ArticlePDF Available

Seasonal and spatial variability in rates of primary production and detritus release by intertidal stands of Laminaria digitata and Saccharina latissima on wave-exposed shores in the northeast Atlantic

Wiley
Ecology and Evolution
Authors:

Abstract and Figures

Coastal habitats are increasingly recognized as fundamentally important components of global carbon cycles, but the rates of carbon flow associated with marine macrophytes are not well resolved for many species in many regions. We quantified density, rates of primary productivity, and detritus production of intertidal stands of two common intertidal kelp species-Laminaria digitata (oarweed) and Saccharina latissima (sugar kelp)-on four NE Atlantic rocky shores over 22 months. The density of L. digitata was greater at exposed compared to moderately exposed shores but remained consistently low for S. latissima throughout the survey period. Individual productivity and erosion rates of L. digitata did not differ between exposed and moderately exposed shores but differed across exposure levels throughout the year at moderately exposed sites only. Productivity and erosion of S. latissima remained low on moderately exposed shores and showed no clear seasonal pattern. Patterns of productivity and total detrital production (erosion and dislodgement) per m2 of both L. digitata and S. latissima followed closely that of densities per m2, peaking in May during both survey years. Temperature and light were key factors affecting the productivity rates of L. digitata and S. latissima. Erosion rates of L. digitata were affected by wave exposure, temperature, light, grazing, and epiphyte cover, but only temperature-affected erosion of S. latissima. Production of biomass and detritus was greater in L. digitata than in S. latissima and exceeded previous estimates for subtidal and warmer-water affinity kelp populations (e.g., Laminaria ochroleuca). These biogenic habitats are clearly important contributors to the coastal carbon cycle that have been overlooked previously and should be included in future ecosystem models. Further work is required to determine the areal extent of kelp stands in intertidal and shallow subtidal habitats, which is needed to scale up local production estimates to entire coastlines.
This content is subject to copyright. Terms and conditions apply.
Ecology and Evolution. 2023;13:e10146. 
|
1 of 16
https://doi.org/10.1002/ece3.10146
www.ecolevol.org
Received:11Januar y2023 
|
Revised:2M ay2023 
|
Accepted :9May2023
DOI: 10.1002/ece 3.10146
RESEARCH ARTICLE
Seasonal and spatial variability in rates of primary production
and detritus release by intertidal stands of Laminaria digitata
and Saccharina latissima on wave- exposed shores in the
northeast Atlantic
Abby R. Gilson1| Lydia J. White1,2 | Michael T. Burrows3| Dan A. Smale4|
Nessa E. O'Connor1
This is an op en access arti cle under the ter ms of the CreativeCommonsAttributionL icense,whichpe rmitsuse,dis tribu tionandreprod uctioninanymed ium,
provide d the original wor k is properly cited.
©2023TheAuthors .Ecolog y and Evoluti onpublishedbyJo hnWiley&S onsLtd.
1SchoolofBiologicalSciences,Instituteof
GlobalFoodSecurity,Queen'sUniversit y
Belfas t,Bel fast ,UK
2TvärminneZoologic alStation,Universit y
ofHelsinki,Hanko,Finlan d
3ScottishAsso ciationforMarineScience,
ScottishMarin eInstitute,Oban,UK
4MarineBiologicalAssociationoftheUK,
Plymou th,UK
Correspondence
AbbyR.G ilson,TrinityCollegeDublin,
SchoolofNatura lSciences,Trinit yCollege
Dublin ,Dublin2,Irela nd.
Email: gilsona@tcd.ie
Present address
AbbyR.G ilsonandNessaE.O’Connor,
TrinityCol legeDub lin,SchoolofNatural
Science s,TrinityCollegeD ublin ,Dublin2,
Ireland
Funding information
Depar tmentforEconomyNorthern
Ireland; Department for Environment,
FoodandRu ralAf fairs ,UKGover nment ,
Grant /AwardNumber:NE/L 003279/1;
NaturalEnvironmentResearchCo uncil;
UKResearchandIn novatio nFuture
Leader sFellowship,Gr ant/Award
Number:MR/S032827/1
Abstract
Coastalhabitatsareincreasinglyrecognizedasfundamentallyimportantcomponents
ofglobalcarbon cycles,buttheratesofcarbon flowassociatedwithmarinemacro-
phytes are notwellresolved formanyspeciesinmanyregions. We quantified den-
sity, rates of primary productivity, and detritus production of intertidal stands of two
common intertidal kelp species— Laminaria digitata (oarweed) and Saccharina latissima
(sugarkelp)—onfourNEAtlanticrockyshoresover22 months.ThedensityofL. digi-
tatawasgreater at exposed comparedtomoderatelyexposedshores but remained
consistently low for S. latissima throughout the survey period. Individual productivity
and erosion rates of L. digitatadidnotdifferbetweenexposedandmoderatelyex-
posedshoresbutdifferedacrossexposurelevelsthroughouttheyearatmoderately
exposed sites only. Productivity and erosion of S. latissima remained low on moder-
ately exposed shores and showed no clear seasonal pattern. Patterns of productivity
and total detrital production (erosion and dislodgement) per m2ofbothL. digitata and
S. latissima followed closely that of densities per m2,peakinginMayduringbothsur-
vey years. Temperature and light were key factors affecting the productivity rates of
L. digitata and S. latissima. Erosion rates of L. digitatawereaffectedbywaveexposure,
temperature, light, grazing, andepiphytecover,butonly temperature-affectedero-
sion of S. latissima.ProductionofbiomassanddetrituswasgreaterinL. digitata than
in S. latissimaandexceededpreviousestimatesforsubtidalandwarmer-wateraffin-
ity kelp populations (e.g., Laminaria ochroleuca). These biogenic ha bitats are cle arly
importantcontributorstothecoastalcarboncyclethathavebeenoverlookedprevi-
ouslyandshouldbeincludedinfutureecosystemmodels.Furtherworkisrequiredto
determine the arealextentofkelp standsinintertidalandshallowsubtidal habitats,
which is needed to scale up local production estimates to entire coastlines.
2 of 16 
|
   GILSON et al.
1 | INTRODUCTION
Coastal vegetative habitats (e.g., mangrove forests , salt marshes,
seagrass meadows) have long been recognized as important car-
bon sink s (i.e., blue c arbon) owing to e xtreme ly high rates of p ro-
ductivity andcapacit y for localcarbonstorage(Bauer et al.,2013;
Duarte, 2017; Duarte et al., 2005).Increasingly,macroalgalhabitats
(i.e.fucoidandkelpforests)areincludedintheblue carbonconver-
sation due to their ex tremely high productivity and spatial extent
(Pessarrodona et al., 2022) even tho ugh they do not s tore carb on
locallywithin sediment s. Carbon flows through these coastal eco-
systems via multiple trophic pathways, many of which play a fun-
damentalroleinregulatingrates of ecosystem functioning(Byrnes
et al., 2011;Stenecketal.,2002). These pathways, however, remain
unresolvedinmany systemsand the mechanisms by whichcarbon
flows through dif ferent compartmentsof the coastal carbon cycle
are understood poorly.
Macroalgalhabitatsrepresentthemostproductiveandextensive
ofthecoastalvegetativehabitats(Duar te,2017; Duarte et al., 2022),
with max imum product ivity esti mates exceeding ~1000 gC m−2 year−1
inthe Nor th Atlantic (Mann,1973 , 2009) and ~50 00 g C m−2  year−1
globally (Pessarrodona et al.,2022). It is estimated that intertidal
andsubtidalmacrophytesmaycontributeupto45%oftotalprimary
productioninsomenear-coastalsystems(Smaleetal.,2013).Most
ofthisproductioncomesfromlargebrownseaweeds(e.g.,kelpsand
fucoids), which form extensive stands, primarily along temperate
and polar rocky coastlines (Duar te et al., 2022;Stenecketal.,2002).
Thesehabitatsarecharacterizedbyex tremelyhighratesof carbon
fixation, supporting highsecondary production and creating biodi-
versity hotspots that support many commercially import ant species
(Smale et al., 2013). Kelp productivit y correlates strongly with a
number of environmental variables, including nutrients, light,tem-
peratu re, and wave exposure (d e Bettignies et al ., 2013; Graham
et al., 20 07; Hurd, 2000; Krumhansl & Scheibling, 2012; Smale
et al., 2016, 2020). This sensitivity to environmental factors has re-
sulted in significantchanges to productivityand biomass,with the
potentialtohavelargeindirecteffectsoncoastalfoodwebsandul-
timately ecosystemfunctioning and stabilityunder futureenviron-
mentalchangescenarios(Wernbergetal.,20 19).
The majority of kelp- derived production (>80%) enters the
foodweb throughdetritalpathways,withhighratesofexportfrom
source populations and the potential for long- distance transport to
recipientecosystems(Krumhansl& Scheibling,2012). This transfer
ofcarbonhasbeenshownto constituteacrucialtrophicsubsidyin
arangeof habitats,includingrocky shores,sandy beaches, subma-
rinecanyons,andthedeep-sea(Gilson,Smale,Burrows,etal.,2021;
Krumhansl & Scheibling, 2012; Polis et al., 1997). Detrital produc-
tion is gene rated by two prim ary mechan isms, chronic er osion of
material (typicallyfromthedistalpartoftheblade)ordislodgment
ofsectionsorentire thalli (de Bettignies et al.,2013; Krumhansl&
Scheibling, 2011). Depending on the mechanism detrital proper-
ties, suchasparticlesizeand density,c an varyand influencerates
of transport and consumption (Filbee-Dexter et al., 2018). Wave
action is oftenconsideredtobetheprimarydriver ofkelpdetritus
production, owing to the accumulation of wrack in coastal habi-
tats af ter storms andthe higher ratesof removal obser ved during
storms,particularlyforwholethalli(Dayton&Tegner,1984;Milligan
&DeWreede, 2000;Seymouretal., 1989). Temperature, however,
has been positively correlated witherosion rates, with higherero-
sion rates t ypically occurring during summer and autumn months
(de Bettignies et al., 2013; Hereward et al., 2018; Krumhansl &
Scheibling, 2011). Biol ogical fac tors, such a s epiphyte cove r,gra z-
ing press ure, and kelp fec undity, have also b een linked to eros ion
ratesthroughthestructuralweakeningofkelptissue(deBettignies
et al., 2013).
Althoughdataremainrelativelylimited,arecentsurgeinresearch
efforts has yielded import ant insights into primary production and
detritusreleaseinkelpforests(Dolliver&O'Connor,2022). Despite
this, studies are largely restric ted to a few geographical areas, par-
ticularlyAustralasiaandNorthAmerica,withcomparativelyfewerin
Europe, including IrelandandtheUK(Smale etal., 2013). In recent
years,workintheUKhasbeguntocharacterizekelpforeststructure
using sys tematic large -scale fi eld surveys , quantify ing the densit y
and dist ribution of subt idal kelp fores ts and linkin g regional-s cale
variability with environmental variables (Hereward et al., 2018;
Pessarrodona,Foggo,etal.,2018;Pessarrodona,Moore,etal.,2018;
Smaleetal.,2016, 2020;Smale&Moore,2017;Smithetal.,2022).
