Article

In vitro and in vivo exploration of the anti-atopic dermatitis mechanism of action of Tibetan medicine Qi-Sai-Er-Sang-Dang-Song decoction

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Ethnopharmacological relevance: Tibetan medicine Qi-Sai-Er-Sang-Dang-Song Decoction(QSD, ཆུ་སེར་སེང་ལྡེང་སུམ་ཐང་།)is a traditional Tibetan medical formulation with demonstrated clinical benefits in atopic dermatitis (AD). However, its potential mechanism and molecular targets remain to be elucidated. Aim of the study: This study aims to explore the activity and mechanism of QSD on AD in multiple dimensions by combining in vitro and in vivo experiments with network pharmacology. Materials and methods: The AD effect of QSD was investigated by evaluating the levels of nitric oxide (NO) and interleukin-6 (IL-6) in the lipopolysaccharide (LPS) stimulated RAW264.7 cells. AD-like skin lesions in female BALB/c mice were induced by 2,4-dinitrochlorobenzene (DNCB). QSD or dexamethasone (positive control) were gavagely administered daily for 15 consecutive days. The body weight and skin lesion severity were recorded throughout the study. Enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) analysis were used to illuminate the molecular targets associated with the anti-AD effects of QSD. Meanwhile, the ingredients of QSD in the blood were revealed and analyzed by Ultra performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) method. Network pharmacology was used to predict the targets and mechanism of active ingredient therapy for AD. In addition, the network pharmacology outcomes were further verified by molecular docking. Result: After treatment with QSD, the levels of NO and IL-6 were decreased in the cell supernatant. Herein, QSD markedly decreased the eosinophil and mast cells infiltration in the dorsal skin of the 2,4-dinitrochlorobenzene. Moreover, QSD reconstructed the epidermal barrier by increasing the content of collagen fibers and changing the arrangement of DNCB-treated mice. QSD not only inhibited the levels of tumor necrosis factor-α (TNF-α) and interleukin-12 (IL-12) but also inhibited phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) proteins in the dorsal skin. Four active ingredients were identified through UPLC-Q-TOF/MS, including (-)-epicatechin, kaempferol-7-O-glucoside, cassiaside, and questin. After the network pharmacological analysis, six core targets of QSD closely related to AD were obtained, including TNF-α, IL-6, Caspase-3 (CASP3), Epidermal growth factor (EGFR), Peroxisome proliferator-activated receptor gamma (PPARG), and Neurotrophic Receptor Tyrosine Kinase 1 (NTRK1). Meanwhile, through Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, the Mitogen-activated protein kinase (MAPK) signaling pathway occupies an important position in the QSD treatment of AD. The molecular docking results showed that the six core targets are stable in binding to the four active ingredients as indicated by the molecular docking results. Conclusions: The anti-AD effect of QSD might be related to the reconstruction of the epidermal barrier and inhibition of inflammation, which regulated the MAPK pathway. Hence, it provided a promising idea for the study of Tibetan medicine prescriptions for the treatment of AD.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... 38 Prior research has suggested that diminishing the expression of EGFR within the MAPK pathway can effectively alleviate the symptoms of AD in mice. 39,40 MAPKs, including ERK1/2 (MAPK3/1), JNK1/2/3, and p38 proteins (MAPK14), have been reported to be involved in AD. 41−43 IL-1β1, IL-6, and TNF-α act as proinflammatory cytokine genes, which can be activated by MAPK signaling pathways. 44 Generally, an important cause of AD is the dysregulated Th1 and Th2 response. ...
Article
Full-text available
The traditional prescription of Liangxue-Qushi-Zhiyang decoction (LQZ) has been demonstrated to be efficacious in treating atopic dermatitis (AD), a chronic inflammatory skin disorder marked by intense itching, redness, rashes, and skin thickening. Nevertheless, there has been an inadequate systematic exploration of the potential targets, biological processes, and pathways for AD treatment through LQZ. The study objective was to evaluate the efficacy and possible mechanism of LQZ in AD mice. In our study, we identified the primary compounds of LQZ, analyzed hub targets, and constructed a network. Subsequently, the predicted mechanisms of LQZ in AD were experimentally studied and validated in vivo, as determined by network pharmacological analysis. A total of 80 serum components of LQZ were identified through ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS), among which 49 compounds were absorbed into the bloodstream. Our results indicated that LQZ targets six putative key factors in the MAPK signaling pathway, which play essential roles in AD, namely, EGFR, p-MAPK1/3, p-MAPK14, IL-1β, IL-6, and TNF-α. We observed spleen coefficient, dermatitis scores, and ear thickness were all downregulated in 2,4-dinitrochlorobenzene (DNCB)-induced mice after LQZ treatment. Histological analysis of the dorsal and ear skin further revealed that LQZ significantly decreased skin inflammation, epidermal thickness, and mast cell numbers compared to the DNCB group. Our study demonstrated the effectiveness of LQZ in reducing epidermal and dermal damage in a mouse model of AD. Furthermore, our findings suggest that downregulating the MAPK signaling pathway could be a potential therapeutic strategy for the treatment of AD.
... Some prescriptions containing "Shengdeng" have been clinically tested and modern pharmacological studies have demonstrated their significant anti-inflammatory effects. Several clinical studies have reported the effectiveness of Ershiwuwei ErCha Wan in treating rheumatoid arthritis, highlighting its high application value (Huang et al., 2001;Zha et al., 2017;Liu et al., 2023). These medicinal properties have made "Shengdeng" a prominent ingredient in traditional Tibetan healing practices. ...
Article
Full-text available
“Shengdeng”, a group of Tibetan medicines with diverse biological origins, has long been utilized in Tibet for the treatment of rheumatoid arthritis. It showcases remarkable efficacy in alleviating rheumatism, reducing swelling, and relieving pain. This study aimed to clarify the plant species used as “Shengdeng” and summarize their botanical distribution, traditional uses, phytochemistry, and pharmacology to promote its utilization and development. “Shengdeng” is derived from a remarkable collection of 14 plant species belonging to six distinct families. Extensive phytochemical investigations have led to the identification of 355 chemical constituents within “Shengdeng”. Pharmacological studies conducted on “Shengdeng” have revealed a wide range of beneficial properties, including antioxidant, anticancer, antimicrobial, antiviral, antiparasitic, anti-inflammatory, and anti-arthritic activities. Notably, flavonoids and triterpenoids emerge as the predominant groups among these constituents, contributing to the therapeutic potential and diverse applications of “Shengdeng”. The present review provides a concise summary of the recent advancements in textual research concerning the herbal and botanical distribution, traditional uses, phytochemistry, and pharmacological activities of “Shengdeng”. It is crucial to note that future research on “Shengdeng” should prioritize the analysis of its active ingredients and the establishment of rigorous quality standards. These aspects are essential for ensuring consistency, efficacy, and safety in its clinical application.
Article
Ethnopharmacological relevance: Qi-Sai-Er-Sang-Dang-Song Decoction (QSD, ཆུ་སེར་སེང་ལྡེང་སུམ་ཐང་།), a Tibetan classical herbal formula, is commonly used in Tibetan hospital preparation for the treatment of rheumatoid arthritis (RA). Its efficacy is to relieve inflammation, dispel cold, remove dampness, and alleviate pain. However, its anti-RA mechanism is still unclear. Aim of the study: This study aimed to investigate the effect of QSD on rheumatoid arthritis and explore its anti-inflammatory mechanism against human fibroblast-like synoviocytes (HFLSs) by regulating the notch family of receptors (NOTCH1)/Nuclear factor-κB (NF-κB)/nucleotide-binding (NLRP3) pathway. Materials and methods: We used ultra-performance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC-Q-TOF-MS) to identify the chemical composition of QSD. Then, HFLSs were exposed to drug-containing serum. The effect of QSD drug-containing serum on HFLS viability was detected using the cell counting kit-8 (CCK-8) assay. Next, we explored the anti-inflammatory effect of QSD using enzyme-linked immunosorbent assay (ELISA) for inflammatory factors, such as interleukin-18 (IL-18), interleukin-1β (IL-1β), and interleukin-6 (IL-6). The expression of NOTCH-related proteins, a member of the NOTCH1, Cleaved NOTCH1, hairy and enhancer of split-1 (HES-1), NF-κB p65, NF-κB pp65, NLRP3, and delta-like 1 (DLL-1), was examined using western blotting. Furthermore, the relative mRNA expression levels of NOTCH1, NF-κB p65, NLRP3, DLL-1, and HES-1 were detected using real-time quantitative (RT-qPCR). To explore the mechanism underlying the anti-RA effect of QSD, we the used the NOTCH signaling pathway inhibitor LY411575 and transfection with a NOTCH1 siRNA. In addition, we employed immunofluorescence to determine the expression of HES-1 and NF-κB p65 in vitro. Result: Our results revealed that QSD ameliorated inflammation in HFLSs. Compared with the model group, the QSD drug-containing serum group had obviously down-regulated levels of IL-18, IL-1β, and IL-6. Consistently, the CCK-8 results showed that the QSD drug-containing serum had no obvious toxicity towards HFLSs. Moreover, both LY411575 and siNOTCH1, QSD could reduce NOTCH1, NLRP3, and HES-1 protein expression levels, and LY411575 could significantly inhibit the expression levels of NF-κB p65, NF-κB pp65, and Cleaved NOTCH1 (p < 0.05). siNOTCH1 could also suppress the expression of DLL-1. The RT-qPCR results indicated that QSD could downregulate the relative mRNA expression levels of NOTCH1, NF-κB p65, NLRP3, DLL-1, and HES-1 in HFLSs (p < 0.05). In the immunofluorescence experiment, the fluorescence intensities of HES-1 and NF-κB p65 in HFLSs were found to decrease after exposure to QSD drug-containing serum (p < 0.05). Ultimately, 44 chemical components were detected in QSD using UPLC-Q-TOF-MS. Conclusion: This study reveals that the QSD can markedly ameliorate inflammation induced by TNF-α on HFLS. The effect of QSD on HFLS may be exerted by inhibition of the NOTCH1/NF-κB/NLRP3 signaling pathway.
