. Nucleic Acids Symposium Series
41: 9598.
Havenga M, Gatsi GM, Halleen F, Spies CFJ, van der
Merwe R, Mostert L, 2019. Canker and wood rot
pathogens present in young apple trees a propagation
material in the Western Cape of South Africa. Plant
Disease 103(12): 31293141.
Holm L, 1975. Nomenclatural notes on Pyrenomycetes.
Taxon 24: 475488.
Hou LW, Groenewald JZ, Pfenning LH, Yarden O, Crous
PW et al., 2020. The phoma-like dilemma. Studies in
Mycology 96: 309396.
Ilyukhin E, 2022. First report of stem canker of Rosa spp.
caused by Didymella pomorum in Canada. Journal of
Plant Patholology 104(1): 443.
Jiang N, Li J, Pia CG, Guo MW, Tian CM, 2018.
Identification and characterization of chestnut
branch-inhabiting melanocratic fungi in China.
Mycosphere 9(6): 12681289.
Kamat S, Kumari M, Taritla S, Jayabaskaran C, 2020.
Endophytic fungi of marine alga from Konkan Coast,
India: a rich source of bioactive material. Frontiers in
Marine Science 7: 31.
Larki R, Mehrabi-Koushki M, Farokhinejad R, 2019.
Identification of Chaetomium and Amesia species
associated with different diseases of some herbaceous
ornamentals in Ahwaz. Biological Journal of
Microorganism 31: 3350. (In Persian with English
abstract).
Lee DH, Seo ST, Lee SK, Lee SK, 2018. Leaf spot
disease on seedlings of Quercus acutissima caused by
Tubakia dryina in Korea. Australasian Plant Disease
Notes 13(14): 13.
Liu YJ, Whelen S, Hall BD, 1999. Phylogenetic
relationships among ascomycetes: evidence from an
RNA polymeras II subunit. Molecular Biology &
Evolution 16: 17991808.
Mehrabi M, Hemati R, 2013. First report of the genus
Libertella in Iran. Iranian Journal of Plant Pathology
49(3): 119. (In Persian with English abstract).
Mirabdolahi-Shamsi M, Akbarnia M, Mirabolfathy M,
Manzari Sh, Ahmadikhan A, 2019. Dieback and
decline of wild almond (Amygdalus scoparia Spach)
in the Harat protected forest of Yazd Province, Iran.
Forest Pathology 49(5): 114.
Mirzaei J, Noorbakhsh N, Karamshahi A, 2014.
Identification of arbuscular mycorrhizal fungi
associated with Crataegus pontica C. Koch from Ilam
Province, Iran. Ecopersia 2(4): 767777.
Morgan DP, Epstein L, Ferguson L, 1992. Verticillium
wilt resistance in pistachio rootstock cultivars assays
and an assessment of two interspecific hybrids. Plant
Disease 76(3): 310313.



J Appl Res Plant Prot
Nieto-López EH, Everhart SE, Ayala-Escoba V,
Camacho-Tapia M, Lima NB et al., 2018. First report
of Colletotrichum gloeosporioides causing
anthracnose of tejocote (Crataegus gracilior) fruits in
Mexico. Plant Disease 5(4): 12.
O’Donnell K, 1993. Fusarium and ITS near relatives. In:
Reynolds DR, Taylor JW (eds). The Fungal
Holomorph: Mitotic, Meiotic and Pleomorphic
Speciation in Fungal Systematics. CABI Publishing,
Wallingford. Pp. 225233.
O’Donnell K, Cigelnik E, 1997. Two divergent
intragenomic rDNA ITS2 types within a
monophyletic lineage of the fungus Fusarium are
nonorthologous. Molecular Phylogenetics &
Evolution 7: 103116.
Ozkilinc H, Sarpkaya K, Kurt S, Can C, Polatbilek H, et
al., 2017. Pathogenicity, morpho-species and mating
types of Alternaria spp. causing Alternaria blight in
Pistacia spp. in Turkey. Phytoparasitica 45(6): 719
728.