Few studies have quantified primary production or detrital re-
lease by intertidal kelp stands, despite clear differences in envi-
ronmental conditions, community composition, functional traits,
and food web struc ture between intertidal and subtidal habitats
(Hereward et al., 2018).Forexample,outof>1000globalestimates
ofmacroalgalprimaryproductivity,only37%areintertidalestimates
and <2% are intertidal kelps (Pessarrodona et al., 2021). Unlike
subtidal habitat s, theintertidal zoneis influenced by both oceanic
and atmospheric climates and experiences a steep stress gradient
associate d with tidal cyc les. It is expe cted, there fore, to exhibit a
pronounced response to climate change impacts that may dif fer sig-
nificantlyfromthoseseeninsubtidalhabitats(Hawkinsetal.,2009;
Helmuth et al., 2006).Althoughintertidalkelpstandsarerestricted
to the very low shore fringe and cover a much smaller area than
subtidal stands( Yessonetal.,2015), dominant species can occur in
KEYWORDS
carboncycle,detritalproduction,ecosystemfunctioning,Laminaria digitata, macroalgae,
primary productivity, Saccharina latissima, temperate reefs
TAXONOMY CLASSIFICATION
Ecosystem ecolog y
   
|
3 of 16
GILSON et al.
greater densities, suggesting that per area unit they may make sig-
nifica nt contributi ons to coastal p rimary pr oductivi ty. Reliable es-
timates ofcarbonfixationandfluxes are lackingforwave-exposed
extre me-low shore h abitats in mos t regions, howeve r, m ost likely
becauseoftheirinaccessibility.
Having identified these knowledge gaps, we estimated rates of
primar yproductionanddetritusreleasebyintertidalstands oft wo
kelp speci es widely dist ributed acros s the North At lantic. We ex-
amined seasonality and theinfluenceofwave exposure on carbon
dynamicsandtestedwhetherbiotic(grazingpressure,epiphytealgal
cover)and abiotic(temperature, light)factorsaf fectedkelpproduc-
tionandbreakdownonwave-exposedrockyshoresinthenortheast
Atlantic.
2 | METHODS
2.1  | Study design and location
Wequantified density, productivity,erosion, and dislodgement of
intertidal stands of Laminaria digitata and Saccharina latissima sea-
sonallyover2 years(inMay,August,andNovember2016;February,
May,August, and November 2017;Februar y 2018). For L . digitata,
we tested fo r the effect s of wave exposure by qu antifying t hese
aspects of kelp populations at two exposed (Ballywhoriskey and
Rinmore P oint) and two m oderately ex posed (Ball ywhoriskey P ier
andMelmoreHead)sites(Figure 1).Wequantifiedcarbondynamics
for S. latissima only at the t wo moderately exposed sites where it oc-
curred (Figure 1).Wealsoquantifiedgrazerabundanceanddamage,
epiphytic algal cover, temperature, and light levels as potentially im-
portantininfluencingtheobservedpatterns.Totestforanticipated
seasonal responses, sampling dates were chosen to reflect spring,
summer,autumn,andwinter.Somesamplingdates,however,donot
fall dist inctly wit hin meteorolog ical seasons ow ing to the 4 week-
period bet ween tagging individuals and datacollection.We,there-
fore, refer to them as sampling periods instead of seasons.
Sites were located on the NW coast of Ireland in Co. Donegal
andaretypicalofopencoastshoresinthewiderNEAtlanticregion
(Mrowicki et al., 2014; O'Connor et al., 2011). Sites were selected
based on their simulated average wave fetch (F) from a vector-
based digital coastline model (Ballywhoriskey 5415.9 m, Rinmore
Point 546 0.1 m, Ballyw horiskey Pier 12 24.8 m and Melmore H ead
1224.9 m;Figure 1; Burrows,2012).Allsiteswerecharacterized by
large gentl y sloping granite p latforms that wer e characterized b y
apatchwork ofbarnaclesandjuvenile mussel beds (particularly at
exposed sites), and dense macroalgal canopies interspersed with
patches of barerock. Onmoderately exposed shores, a bandof S.
latissima extend s below the fuc oid region, be fore giving way to L .
digitata bedsattheextremely low inter tidal zone(1.0–1.5 mabove
Chart Datum;Figure A1). On exposed shores, L. digitata dominates
the low shore and sparse stands of Alaria esculenta occur attached
to large bou lders loca ted within the kel p beds (0.86 ± 0.2 individ-
uals per m2). O n all shores, indi viduals of large brow n macroalga
Sacchoriza polyschides are interspersed sporadically among the dom-
inant kelp species(0.16 ± 0.03 individuals perm2 basedonquadrat
surveysdescribedbelow).
Toquantif ythedensityof bothkelp speciesateachsiteduring
each sampling per iod, stratified haphaz ard sampling was used to
FIGURE 1 Studysiteswereatexposed
(BallywhoriskeyPointandRinmorePoint)
andmoderatelyexposed(Ballywhoriskey
PierandMelmoreHead)shoresinCo.
Donegal, Ireland.
4 of 16 
|
   GILSON et al.
place between 8and 10 quadrats(0.25 m2)on bedrock within the
kelpbedhabit at(0.3–0.8 mabovechar tdatum).The densityof ma-
ture L. digitata and S. latissima individuals (i.e. canopy formers) was
recordedineachquadrat.
To estimate the productivity rates of L. digitata and S. latissima
duringeachsamplingperiod,15–20maturecanopy-formingindivid-
uals (>1 m)ofeachspecieswereselectedrandomlyateachsiteand
tagged individually. Juvenile kelps were excluded from the current
study owing to their representation of only a small proportion of
these kelp populations and time constraints. In addition, juvenile
recruits are spatially patchy and constrainedbydifferent environ-
mentalvariables.Elongationratesandbiomassaccumulationofeach
individual were estimated using a modified hole- punch method (Tala
&Edding,2005).Some individuals were lostdueto wave dislodge-
mentsuchthatfinalsample sizes variedfrom3to17individualsof
eachspeciespersitepersamplingperiod.ForS. latissima, each indi-
vidualwaspunchedwithoneholeloc ated10 cmfromthestipe/lam-
inajunction.ForL. digitata,becauseitformsadigitatedblade,three
holes werepunched,the first and second 10 and 20 cm above the
base of the central lamina,respectively,andthethird 10 cm above
thebase of the bladeonthe firstdigit. Af ter 4 weeks,taggedindi-
viduals were relocated and growth was measured.For S. latissima,
the distance bet ween thefirsthole and the base of theblade and
thefinalbladelengthwerem easured.Thegrowthratewasthencal-
culated as:
where Hf is the final growth hole position (cm) and tisthenumberof
daysbetweeninitialandfinalmeasurement s(Tala&Edding,2005).For
L. digita ta,thedist anceof al lt hr eeholesfromth eb as eofthebl ad ew as
measured and growth rate was then calculated using the mean of the
three measurements.
Productivity was calculated for each species as the average
estimateddry biomass per unit length for thebasal 1/3rd of the
thallus m ultiplied by t he growth ra te (g DW day−1). Dr y biomass
perunitleng thwasestimatedbytaking5 cmsectionsofthestipe,
basal,anddistal1/3rdoftheblade,andobtainingthewetweight
beforedryinginanovenat60 °Cu nti lconstantweight.Arelation-
shipbetweenwetand drybiomass (g cm−1 )was then established
forthe stipe,basal, anddistal 1/3rd of the bladeusing linearre-
gression ( p ≤ .05;R2> .80).
Rates of detrital production in S. latissima, were estimated from
tissue loss fromthe thallus ( TL, cm) based on thechange in blade
lengthandbladegrowth:
where BLiand BLf are initial and final blade length (cm) and g is the
lengthofthenewtissueproduced(cm).ForL. digitata,thesameequa-
tionwasusedforboththecenterandouterdigitandanaveragetaken.
The rate of erosion (gDW day−1) was then calculated as the average
estimateddrybiomassperunitlengthforthedistal1/3rdoftheblade
multipl ied by the tissu e loss and divi ded by the numb er of days be-
tween sampling occasions.
To estimate kelp dislodgement rates, the 15–20 individuals
tagged previously were collected and dislodgement was assumed
frommissingtaggedindividuals.Dislodgementrate(%dislodgement
perday) wasthendefined asthedifferencebetweentheinitialand
final number of tag ged individuals between sampling periods di-
videdbytheinitialnumber.Dr ybiomasslossthroughdislodgement
wasthenestimatedusingtherelationshipbetweenwetanddrybio-
mass for the whole individual. Owing to adverse weather conditions,
datawerenotavailableforAugustandNovember2017.
To estimate daily productivity and erosion rates per unit area,
individual productivity and erosion rates for L. digitata and S. la-
tissimawere multiplied by the density of each species at eachsite
during each sampling period (per m2) obtained from density quad-
ratsurveys(gDW m−2 ). The rate of detrital production through dis-
lodgementperdaywascalculatedusinga similarconstruct butwas
furthermultipliedbythemeandrybiomassofadultkelpindividuals
and divided by the number of days betweensampling (g DW m−2 ).
For an annual estimate of production (productivity) and detrital
production (erosion and dislodgement) for L. digitata and S. latis-
sima, seasonally var ying rates were averaged over the whole year,
andestimatesofdailyrateswerethenmultipliedby365(gDW m−2 ;
Krumhansl&Scheibling,2 011).
Factors that may influence growth and detritus production
rates, in cluding grazer de nsity and damage , epiphytic alga l cover,
temperature, and lightwerealso quantified. Temperature and light
weremeasuredinsituusingHOBOtemperature/lightPendantdata
loggers mounted at each site at the relevant shore height. Detailed
methodstoquantifythesevariablesandgraphsshowingannualvari-
ationcanbefoundintheAppendix (Figures 3 and 4).
2.2  | Data analysis
To test for the effects of wave exposure (fixed, two levels), sampling
period (fixed, eight levels), and site (random and nested in wave ex-
posure, two levels) on L. digitata density, productivity and erosion
(individual and per m−2), and total detrital production, linear mixed
effectmodels fitted by maximum likelihood wereperformed using
the package lme4 (Zuur et al., 2009). Sampling period was treated
initially as a fixed factor so that we could test explicitly for putative
differences and identify which sampling times differed from each
other.Allmodelsincludedan interaction termbutwhennot signifi-
cant, interactions were removed and the model was re- fitted with
maintermsonly.Ifmodelassumptionsweremet,type2ANOVAwas
usedtoobtainχ2 and p- values (package car;Fox&Weisberg,2011).