Article
Full-text available
Dandelions ( Taraxacum spp.) play an important role in the treatment of inflammatory diseases. In this study, we investigated the anti-inflammatory effects of Dandelion Extract (DE) in LPS-induced RAW264.7 macrophages and copper sulfate (CuSO 4 )-induced zebrafish larvae. DE was not toxic to RAW264.7 cells at 75 μg/ml as measured by cell viability, and DE inhibited LPS-induced cell morphological changes as measured by inverted microscopy. In survival experiments, DE at 25 μg/ml had no toxicity to zebrafish larvae. By using an enzymatic standard assay, DE reduced the production of nitric oxide (NO) in LPS-induced RAW264.7 cells. Fluorescence microscopy results show that DE reduced LPS-induced ROS production and apoptosis in RAW264.7 cells. DE also inhibited CuSO4-induced ROS production and neutrophil aggregation in zebrafish larvae. The results of flow cytometry show that DE alleviated the LPS-induced cell cycle arrest. In LPS-induced RAW264.7 cells, RT-PCR revealed that DE decreased the expression of M1 phenotypic genes iNOS, IL-6, and IL-1β while increasing the expression of M2 phenotypic genes IL-10 and CD206. Furthermore, in CuSO4-induced zebrafish larvae, DE reduced the expression of iNOS, TNF-α, IL-6, and IL-10. The findings suggest that DE reduces the LPS-induced inflammatory response in RAW264.7 cells by regulating polarization and apoptosis. DE also reduces the CuSO4-induced inflammatory response in zebrafish larvae.
Article
Full-text available
Three chalcone derivatives, abelmanihotols A−C (1–3), and nine known compounds were isolated from A. manihot seeds, and their structures were determined using HRESIMS and NMR spectroscopic analysis. Compound 1 exhibited the most potent inhibitory effect (IC50 = 4.79 ± 0.72 μM) against lipopolysaccharide (LPS)-induced NO release in THP-1 cells, and significantly inhibited interleukin 1β (IL-1β) secretion, which is stimulated by LPS plus nigericin (IC50 = 11.86 ± 1.20 μM), ATP or MSU, in THP-1 cells. A preliminary mechanism of action study indicated that compound 1 blocked the formation of nucleotide oligomerization domain-like receptor protein-3 (NLRP3) inflammasome formation by suppressing apoptosis-associated speck-like protein oligomerization, thereby attenuating caspase-1 activation and IL-1β release. These results reveal that compound 1 is not only a potent and efficacious NLRP3 inflammasome inhibitor but also a promising drug for the treatment of NLRP3-related diseases.
Article
Full-text available
Mast cells are present in all vascularized tissues of the body. They are especially abundant in tissues that are in frequent contact with the surrounding environment and act as potential sources of inflammatory and/or regulatory mediators during development of various infections and diseases. Mature mast cells’ cytoplasm contains numerous granules that store a variety of chemical mediators, cytokines, proteoglycans, and proteases. Mast cells are activated via various cell surface receptors, including FcϵRI, toll-like receptors (TLR), Mas-related G-protein-coupled receptor X2 (MRGPRX2), and cytokine receptors. IgE-mediated mast cell activation results in release of histamine and other contents of their granules into the extracellular environment, contributing to host defense against pathogens. TLRs, play a crucial role in host defense against various types of pathogens by recognizing pathogen-associated molecular patterns. On the other hand, excessive/inappropriate mast cell activation can cause various disorders. Here, we review the published literature regarding the known and potential inflammatory and regulatory roles of mast cells in cutaneous inflammation, including atopic dermatitis, psoriasis, and contact dermatitis GVHD, as well as in host defense against pathogens.
Article
Full-text available
In this study, the antioxidant and hypolipidemic effects of Mesona Chinensis Benth (MCB) extracts were evaluated. Seven fractions (F0, F10, F20, F30, F40, F50 and MTF) were obtained from the MCB ethanol extracts. Compared to the commercial antioxidants (vitamin C), MTF and F30 exhibited higher antioxidant activities in the antiradical activity test and the FRAP assay. The half-inhibition concentration (IC50) for MTF and F30 were 5.323 µg/mL and 5.278 µg/mL, respectively. MTF at 200 µg/mL significantly decreased the accumulation of TG in oleic acid (OA)-induced HepG2 cells and reversed the inhibitory effect of Compound C on AMPK (MTF and F30 significantly increased the glucose utilization of insulin-induced HepG2 cells). In addition, the components of MTF were identified by HPLC-MS, which were caffeic acid, quercetin 3-O-galactoside, isoquercetin, astragalin, rosmarinic acid, aromadendrin-3-O-rutinoside, rosmarinic acid-3-O-glucoside and kaempferol-7-O-glucoside. Through statistical correlations by Simca P software, it was found that the main antioxidant and hypolipidemic components of MCB might be caffeic acid, kaempferol-7-O-glucoside, rosmarinic acid-3-O-glucoside and aromadendrin-3-O-rutinoside, which may play important roles in the AMPK pathway. MTF and F30 in MCB could be potential health products for the treatment of hyperlipidemia.
Article
Full-text available
Ershiwuwei Lvxue Pill (ELP, མགྲིན་མཚལ་ཉེར་ལྔ།), a traditional Tibetan medicine preparation, has been used hundreds of years for the clinical treatment of rheumatoid arthritis (RA) in the highland region of Tibet, China. Nevertheless, its chemical composition and therapeutic mechanism are unclear. This study aimed to uncover the potentially effective components of ELP and the pharmacological mechanisms against RA by combing UPLC-Q-TOF/MS and network pharmacology. In this study, 96 compounds of ELP were identified or tentatively characterized based on UPLC-Q-TOF/MS analysis. Then, a total of 22 potential bioactive compounds were screened by TCMSP with oral bioavailability and drug-likeness. Preliminarily, 10 crucial targets may be associated with RA through protein-protein interaction network analysis. The functional enrichment analysis indicated that ELP exerted anti-RA effects probably by synergistically regulating many biological pathways, such as PI3K-Akt, Cytokine-cytokine receptor interaction, JAK-STAT, MAPK, TNF, and Toll-like receptor signaling pathway. In addition, good molecular docking scores were highlighted between five promising bioactive compounds (ellagic acid, quercetin, kaempferol, galangin, coptisine) and five core targets (PTGS2, STAT3, VEGFA, MAPK3, TNF). Overall, ELP can exert its anti-RA activity via multicomponent, multitarget, and multichannel mechanisms of action. However, further studies are needed to validate the biological processes and effect pathways of ELP.
Article
Full-text available
Atopic dermatitis (AD) is a chronic inflammatory disease of the skin whose main symptom is pruritus and may affect all age ranges. Regarding the prevalence, it has been estimated at around 10% of the world population. Many concomitant diseases have been associated with AD, but the causal relationship between AD and psychological impairment has not been clearly established. Scientific literature studying the probable association between male or female sexual dysfunction and dermatological pathology is limited, even more so in AD. This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines and the Cochrane Collaboration methodology for systematic reviews. All relevant articles in English were identified through a search from inception to 10 December 2020, including the following databases: Medline (via PubMed), Scopus, Web of Science Core Collection, and SciELO. The results of the search were compiled using the COVIDENCE software for systematic reviews. The methodological quality of the included studies was done using the “Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies” and the “Quality Assessment of Case-Control Studies” developed by the National Heart, Lung, and Blood Institute, National Institutes of Health (NIH). Our search yielded potentially relevant studies. Five studies that evaluated the prevalence of sexual dysfunction in atopic dermatitis were retrieved after applying the selection criteria. The present systematic review achieved data from 8088 patients with atopic dermatitis from four articles. Sample sizes for atopic dermatitis patients ranged from 266 to 3997. We identified one cohort study with four years of follow-up, three studies with a cross-sectional design, and one case-control study. Three studies reported data disaggregated by the severity of atopic dermatitis. Two studies included healthy controls with a total sample size of 1,747,755 subjects. Two studies compared data with other dermatological conditions such as psoriasis. In conclusion, we can establish that unlike other psychological comorbidities such as anxiety and depression, sexual dysfunction is a field scarcely explored in the literature. This sexual dysfunction focuses on the male sex in large population studies and in clinical diagnoses without exploring it through specific and validated questionnaires in this regard. Further studies focused on both genders are needed. It is important to correlate this sexual dysfunction with the severity of the disease, previous treatments, and cardiovascular comorbidities.
Article
Full-text available
The skin is the outermost barrier protecting the body from pathogenic invasion and environmental insults. Its breakdown initiates the start of skin inflammation. The epidermal growth factor (EGFR) on keratinocytes protects this barrier, and its dysfunction leads to atopic dermatitis-like skin disease. One of the initial cytokines expressed upon skin barrier breach and during atopic dermatitis is TSLP. Here, we describe the expression and secretion of TSLP during EGFR inhibition and present an ex-vivo model, which mimics the early events after barrier insult. Skin explants floated on culture medium at 32 °C released TSLP in parallel to the activation of the resident Langerhans cell network. We could further show the up-regulation and activation of the AP-1 family of transcription factors during atopic-like skin inflammation and its involvement in TSLP production from the skin explant cultures. Inhibition of the c-Jun N-terminal kinase pathway led to a dose-dependent blunting of TSLP release. These data indicate the involvement of AP-1 during the early stages of atopic-like skin inflammation and highlight a novel therapeutic approach by targeting it. Therefore, skin explant cultures mimic the early events during skin barrier immunity and provide a suitable model to test therapeutic intervention.