Paripour Z, Davari M, Asgari B, 2023. Characterization
and pathogenicity of fungal species associated with
dieback and decline of ash trees in Ardabil and Namin
County (Iran). Journal of Applied Research in Plant
Protection. 12(2):12342.
Piontelli EL, Cruz RC, Toro MA, 2006. Coprophilous
fungal community of wild rabbit in park of a hospital
(chile): a taxonomic approach. Boletín Micológico
21: 117.
Raeder U, Broda P, 1985. Rapid preparation of DNA
from filamentous fungi. Letters in Applied
Microbiology 1: 1720.
Raza M, Zhang ZF, Hyde KD, Diao YZ, Cai L, 2019.
Culturable plant pathogenic fungi associated with
sugarcane in southern China. Fungal Diversity 99: 1
104.
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL,
Darling A et al., 2012. MrBayes 3.2: efficient
Bayesian phylogenetic inference and model choice
across a large model space. Systematic Biology 61:
539542.
Rostamian M, Kavosi M, Bazgir A, Babanezhad M,
2016. First report of Biscogniauxia mediterranea
causing canker on wild almond (Amygdalus
scoparia). Australasian Plant Disease Notes 11: 30.
Sabernasab M, Jamali S, Marefat A, Abbasi S, 2019.
Morphological and molecular characterization of
Neoscytalidium novaehollandiae, the cause of
Quercus brantii dieback in Iran. Phytopathologia
Mediterranea 58(2): 347357.
Safi A, Mehrabi-koushki M, Farokinejad R, 2020.
Amesia khuzestanica and Curvularia iranica spp.
nov. from Iran. Mycological Progress 19: 935945.
Safi A, Mehrabi-koushki M, Farokinejad R, 2021.
Plenodomus dezfulensis sp. nov. causing leaf spot of
Rapeseed in Iran. Phytotaxa 523: 141154.
Salazar-Cerezo S, Meneses-Sánchez M, Martínez-
Contreras R, Martínez-Montiel N, 2020. Unraveling
the fungal community associated with leaf spot on
Crataegus sp. Microorganisms 8(459): 112.
Soytong K, Kanokmedhakul S, Kukongviriyapa V, Isobe
M, 2001. Application of Chaetomium species
(Ketomium) as a new broad spectrum biological
fungicide for plant disease control: a review article.
Fungal Diversity 7: 15.
Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW,
2007. A multigene phylogeny of Clavicipitaceae
(Ascomycota, Fungi): idefication of localized
incongruence using a combinational bootstrap
approach. Molecular Phylogenetics & Evolution 44:
12041223.
Swart W, Lecturer S, Botes WM, 1995. First report stem
canker caused by Botryospharia obtus of Pistachio.
Plant Disease 79(10): 10361038.
Tamura K, Stecher G, Peteson D, Filipski A, Kumar S,
2013. MEGA6: molecular evolutionary genetics
analysis version 6.0. Molecular Biology & Evolution
30: 27252729.
Voglmayr H, Jaklitsch WM, 2011. Molecular data reveal
high host specificity in the phylogenetically isolated
genus Massaria (Ascomycota, Massariaceae).
Fungal Diversity 46: 133170.
Voglmayr H, Jaklitsch WM, 2014. Stilbosporaceae
resurrected: generic reclassification and speciation.
Persoonia 33: 6182.
Walther G, Zimmermann A, Theuersbacher J, Kaerger K,
Lilienfeld-Toal M, et al., 2021. Eye Infections
Caused by Filamentous Fungi: Spectrum and
Antifungal Susceptibility of the Prevailing Agents in
Germany. Journal of Fungi 7(7): 511.
Wang XW, Houbraken J, Groenewald JZ, Meijer M,
Andersen B, et al., 2016a. Diversity and taxonomy of

256
Chaetomium and chaetomium-like fungi from indoor
environments. Study in Mycology 84: 145224.
Wang XW, Lombard L, Groenewald JZ, Li J, Videira,
SIR, 2016b. Phylogenetic reassessment of the
Chaetomium globosum species complex. Persoonia
36: 83133.