Where p-values were significant, Tukey HSD adjusted pairwise
comparisonsusingleast-squaremeanswereusedforposthoccom-
parisons (package lsmeans; Lenth, 2018). Residuals were visually in-
spectedandQQplotswereusedtocheckassumptionsofnormality
andhomogeneity ofvariance.Whereresidualsdidnot meetmodel
assumptions despite the transformation,data were analyzed using
G=(Hf 10)t,
TL =(BLi +g)BLf,
   
|
5 of 16
GILSON et al.
a general ized linear mixe d model with a Tweedie d istribut ion that
alsoaccountsforzeroinflation(packageTweedie;Arcutietal.,2013).
Wheresamplingperiodscontainedonlyonelevelofwaveexposure
or site owing to logistic al difficulties preventing data collection at
certain sites, those time points were excluded from the analysis.
AnalysisofS. latissimafollowedasimilarconstructbutwithoutwave
exposurebecausethiskelpspecieswasonlyfoundonthetwomod-
erately exposed shores. Owing to only two replicates per treatment,
dislodgement rate, and detrital production through dislodgement
werenotanalyzedstatisticallyandonl ypat ternsinthedataarepre-
sentedforobservation.
To test whether biotic (fixed: distal area grazed, total grazer
abundance,epiphyticalgalcover)andabiotic(fixed: meanandmax-
imum temperature, mean and maximum light, daily cumulative irra-
diance, wave exposure) factors affected production and erosion of
L. digitata and S. latissima,linearmixedeffectmodelswereused.Site
and sampling period were treated as random fac tors in the model as
wewerenotinterestedintestingfordifferencesbetweensampling
periodsspecifically,butforrelationships between explanatory and
predictorvariables. All remaining main termswereincludedinthe
model an d model selec tion was per formed using Ak aike informa-
tioncriterion(AIC)valuesandweights,wherethelowestAICvalues
representedtheoptimalmodel (Ahoetal.,2014; Zuur et al., 2009).
ResidualswerevisuallyinspectedandQQplotswereusedtocheck
ass um ptionsofnormalit yandho mo geneit yof va riance.Wh er esam-
pling periods contained only one level of wave exposure or one site
owing to logistical difficulties preventing data collection at certain
sites,thosetimepoint swereexcludedfromtheanalysis.Allanalyses
were conducted using R version 3.3.4 (R Development Core Team,
2017 ).
3 | RESULTS
The density of L. digitata differed among wave exposures
(
𝜒2
1,2
= 20.484; p< .001)andsampling periods(
𝜒2
1,6
= 14.175;p< .01).
Post hoc tests showed that L. digitata density on exposed shores
(28.74 ± 1.43 indiv iduals per m2) was twice that of moderately ex-
posedshores(15.05 ± 1.35individualsperm2) and density was gen-
erally g reatest in Febr uary or May at b oth exposur es during both
survey years (Figure 2a). No sign ificant effe ct of sampling p eriod
on the density of S. latissima was identified, with density remaining
consistently low throughout the survey period (
𝜒2
1,6
= 10.28; p= .1;
7.32 ± 1.38individualsperm2; Figure 2b).
Asignificant interaction between wave exposure andsampling
period on the productivity of L. digitata was identified (Table 1;
Figure 2c). Specifically, wave exposures did not dif fer from each
other within sampling periods owing to the variable nature of
these data. There were significant differences between sampling
periods, however, that were not consistent across wave expo-
sures. Sp ecifically, sampling periods at exposed sites did not dif-
ferfrom each otherbut atmoderately exposed sites, May of 2016
(0.35 ± 0.0 3 g DW day−1) was significantly greater than most other
samplin g periods and Novem ber of 2017 (0.18 ± 0.01 g DW day−1)
significantly lower (see Table S1a for all post-hoccomparisons). A
significantinteractionbetweenwaveexposureandsamplingperiod
was also identified for productivity per m2 of L. digitata (Table 1;
Figure 2e).Asseenforindividualproductivity,waveexposurelevels
didnotdifferwithinsamplingperiodsbutdifferedbetweensampling
periods inconsistently across wave exposure levels. Specifically,
at exposed sites, February of 2017 (13.48 ± 1.5 g DW day−1 ) was
greater th an most other s ampling pe riods and Novem ber of 2017
wassignificantly lower(2.5 ± 0.28 gDW day−1; Table S1b). The pro-
ductivity of S. latissima also differed bet ween sampling periods
(
𝜒2
1,7
= 25.57;p< .001;Figure 2d). Post hoc tests identified the great-
est rate s in May (0.3 ± 0.05 g DW day−1) a nd lowest in Novembe r
(0.12 ± 0.01 g DW day−1 ), but conversely, peaked in November in
2017(0.34 ± 0.08 gDW day−1). Productivity per m2 of S. latissima did
notfollowpatternsofindividualproductivityratebutratherthatof
density,withthegreatestproductivityduringMayofboth2016and
2017(
𝜒2
1,6
= 164.37;p< .001;Figure 2f).
Erosion rat es did not differ b etween levels of wave ex posure
within sampling periods but differed between sampling periods
inconsistently across wave exposure levels (Table 1; Figure 3a).
Samplin g periods at expo sed sites did not dif fer from each ot her
but at moderately exposed sites, May 2016 (1.7 ± 0.32 g DW day−1 )
was significantly greater than all other sampling periods (Table S1c).
Erosion rates of S. latissima differed between sampling periods
(
𝜒2
1,7
= 20.43; p= .004), with the greatest ratesin May in both 2016
and2017(0.45 ± 0.11and0.57 ± 0.19 gDW day−1 , respec tively) and
lowest dur ing November in 2016 bu t August in 2017 (0.16 ± 0.01
and0.27 ± 0.06 gDW day−1 , respectively; Figure 3b).
Althoughdislodgementdatacould notbestatisticallyanalyzed,
it appears that at exposed sites, dislodgement rates of L. digitata
weregreatestinAugustandFebruaryof2016and2017(Figure 3c).
RatesofdislodgementforbothL. digitata and S. latissima at moder-
atelyexposedsites, however,weregreatestinNovember2016and
Februar y2017(Figure 3c,d,respectively).Meandetritalproduction
through dislodgement by L . digitata was greater at exposed sites
during AugustandFebruar yof2016 and 2017,respectively,but at
moderately exposed sites, L. digitata and S. latissimabothpeakedin
NovemberandMay(Figure 3e,f, respectively).
Total detrital production of L. digitatadidnotdifferbetweenex-
posurelevelswithinsamplingperiodsowingtohighvariabilityinthe
datasetbutdif feredinconsistentlybetweensamplingperiodsacross
levels of wave exposure (Table 1; Figure 3g).Atexposedsites,May
2016(16.52 ± 3.18 gDW day−1)wasgreaterthanFebruary2018only
(3.28 ± 0.52 gDW day−1).Atmoderatelyexposedsites,however,May
2016 (28.4 ± 5.67 g DW day−1) was greater than all other sampling
periods (Table S1d). Total detrital production of S. latissima followed
a similar pat tern to density (per m2)anddif fered betweensampling
periods (
𝜒2
1,5
= 15.79;p= .007),withthegreatestdetritalproduction
inMayofboth2016and2017(Figure 3h).
Monthlymean(negativelyrelated)andmaximum(positivelyre-
lated) temperature were identified as key factors affec ting individ-
ual productivity rates of L. digitata (R2= 33.8% ; Table 2). Similarly,
6 of 16 
|
   GILSON et al.
individual productivity rates of S. latissima were correlated with
monthly mean (negatively related) and maximum (positively related)
temperature and maximum light (negatively related; R2= 26.4%;
Table 2).Wave exp osure (positive ly related), mon thly mean (posi-
tively related), maximum (negatively related) temperature, maximum
light (negatively related), daily cumulative irradiance (negatively
FIGURE 2 Mean(±SE)density(m−2 ),individualproductivity(gDW day−1) and productivity per m−2(gDW m−2 day−1 ) of Laminaria digitata
(a, c, and e, respectively) and Saccharina latissima(b,d,andf,respectively)basedonfoursitesattwodifferentlevelsofwaveexposurein
Co. Donegal, Ireland. n= 8–32.Aug,August;Feb,February;Nov,November.Blackcirclesrepresentsamplingperiodsinwhichdataare
unavailable.
   
|
7 of 16
GILSON et al.
related), grazing (positively related), and epiphytecover (positively
related) were identified as factors affecting the individual erosion
rate of L. digitata (R2= 31.8%; Table 2). Individual erosion rates of
S. latissima, however, were correlated with monthly mean (pos-
itively related) and maximum temperature (negatively related;
R2= 16.4%;Table 2;Figuresillustratingallquantifiedvariablesarein
FiguresA2 and A3).
4 | DISCUSSION
We identified a seasonal pattern in individual productivity rates
for L. digitata and S. latissima that is aligned with many other kelp
species globally,with apeakin production inlatewinterandspring
(Februar y/May) and seasonal low in autumn (November; Brady-
Champb ell et al., 1984; Fairhead & Cheshire, 2004; Kr umhansl &
Scheibling, 2011; Mann, 1973; Miller et al., 2011; Pessarrodona,
Moore, et a l., 2018; Tala & Edding, 2005). This cyc le is driven by
changes in photoperiod and annual temperature fluctuations, which
arein turn linked tonutrientdynamics andwaveexposure (Bekkby
et al., 2014;Hepburnetal.,2007;Kain,1979 ; Pedersen et al., 2012;
Reed et al., 2011).T hisi ss up por tedbyt heident if icati on oftemp er a-
ture and light as key factors affecting individual productivity rates
ofthesekelpspecies, accountingforbetween26%and34%of the
observedvariationinthedata.PeakgrowthratesofL. digitata(0. 39–
0.49 gDW day−1 ) and S. latissima(0.34DW g day−1) were lower than
estimat es for their su btidal counte rpart L. hyperborea (0.78–0.87 g
DW day−1) and the warm- water kelp Laminaria ochroleuca (0.63 g
DW day−1; Pess arrodona , Foggo, et al., 2018). On an ann ual basis,
however, owing to their continual growth throughout the year, mean
annual productivity rates are comparable acrossspecies through-
out the region (L. digitata 0.29–0.38 g DW day−1; L. hyperborea
0.19 gDW day−1; L. ochroleuca0.33–0.37 gDW day−1; Pessarrodona,
Foggo, et al. , 2018). Predicted increases in temperature under cli-
mate change scenarios (IPCC, 2022) are, therefore, likely to signifi-
cantly reduce the productivity of these kelp species, slowing rates
of carbo n fixation an d storage (Ha rley et al., 2006; Pessarrodona,
Moore,etal.,2018).