Article
Full-text available
Drug discovery relies on the knowledge of not only drugs and targets, but also the comparative agents and targets. These include poor binders and non-binders for developing discovery tools, prodrugs for improved therapeutics, co-targets of therapeutic targets for multi-target strategies and off-target investigations, and the collective structure-activity and drug-likeness landscapes of enhanced drug feature. However, such valuable data are inadequately covered by the available databases. In this study, a major update of the Therapeutic Target Database, previously featured in NAR, was therefore introduced. This update includes (a) 34 861 poor binders and 12 683 non-binders of 1308 targets; (b) 534 prodrug-drug pairs for 121 targets; (c) 1127 co-targets of 672 targets regulated by 642 approved and 624 clinical trial drugs; (d) the collective structure-activity landscapes of 427 262 active agents of 1565 targets; (e) the profiles of drug-like properties of 33 598 agents of 1102 targets. Moreover, a variety of additional data and function are provided, which include the cross-links to the target structure in PDB and AlphaFold, 159 and 1658 newly emerged targets and drugs, and the advanced search function for multi-entry target sequences or drug structures. The database is accessible without login requirement at: https://idrblab.org/ttd/.
Article
Full-text available
Purpose of Review The incidence of allergic diseases such as asthma, rhinitis and atopic dermatitis has risen at an alarming rate over the last century. Thus, there is a clear need to understand the critical factors that drive such pathologic immune responses. Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a nuclear receptor that has emerged as an important regulator of multiple cell types involved in the inflammatory response to allergens; from airway epithelial cells to T Helper (TH) cells. Recent Findings Initial studies suggested that agonists of PPAR-γ could be employed to temper allergic inflammation, suppressing pro-inflammatory gene expression programs in epithelial cells. Several lines of work now suggest that PPAR-γ plays an essential in promoting ‘type 2’ immune responses that are typically associated with allergic disease. PPAR-γ has been found to promote the functions of TH2 cells, type 2 innate lymphoid cells, M2 macrophages and dendritic cells, regulating lipid metabolism and directly inducing effector gene expression. Moreover, preclinical models of allergy in gene-targeted mice have increasingly implicated PPAR-γ in driving allergic inflammation. Summary Herein, we highlight the contrasting roles of PPAR-γ in allergic inflammation and hypothesize that the availability of environmental ligands for PPAR-γ may be at the heart of the rise in allergic diseases worldwide.
Article
Full-text available
Cassia obtusifolia L., of the Leguminosae family, is used as a diuretic, laxative, tonic, purgative, and natural remedy for treating headache, dizziness, constipation, tophobia, and lacrimation and for improving eyesight. It is commonly used in tea in Korea. Various anthraquinone derivatives make up its main chemical constituents: emodin, chrysophanol, physcion, obtusifolin, obtusin, au rantio-obtusin, chryso-obtusin, alaternin, questin, aloe-emodin, gluco-aurantio-obtusin, gluco-obtusifolin, naphthopyrone glycosides, toralactone-9-β-gentiobioside, toralactone gentiobioside, and cassiaside. C. obtusifolia L. possesses a wide range of pharmacological properties (e.g., antidiabetic, antimicrobial, anti-inflammatory, hepatoprotective, and neuroprotective properties) and may be used to treat Alzheimer’s disease, Parkinson’s disease, and cancer. In addition, C. obtusifolia L. contributes to histamine release and antiplatelet aggregation. This review summarizes the botanical, phytochemical, and pharmacological features of C. obtusifolia and its therapeutic uses.
Article
Full-text available
Atopic dermatitis (AD) is a chronic inflammatory allergic skin disease, characterized by pruritic and eczematous skin lesions. Lycopus lucidus Turcz (LLT) is a perennial herb that has been reported to have various biological properties, including effects on blood circulation, as well as anti‑inflammatory, antioxidant, anti‑vascular inflammation and wound‑healing effects. However, whether LLT improves dermatitis and the underlying mechanisms has yet to be determined. The aim of the present study was to determine whether LLT can improve 2,4‑dinitrochlorobenzene (DNCB)‑induced dermatitis and to verify the inhibitory effect of LLT on the expression of chemokines and pro‑inflammatory cytokines in the HaCaT immortalized keratinocyte cell line. In addition, the anti‑inflammatory function of LLT in RAW264.7 mouse macrophages was investigated. In the DNCB‑induced AD mouse model, LLT inhibited infiltration by mast cells, eosinophils and CD8+ cells in the dorsal skin tissue of AD mice, and suppressed the expression of IgE and IL‑6 in serum. In addition, LLT inhibited the phosphorylation of ERK and JNK, as well as NF‑κB in skin tissue. In the HaCaT cell model induced by TNF‑α/IFN‑γ, LLT inhibited the expression of thymus and activation‑regulated chemokine, granulocyte‑macrophage colony‑stimulating factor, monocyte chemoattractant protein‑1, TNF‑α and IL‑1β, whilst inhibiting the phosphorylation of NF‑κB. In addition, in the lipopolysaccharide‑induced RAW 264.7 cell inflammation model, LLT inhibited the expression of TNF‑α and IFN‑γ, the nuclear translocation of NF‑κB and the phosphorylation of ERK and JNK. These results suggested that LLT may be a promising candidate for the treatment of inflammatory dermatitis.
Article
Full-text available
We examined the immunomodulatory and anti-inflammatory effects of asiatic acid (AA) in atopic dermatitis (AD). AA treatment (5–20 µg/mL) dose-dependently suppressed the tumor necrosis factor (TNF)-α level and interleukin (IL)-6 protein expression in interferon (IFN)-γ + TNF-α-treated HaCaT cells. The 2,4-dinitrocholrlbenzene (DNCB)-induced AD animal model was developed by administering two AA concentrations (30 and 75 mg/kg/d: AD + AA-L and AD + AA-H groups, respectively) for 18 days. Interestingly, AA treatment decreased AD skin lesions formation and affected other AD characteristics, such as increased ear thickness, lymph node and spleen size, dermal and epidermal thickness, collagen deposition, and mast cell infiltration in dorsal skin. In addition, in the DNCB-induced AD animal model, AA treatment downregulated the mRNA expression level of AD-related cytokines, such as Th1- (TNF-α and IL-1β and -12) and Th2 (IL-4, -5, -6, -13, and -31)-related cytokines as well as that of cyclooxygenase-2 and CXCL9. Moreover, in the AA treatment group, the protein level of inflammatory cytokines, including COX-2, IL-6, TNF-α, and IL-8, as well as the NF-κB and MAPK signaling pathways, were decreased. Overall, our study confirmed that AA administration inhibited AD skin lesion formation via enhancing immunomodulation and inhibiting inflammation. Thus, AA can be used as palliative medication for regulating AD symptoms.
Article
Full-text available
Atopic dermatitis is a chronic, non-infectious inflammatory dermatosis. Acharacteristic feature is persistent itching of the skin. The chronic, relapsing course of the disease, economic burden, and the whole family’s involvement in the treatment process immensely reduce the quality of life of patients and their families. The disease emerges as a social problem by increasing indirect costs, such as visiting a doctor, absenteeism from work and school, and avoiding social interactions. Thepathophysiology of atopic dermatitis is complex and multifactorial. It includes genetic disorders, a defect in the epidermal barrier, an altered immune response, anddisruption of the skin’s microbial balance. The numerous complex changes at thegenetic level and innate and adaptive immunity provide the basis for characterizing the various phenotypes and endotypes of atopic dermatitis. Emerging therapies rely on the action of specific molecules involved in the disease’s pathogenesis. It may be the starting point for the individualization of atopic dermatitis treatment. This paper will try to present some molecular mechanisms of atopic dermatitis and their clinical implications.
Article
Full-text available
The ERK/MAPK cascade is one the four distinctive MAPK cascades which transmit extracellular signals to intracellular targets. This cascade has an important role in the regulation of several fundamental processes such as proliferation, differentiation and cell response to diverse extrinsic stresses. Moreover, several studies have shown participation of this cascade in the pathogenesis of cancer. Recent investigations have unraveled interaction between microRNAs (miRNAs) and ERK/MAPK cascade. These transcripts reside in both upstream and downstream of this cascade, regulating or being regulated by ERK/MAPK proteins. In the current review, we summarize the role of miRNAs in the regulation of ERK/MAPK and their contribution in the pathogenesis of human disorders with particular focus on cancers.
Article
Full-text available
The incidence of allergic diseases continues to rise. Cross-sectional and longitudinal studies have indicated that allergic diseases occur in a time-based order: from atopic dermatitis and food allergy in infancy to gradual development into allergic asthma and allergic rhinitis in childhood. This phenomenon is defined as the “atopic march”. Some scholars have suggested that the atopic march does not progress completely in a temporal pattern with genetic and environmental factors. Also, the mechanisms underlying the atopic march are incompletely understood. Nevertheless, the concept of the atopic march provides a new perspective for the mechanistic research, prediction, prevention, and treatment of atopic diseases. Here, we review the epidemiology, related diseases, mechanistic studies, and treatment strategies for the atopic march.
Article
Full-text available
The present study investigated the protective effects of Sargassum horneri (S. horneri) ethanol extract (SHE) against atopic dermatitis (AD), known as an abnormal immune response in house dust mite (HDM)/2,4-dinitrochlorobenzene (DNCB)-stimulated NC/Nga mice. The oral administration of SHE attenuated the AD symptoms, including the skin dermatitis severity, transepidermal water loss (TEWL), and ear edema in HDM/DNCB-stimulated mice. Moreover, the histological analysis revealed that SHE improved epidermal hyperplasia and hyperkeratosis, and reduced the dermal infiltrations of mast cells and eosinophils. Moreover, SHE downregulated the expression levels of cytokines (interleukin (IL)-6, IL-10, and interferon (IFN)-γ) and chemokines (Regulated on Activation, Normal T Cell Expressed and Secreted (RANTES), Eotaxin, and Thymus and activation-regulated chemokine (TARC)) by decreasing the expression levels of atopic initiators (IL-25 and IL-33) in HDM/DNCB-stimulated skin. The oral administration of SHE decreased the spleen size, reducing expression levels of AD-related cytokines (IL-4, IL-5, IL-6, IL-10, IL-13, IFN-γ, and TARC) by regulating the expressions of Tbx21 (T-bet), GATA Binding Protein 3 (GATA-3), and Signal transducer and activator of transcription 3 (STAT3). Moreover, SHE significantly attenuated the serum immunoglobulin (Ig)G1 and IgG2a levels in HDM/DNCB-stimulated mice. Collectively, these results suggest that S. horneri could be an ingredient of functional food against abnormal immune response.