White TJ, Bruns T, Lee S, Taylor JL, 1990.
Amplification and direct sequencing of fungal
ribosomal RNA genes for phylogenetics. In: Innis
MA, Gelfand DH, Sninsky JJ, White TJ (eds). PCR
Protocols: A Guide to Methods and Applications.
Academic Press, New York. Pp. 315322.
This is an open access article under the CC BY NC license (https://creativecommons
.org/licenses/by-nc/2.0/)
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Ash trees (Fraxinus spp.) are one of the most important ornamental trees in the green space of cities. To evaluate the fungi associated with decline and dieback of ash trees, the symptomatic samples from branches, trunks, and roots of two species of Fraxinus (European Fraxinus, F. excelsior and Van, F. rotundifolia) were collected from Ardabil and Namin during the summer and autumn of 2018–2019. From the 60 samples, 81 fungal isolates were recovered. Based on morphological features of all isolates together with sequence data of tef-1α gene and specific primers of some Fusarium and Neocosmospora species, 21 fungal species were identified, i.e., Alternaria, Chaetomium, Clonostachys, Cytospora, Fusarium, Microascus, Microsphaeropsis, Neocosmospora, Peyronellaea and Phialophora. Neocosmospora solani, Cytospora chrysosperma and F. oxysporum had the highest abundance, respectively. Pathogenicity test was performed by excised shoot for F. cerealis, F. equiseti, F. oxysporum and N. solani excided shoot method and for C. chrysosperma on excided shoot method and also on two years old ash saplings in greenhouse. Our results showed that all examined species except F. cerealis and F. equiseti cause discoloration of wood texture at the inoculation site. According to our knowledge, most of the fungal species identified in this study, are reported for the first time on ash trees worldwide. Besides, F. denticulatum is a new record to the Iranian mycobiota.
Article
Full-text available
Pathogenic and non-pathogenic fungi growing on insect’s body cansignificantly affect their biology and population. To identify insect-associated fungi, the life stages of the insects, including larva, pupa and adults (alive or dead and helthy), were collected from different habitats in Golestan and Khuzestan Provinces during 2017-2018 and their associated fungi were isolated after surface-sterilization. In this study, 13 various isolates were selected (based on primary morphology) and identified according to morphological and molecular analysis. For molecular identification, the sequences of ITS-nrDNA, tef1a, tub2 and gapdh were obtained, where required for identification. Accordingly, eleven species were identified as follow: Auxarthron kuehnii, Biscogniauxia sp., Cladosporium halotolerans, Curvularia mosaddeghii, Fusarium brachygibbosum, Lasiodiplodia mediterranea, Metarhizium brunneum, Nigrospora gorlenkoana, N. oryzae, N. osmanthi, Petriella guttulata and Phascolomyces articulosus. This study firstly reports the genera of Auxarthron (A. kuehnii) and Phascolomyces (P. articulosus) and the species of L. mediterranea, N. gorlenkoana and N. osmanthi for the mycobiota of Iran.