Both studied species released detritusvia erosion of the distal
partsof the bladethroughouttheyear,providingaconsistent flow
of organic matter from kelp stands. This is in contrast to another co-
occurring species L. hyperboreawhichischaracterizedbyadiscrete
phase of detrital production in which the old lamina is shed during
the months of March–May (Kain & Jones, 1971; Pessarrodona,
Foggo,etal.,2018;Pessarrodona,Moore,etal.,2018). Peak erosion
rates of L. digitataatboth waveexposuresrangedbetween0.6and
1.7 g DW day−1 and were ~0.6 g DW day−1 for S. latissima, which is
higher than previous rates recorded for populations of L. hyperborea
and L. ochroleuca along the UK coastline (Pessarrodona, Moore,
et al., 2018).SeasonallowsforbothL. digitata(0.2–0.26 gDW day−1)
and S. latissima (0. 26 g DW day−1) were still greater than the mean
annual erosion rate of L. hyperborea (~0.19 gDW day−1 ) and only mar-
ginally lower than L. ochroleuca (~0.3 3 g DW day−1; Pessarrodona,
Foggo,etal.,2018).Whenconsideringhabitatextent,however,itis
likely that L. hyperboreapopulationsmake greater contributionsto
the detritus pool, given the greater areal coverage and depth pene-
tration than L. digitata(Smithetal.,2022).Evenso,thecontribution
of intert idal kelp stan ds to coastal det rital pools , which has been
largelyoverlooked,islikelytobesignificant.
Waveexposure wasidentifiedasasignificant fac tor positively
affecting erosion rates of L . digitata, which is in line with previous
studiesinotherregions(deBet tigniesetal.,2012, 2013;Krumhansl
&Scheibling,2011).Inintertidalhabitats,individualsaresubjected
to heavy w ave action that ca n cause physica l damage (i.e., abr a-
sion, breakage) and contribute to detrital production (Dobrynin
et al., 2010; Mac h et al., 2007). Erosion rates of L. digitata and S.
latissimawerealsocorrelatedwithtemperature,light,grazing,and
epiphytic algal cover, all of which fluctuated markedly throughout
the survey period and exhibit high seasonalit y (Figures A2 and
A3). Increas ed temperat ure has been li nked to tissue de gradatio n
in kelps,re ducingtensile stre ngth and increasing susceptibility to
erosionduringwarmperiods(Krumhansl&Scheibling,2011, 2012;
TAB LE 1  Linearmixedeffectsmodeltestingforeffec tsofwaveexposureandsamplingperiodontheproductivity(g day−1), productivity
per m−2(gDW day−2),anderosionrate(g day−1) of Laminaria digitata.Sampleswerecollectedatfoursites,twoexposedandtwomoderately
exposed, during eight consecutive sampling periods. Individual sites nested in wave exposure were included as a random factor in the
statisticalmodel.Significantresultsareinbold(p< .05).
Productivit y (g day−1)Productivity (g DW m−2 day−1 )
df χ2p- Value df χ2p- Value
Waveexposure(W) 12 .78 .09 12.01 .15
Samplingperiod(SP) 672.48 <.001 676 .84 <.0 01
W × SP 615 .76 .01 516 .64 .005
Erosion (g day−1)Total detrital production (g DW m−2 day−1)
df χ2p- Value df χ2p- Value
Waveexposure(W) 15.79 .01 10.05 .8
Samplingperiod(SP) 697. 28 <.001 673.85 <.001
W × SP 635.72 <.001 520.27 .001
8 of 16 
|
   GILSON et al.
FIGURE 3 Mean(±SE)rateoferosion(gDW day−1),dislodgement(%m−2 day−1 ),detritalproductionthroughdislodgement(DW m−2 day−1 ),
andtotaldetritalproduction(viaerosionanddislodgement;gDW m−2  day−1) of Laminaria digitata (a, c , e, and g, respectively) and Saccharina
latissima(b,d,f,andh,respectively).DatawerebasedonfoursitesattwodifferentlevelsofwaveexposureinCo.Donegal,Ireland.n= 2.
DataforAugustandNovember,2017areunavailable.
   
|
9 of 16
GILSON et al.
Rothäusler et al., 2009). Higher temperatures experienced during
summer are, however, also associated with increased grazer
abundances and consumption rates that can further exacerbate
tissue damage (Gilson, Smale, & O'Connor, 2021; Krumhansl &
Scheibling,2011;Toth&Pavia,2002). Increased cover of epiphy tes
also generally occurs through summer when temperatures are high,
isoftenindicativeofsenescingkelptissue,andcanincreasebreak-
ageanddetritusproduction(Scheibling&Gagnon,2009).Whileitis
notpossibletodisentangletherelativeimportanceofthesefactors
inthecurrentstudy,particularlywhenvariabilityishigh,itis likely
they influenced detrital production rates and may to some extent
explain the obser ved variability between survey years. It is also
likely that other fac tors not considered in this study are important
drivers of detritus production, in particular for S. latissima in which
onlya smallproportion oftheobservedvariationwas explainedby
thepredictorvariablesincludedinthemodel.Forexample,thepro-
duction of reproductive sorus tissue in kelps, which also varies sea-
sonally,haspreviouslybeenlinkedtodetritalproductionratesand
may have accounted for increased erosion throughout autumn and
winter(deBet tigniesetal.,2013).
Althoughdatafordislodgementwasnotstatisticallyanalyzedand
variabilitywashigh,thereissometentativeevidenceofdifferences
TAB LE 2  Thebestmodelsofabiotic(waveexposure[WE],maximum[Tmax]andmeanmonthlytemperature[Tavg]),maximummonthlylight
(Lmax),dailycumulativeirradiance(DCI),andbiotic(epiphyticalgalcover[E%],distalareagrazed[G%],andtotalgrazerabundance[Abun])
factorsidentifiedtoexplainvariationinproductivity(g day−1)anderosion(g day−1) for Laminaria digitata and Saccharina latissima.
Variable Intercept Model parameters + slope Weight R2
L. digitata
Productivity −1.7 57 Tmax (0.015), Tavg(−0.029) 0.162 .338
Erosion −4.956 WE(+), Tmax(−0.022),Tavg(27.14),Lmax(−0.00 02),DCI
(−0.00002),E%(16.65),G%(46.90)
0.902 .318
S. latissima
Productivity −1.144 Tmax(0.089),Tavg(−0 .126)
Lmax(−0.0007)
0.162 .26 4
Erosion −6.996 Tmax(−0.6946),Tavg(3.192) 0.121 .194
FIGURE 4 Schematicshowingthemean(±SE)amountofcarbon(gDW m−2 day−1 ) fixed through primary production and lost through
detritalproduction(dislodgement,erosion,anddissolvedorganiccarbon(DOC)annuallyforLaminaria digitata and Saccharina latissima at two
moderatelyexposed(ME)andtwoexposed(E) Irish shores. n= 1 5 1 6 8 .
ME: 1.72 ± 0.84
?
ME: 11.02 ± 1.51
E: 11.31 ± 0.87
ME: 5.32 ± 1.54
E: 14.46 ± 4.03
ME: 3.55 ± 0.6?
ME: 5.99 ± 0.36
E: 8.69 ± 0.41
ME: 1.8 ± 0.2
Dislodgement ErosionDOC
Producon
10 of 16 
|
   GILSON et al.
basedonshoreandsamplingperiod.Dislodgement ratesanddetri-
tal production through dislodgement of L. digitata were greater at
exposedsites, and during August–February at bothlevels of wave
exposure, which coincides with increased dislodgement during peri-
odsofheavywaveaction.August toNovemberis hurricaneseason
inthe NWAtlantic, bringingstrongwesterlywindsand largeswells
acrosstheAtlantic,whileDecember–Februaryisthewinterperiodin
NEAtlantic(e.g.,Brownetal.,2010;Wolf&Woolf,2006).Although
individuals of L. digitata were larger on average than S. latissima and
contribu ted greater qua ntities of detr itus to the detr ital pool, t he
ruffled margins of S. latissimacr eat ec o ns ide r abl ymo red rag tha nth e
flat lamina of L. digitata, accounting for their greater rates of dislodg-
mentevenatmoreshelteredsites(Buck&Buchholz,2005). S. latis-
simaalsoroutinelysettlesonsemi-stablerocksandcobblesinstead
ofemergentbedrock,particularlyinshelteredconditions,increasing
theirsusceptibility to dislodgement (Scheibling et al., 2009; Smale
&Vance,2016). In addition, individuals of L. digitata are morpholog-
ically adapted to wave- exposed conditions, with a larger, stronger
holdfastandstipeand morestreamlined bladesthatenablegreater
attachmenttothesubstrataandreducedrag.Althoughdislodgement
ratesforbothkelpspecieswerelowerthanthosereportedforsub-
tidal L. hyperborea populations (4%–27% m−2 year−1; Pessarrodona,
Moore, et al.,2018; Smaleetal.,2022),most likelybecauseof the
degreeofprotec tionsubtidalkelpforestsofferintertidalkelpbeds,
the greater population densities of L. digitata in intertidal habitats
recordedhereresultedinamuchlarger contributiontothedetrital
pool per unitarea. Clearly, predicted increasesinstorm frequenc y
arelikelytoleadtogreaterr atesofdislodgement(Feseretal.,2015;
IPCC, 2022), potentially increasing detrital resources within coastal
foodwebs.
Overall, erosion (rather than dislodgement) was the dominant
mechanismofdetritalproductionforbothL. digitata, at exposed and
moderately exposed sites, and S. latissima,accountingfor72%,77%,
and77%oftot aldetritalproduction,r espect ively(Figure 4). Total de-
trital production was greatest at exposed sites for L. digitata(25.77 g
DW m−2 day−1) owing to greaterrates ofdislodgement. Scaled annu-
ally, L. digitataproduces9.4 kgDW m−2 year−1 of detritus on exposed
and 5.96 kg DW m−2 year−1 on moderately exposed shores and S. la-
tissimaproduces 1.9 kg DW m−2  year−1 of detritus on moderately ex-
posedshores.Alth o u g hwed i d n o t m e a s u r e d e t r i t a l p r o d u c tiond u r in g
every month of the year and may have missed smaller- scale patterns
associated with storms, we have captured the seasonal dynamics and
larger-scalepatternsoftheseprocesses.However,thelackofreliable
spatial ex tent data for either species , particularly within intertidal and
shallow subtidalhabitat sintheUKandIreland, makes scaling-upto
whole coastlines and seascapes challenging. Even so, the total contri-
but io nofintert idalkelpstandstolocalan dregion aldetritalp oo lsand
coastalcarbon cycles is likely to besignificant. A major knowledge
gap relates to the ultimate fate of this detrital material, in terms of
howquicklyit isconsumedandremineralized,whetherit subsidizes
receiverhabitats,andwhether anykelp-derivedcarbonis storedin
sinkhabitatsformeaningfultimescales.