Article
Full-text available
Background: The Coronavirus Disease 2019 (COVID-19) outbreak in Wuhan, China, was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Anisodamine hydrobromide injection (AHI), the main ingredient of which is anisodamine, is a listed drug for improving microcirculation in China. Anisodamine can improve the condition of patients with COVID-19. Materials and methods: Protein-protein interactions obtained from the String databases were used to construct the protein interaction network (PIN) of AHI using Cytoscape. The crucial targets of AHI PIN were screened by calculating three topological parameters. Gene ontology and pathway enrichment analyses were performed. The intersection between the AHI component proteins and angiotensin-converting enzyme 2 (ACE2) coexpression proteins was analyzed. We further investigated our predictions of crucial targets by performing molecular docking studies with anisodamine. Results: The PIN of AHI, including 172 nodes and 1454 interactions, was constructed. A total of 54 crucial targets were obtained based on topological feature calculations. The results of Gene Ontology showed that AHI could regulate cell death, cytokine-mediated signaling pathways, and immune system processes. KEGG disease pathways were mainly enriched in viral infections, cancer, and immune system diseases. Between AHI targets and ACE2 coexpression proteins, 26 common proteins were obtained. The results of molecular docking showed that anisodamine bound well to all the crucial targets. Conclusion: The network pharmacological strategy integrated molecular docking to explore the mechanism of action of AHI against COVID-19. It provides protein targets associated with COVID-19 that may be further tested as therapeutic targets of anisodamine.
Article
Full-text available
Atopic dermatitis (AD) is a chronic inflammatory disease. Combretum quadrangulare (C. quadrangulare) is used as a traditional medicine to improve various pathologies in Southeast Asia. In this study, we investigated the effects of C. quadrangulare ethanol extract (CQ) on 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD like skin lesions in BALB/c mice. After administration with CQ (100, 200, and 400 mg/kg) for 6 weeks, AD symptoms, protein expression, immunoglobulin E (IgE), thymus and activation-regulated chemokine (TARC), and ceramidase level were measured in skin lesions of DNCB-induced BALB/c mice. CQ group improved the dermatitis score, skin pH, transepidermal water loss (TEWL), and skin hydration. Furthermore, histological analysis revealed that CQ attenuated the increased epidermal thickness and infiltration of mast cells caused by DNCB. CQ also increased the expression of filaggrin, and reduced the expression of ceramidase, serum IgE level, and the number of eosinophils. CQ effectively inhibited cytokines and chemokines such as interleukin (IL)-6, IL-13, TARC, and thymic stromal lymphopoietin (TSLP) at the mRNA levels, as well as the activation of mitogen-activated protein kinase (MAPK), including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 in the skin lesions. Taken together, these findings demonstrate that CQ may be an effective treatment of AD-like skin lesions by inhibiting the expression of inflammatory mediators via the MAPK signaling pathways.
Article
Full-text available
There has been extensive progress in understanding the cellular and molecular mechanisms of inflammation and immune regulation in allergic diseases of the skin and lungs during the last few years. Asthma and atopic dermatitis (AD) are typical diseases of type 2 immune responses. interleukin (IL)‐25, IL‐33, and thymic stromal lymphopoietin are essential cytokines of epithelial cells that are activated by allergens, pollutants, viruses, bacteria, and toxins that derive type 2 responses. Th2 cells and innate lymphoid cells (ILC) produce and secrete type 2 cytokines such as IL‐4, IL‐5, IL‐9, and IL‐13. IL‐4 and IL‐13 activate B cells to class‐switch to IgE and also play a role in T‐cell and eosinophil migration to allergic inflammatory tissues. IL‐13 contributes to maturation, activation, nitric oxide production and differentiation of epithelia, production of mucus as well as smooth muscle contraction, and extracellular matrix generation. IL‐4 and IL‐13 open tight junction barrier and cause barrier leakiness in the skin and lungs. IL‐5 acts on activation, recruitment, and survival of eosinophils. IL‐9 contributes to general allergic phenotype by enhancing all of the aspects, such as IgE and eosinophilia. Type 2 ILC contribute to inflammation in AD and asthma by enhancing the activity of Th2 cells, eosinophils, and their cytokines. Currently, five biologics are licensed to suppress type 2 inflammation via IgE, IL‐5 and its receptor, and IL‐4 receptor alpha. Some patients with severe atopic disease have little evidence of type 2 hyperactivity and do not respond to biologics which target this pathway. Studies in responder and nonresponder patients demonstrate the complexity of these diseases. In addition, primary immune deficiency diseases related to T‐cell maturation, regulatory T‐cell development, and T‐cell signaling, such as Omenn syndrome, severe combined immune deficiencies, immunodysregulation, polyendocrinopathy, enteropathy, X‐linked syndrome, and DOCK8, STAT3, and CARD11 deficiencies, help in our understanding of the importance and redundancy of various type 2 immune components. The present review aims to highlight recent advances in type 2 immunity and discuss the cellular sources, targets, and roles of type 2 mechanisms in asthma and AD.
Article
Full-text available
Separation and enrichment of phenolics from peony flowers were performed to improve the anti-biofilm and antibacterial activities for the first time. Through several times of separation, the purity of phenolics components increased significantly, and the anti-biofilm and antibacterial activities of phenolics components against E. coli and S. aureus were also significantly improved. Finally, the phenolics of peony flowers in the eluent of silica gel column chromatography (PPF-ESGCC) were found to exhibit the highest anti-biofilm and antibacterial activities. The inhibition rates of PPF-ESGCC on biofilms of E. coli and S. aureus were 77.93%, and 87.03% respectively, at a very low concentration (1/2 MIC, 0.235 mg/mL). It was found that the biofilm inhibition was achieved by inhibiting their swimming, swarming, twitching motilities, exopolysaccharide (EPS) production, and quorum sensing (QS). Moreover, there was a positive dose-dependent relationship (r = 0.75 to 1) between the inhibition rates and concentrations of PPF-ESGCC during the critical biofilm-formation stage (1–3 days). Chemical composition analysis showed the PPF-ESGCC comprised of gallic acid, kaempferol-7-O-glucoside, and apigenin-7-O-glucoside. In conclusion, PPF-ESGCC exhibited strong inhibitory effect on biofilm formation and gallic acid, kaempferol-7-O-glucoside, and apigenin-7-O-glucoside might play a crucial role in inhibiting biofilm formation. Meanwhile, this study indicated that PPF-ESGCC, a new natural QS inhibitor and biofilm inhibitor, could be used as a novel intervention strategy to enhance the safety and quality of food.
Article
Full-text available
Atopic dermatitis (AD) is a chronic inflammatory skin disease caused mainly by immune dysregulation. This study explored the anti-inflammatory and immunomodulatory effects of the Centella asiatica ethanol extract (CA) on an AD-like dermal disorder. Treatment with CA inhibited the expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in a dose-dependent manner in inflammatory stimulated HaCaT cells by interferon-γ (IFN-γ) and TNF-α-triggered inflammation. Eight-week-old BALB/c mice treated with 2,4-dinitrochlorobenzene (DNCB) were used as a mouse model of AD. In AD induce model, we had two types treatment of CA; skin local administration (80 µg/cm2, AD+CA-80) and oral administration (200 mg/kg/d, AD+CA-200). Interestingly, the CA-treated groups exhibited considerably decreased mast cell infiltration in the ear tissue. In addition, the expression of IL-6 in mast cells, as well as the expression of various pathogenic cytokines, such as TNF-α, IL-4, IL-5, IL-6, IL-10, IL-17, iNOS, COX-2, and CXCL9, was reduced in both AD+CA-80 and AD+CA-200 groups. Collectively, our data demonstrate the pharmacological role and signaling mechanism of CA in the regulation of allergic inflammation of the skin, which supports our hypothesis that CA could potentially be developed as a therapeutic agent for AD.
Article
Full-text available
In recent years, Cassia seed extract has been reported as a neuroprotective agent in various models of neurodegeneration, mainly via an antioxidant mechanism. However, no one has previously reported the effects of Cassia seed extract and its phytochemicals on human monoamine oxidase (hMAO) enzyme activity. The seed methanol extract, the solvent-soluble fractions, and almost all isolated compounds displayed selective inhibition of hMAO-A isozyme activity. Interestingly, compounds obtusin (3), alaternin (8), aloe-emodin (9), questin (12), rubrofusarin (13), cassiaside (15), toralactone 9-O-β-gentiobioside (26), and (3S)-9,10-dihydroxy-7-methoxy-3-methyl-1-oxo-3,4-dihydro-1H-benzo[g]isochromene-3-carboxylic acid 9-O-β-d-glucopyranoside (38) showed the most promising inhibition of the hMAO-A isozyme with IC50 values of 0.17–11 μM. The kinetic study characterized their mode of inhibition and molecular docking simulation predicted interactions with Ile-335 and Tyr-326 in support of the substrate/inhibitor selectivity in respective isozymes. These results demonstrate that Cassia seed extract and its constituents inhibit hMAO-A enzyme activity with high selectivity and suggest that they could play a preventive role in neurodegenerative diseases, especially anxiety and depression.
Article
Full-text available
The effects of Alnus sibirica (AS) extracts on cytokine expression induced by inflammatory stimulants were examined in human dermal fibroblasts (HDFs) and RAW264.7 cells. The anti-oxidative effect and effect on cell viability of AS extracts were evaluated, and four extracts with the highest anti-oxidative effects were selected. HDFs and RAW264.7 cells were treated with inflammatory stimulants, and the expression of cytokines involved in acute (IL-6 and IL-10) and chronic (IL-18) inflammation, the initiation of the immune response (IL-33), and non-specific immune responses (IL-1β, IL-8, and TNF-α) were determined using a reverse-transcription polymerase chain reaction. LPS increased the expression of all the cytokines, except for IL-18; however, AS extracts, particularly AS2 and AS4, reduced this increase, and TNF-α treatment markedly increased the expression of cytokines related to non-specific immune responses. IFN-γ treatment induced no significant changes, except for increased IL-33 expression in HDFs. AS extracts inhibited the increase in the expression of IL-33 and other cytokines in HDFs. Thus, the exposure of HDFs and RAW264.7 cells to inflammatory stimulants increased the expression of cytokines related to all the inflammatory processes. HDFs are involved not only in simple tissue regeneration but also in inflammatory reactions in the skin. AS2 and AS4 may offer effective therapy for related conditions.