Article
Full-text available
Paramicrosphaeropsis L.W.Hou, L.Cai & Crous is a monophyletic taxon in Didymellaceae and includes two species to date. In a survey on microsphaeropsis-like fungi associated with Zagrosian forest trees in Iran, four new Paramicrosphaeropsis species were identified and described including P. amygdalus M.Mehrabi-Koushki, S.Artand, K.D.Hyde & Jayaward., sp. nov. from Amygdalus scoparia Spach., P. pistacicola M.Mehrabi-Koushki, S.Artand, K.D.Hyde & Jayaward., sp. nov. from Pistacia spp., P. salandica M.Mehrabi-Koushki, S.Artand, K.D.Hyde & Jayaward., sp. nov. from Crataegus sp., Nerium oleander L., Quercus brantii Lindl. and Ziziphus sp., and P. zagrosensis M.Mehrabi-Koushki, S.Artand, K.D.Hyde & Jayaward., sp. nov. from Crataegus sp. and Quercus brantii. Phylogenetic analyses based on a combination of four genomic regions, including the partial nuclear 28S ribosomal DNA (LSU), internal transcribed spacer regions 1 and 2 including the intervening 5.8S nuclear ribosomal DNA (ITS), partial β-tubulin (tub2) and RNA polymerase II second largest subunit (rpb2), are provided to clarify the phylogenetic affinities of the new species and other taxa within the Microsphaeropsis complex. In addition, a new genus Heteromicrosphaeropsis M.Mehrabi-Koushki, K.D.Hyde & Jayaward., gen. nov. and five new combinations are introduced. The new combinations are Heteromicrosphaeropsis ononidicola (Thambug., Camporesi & K.D.Hyde) M.Mehrabi-Koushki, K.D.Hyde & Jayaward., comb. nov., Microsphaeropsis cytisi (W.J.Li & K.D.Hyde) M.Mehrabi-Koushki, K.D.Hyde & Jayaward., comb. nov., M. cytisicola (Wanas., Camporesi, E.B.G.Jones & K.D.Hyde) M.Mehrabi-Koushki, K.D.Hyde & Jayaward., comb. nov., M. cytisinus (Tennakoon, Camporesi & K.D.Hyde) M.Mehrabi-Koushki, K.D.Hyde & Jayaward., comb. nov. and M. minima (W.J.Li & K.D.Hyde) M.Mehrabi-Koushki, K.D.Hyde & Jayaward., comb. nov.
Article
Full-text available
The family Didymellaceae is rich in genera and species diversity, host range, and geographic distribution. We describe novel members of the Didymellaceae from various host plants in Iran. Our phylogenetic analyses based on sequence data of the internal transcribed spacer regions 1 and 2 including the intervening 5.8S nuclear ribosomal DNA (ITS), partial nuclear 28S ribosomal DNA (LSU), β-tubulin (TUB2), and RNA polymerase II second largest subunit (RPB2), together with morphological studies supported the introduction of four novel species including Ascochyta amygdali from Amygdalus scoparia, Didymella cylindrica from Pteridium aquilinum, Paramicrosphaeropsis iranica from Quercus brantii, and Xenodidymella menthae from Mentha piperita. The report of all above host plants for the fungal genera, except for Didymella, is new. Ascochyta amygdali can be distinguished from closely related species (A. herbicola) by lacking cylindrical to subcylindrical conidia. Didymella cylindrica differs from the closely related D. subrosea by smaller pycnidia and longer cylindrical conidia. Paramicrosphaeropsis iranica differs from P. ellipsoidea in having smaller, thick-walled pycnidia and shorter conidia. Xenodidymella menthae distinguishes from the closely related X. catariae by smaller aseptate conidia.
Article
Full-text available
The genus Xenodidymella includes eight species that are mainly plant pathogens causing different diseases worldwide. During a survey on plant diseases in Khuzestan province in southwestern Iran, seven isolates of Xenodidymella were obtained from symptomatic plants, including Brassica oleracea var. capitata, Callistemon citrinus, Corchorus olitorius, Coriandrum sativum, Glycyrrhiza lepidota, and Ziziphus mauritiana. A multi-locus phylogenetic analysis based on the internal transcribed spacer regions 1 and 2 including the 5.8S nuclear ribosomal DNA (ITS), partial β-tubulin (tub2), and RNA polymerase II second largest subunit (rpb2), combined with morphology, was used to identify the isolates. Accordingly, the novel species Xenodidymella iranica is introduced and characterized here along with five new hosts for X. glycyrrhizicola. In pathogenicity tests, X. iranica and three strains of X. glycyrrhizicola are known as pathogenic on host plants from where they were originally isolated.