In conclus ion, we have shown that i ntertidal kelp b eds con-
stitute a significant carbon flux and are major contributors to
coastal productivity and detritus production, highlighting the
ne ed fo rt h es eh abi tat st ob einco rpora tedintoec os yst emmod els.
Previous e stimations of m acroalgal co ntribution s to coastal ca r-
bon cycleshavegenerallyfocusedonintertidal fucoidsand sub-
tidal populations of kelp (Pessarrodona et al., 2022). It is important
tonote,however,thattherateestimatespresentedherewereob-
tained from alimited numberof sites withina regionwheresuch
informationisveryscarce(Schoenrocketal.,2020, 2021).For L.
digitata, population densities were at the higher end of previous
estimat es, and individu al size far exceeded pr eviously repor ted
values, resulting in very high estimates of productivity and detrit al
production. In addition, S. latissima typically dominates sheltered
shorelines that were not the focus of the current study, so that
the contr ibution of this sp ecies to region al carbon bud gets and
foodwebsis probablyevengreaterthansuggestedhere.Fur ther
mensurative studies are needed across greater spatial scales, to
incorporate multiple L. digitata and S. latissima populations and a
wider range of environmental conditions. Improving our knowl-
edgeoftherolethesehabitatsplayincoastalandglobalcyclesis
critical to understanding climate- driven change and implementing
management plans with a climate- change mitigation perspective
(Duarte, 2017 ).
AUTHOR CONTRIBUTIONS
Abby R. Gilson: Conceptualization (lead); data curation (lead);
formal analysis (lead); investigation (lead); methodology (lead);
visualization(lead);writing–originaldraft(lead);writing–review
and editing (lead). Dan A. Smale:Conceptualization(supporting);
formal analysis (supporting); methodology (supporting); supervi-
sion(supporting); visualization(supporting); writing–reviewand
editing (supporting). Michael T. Burrows:Conceptualization(sup-
porting); formal analysis (supporting); methodology (supporting);
supervision (supporting); visualization (supporting); writing – re-
view and editing (supporting). Lydia J. White:Form ala na l ys is(sup-
porting); investigation (supporting); methodology (supporting);
visualization (supporting); writing –review and editing (support-
ing). Nessa E. O'Connor: Conceptualization (supporting);formal
analysis (supporting); funding acquisition (lead); methodology
(supporting);supervision(lead);visualization(supporting);writing
–reviewandediting(supporting).
ACKNOWLEDGMENTS
We would like to tha nk Conn Murray for h is invaluable hel p in
the field. This PhD was completed as part of a PhD studentship
funded by the Department for Economy Northern Ireland and
in part by t he Natural Envir onmental Res earch Council a nd the
DepartmentforEnvironment,Food,andRuralAffairs(grantnum-
berNE/L003279/1,MarineEcosystemsResearchProgramme).D.
Smale wassuppor ted bya UKRIFutureLeadersFellowship(MR/
S032827/1).
   
|
11 of 16
GILSON et al.
CONFLICT OF INTEREST STATEMENT
The authors have no conflict of interest to declare.
DATA AVAIL AB ILI T Y STAT E MEN T
All data is av ailable from th e British Ocean ographic Data C entre.
DOI: https://doi.org/10.5285/bb7366a9-e053-6c86abc0cea1.
ORCID
Abby R. Gilson https://orcid.org/0000-0003-4607-1376
Lydia J. White https://orcid.org/0000-0002-7531-5168
Michael T. Burrows https://orcid.org/0000-0003-4620-5899
Dan A. Smale https://orcid.org/0000-0003-4157-541X
Nessa E. O’Connor https://orcid.org/0000-0002-3133-0913
REFERENCES
Aho ,K.,Derry berr y,D.,&Peter son,T.(2014).Mo delselec ti onf ore colo-
gists:TheworldviewsofAICandBIC.Ecology, 95,631636.ht t p s ://
doi.org/10.1890/13-1452.1
Arcuti , S., Calcull i, C., Pollice, A ., D'Onghi a, G., Maiora no, P. , & Tu rsi,
A. (2013). Spatio-temporal modelling of zero-inflated de ep-sea
shrimpdatabyTweedergeneralizedadditivemodels.Statistica, 73,
8 7 1 0 1 1 .
Bauer,J.E.,Cai,W.-J.,Raymond,P.A.,Bianchi,T.S.,Hopkinson,C.S.,&
Regnier, P.A. G.(2013).Thechangingcarbonc ycle of the coastal
ocean. Nature, 504,61–70.https://doi. org /10.1038/natur e12857
Bekkby, T., Rinde, E., Gundersen, H., Norderhaug, K., Gitmark, J., &
Christie, H. (2014). Length, strength and water flow: Relative im-
portance of wave and current exposure on morpholog y in kelp
Laminaria hyperborea. Marine Ecology Progress Series, 506, 61–70.
https://doi.org/10.3354/meps10778
Brady-Champbell,M.,Campbell,D.,&Harlin,M.(1984).Productivityof
kelp (Laminaria spp.) near the souther n limit in the northwestern
AtlanticOcean. Marine Ecology Progress Series, 18,79–88. h t t p s: //
doi.org/10.3354/meps018079
Brown,D.P., Be ve n, J.L. ,Fra nk li n,J. L.,&Bl ake, E. S. (2 010 ). At la nt ic hu r-
ricaneseasonof2008.Monthly Weather Review, 138,1975–2001.
Buck, B. H., & Buchholz, C . M. (20 05). Response of offshore culti-
vated Laminaria saccharina to hydrody namic forc ing in the Nor th
Sea. Aquaculture, 250, 674–691. https://doi.org/10.1016/j.aquac
ulture.2005.04.062
Burrows,M.(2012).Influencesofwavefetch,tidalflowandoceancolour
onsubtidalrock ycommunities.Marine Ecology Progress Series, 445,
1 9 3 2 0 7 . https://doi.org/10.3354/meps09422
Byrnes, J. E., Ree d, D. C., C ardinale, B. J., C avanaugh, K. C ., Holbrook,
S.J.,&Schmitt,R.J.(2011).Climate-drivenincreases instormfre-
quenc y simplify kel p forest food w ebs: Climate ch ange and kelp
forest f ood webs. Global Change Biology, 17, 2513–2524. h t tp s : //
doi .org/10.1111/j.1365 -2486 .2011 .0240 9.x
Dayton,P.K.,& Tegner,M.J.(1984). Catastrophic storms,ElNino,and
patch st ability in a So uthern Cal ifornia kelp comm unity. Science,
224,283–285.https://doi.org/10.1126/science.224.4646.283
deBettignies, T.,Thomsen, M., &Wernberg,T.(2012).Woundedkelps:
Patter ns and susc eptibili ty to brea kage. Aquatic Biology, 17,2 23–
233. https://doi.org/10.3354/ab00471
de Bettignies, T., Wernberg, T., Lavery, P. S., Vanderklift, M. A., &
Mohrin g, M. B. (2013). Con trasting m echanisms of d islodgemen t
and erosi on contribute to p roductio n of kelp detritus . Limnology
and Oceanography, 58, 1680–168 8. https://doi.org/10.4319/
lo.2013.58.5.1680
Dobrynin,M.,Gayer,G.,Pleskachevsky,A.,&Günther,H.(2010).Effect
of waves and currents on the dynamics and seasonal variations of
suspen ded par ticulate m atter in th e North S ea. Journal of Marine
Systems, 82,1–20.https://doi.org/10.1016/j.jmars ys.2010.02.012
Dollive r,J., & O 'Connor, N. (202 2). Whole sys tem analysi s is required
to determine the fate of macroalgal carbon: A systematic re-
view. Journal of Phycolog y, 58, 364 –376. htt ps: //doi. org/10 .1111/
jp y.132 51
Duarte, C. M. (2017). Reviews and syntheses: Hidden forest s, the
role of veget ated coastal habitats in the oce an carbon bud-
get. Biogeosciences, 14, 301–310. https://doi.org/10.5194/
b g - 1 4 - 3 0 1 - 2 0 1 7
Duarte,C .M .,Gattuso,J.-P.,Hancke,K., Gundersen,H.,Filbee-Dex ter,
K.,Pedersen,M.F.,Middelburg,J.J.,Burrows,M.T.,Krumhansl,K.
A.,Wernberg,T.,Moore, P.,Pessarrodona,A.,Ørberg,S.B.,Pinto,
I. S., A ssis, J., Qu eirós, A . M., Smal e, D. A., Be kkby, T.,S errão, E .
A.,& Krause-Jensen,D.(2022).Globalestimatesoftheex tentand
produc tion of macroalgal fores ts. Global Ecology and Biogeography,
31,1422–1439.https: //doi.org/10 .1111/ge b.13515
Duarte,C.M.,Middelburg,J.J.,&Caraco,N.(2005).Majorroleofmarine
vegetationontheoceaniccarbonc ycle.Biogeosciences, 2,1–8.
Fairhead,V.A., &Cheshire,A. C. (20 04). Ratesof primary productivity
and growth in Ecklonia radiata measured at different depths, over
anannualcycle,atWestIsland,SouthAustralia.Marine Biology, 14 5,
4 1 5 0 . h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 / s 0 0 2 2 7 - 0 0 4 - 1 3 0 8 - 8
Feser, F., Barcikowsk a, M., Kruege r, O. , Schenk, F., Weisse, R ., & Xia,
L. (2015). St orminess over th e North Atlant ic and northw estern
Europe—A review. Quarterly Journal of the Royal Meteorological
Society, 141,350–382.https://doi.org/10.1002/qj.2364
Filbee-Dexter,K., Wernberg, T.,Norderhaug, K. M., Ramirez-Llodra, E.,
&Pedersen ,M.F.(2018).Movement of pulsedresource subsidies
from kelp forests to deep fjords. Oecologia, 187,291–304.h t tp s : //
d o i . o r g / 1 0 . 1 0 0 7 / s 0 0 4 4 2 - 0 1 8 - 4 1 2 1 - 7
Fox,J.,&Weisberg,S.(2011).Multivariate line ar models in R. An R c ompan-
ion to applied regression.Sage.
Gilson, A., Smale, D., Burrows, M ., & O'Connor, N. (2021). Spatio-
temporalvariabilityinthedepositionof beach-castkelp(wrack)
and inter- specific differences in degradation rates. Ma rine
Ecology Progress Series, 674 , 89–102. https://doi.org/10.3354/
meps13825
Gilson,A . R., Smale, D. A., & O'Connor, N. (2021). Oceanwarmingand
speciesrangeshiftsaffectratesofecosystemfunctioningbyalter-
ingconsumer–resourceinteractions.Ecology, 102, e03341. h t t ps : //
doi.org/10.10 02/ecy.3 341
Graham,M.H.,Kinlan,B.P.,Druehl,L.D.,Garske,L.E.,&Banks,S.(2007).