Article
Full-text available
This experiment was conducted to investigate the effects of a benzylideneacetophenone derivative ((2E)-3-(4-hydroxy-3-methoxyphenyl)phenylpro-2-en-l-one (JC3)) on trimellitic anhydride (TMA)–induced atopic dermatitis (AD)–like symptoms in mice. To induce AD, the dorsal skins of mice were treated with 5% TMA on day 0 and both ears were treated with 5% TMA on day 5 and with 2% TMA from day 6 to day 14. JC3 (1, 5, 10 mg/kg, i.p.) was treated once daily from day 9 to day 14 before TMA treatment. Histological analysis was performed and auricular lymph node weights, ear thicknesses, skin water contents, scratching behaviors, and serum immunoglobulin (IgE) and IFN-γ, and interleukin-4 (IL-4) levels in serum and ear tissues were determined. In addition, the anti-AD activity of JC3 was investigated on phorbol 12-myristate 13-acetate (PMA)–stimulated human mast cells (HMC-1 cells) derived from patients. Levels of TNF-α, IL-4, and mitogen-activated protein kinase (MAPK) were investigated after treating cultured cells with JC3. Treating mice with JC3 (10 mg/kg) significantly decreased ear thicknesses, lymph node weights, skin scores, skin water contents, scratching behavior, and IFN-γ, IL-4 cytokine levels, and serum IgE levels. Moreover, treatment with JC3 (10 mg/kg) significantly decreased serum and ear tissues levels of IFN-γ and IL-4 in AD mice. Furthermore, treatment with JC3 at 10 μg/ml reduced TNF-α and IL-4 levels and decreased MAPK phosphorylation in the HMC-1 cells. The results of this study provide a molecular basis for developing new therapeutics for the treatment of various inflammatory diseases, such as, eczema, asthma, and AD.
Article
Full-text available
Dendropanax morbifera (D. morbifera), known as Dendro, means ‘omnipotent drug’ (Panax), and has been called the panacea tree. Various studies on D. morbifera are currently ongoing, aiming to determine its medicinal uses. The present study investigated the anti-inflammatory effects and underlying mechanism of a natural extract of D. morbifera leaves (DPL) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. In the present study, the following assays and models were used: MTT assay, nitric oxide (NO) assay, western blotting, ELISA and mouse models of atopic dermatitis. DPL extract markedly reduced the production of NO, inducible NO synthase and interleukin-6, as well as the nuclear translocation of nuclear factor-κB (NF-κB). Additionally, the LPS-induced activationofextracellularsignal-regulatedkinase1/2(ERK1/2), P38 and c-Jun N-terminal kinase (JNK) was suppressed by DPL extract. Taken together, these results indicate that NF-κB, ERK1/2, P38 and JNK may be potential molecular targets of DPL extract in the LPS-induced inflammatory response. Subsequently, the present study investigated the effects of DPL extract in a 2,4-dinitrochlorobenzene-induced atopic dermatitis mouse model. Ear thickness, serum immunoglobulin E levels and histological analysis revealed that the DPL extract was effective in attenuating the inflammatory response. These results indicate that DPL extract has anti-inflammatory potential and may be developed as a botanical drug to treat atopic dermatitis.
Article
Full-text available
Background: Jawoongo is an herbal mixture used in traditional medicine to treat skin diseases. This study aimed to investigate whether Jawoongo ameliorates Atopic dermatitis (AD)-like pathology in mice and to understand its underlying cellular mechanisms. Methods: AD was induced by 2, 4-Dinitrocholrlbenzene (DNCB) in BALB/c mice. Treatment with Jawoongo was assessed to study the effect of Jawoongo on AD in mice. Histological Analysis, blood analysis, RT-PCR, western blot analysis, ELISA assay and cell viability assay were performed to verify the inhibitory effect of Jawoongo on AD in mice. Results: We found that application of Jawoongo in an ointment form on AD-like skin lesions on DNCB-exposed BALB/c mice reduced skin thickness and ameliorated skin infiltration with inflammatory cells, mast cells and CD4+ cells. The ointment also reduced the mRNA levels of IL-2, IL-4, IL-13 and TNF-α in the sensitized skin. Leukocyte counts and the levels of IgE, IL-6, IL-10 and IL-12 were decreased in the blood of the DNCB-treated mice. Furthermore, studies on cultured cells demonstrated that Jawoongo exhibits anti-inflammatory activities, including the suppression of proinflammatory cytokine expression, nitric oxide (NO) production, and inflammation-associated molecule levels in numerous types of agonist-stimulated innate immune cell, including human mast cells (HMC-1), murine macrophage RAW264.7 cells, and splenocytes isolated from mice. Conclusion: These findings indicate that Jawoongo alleviates DNCB-induced AD-like symptoms via the modulation of several inflammatory responses, indicating that Jawoongo might be a useful drug for the treatment of AD.
Article
Ethnopharmacological relevance: Dermatitis is a common clinical chronic inflammatory skin disease, which incidence has been on the rise in recent years. It not only seriously affects the physical and mental health of patients but also increase economic burden. Currently, commonly used drugs such as corticosteroids, anti-histamines have certain side effects or are expensive. Therefore, the search for an alternative therapy for dermatitis has important clinical significance. Cortex Dictamni is a commonly used traditional Chinese medicine for expelling wind and itching, but its mechanism for treating dermatitis is still unclear. Materials and methods: Network pharmacological analysis was performed to predict the potential targets and pathways of Cortex Dictamni against dermatitis. Molecular docking was used to assess the binding affinity of active compounds and core targets. By repeatedly stimulating the ears with 1-fluoro-2,4-dinitrobenzene (DNFB), an atopic dermatitis (AD) mouse model was established in order to study the anti-dermatitis effect of Cortex Dictamni. The skin thickness and inflammatory cell infiltration in mouse ears were assessed by tissue staining and flow cytometric. The levels of inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA), and the total protein and phosphorylation levels of related pathways were analyzed by western blotting. Results: In this study, 11 active ingredients, 122 Cortex Dictamni and dermatitis intersection targets were identified. The results from Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the core targets were mainly enriched in immune response and inflammatory signaling pathways. AD mice treated with ethanol extract of Cortex Dictamni (ECD) improved the symptoms of ear skin lesions, alleviated epidermis and dermis thickening of the AD mice ears, decreased pathological immune cell infiltration and attenuated the levels of inflammatory cytokines (TLR4, IL-6, IL-17), and inhibited the hyperactivation of the PI3K-Akt, JAK1-STAT3/STAT6 signal pathways. Conclusions: Cortex Dictamni can improve the symptoms of skin lesions and the degree of inflammation caused by AD, and may inhibit AD through multiple pathways, such as regulating PI3K-Akt and JAK1-STAT3/STAT6 pathways. These results not only provide experimental evidence for the clinical application of Cortex Dictamni but also provide some help for the research and development of dermatitis drugs.
Article
Background: Atopic dermatitis (AD), a common inflammatory skin disorder, severely affects the life quality of patients and renders heavy financial burden on patient's family. The Chinese medicine Viola yedoensis Makino formula (VYAC) has been widely used for treating various skin disorders. Previous studies have reported that VYAC is effective in relieving DNCB-induced AD and inflammation. However, the anti-inflammatory mechanism of VYAC is still ill-defined and poorly understood. This study aims to investigate the therapeutic effects of VYAC on DNCB-induced AD and to elucidate the underlying anti-inflammatory mechanisms. Methodology: VYAC were extracted with 70% ethanol and lyophilized for use. AD mice were established by DNCB. The therapeutic effects of VYAC were evaluated by oral administration VYAC (150, 300 and 600 mg/kg) daily in vivo. The histopathological and immunohistochemistry were used to analyze skin lesion and macrophages infiltration, RT-qPCR and Elisa were used to analyze the inflammatory factors in skin tissues and serum. To explore the underlying mechanism of VYAC against AD in vitro. RAW264.7 cells and bone-marrow-derived macrophages (BMDMs) were employed for macrophage polarization analysis. Flow cytometer, immunofluorescence and western blot were used to analyze M2 macrophages markers. STAT3 siRNA were transfected into both cells to validate the effects of VYAC-induced macrophages M2 polarization via JAK2/STAT3 signaling pathway. Results: VYAC ameliorated skin lesion of DNCB-induced AD mice by decreased clinical scores and epidermal thickness, decreased the level of pro-inflammatory factors (IL-1β, TNF-α and IL-18) and enhanced IL-10 anti-inflammatory factor level, inhibited macrophages infiltration and promoted M2 macrophages polarization in vivo. VYAC significantly promoted M2 macrophages polarization in vitro. It is observed that VYAC not only inhibited the phosphorylation of JAK2 and STAT3 in RAW264.7 cells and BMDMs, but also accelerated the translocation to the nucleus. What's more, VYAC reduced the polarization of M2 macrophage by activating JAK2/STAT3 signaling pathway was observed in both cells. Conclusions: Our findings demonstrate that VYAC significantly ameliorates skin lesion of DNCB-induced AD mice and reduces the levels of inflammatory factors by activating JAK2/STAT3 signaling pathway and promoting M2 macrophages polarization.