Article
Full-text available
Rapeseed (Brassica napus subsp. napus) is one of the autumn crops in Iran. A new fungal species isolated from internal tissues associating a typical leaf spot of Rapeseed in Dezful (southwestern Iran) was described and illustrated. The sampling and isolation were performed in the late fall of 2019 (during December), which led to obtain the colonies with the similar morphology. Molecular phylogenetic analyses based on a combined matrix of the internal transcribed spacer regions 1 and 2 including the intervening 5.8S nuclear ribosomal DNA (ITS), and partial regions of the β-tubulin (tub2) and RNA polymerase II second largest subunit (rpb2) indicated that two isolated strains represent a new Plenodomus species in family Leptosphaeriaceae (Pleosporales). These novel strains formed a sister lineage with P. biglobosus in our phylogenetic analyses, while, observed morphology is distinguished the taxa from P. biglobosus by its pycnidia in having hyphal outgrowths and lacking cylindrical neck. Accordingly, P. dezfulensis sp. nov. was introduced and its pathogenicity was investigated. Pathogenicity test with both P. dezfulensis strains on three-week seedlings of Rapeseed reproduced leaf spot symptoms. These results approve P. dezfulensis as the causal agent of leaf spot observed on Rapeseed in Dezful.
Article
Full-text available
Fungal eye infections can lead to loss of vision and blindness. The disease is most prevalent in the tropics, although case numbers in moderate climates are increasing as well. This study aimed to determine the dominating filamentous fungi causing eye infections in Germany and their antifungal susceptibility profiles in order to improve treatment, including cases with unidentified pathogenic fungi. As such, we studied all filamentous fungi isolated from the eye or associated materials that were sent to the NRZMyk between 2014 and 2020. All strains were molecularly identified and antifungal susceptibility testing according to the EUCAST protocol was performed for common species. In total, 242 strains of 66 species were received. Fusarium was the dominating genus, followed by Aspergillus, Purpureocillium, Alternaria, and Scedosporium. The most prevalent species in eye samples were Fusarium petroliphilum, F. keratoplasticum, and F. solani of the Fusarium solani species complex. The spectrum of species comprises less susceptible taxa for amphotericin B, natamycin, and azoles, including voriconazole. Natamycin is effective for most species but not for Aspergillus flavus or Purpureocillium spp. Some strains of F. solani show MICs higher than 16 mg/L. Our data underline the importance of species identification for correct treatment.
Article
Full-text available
raxmlGUI is a graphical user interface to RAxML, one of the most popular and widely used softwares for phylogenetic inference using maximum likelihood. Here we present raxmlGUI 2.0, a complete rewrite of the GUI which seamlessly integrates RAxML binaries for all major operating systems with an intuitive graphical front‐end to setup and run phylogenetic analyses. Our program offers automated pipelines for analyses that require multiple successive calls of RAxML, built‐in functions to concatenate alignment files while automatically specifying the appropriate partition settings, and one‐click model testing to select the best substitution models using ModelTest‐NG. In addition to RAxML 8.x, raxmlGUI 2.0 also supports the new RAxML‐NG, which provides new functionality and higher performance on large datasets. raxmlGUI 2.0 facilitates phylogenetic analyses by coupling an intuitive interface with the unmatched performance of RAxML.
Article
Full-text available
With the aim of isolation and identification of insect-associated fungi, the life stages of insects from different orders, including Coleoptera, Dermaptera and Lepidoptera, were collected from habitats in Golestan and Khuzestan Provinces (Iran) and studied, which led to the isolation of five chaetomium-like strains belonging to four taxa. DNA sequence analysis of the partial ß-tubulin (tub2) and part of the RNA polymerase II second largest subunit (rpb2), in combination with morphology, were used to identify species. The phylogenetic tree constructed based on two-locus sequence data revealed that the Chaetomium iranicum and Collariella capillicompacta isolates represented novel species and clustered distinct from other previously known species of both genera. Morphologically, the mature ascomata of Co. capillicompacta produces long and very compacted ostiolar hairs with helically and regularly coiling in the upper parts. Ch. iranicum was appeared to be sterile on PDA and OA. In addition, this is the first report of both, the genera Chaetomium and Collariella and the species Amesia atrobrunnea and A. cymbiformis associated with insects throughout the world.