Deep- water kelp refugia as potential hotspot s of tropical marine
diversity and productivity. Proceedings of the National Academy of
Sciences of the United States of America, 104,16576–16580.h t t p s ://
doi.org/10.1073/pnas.0704778104
Harley,C.D.G.,RandallHughes,A.,Hultgren,K.M.,Miner,B.G.,Sorte,
C.J.B.,Thornber,C.S.,Rodriguez,L.F.,Tomanek ,L.,&Williams,S.
L. (2006). The impact s of climate change in coastal marine systems:
Climate change in coastal marine systems. Ecology Letters, 9,228–
241. https://doi.org/10.1111/j.1461-0248.2005.00871.x
Hawkins , S., Sugden , H., Mieszkows ka, N., Moo re, P.,Pol oczansk a, E.,
Leaper, R. , Herber t, R., G enner, M., Mosc hella, P., Thomps on, R.,
Jenkins,S.,Southward,A.,&Burrows,M.(200 9).Consequencesof
climate-driven biodiversity changes for ecosystem functioningof
NorthEuropean rocky shores.Marine Ecology Progress Series, 396 ,
245 –2 59. https://doi.org/10.3354/meps08378
Helmuth,B.,Mieszkowska,N.,Moore,P.,&Hawkins,S.J.(2006).Living
on the edge o f two changing wo rlds: Foreca sting the resp onses
of rocky intertidal ecosystems to climate change. Annual Review
of Ecology, Evolution and Systematics, 37, 373–4 04. h t t p s :// do i .
org/10.1146/annurev.ecolsys.37.091305.110149
Hepburn,C.,Holborow,J.,Wing,S.,Frew,R.,&Hurd,C.(2007).Exposure
to waves enhances the growth rate and nitrogen status of the giant
kelp Macrocystis pyrifera. Marine Ecology Progress Series, 339, 99–
108.https://doi.org/10.3354/meps339099
Hereward, H. F. R., Foggo, A., Hinck ley,S. L.,Greenwood, J., &Smale,
D. A. (2018). Seasonal variability in the popu lation structure of
12 of 16 
|
   GILSON et al.
a habitat-forming kelp and a conspicuous gastropod grazer: Do
blue-rayed limpets (Patella pellucida) exert top- down pressure
on Laminaria digitata populations? Journal of Experimental Marine
Biology and Ecology, 506, 171–181. https://doi.org/10.1016/j.
jembe.2018.06.011
Hurd, C. L. (20 00). Water motion, marine macroalgal physiology,
and production. Journal of Phycology, 36, 453–472. h t t p s: //d o i .
org /10.1046/j .1529- 8 817.20 00 .99139.x
Intergovernment al Panel on Climate Change (IPCC). (2022). Changing
ocean, marine ecosystems, and dependent communities. In: H.- O.
Portn er, D. C. Robe rts, V. Masson-Delm otte, P.Z hai, M. Tignor,
E. Poloc zanska, K . Mintenbeck, A . Alegria , M. Nicolai, A . Okem,
J.Petzold,B.Rama,&N.M.Weyer(Eds.),The ocean and cryosphere
in a changing climate: Special report of the intergovernmental panel on
climate change(pp.447–588).Cambr idgeUniversit yPress.
Kain, J. M. (1979). A view of the genus laminaria. Oceanography and
Marine Biology Annual Review, 17,101–161.
Kain, J. M., & Jones, N. S. (1971).The biology of Laminaria hyperborea.
VI. Some Norwegian populations.Jou rnal of the Marine Biological
Association of the United Kingdom, 51, 387–408. h t t p s :// d oi .
org/10.1017/S0025315400031866
Krumhansl, K., & Scheibling, R . (2011). Detrital production in Nova
Scotiankelpbeds:Pat terns andprocesses.Marine Ecology Progress
Series, 421,67–82.https://doi.org/10.3354/meps08905
Krumhansl, K.,& Scheibling, R. (2012).Produc tion and fateofkelpde-
tritus. Marine Ecology Progress Series, 467, 281–302. h t t p s :// d oi .
org/10.3354/meps09940
Lenth,R.V.(2018).Least-squaresmeans:TheRpackagelsmeans.Journal
of Statistical Software, 69,1–33.
Ma ch ,K .J.,Nel so n,D. V., &D en ny, M.W.( 200 7) .Te ch niq ue sf orpre di ct-
ingthe lifetimes of wave-swept macroalgae:Aprimer on fracture
mechanics and crack growth. Journal of Experimental Biology, 210,
2213–2230.https://doi.org/10.1242/jeb.001560
Mann,K.H.(1973).Seaweeds:Theirproductivityandstrategyforgrowth:
The role of large marine algae in coast al productivity is farm more
importantthanhasbeensuggested.Science, 182,975–981.
Mann, K. H. (2009).Ecology of coastal waters: With implications for man-
agement.JohnWileyandSons.
Miller,S.M.,Hurd,C.L.,&Wing,S.R .(2011).Variationsingrow th,ero-
sion, pro ductivity and morpholog y of Ecklonia radiata(Alariaceae;
Laminariales) along a fjord in southern New Zealand: Ecklonia
growth and morpholog y. Journal of Phycology, 47,505–516.ht t p s : //
doi .org/10.1111/j.1529- 8817.2011.0 0966. x
Milliga n, K. L. D. , & DeWreede, R . E. (20 00). Varia tions in hol dfast at-
tachment mechanics with developmental stage, substratum-
type, season, and wave- exposure for the intertidal kelp species
Hedophyllum sessile (C. Agardh) Setchell. Journal of Experimental
Marine Biology and Ecology, 254,189–20 9. https://doi.org/10.1016/
S 0 0 2 2 - 0 9 8 1 ( 0 0 ) 0 0 2 7 9 - 3
Mrowicki, R. J., Maggs, C . A., & O'Connor, N. E. (2014). Does wave
exposure determine the interactive effects of losing key graz-
ers and ecosystem engineers? Journal of Experimental Marine
Biology and Ecology, 461, 416–424. ht tps://doi.o rg/10.1016/j.
jembe.2014.09.007
O'Connor,N.,Donohue,I.,Crowe,T.,&Emmerson,M.(2011).Importance
of consumers on exposed and sheltered rock y shores. Marine
Ecology Progress Series, 443,65–75.https://doi.org/10.3354/meps0
9412
Pedersen, M.,Nejrup,L., Fredriksen, S., Christie, H., & Norderhaug, K .
(2012). Effects of wave exposure on population s truc ture, de-
mography, biomass and produc tivity of the kelp Laminaria hy-
perborea. Marine Ecology Progress Series, 451, 45–60 . ht t ps : //d o i .
org/10.3354/meps09594
Pessar rodona, A ., Assi s, J., Filbe e-Dex ter, K., Bur rows, M. T., Gatt uso,
J.-P.,Duarte,C.M.,Krause-Jensen,D.,Moore,P.J.,Smale,D.A.,&
Wernberg,T.(2022).Globalseaweedproductivity.Science Advances,
8,eabn2465.https://doi.org/10.1126/sciadv.abn2465
Pessar rodona, A ., Filbee-Dex ter, K., Krumh ansl, K. A ., Moore, P. J., &
W e r n b e r g , T. ( 2 0 2 1 ) . Ag l o b a l d a t a s e t o f s e a w e e d n e t p r i m a r y p r o d u c -
tivity. Ecology, 9,484.https://doi.org/10.1101/2021.07.12.452112
Pessarrodona ,A.,Foggo,A.,&Smale,D.A.(2018).Canecosystemfunc-
tioningbemaintaineddespiteclimate-drivenshiftsinspeciescom-
position? Insights from novel marine forests. Journ al of Ecology, 107,
9 1 1 0 4 . htt ps://doi.or g/10 .1111/1365-2745.13 053
Pessar rodona, A ., Moore, P. J., Sayer, M. D. J., & Sm ale, D. A. (2018).
Carbo n assimilation a nd transfe r through kelp for ests in the NE
Atlanticisdiminishedunderawarmeroceanclimate.Global Change
Biology, 24,4386–4398.ht tps://doi.org /10.1111/gcb.14303
Polis, G . A., Anderson, W.B., & Holt, R. D. (1997). Toward an integra-
tionoflandscapeandfoodwebecology:Thedynamicsofspatially
subsidizedfoodwebs.Annual Review of Ecological Systems, 28,289–
316. https://doi.org/10.1146/annurev.ecolsys.28.1.289
RDevelopmentCoreTeam.(2017).R: A language and environm ent for sta-
tistical computing.RFoundationforSt atistical Computing. h t t ps : //
www.R-proje ct.org/
R ee d , D .C . , R a s sw e i l e r, A . ,C a r r ,M . H . , C av a n a u gh , K . C . ,M a l o n e ,D . P. ,&
Sie gel,D. A.(2011). Wave distu rb an ceover whel mstop -downa nd
bottom -up contr ol of primar y produ ction in C aliforni a kelp for-
ests. Ecology, 92,2108–2116.https://doi.org/10.1890/11-0377.1
Rothäusl er,E ., Gómez, I ., Hinojosa , I. A., Ka rsten, U., Tala, F., & Thiel ,
M. (200 9). Effect of te mperature a nd grazing on g rowth and re -
production of floating Macrocystis spp. (Phaeophyceae) along a
latitudinal gradient. Journal of Phycolog y, 45, 5 47–559.h t t p s: //d o i .
org /10.1111/j .1529-8817.20 09.00 676. x
Scheibling, R. E.,& Gagnon, P.(2009).Temperature-mediated outbreak
dynamicsofthe invasive br yozoan Membranipora membranacea in
NovaScotiankelpbeds. Marine Ecology Progress Series, 390, 1–13.
https://doi.org/10.3354/meps08207
Scheib ling, R. E., Kell y, N . E., & Raymond, B . G. (2009). Physic al dis-
turbance and community organizationon a subtidal cobble bed.