Article
Aims Atopic dermatitis (AD) is an inflammatory chronic disease which severely interferes the life of patients. Hence, there is a great need for new therapies. Hyaluronic acid (HA) is an effective potential inflammation modifier; however, there is limited information about their implementation in inflammation therapies. This study aimed to evaluate the anti-inflammatory activities of HA and the influence of its molecular weight. Main methods Male C57BL/6 J mice were stimulated by 2,4-dinitrofluorobenzene to induce AD-like symptoms and immune response. The skin lesions and histopathological change, as well as levels of inflammatory factors were evaluated. RAW 264.7 mouse macrophages were treated with lipopolysaccharides (LPS) to induce inflammation. NO, IL-6, and TNF-α levels were detected through ELISA kits. Key findings DNFB challenge induced mice AD symptoms including epidermal thickening, mast cell infiltration, Th2/Th1 immune response, skin lesions IL-4 and IFN-γ, and serum IgE elevation. HA treatment ameliorated such symptoms through the inhibition of PI3K/Akt signaling pathway. LPS induction stimulated the secretion of NO, IL-6, and TNF-α in RAW 264.7 cells, while HA pre-treatment reduced the concentration of the cytokines in cell supernatants. Significance These findings give clear insight into the interaction between HA and inflammatory response, which can help guide the utilization of HA in the AD therapies.
Article
Ethnopharmacological relevance Atopic dermatitis (AD) is a kind of inflammation on the skin following with swollen, itchy, dryness and cracked skin. Though the exact cause of AD is unknown, there are evidence that people with AD have a compromised skin barrier along with inflammation. Eclipta prostrata Linné is a traditional herbal medicinal plant, has been used for the diabetes, obesity, jaundice, and inflammation. We supposed E. prostrata L. has an anti-inflammatory effect on the skin. Aim of the study We aimed to assess the effect of E. prostrata L. EtOH extract (EP) and elucidate the associated molecular mechanisms. Materials and methods The effect of EP and the molecular mechanisms were eluciated in house dust mite (HDM)-induced AD mice model and TNF-α/IFN-γ-stimulated HaCaT keratinocytes by histological analysis, enzyme-linked immunosorbent assay, quantitative real time polymerase chain reaction, and western blot. Results The results revealed that EP improved the progression of AD symptoms, decreasing epidermis/dermis thickness, infiltrated immune cells, and restored the skin barrier dysfunction and imbalanced immune response. EP suppressed the expressions of T helper (Th)1, Th2, Th17 cytokines, phosphorylation of extracellular signal-regulated kinase/signal transducer and activator of transcription 1 in skin of HDM-induced AD mice as well as inhibition the translocation of nuclear factor-κB in HaCaT keratinocytes. Conclusions Collectively, EP improved the allergic inflammation of the skin through recovery the skin barrier, and regulation the immune balance. These results suggest EP may have therapeutic potential as an anti-atopic agent.
Article
Ethnopharmacological relevance Sea buckthorn (Hippophae rhamnoides L.) is popularly used as a herbal medicine and food additive in the world. Total flavonoids of Hippophae rhamnoides (TFH) are reported to have anti-inflammatory and immunomodulatory activities. Aim The effects of TFH on atopic dermatitis (AD)-like lesions induced by MC903 in mice was elucidated in the study. Methods To induce AD-like lesions, MC903 was adopted to apply repeatedly on the left ear in C57BL/6 mice. After induction of AD-like lesions, 0.5% and 1% TFH cream was applied topically on ears of mice once a day for 8 days. The degree of skin lesions was evaluated by macroscopical and histological methods. Expressions of filaggrin (FLG) was evaluated by Western blotting. Real-time polymerase chain reaction (qPCR) was adopted to detect the mRNA expression of thymic stromal lymphopoietin (TSLP), interferon (IFN)-γ, interleukin (IL-4), tumor necrosis factor (TNF)-α in skin lesions. In vitro, Cytokine Antibody Arrays were performed to measure production of cytokines in IFN-γ/TNF-α-treated HaCaT cells, Western blotting was employed to detect the expressions of p–NF–κB, p-ERK and p-P38. Results Topical application of TFH significantly improved the severity of dermatitis by inhibiting the infiltration of mast cell, increasing expression of FLG, decreasing the expressions of TNF-α, IL-4, IFN-γ and TSLP in skin lesions. TFH decreased the levels of IL-1α, IL-1β, IL-6, monocyte chemoattractant protein (MCP)-1, MCP-3, macrophage-derived chemokine (MDC), platelet-derived growth factor (PDGF)-BB, thymus and activation regulated chemokine (TARC) in the supernatants of the HaCaT cells treated by IFN-γ/TNF-α. Furthermore, expressions of p–NF–κB, p-ERK and p-P38 were also decreased by TFH administration with dose dependent manner in HaCaT cells treated by IFN-γ/TNF-α. Conclusions Topical application of TFH improved AD-like lesions in mice induced by MC903. Which exerted the effects of anti-inflammation and repairing skin barrier by regulating Th1/Th2 balance. This finding indicates that TFH is a novel potential agent for the external treatment of AD.
Article
Background Huanglian Jiedu Decoction (HLJDD) is a classical herbal formula with potential efficacy in the treatment of sepsis. However, the main components and potential mechanisms of HLJDD remain unclear. This study aims to initially clarify the potential mechanism of HLJDD in the treatment of sepsis based on network pharmacology and molecular docking techniques. Methods The principal components and corresponding protein targets of HLJDD were searched on TCMSP, BATMAN-TCM and ETCM and the compound-target network was constructed by Cytoscape3.8.2. Sepsis targets were searched on OMIM and DisGeNET databases. The intersection of compound target and disease target was obtained and the coincidence target was imported into STRING database to construct a PPI network. We further performed GO and KEGG enrichment analysis on the targets. Finally, molecular docking study was approved for the core target and the active compound. Results There are 257 nodes and 792 edges in the component target network. The compounds with a higher degree value are quercetin, kaempferol, and wogonin. The protein with a higher degree in the PPI network is JUN, RELA, TNF. GO and KEGG analysis showed that HLJDD treatment of sepsis mainly involves positive regulation of transcription from RNA polymerase II promoter, negative regulation of apoptosis process, response to hypoxia and other biological processes. The signaling pathways mainly include PI3K-AKT, MAPK, TNF signaling pathway. The molecular docking results showed that quercetin, kaempferol and wogonin have higher affinity with JUN, RELA and TNF. Conclusion This study reveals the active ingredients and potential molecular mechanism of HLJDD in the treatment of sepsis, and provides a reference for subsequent basic research.
Article
Ethnopharmacological relevance: Artemisia annua L. (A. annua) is a traditional Chinese medicine that has been used since ancient times to treat malaria, eczema, dermatomycosis, jaundice, and boils. Modern pharmacological studies show that it has immunosuppressive and anti-inflammatory effects. However, the mechanism of A. annua in the treatment of atopic dermatitis (AD) remains unclear. Aim of the study: This study was aimed to investigate the effect of A. annua water extract (AWE) on 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model and tried to explore its possible underlying mechanisms. Materials and methods: AD was induced in BALB/c mice by the topical repeated application of DNCB. Oral drug intervention of AWE and dexamethasone (DEX, positive control) began from the 7th day and continued for 13 consecutive days. The clinical skin score, ear thickness and the weight of ear and spleen were assessed. The ear tissue were stained with toluidine blue and hematoxylin and eosin (H&E) to detect inflammatory cell infiltration. IgE, terleukin (IL)-4 and IL-13 levels in the serum and IgE level in splenocytes were quantified by enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of IL-4, IL-6, IL-13, IL-17, tumor necrosis factor (TNF)-α and thymic stromal lymphopoietin (TSLP) were measured by quantitative real time polymerase chain reaction. The phosphorylation levels of mitogen-activated protein kinases (MAPKs)-p38 and nuclear factor (NF)-κB in ear tissue were detected by western blot. Results: Results demonstrated that AWE treatment significantly attenuated the AD-like symptoms in DNCB-induced BALB/c mice, including the skin dermatitis severity and ear edema. Further study disclosed that AWE treatment could suppressed the expressions of IgE, IL-4, IL-6, IL-13, IL-17, TNF-α and TSLP at mRNA and protein levels. Moreover, AWE showed inhibitory effect on the phosphorylation of p38 MAPK and NFκB in ear tissues of AD mice. Conclusions: Collectively, our results suggested that AWE suppressed DNCB-induced AD in mice probably by restraining Th2 type inflammatory response. These findings might pave the road for the potential clinical application of AWE for AD treatment.
Article
Ethnopharmacological relevance A Traditional Chinese Medicine (TCM) formula (VYAC) consists of three herbs including Viola yedoensis Makino, herb (Violaceae, Viola), Sophora flavescens Aiton, root (Fabaceae, Sophora) and Dictamnus dasycarpus Turcz, root and rhizome (Rutaceae, Dictamnus), has been traditionally prescribed to treat various skin diseases in clinic. Aim of the study This study aims to investigate the therapeutic effects of VYAC on the 2,4-dinitrobenzene (DNCB) induced atopic dermatitis (AD)-like mice and to explore the underlying mechanisms. Materials and methods VYAC was extracted with 70 % aqueous ethanol and lyophilized powder was used. AD-like mice were challenged by DNCB, VYAC (150 and 300 mg/kg) were oral administration daily from day 7 to day 28. At the end of experiment, the clinical scores were recorded, serum and skin in the dorsal were isolated to evaluate the therapeutic effects of VYAC. RBL-2H3 cells were stimulated with C48/80 for degranulation and plasmids expressing constitutively active form of Syk (Silence or overexpression) were transfected into RBL-2H3 cells to explore the underlying mechanisms in vitro. Results VYAC significantly ameliorated the cardinal symptoms in the DNCB-induced AD-like mice by repairing the skin barrier function, inhibiting mast cells infiltration, restraining the serum IgE and histamine release and decreasing TNF-α, IL-4 as well as Syk mRNA level in dorsal skin and alleviating inflammation. Besides, VYAC significantly blocked RBL-2H3 cells degranulation, reduced β-hexosaminidase and histamine release, and suppressed NF-κB pathway. What's more, the degranulation of RBL-2H3 was reduced after Syk silence and increased after Syk overexpression. Conclusion Our findings clearly suggested that VYAC treat AD through inhibiting the inflammatory mediator productions and blocking mast cell degranulation via suppressing Syk mediated NF-κB pathway.
Article
Ethnopharmacological relevance Fritillariae thunbergii Bulbus (FT), knowns as “Jeolpaemo (浙貝母)” in Korean traditional medicine, is a perennial plant belonging to the Liliaceae family and has been used to treat symptoms such as cough, sputum formation, and purulent pneumonia. Owing to its effects of lowering heat, removing sputum, and reducing swelling, the plant has also been used as an external prescription medicine to treat inflammation. Aim of the study To analyze the anti-inflammatory effects of FT-ethanol extract (FT-Et) and FT-chloroform fraction extract (FT-Cl) on 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis (AD) in vivo and in vitro. Materials and methods The effect of FT-Et and FT-Cl on AD was observed using an AD-like skin lesion model induced by DNCB in vivo. HaCaT and RBL2H3 cells were used to determine the effects of FT-Et and FT-Cl in vitro. After inducing AD-like skin lesions in vivo, FT was topically applied to the skin lesion for 35 days. Epidermal thickness, dermal thickness, scratching behavior, infiltration of inflammatory cells, and expression of skin barrier proteins were measured. TARC, MDC, and IL-4 levels were analyzed using ELISA in HaCaT cells. Beta-hexosaminidase and IL-4 levels were measured in RBL2H3 cells. The expression of filaggrin (FLG), loricrin (LOR), involucrin (INV), and aquaporin-3(AQP-3) was measured by PCR. Phosphorylation of MAPKs was analyzed using Western blot technique. Results FT-Cl significantly reduced ear swelling, scratching behavior, SCORAD index, epidermal thickness, infiltration of inflammatory cells, and loss of skin barrier proteins. FT-Et inhibited the infiltration of mast cells and CD8⁺ cells and decreased the loss of skin barrier proteins. In TNF-α/IFN-γ-stimulated HaCaT cells, FT-Cl inhibited TRAC, MDC, and IL-4 expression and upregulated the expression of FLG, INV, and AQP-3, whereas FT-Et inhibited the expression of TRAC and MDC and increased the expression of FLG, INV, and AQP-3 at high concentrations. In RBL2H3, FT-Cl downregulated β-hexosaminidase and IL-4 expression. In addition, FT-Cl inhibited the phosphorylation of ERK and p-38 in HaCaT and RBL2H3 cells. Conclusions Collectively, FT-Cl showed better effect than FT-Et in vivo and in vitro. These results suggest that a specific component present in FT-Cl acted against AD. Future research should focus on the analysis of components contained in FT-Cl and the anti-inflammatory effects of the active ingredient.
Article
In this work the effect of (-)-epicatechin on the development of amebic liver abscess in hamsters was evaluated. (-)-epicatechin is a flavonoid present in plants that possesses various biological properties, including its activity against some protozoal parasites; however its antiamebic activity in a living model had not been evaluated. Syrian golden hamsters were intrahepatically inoculated with 1x10⁶ E. histolytica trophozoites, three days after inoculation they received nine intraperitoneal doses of (-)-epicatechin (10 mg/100 g) every 48 h. Animals without treatments and treated with metronidazole were included as controls. Macroscopic characteristics of the hepatic abscess, histopathological analysis of the tissue and the levels of inflammatory cytokines were determined. (-)-epicatechin produced a decrease in liver abscess progression being observed only 9.49% of damage compared to 84% shown by untreated animals. During treatment with (-)-epicatechin hepatic tissue showed signs of liver repair and absence of amoebae. Additionally, (-)-epicatechin produced a modulating effect on inflammatory cytokines TNF-α, IL-1β and IL-10. All these events observed in animals treated with (-)-epicatechin could contribute to the elimination of trophozoites and liver healing.
Article
Ethnopharmacological relevance Atopic dermatitis (AD) is a skin inflammatory disease characterized by erythema, eruption, lichenification and pruritus. Shi Zhen Formula (SZF), an empirical Chinese herbal preparation, has clinical efficacy in relieving the symptoms of AD patients. However, the underlying molecular mechanisms of SZF remained unclear. Aim of the study: We aimed to investigate the anti-AD effects of SZF and elucidate its underlying molecular mechanisms using in vitro and in vivo models of AD. Materials and methods High-performance liquid chromatography analysis was performed for quality control of SZF extract. The anti-inflammatory effect of SZF was investigated through evaluating the levels of nitric oxide (NO), chemokines and pro-inflammatory cytokines in the lipopolysaccharide (LPS) stimulated RAW264.7 cells. AD-like skin lesions in female BALB/c mice were induced by 2,4-dinitrochlorobenzene (DNCB). SZF (3.15, 6.30 and 9.45 g/kg) and dexamethasone (5 mg/kg) were administered by gavage daily for 15 consecutive days. The body weight, skin thickness, skin dermatitis severity and scratching behaviors were recorded throughout the study. Histological analysis, reverse transcription-quantitative polymerase chain reaction (RT-PCR), western blot (WB) and ELISA analysis were used to illuminate the molecular targets associated with the anti-AD effects of SZF. Results SZF markedly decreased the epidermal thickening and infiltration of mast cells in the ears and dorsal skin of the 2,4-dinitrochlorobenzene (DNCB)-treated mice. SZF not only suppressed the levels of immunoglobulin E (IgE), histamine, thymic stromal lymphopoietin (TSLP) and IL-4 in the serum but also suppressed the over-production of IL-4 and IL-6 and gene expressions of IL-4, IL-13, IL-31 and TSLP in the dorsal skin. Moreover, SZF improved epidermal barrier by increasing the protein expressions of filaggrin, involucrin and loricrin and inhibited the activation of NF-κB p65 pathway in the dorsal skin of the DNCB-treated mice. Conclusion SZF alleviates DNCB induced AD-like skin lesions in mice through regulating Th1/Th2 balance, improving epidermal barrier and inhibiting skin inflammation. Our research findings provide scientific footing on the use of this Chinese herbal formula for the treatment of AD.
Article
Ethnopharmacological relevance Rhamnella gilgitica Mansf. et Melch. (སེང་ལྡེང་།, RG) is a traditional Tibetan medicinal plant that is currently grown throughout Tibet. According to the theory of Tibetan medicine, RG is efficient for removing rheumatism, reducing swelling, and relieving pain. Hence, it has been used for the treatment of rheumatoid arthritis (RA) in Tibet for many years. However, there are no previous reports on the anti-RA activities of ethyl acetate extract of RG (RGEA). Aim of the study This study aimed to explore the anti-RA effect and mechanism of RGEA on collagen-induced arthritis (CIA) in rats. Materials and methods The CIA model was established in male Wister rats by intradermal injection of bovine type II collagen and Complete Freund’s Adjuvant at the base of the tail and left sole, respectively. The rats were orally administered with RGEA (9.71, 19.43, or 38.85 mg/kg) for 23 days. The body weight, swelling volume, arthritis index score, thymus and spleen indices, and pathological changes were observed to evaluate the effect of RGEA on RA. Furthermore, the inflammatory cytokines in serum, such as interleukin1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin6 (IL-6), interleukin17 (IL-17), interferon-γ (INF-γ), interleukin4 (IL-4), and interleukin10 (IL-10) were measured by enzyme linked immunosorbent assay (ELISA) to explore the anti-inflammatory effects of RGEA. The terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) staining was used to examine apoptosis. Finally, the protein and gene expression of B-cell lymphoma-2-associated X (Bax), B-cell lymphoma 2 (Bcl-2), Caspase3, janus-activated kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), suppressor of cytokine signaling1 (SOCS1), and 3 (SOCS3) in synovial tissue were detected using immunohistochemistry and real-time quantitative polymerase chain reaction (RT-qPCR). Results After the treatment with RGEA, the body weight of rats was restored, both the arthritis index and paw swelling were suppressed, and spleen and thymus indices were decreased. RGEA reduced the inflammatory cells and synovial hyperplasia in the synovial tissue of the knee joint, and suppressed bone erosion. Meanwhile, RGEA decreased the levels of IL-1β, IL-6, IL-17, TNF-α, and INF-γ, while increased the levels of IL-4 and IL-10. TUNEL fluorescence apoptosis results confirmed that RGEA obviously promoted the apoptosis of synovial cells. Further studies showed that RGEA inhibited the proteins and mRNAs expression of JAK2 and STAT3 as well as increased the proteins and mRNAs expression of SOCS1 and SOCS3. In addition, RGEA upregulated the expression of Bax and Caspase3, and downregulated the expression of Bcl-2. Conclusion The anti-RA effectof RGEA might be related to the promotion of apoptosis and inhibition of inflammation, which regulated the JAK-STAT pathway.
Article
Objective: To observe the therapeutic effect of different doses of dihydroartemisinin (DHA) on atopic dermatitis (AD) in mice and explore the mechanism. Methods: Forty-two C57BL/6 mice were randomly divided into 7 groups (n=6), including a blank control group, a 2, 4-dinitrochlorobenzene (DNCB)-induced AD model group, a solvent-treated group, 3 DHA treatment groups treated with 25, 75, and 125 mg/kg DHA, and a dexamethasone treatment group. The counts of skin scratches were recorded and the lesion scores were evaluated on a daily basis. After 7 consecutive days of treatment, skin tissues were sampled from the lesions on the back and ear of the mice for pathological examination with HE staining, Masson staining and toluidine blue staining. Results: Treatment with 25, 75, and 125 mg/kg DHA and dexamethasone all alleviated AD symptoms of mice, reduced the severity scores of skin lesions, and ameliorated pathological changes of the skin tissue. DHA at 125 mg/kg produced the most obvious therapeutic effect and significantly alleviated mast cell infiltration in the lesions as compared with the other treatment groups (P < 0.05). Conclusions: DHA is effective for the treatment of AD in mice with an optimal dose of 125 mg/kg. The therapeutic effect of DHA is achieved probably through regulation of local immunity by inhibiting mast cell infiltration in the lesions.