Journal of Experimental Marine Biology an d Ecology, 368, 94–100.
https://doi.org/10.1016/j.jembe.2008.10.017
Schoenrock,K.M.,Chan,K.M.,O'Callaghan,T.,O'Callaghan,R.,Golden,
A.,K rue ger-Hadf ield ,S.A .,&Power,A.M.(2020).Ar eviewofsub-
tidal kelp f orests in Irela nd: From firs t descript ions to new hab i-
tat moni toring tec hniques . Ecology and Evolution, 10,6819–6832.
https://doi.org/10.1002/ece3.6345
Schoenrock, K. M., O'Callaghan, R., O'Callaghan, T., O'Connor, A., &
Stengel, D. B . (2021). An ecolo gical base line for Laminaria hyper-
borea forests in western Ireland. Limnology and Oceanography, 66,
3439–3454.https://doi.org/10.1002/lno.11890
Seymour,R.J., Tegner,M.J.,Dayton,P.K.,&Parnell,P.E.(1989).Storm
wave induced mortalit y of giant kelp, Macrocystis pyrifera, in
SouthernCalifornia.Estuarine , Coastal and Shelf Science, 28, 277–
292.h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / 0 2 7 2 - 7 7 1 4 ( 8 9 ) 9 0 0 1 8 - 8
Smale,D.,Burrows,M.,Evans,A.,King,N.,Sayer,M.,Yunnie,A.,&Moore,
P.(2016).Linkingenvironmentalvariableswithregional-scalevari-
abilityin ecologicalstructure and standing stockof car bon within
UKkelpforests.Marine Ecology Progress Series, 542,79–95.h t tp s : //
doi.org/10.3354/meps1 1544
Smale, D. A., Burrows, M. T.,Moore, P.,O'Connor,N.,&Hawkins ,S. J.
(2013). Threats and knowledge gaps for ecosystem services pro-
videdbykelpforests:Anor theastAtlanticperspective.Ecology and
Evolution, 3,4016–4038.https://doi.org/10.1002/ece3.774
Smale, D. A ., & Moore, P. J. (2017). Variability in kelp forest struc-
ture along a latitudinal gradient in ocean temperature. Journal of
Experimental Marine Biology and Ecology, 486,255–264.ht t p s : //d o i.
org/10.1016/j.jembe.2016.10.023
Smale,D.A.,Pessarrodona,A.,King,N.,Burrows,M.T.,Yunnie,A.,Vance,
T.,& Moore, P.(2020). Environmentalfactors influencing primar y
   
|
13 of 16
GILSON et al.
produc tivit y of the forest- forming kelp Laminaria hyperborea in
the northeast Atlantic. Scientific Reports, 10, 12161. h t t p s: //d o i .
o r g / 1 0 . 1 0 3 8 / s 4 1 5 9 8 - 0 2 0 - 6 9 2 3 8 - x
Smale,D.A.,Pessarrodona,A.,King ,N.,&Moore,P.J.(2022).Examining
the production, export, and immediate fate of kelp detritus on
open-coastsubtidal reefsinthenortheast Atlantic. Limnology and
Oceanography, 67,S36–S49.https://doi.org/10.1002/lno.11970
Sm al e,D. A ., &Van ce ,T. (2 01 6).C li ma te- dr ive ns hi f tsinspe cie s' di str ib u-
tionsmayexacerbatetheimpactsofstormdisturbancesonnorth-
east Atlantic kelpforest s. Marine and Freshwater Research, 67, 65.
htt ps://doi.org/10.1071/MF14155
Smith,K.E.,Moore,P.J.,King,N.G.,&Smale,D.A.(2022).Examiningthe
infl ue nc eo fr eg io nal-sca le va ria bi li t yintem pe rat ur ea nd li gh ta va il -
abilityonthedepthdistributionofsubtidalkelpforests.Limnology
and Oceanography, 67,314–328.https://doi.org/10.10 02/lno.11994
Steneck , R. S., Gra ham, M. H., Bo urque, B. J., C orbett, D. , Erlandson,
J. M., Estes, J. A., & Tegner, M. J. (2002). Kelp forest ecos ys-
tems: Biodiversity, stability, resilience and future. Environmental
Conservation, 29, 436–459. https://doi.org/10.1017/S037689290
2000322
Tala,F.,&Edding,M.(2005).Growthandlossofdistaltissueinblades
of Lessonia nigrescens and Lessonia trabeculata (Laminariales).
Aquatic Botany, 82, 39–54. https://doi.org/10.1016/j.aquab
ot.2005.02.0 09
Toth ,G. B. ,& Pa vi a,H .(20 02).Int ra pla ntha bi tatan df ee din gp re fe ren ceof
twogastropod herbivores inhabiting the kelp Laminaria hyperborea.
Journal of the Marine Biological Association of the United Kingdom, 82,
243–247.https://doi.org/10.1017/S00253154020 05416
Wernberg, T., Krumhansl, K., Filbee-Dexter, K., & Pederson, M.
F.(2 019).St atus and tre nds for the wor ld's kelp fores ts. In: C.
Sheppard(Ed.),World seas: An environmental evaluation(pp.57
78).AcademicPress.
Wolf,J.,&Woolf,D.K. (2006).Waves and climatechangein thenorth-
eastAtlantic.Geophysical Research Letters, 33, L06604. h t t p s :// d oi .
org/10.1029/2005GL025113
Yesson,C.,Bush,L.E.,Davies,A.J.,Maggs,C.A.,&Brodie,J.(2015).The
distributionand environmentalrequirements of largebrownsea-
weedsintheBritishIsles.Journal of the Mar ine Biological A ssociation
of the United Kingdom, 95, 669–68 0. ht tp s://doi .or g/10.1017/
S 0 0 2 5 3 1 5 4 1 4 0 0 1 4 5 3
Zuur,A.F.,Ieno,E.N.,Walker,N.,Saveliev,A.A .,&Smith,G.M.(2009).
Mixed effects models and extensions in ecolog y with R. Statistics
for biolog y and health. Springer. https://doi.org/10.1007/978-0-
3 8 7 - 8 7 4 5 8 - 6
SUPPORTING INFORMATION
Additional supporting information can be found online in the
Suppor tingInformationsectionattheendofthisarticle.
How to cite this article: Gilson,A.R.,White,L.J.,Burrows,
M.T.,Smale,D.A.,&O’Connor,N.E.(2023).Seasonaland
spatialvariabilit yinratesofprimar yproductionanddetritus
releasebyintertidalstandsofLaminaria digitata and
Saccharina latissima on wave- exposed shores in the
northeastAtlantic.Ecology and Evolution, 13, e10146 . h t t p s: //
doi.org/10.1002/ece3.10146
14 of 16 
|
   GILSON et al.
APPENDIX
METHODS TO QUANTIFY POTENTIAL ABIOTIC AND BIOTIC
FACTORS AFFECTING KELP PRODUCTION AND DETRITAL
PRODUCTION
Toidentify the biotic factors thatmayaffectkelp production and
breakdownandtotestwhethertheseeffectsdifferedamongdomi-
nant kelp species, 15 individuals of Lamin aria digitata and Saccharina
latissimaat e a chs i t ewe r e surve y e dfo r t h epre s e n c eof g r aze r s , w ith
grazeridentityanddensityperkelpindividualrecorded.Thedistal
partofthebladesofeachindividualkelpwasthenplacedbetween
two sheets of plexiglass and photographed. Only the distal 1/3rd
ofthe kelp individual was measured becauseerosion isknown to
occurpri ma ril yint he di sta lp or t io no ft hebladean dg razingand ep -
iphyticalgalcoverwereobservedtobeconcentratedinthisregion
(Krumhansl&Scheibling,2011).Distalareagr azed(est imatedusing
perforationsofthebladeonl y)andpercent ag ee pi ph yticalg alcover
werethen calculated bydividingthetot alarea bythearea grazed
andtheareacover edbyepiphyticalgae ,re spectively,usingImageJ.
Toi dentify abi otic factor s that may affec t kelp produc tion and
breakdown,temperature (°C)andlight(lumens ft2) were recorded
every15 minandaveragedforeachsiteduringeachsamplingperiod
using data loggers (n= 8; HOBO temperature/light weatherproof
Pendant data Logger 16k, Onset). Meanand monthly temperature
and light and daily cumulative irradiance were then calculated for
each site du ring each sa mpling per iod. As log gers were pl aced in-
tertidally, estimates include periods of low tide emersion and there-
foreairtemperature.Datawerenotavailable forsamplingperiod6
(August2017)owingtoadverse weatherconditions preventingthe
collection or loss of the loggers.
FIGURE A1Laminaria digitata and Sacharina latissimakelpbedslocatedat(a)Bally whoriskeyPointand(b)RinmorePointinCo.Donegal,
Ireland.
(a) (b)
   
|
15 of 16
GILSON et al.
FIGURE A2 Monthlymaximumandmeantemperature(aandb,respectively;°C),lightintensity(candd,respectively;lumensft2), and
daily cumulative irradiance (e; lumens ft2).Datawerebasedontwositesattwodifferentlevelsofwaveexposure(exposedandmoderately
exposed; n= 2perlevelofwaveexposure)inCo.Donegal,Ireland.
16 of 16 
|
   GILSON et al.
FIGURE A3 Mean(±1 SE)totalgrazerabundance(perkelpindividual),distalareagrazed(%perkelpindividual),andepiphyticalgalcover
(per individual) of Laminaria digitata (a, c, and e, respec tively) and Saccharina latissima(b,d,andf,respectively).Datawerebasedontwositesat
two different levels of wave exposure (exposed and moderately exposed; n= 2perlevelofwaveexposure)inCo.Donegal,Ireland.n= 1 0 3 7 .
... Similarly, standing stock within S. polyschides populations was strongly seasonal, with maximum values in late summer/autumn, followed by a period of release of organic matter into the environment as detritus. This intense late-season pulse of detritus release is in contrast with dominant Laminarial kelp species in the A c c e p t e d M a n u s c r i p t 22 northeast Atlantic, which either release a pulse of detritus in spring or release detritus more gradually through the year (Pessarrodona et al., 2018a, Gilson et al., 2023. Differences in biomass accumulation and detritus production between dominant species may have implications for local carbon cycling or supply for detrital foodwebs (Guerrero-Meseguer et al., 2023, Gilson et al., 2021. ...
Article
Full-text available
BACKGROUND AND AIMS: Large brown macroalgae serve as foundation organisms along temperate and polar coastlines, providing a range of ecosystem services. Saccorhiza polyschides is a warm-temperate kelp-like species found in the northeast Atlantic, which is suggested to have proliferated in recent decades across the southern United Kingdom (UK), possibly in response to increasing temperatures, physical disturbance, and reduced competition. However, little is known about S. polyschides with regard to ecological functioning and population dynamics across its geographical range. Here we examined the population demography of S. polyschides populations in southwest UK, located within the species' range centre, to address a regional knowledge gap and to provide a baseline against which to detect future changes. METHODS: Intertidal surveys were conducted during spring low tides at three sites along a gradient of wave exposure in Plymouth Sound (Western English Channel) over a period of 15 months. Density, cover, age, biomass, and morphology of S. polyschides were quantified. Additionally, less frequent sampling of shallow subtidal reefs was conducted to compare intertidal and subtidal populations. KEY RESULTS: We recorded pronounced seasonality, with fairly consistent demographic patterns across sites and depths. By late summer, S. polyschides was a dominant habitat-former on both intertidal and subtidal reefs, with maximum standing stock exceeding 13,000 g wet weight m-2. CONCLUSIONS: S. polyschides is a conspicuous and abundant member of rocky reef assemblages in the region, providing complex and abundant biogenic habitat for associated organisms and high rates of primary productivity. However, its short-lived pseudo-annual life strategy is in stark contrast to dominant long-lived perennial Laminarian kelps. As such, any replacement or reconfiguration of habitat-forming macroalgae due to ocean warming will likely have implications for local biodiversity and community composition. More broadly, our study demonstrates the importance of high-resolution cross-habitat surveys to generate robust baselines of kelp population demography, against which the ecological impacts of climate change and other stressors can be reliably detected.
Article
Full-text available
The magnitude and distribution of net primary production (NPP) in the coastal ocean remains poorly constrained, particularly for shallow marine vegetation. Here, using a compilation of in situ annual NPP measurements across >400 sites in 72 geographic ecoregions, we provide global predictions of the productivity of seaweed habitats, which form the largest vegetated coastal biome on the planet. We find that seaweed NPP is strongly coupled to climatic variables, peaks at temperate latitudes, and is dominated by forests of large brown seaweeds. Seaweed forests exhibit exceptionally high per-area production rates (a global average of 656 and 1711 gC m−2 year−1 in the subtidal and intertidal, respectively), being up to 10 times higher than coastal phytoplankton in temperate and polar seas. Our results show that seaweed NPP is a strong driver of production in the coastal ocean and call for its integration in the oceanic carbon cycle, where it has traditionally been overlooked.
Article
Full-text available
Net primary productivity (NPP) plays a pivotal role in the global carbon balance but estimating the NPP of underwater habitats remains a challenging task. Seaweeds (marine macroalgae) form the largest and most productive underwater vegetated habitat on Earth. Yet, little is known about the distribution of their NPP at large spatial scales, despite more than 70 years of local-scale studies being scattered throughout the literature. We present a global dataset containing NPP records for 246 seaweed taxa at 429 individual sites distributed on all continents from the intertidal to 55 m depth. All records are standardized to annual aerial carbon production (g C m ⁻² yr ⁻¹ ) and are accompanied by detailed taxonomic and methodological information. The dataset presented here provides a basis for local, regional and global comparative studies of the NPP of underwater vegetation and is pivotal for achieving a better understanding of the role seaweeds play in the global coastal carbon cycle.
Article
Full-text available
Aim Macroalgal habitats are believed to be the most extensive and productive of all coastal vegetated ecosystems. In stark contrast to the growing attention on their contribution to carbon export and sequestration, understanding of their global extent and production is limited and these have remained poorly assessed for decades. Here we report a first data-driven assessment of the global extent and production of macroalgal habitats based on modelled and observed distributions and net primary production (NPP) across habitat types. Location Global coastal ocean. Time period Contemporary. Major taxa studied Macroalgae. Methods Here we apply a comprehensive niche model to generate an improved global map of potential macroalgal distribution, constrained by incident light on the seafloor and substrate type. We compiled areal net primary production (NPP) rates across macroalgal habitats from the literature and combined this with our estimates of the global extent of these habitats to calculate global macroalgal NPP. Results We show that macroalgal forests are a major biome with a global area of 6.06–7.22 million km2, dominated by red algae, and NPP of 1.32 Pg C/year, dominated by brown algae. Main conclusions The global macroalgal biome is comparable, in area and NPP, to the Amazon forest, but is globally distributed as a thin strip around shorelines. Macroalgae are expanding in polar, subpolar and tropical areas, where their potential extent is also largest, likely increasing the overall contribution of algal forests to global carbon sequestration.
Article
Full-text available
The role of marine primary producers in capturing atmospheric CO2 has received increased attention in the global mission to mitigate climate change. Yet, our understanding of carbon sequestration performed by macroalgae has been limited to a relatively small number of studies that have estimated the ultimate fate of macroalgal‐derived carbon. This systematic review was conducted to provide a timely synthesis of the methods used to determine the fate of macroalgal carbon in this rapidly expanding research area. It also aimed to provide suggestions for more effective future research. We found that the most common methods to estimate the fate of macroalgal carbon can be categorised into groups based on those that quantify: (i) export of macroalgal carbon to other environments – known as horizontal transport; (ii) sequestration of macroalgal carbon into deep sea sediments – known as vertical transport; (iii) burial of macroalgal carbon directly beneath a benthic community; (iv) the loss of macroalgal carbon as particulate carbon or dissolved carbon to the water column; (v) the loss of macroalgal carbon to primary consumers; and finally (vi) those studies that combined multiple methods in one location. Based on this review, several recommendations for future research were formulated, which require the combination of multiple methods in a whole system analysis approach.
Article
Full-text available
Foundation species play a disproportionate role in maintaining biodiversity and ecosystem functioning. Improved understanding of how environmental factors influence the distribution and population structure of foundation species therefore contributes to management and conservation of entire ecosystems. We surveyed subtidal kelp forests within four regions of the U.K., distributed over 9° of latitude and a mean sea temperature gradient of ~ 2.5°C. Our aims were: (1) to examine relationships between light availability and the structure and depth distribution of Laminaria hyperborea populations and (2) to determine whether depth‐related patterns were consistent across regions with different temperature regimes. We recorded marked depth‐related shifts in structure with decreasing light levels strongly correlated with declines in kelp density, cover, plant biomass, standing biomass, plant length, and age. We also recorded an effect of latitude; populations at our two colder, northernmost regions exhibited greater wet weight and length and higher standing biomass than populations in the warmer southern regions when under similar or even reduced light conditions, indicating an interactive effect of latitude, most likely related to temperature variability. We show that shifts in kelp population structure along depth gradients are strongly driven by light availability, although regional variability in the strength and nature of these relationships may be promoted by other factors such as temperature. Maximum depth penetration, standing biomass, plant density, and plant weight are useful indicators of light availability and, over time, could be monitored to detect changes in the quality of the overlying water column.
Article
Full-text available
Kelp forests are highly productive coastal habitats and are emerging as important sources of organic matter for other ecosystems. Although their high rates of productivity and detritus release are expected to lead to substantial export of carbon, few studies have actually quantified rates of export or the persistence of detritus. We addressed this in eight subtidal kelp forests (Laminaria hyperborea) spanning the length (9° of latitude) of the United Kingdom. Specifically, we quantified detritus production, retention/export from source and adjacent habitats, and in situ decomposition rates. Detritus released via both dislodgment of whole plants and “May cast” shedding of old growth was highly variable between sites with greatest values recorded in our colder, northern sites. This was attributable to greater plant size biomass in northern regions, rather than plant density or dislodgement rates. On average, the annual production of kelp detritus was 4706 ± 700 g FW m−2 yr−1 or 301 g C m−2 yr−1. Low retention of detritus within the kelp forest and adjacent sedimentary habitats indicated very high rates of export (> 98% across the study). A litterbag experiment showed detritus may take > 4 months to decompose, suggesting great potential for long distance transport. Overall, our findings suggest that L. hyperborea forests export large amounts of detritus subsidies across their range, which can potentially shape the structure of distant benthic communities and constitute a relevant and largely overlooked flux in the coastal carbon cycle, which may represent an important component of natural carbon sequestration.
Article
Full-text available
Coastal habitats dominated by marine macroalgae typically exhibit high rates of primary productivity and play a key role in local and regional carbon cycles and stores. In temperate regions, large brown algae (i.e. kelps and fucoids) contribute significantly to macroalgal primary production, most of which is exported from source habitats as detritus. The ultimate fate of this detritus and the processes controlling detrital pathways into food webs and carbon cycles remain poorly understood. Based on field surveys, we quantified the biomass of kelp-derived detritus (wrack) at sandy and pebble-dominated shores in Ireland and conducted a manipulative field experiment to test for inter-specific differences in detritus degradation rates and the effect of macroinvertebrate detritivores. Overall, accumulated wrack biomass was similar on all shores but varied temporally depending on habitat type. Degradation rates and the nutritional (C:N) and chemical (polyphenol concentrations) properties differed among kelp species. Interestingly, exclusion of macroinvertebrate detritivores did not affect kelp degradation rates, C:N ratios or polyphenol content. Our findings show that rates of macroalgal breakdown differ among kelp species and that, in contrast to other aquatic systems, macroinvertebrates appear to play a very limited role in the breakdown of these marine detrital subsidies, suggesting a key role for meiofauna and microbes in detritus processing. Increasing recognition for the role of detritus in coastal food webs and carbon cycles warrants a better understanding of the mechanisms underpinning degradation rates.
Preprint
Full-text available
Net primary productivity (NPP) plays a pivotal role in the global carbon balance, but estimating the NPP of underwater habitats remains a challenging task. Seaweeds (marine macroalgae) form the largest and most productive underwater vegetated habitat on Earth. Yet, little is known about the distribution of their NPP at large spatial scales, despite more than 70 years of local-scale studies being scattered throughout the literature. We present a global dataset containing NPP records for 242 seaweed species at 419 individual sites distributed on all continents from the intertidal to 55 m depth. All records are standardized to annual aerial carbon production (g C m-2 yr-1) and are accompanied by detailed taxonomical and methodological information. The dataset presented here provides a basis for local, regional and global comparative studies of the NPP of underwater vegetation, and is pivotal for achieving a better understanding of the role seaweeds play in the global coastal carbon cycle.
Article
Full-text available
The biodiversity associated with subtidal Irish kelp forests dominated by Laminaria hyperborea has never been described. To enumerate species assemblages in these ecosystems, subtidal surveys were done throughout the calendar year to investigate species assemblages within kelp forests, composition of benthic communities, species colonizing kelp thalli, recruitment to kelp forests, and habitat recovery processes after canopy clearances. Surveys were further undertaken in maërl beds, sediment‐bottom bays, Serpula vermicularis reefs, and bedrock habitats for comparison. Across all four seasons, kelp forests harbor the richest species assemblages, second only S. vermicularis reefs in diversity, with a total of 313 unique species in the habitat (from juvenile recruits to mature macrofauna). Peak diversity in kelp forests occurred in summer and echinoderms were one of the most abundant groups, though urchins never reach densities that would threaten over‐grazing. The thalli of L. hyperborea are diverse habitats harboring many deposit feeders, filter feeders, and marine macroalgae. Epibiotic communities become more diverse with age of kelp, culminating in a maximum of 1660 individuals on stipes and 949 on holdfasts. Recruitment of crustaceans, echinoderms, and worms was high in kelp forests, but recruitment of common Irish fish could not be monitored because of unique life history stage. Habitat establishment took over a year on artificial substrata which were colonized by macroalgae and dense canopy cover inhibited growth of juvenile sporophytes. This descriptive study represents an essential baseline for kelp forest biodiversity in Ireland.
Article
The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.