Article
Aims Atopic dermatitis is a chronic inflammatory disease characterized by eczematous lesions and has become a serious health problem worldwide. Pseudoephedrine (PSE) is a nasal decongestant to treat the common cold. PSE has been reported that is beneficial to allergic diseases. However, whether PSE has the potential in atopic dermatitis remains to be elucidated. Main methods Male BALB/c mice were challenged with 2,4-dinitrochlorobenzene (DNCB) to induce atopic dermatitis-like lesion and orally administrated with PSE for two weeks. The skin hydration and the scratching behavior were detected. The skin lesions and histopathological changes were evaluated and inflammatory factors levels were detected. Human Keratinocytes (HaCaT cells) were stimulated by TNF-α/IFN-γ after PSE-pretreatment. The transcriptions of inflammatory factors were detected. Key findings PSE decreased skin lesion area and skin thickness in atopic dermatitis mice. PSE improved skin hydration and scratching. Histologically, PSE reduced mast cell and CD4+ cell infiltration. PSE suppressed serum TNF-α and IgE levels, reducing cytokines (IL-1β, IL-4, IL-6, IL-13, IL-33, TSLP, and IL-23) and neutrophil migration factors (CCL2 and MMP-9) in skin tissues. In addition, PSE inhibited TNF-α/IFN-γ-induced release of inflammatory factors (TNF-α, IL-1β, and IL-23) in HaCaT cells. Furthermore, PSE suppressed the activation of MAPKs and NF-κB signaling pathways in vivo and in vitro. Significance These results demonstrate that PSE could inhibit inflammatory responses in atopic dermatitis models. PSE may serve as a viable alternatives drug for the treatment of atopic dermatitis.
Article
Ethnopharmacological relevance Tinospora sinensis (Lour.) Merr. belongs to the family Menispermaceae. It is called LeZhe and is widely used as a kind of folk medicine especially in the Tibetan Plateau of China. T. sinensis has the functions of clearing away heat and detoxification, dispelling wind and dredging collaterals, calming and soothing the nerves. T. sinensis is an effective medicine for the prevention and treatment of aging diseases such as Alzheimer's disease (AD) in the Tibetan Plateau of China, whereas its material basis and underlying mechanisms are not clear. The aim of this study was to investigate the material basis and potential mechanisms of T. sinensis in the treatment of AD by using network pharmacology and molecular docking. Materials and methods In this study, targets were collected from DrugBank database, Therapeutic Target Database (TTD) and literatures reports for the treatment of AD. Compounds were searched by literatures and systematic separation from T. sinensis. The molecular docking experiment was carried out by using Autodock Vina software to screen the bioactive compounds in T. sinensis and target proteins for AD. Then, the “compound-target network” was constructed by Cytoscape software. The drug-like properties of the active compounds were analyzed by pKCSM performs, and the protein-protein interaction (PPI) network was constructed by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). The Kyoto Encyclopedia of Genes and Genomes (KEGG) target pathway enrichment analysis was carried out by Database for Annotation, Visualization and Integrated Discovery (DAVID). Furthermore, the protective effect of neurons of two active compounds were verified with the injury cell model of PC12 and primary hippocampus neurons induced by Aβ25-35. Finally, the key proteins of related pathways were quantitatively analyzed with Western blot method. Results In total, 105 compounds and 38 targets have been screened. The main active compounds contained berberine, which belongs to alkaloids, Aurantiamide acetate, N–P-coumaroyltyramine, which belongs to amides, Trans-syringin and 3-demethyl-phillyrin, which belongs to phenylpropanoids. The targets covered inflammation-related proteins, including Protein kinase B (AKT), Phosphoinositide 3-kinase (PI3K), Tyrosine-protein kinase JAK1 (JAK1), mammalian target of rapamycin (mTOR), tumor necrosis factor alpha (TNF-α), Neuronal NOS (NOS1), and cholinergic function-related proteins, including α4-Nicotinic acetylcholine receptor (α4 nAChR), Muscarinic acetylcholine receptor M1 (Muscarnic M1). Inflammation and cholinergic dysfunction were the center of the network and occupy a dominant position. And the results of enrichment analysis shown the pathways mainly contained phosphoinositide-3-kinase/Akt (PI3K/Akt) signal pathway, neurotrophic factors (NTFs) signal pathway, Hypoxia-inducible factor 1 (HIF-1) signal pathway, mechanistic Target of Rapamycin (mTOR) signal pathway, Tumor necrosis factor (TNF) signal pathway, insulin resistance (IR). The results of in vitro assays showed that the tested compounds could significantly improve the survival rate and inhibit the apoptosis of PC12 cells and primary hippocampal neurons injured by Aβ25-35. Western blot results showed that T. sinensis had a significant effect on the expression of protein PI3K and Akt. Conclusion: Our results revealed that T. sinensis could prevent and treat AD through a multi-compound-multi-target-multi-pathway regulatory network. Our work also expected to provide new ideas and theoretical bases for searching for the active compounds in T. sinensis and potential mechanism in the prevention and treatment of AD by the network pharmacology and molecular docking. The results of in vitro assay and in vivo assay supported the results of molecular docking.
Article
Background: Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by the interactions between multiple genetic and environmental factors. The pathogenesis of AD is still not completely clear. Steroid topical therapy has severe side effects for chronic AD symptoms and new therapeutic options are urgently needed. Ferulic acid (FA) is a novel natural dietary polyphenol with anti-oxidative and anti-inflammatory effects. Methods: FA was assessed in BALB/c mice with AD-like lesions resulted from repetitive applications of 2,4-dinitrochlorobenzene (DNCB). Molecular and serological properties of the AD lesions as well as the overall symptomatic score were evaluated. Results: FA ameliorated the overall symptoms of AD, including the severity of skin lesion and incidence of scratching behavior. Systemically, FA markedly decreased DNCB-induced Th2 cytokines and IgE in the peripheral blood. In the local tissue with AD lesions, FA suppressed DNCB-stimulated mRNA production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-6, and IL-31. In THP-1 cells, a human monocyte model, FA dose-dependently suppressed DNCB-elicited up-regulation of CD54 and CD86 at cell surface, secretion of pro-inflammatory cytokines IL-6 and TNF-α, and NFκB signaling activation. Conclusion: Our findings demonstrated that FA could serve as a promising therapeutic agent in AD treatment.
Article
Steroidal agent is a standard clinical treatment of atopic dermatitis; however, have serious side effects. Artesunate is reported to exhibit anti-inflammatory properties although its effect on atopic eczema remains unknown. We investigated the therapeutic effects and possible mechanism of systemic artesunate on DNCB-induced atopic dermatitis in a BALB/c mouse model. To ascertain artesunate (5 and 10 mg/kg) efficacy, skin dermatitis severity and ear, spleen, and lymph node weight were evaluated. Skin tissue mRNA and protein expression and serum cytokine levels were examined. Artesunate significantly improved atopic dermatitis symptoms, decreasing the dermatitis score, ear weight difference, spleen weight, and lymph node weight compared with those following DNCB treatment. Artesunate reduced ear and skin epidermal thickness and mast cell infiltration, as determined using hematoxylin-eosin and toluidine blue staining, respectively. The basal level of IgE (287.67 ± 70.41 ng/ml) and TNF-α (19.94 ± 3.98 pg/ml) were Significantly elevated by DNCB (IgE: 1273.23 ± 176.53 ng/ml; TNF-α: 57.53 ± 3.87 pg/ml), while markedly been suppressed in the treatment group (AS-L: IgE: 1100.25 ± 135.32 ng/ml; TNF-α: 38.47 ± 3.26 pg/ml; AS-H: IgE: 459.46 ± 74.75 ng/ml; TNF-α: 24.38 ± 3.85 pg/ml). Among Th17 cell-related factors, DNCB treatment increased mRNA expression of IL-6, IL-17, IL-23, STAT3, and ROR-γt, but reduced TGF-β and SOCS 3; While artesunate reverse these changes. Compared with the model group, artesunate promoted SOCS3 protein and significantly inhibited ROR-γt protein and STAT3 phosphorylation. Thus, artesunate attenuates DNCB-induced atopic dermatitis by inhibiting the release of inflammatory cytokines and downregulating Th17 cell responses in atopic dermatitis mice.
Article
A considerable number of human diseases have an inflammatory component, and a key mediator of immune activation and inflammation is inducible nitric oxide synthase (iNOS), which produces nitric oxide (NO) from l‐arginine. Overexpressed or dysregulated iNOS has been implicated in numerous pathologies including sepsis, cancer, neurodegeneration, and various types of pain. Extensive knowledge has been accumulated about the roles iNOS plays in different tissues and organs. Additionally, X‐ray crystal and cryogenic electron microscopy structures have shed new insights on the structure and regulation of this enzyme. Many potent iNOS inhibitors with high selectivity over related NOS isoforms, neuronal NOS, and endothelial NOS, have been discovered, and these drugs have shown promise in animal models of endotoxemia, inflammatory and neuropathic pain, arthritis, and other disorders. A major issue in iNOS inhibitor development is that promising results in animal studies have not translated to humans; there are no iNOS inhibitors approved for human use. In addition to assay limitations, both the dual modalities of iNOS and NO in disease states (ie, protective vs harmful effects) and the different roles and localizations of NOS isoforms create challenges for therapeutic intervention. This review summarizes the structure, function, and regulation of iNOS, with focus on the development of iNOS inhibitors (historical and recent). A better understanding of iNOS’ complex functions is necessary before specific drug candidates can be identified for classical indications such as sepsis, heart failure, and pain; however, newer promising indications for iNOS inhibition, such as depression, neurodegenerative disorders, and epilepsy, have been discovered.
Article
Ethnopharmacological relevance: Atopic dermatitis (AD), a disorder prevalent during childhood and adulthood, seriously affects the patient's quality of life. Although Huang-Lian-Jie-Du-Tang (HLJDT) has shown anti-inflammatory effects in previous studies, its effects and mechanism of action underlying AD disorder are still largely unknown. Objective: This study explored the anti-inflammatory and immunomodulatory effects of HLJDT on the AD-like dermal disorder, induced in vitro by lipopolysaccharide (LPS)-triggered inflammation, and in vivo by 2,4-dinitrochlorobenzene (DNCB). Materials and methods: In vivo HLJDT effects were investigated by determining the severity of dermatitis, which consisted of observing signs of skin lesions, visually and through haematoxylin and eosin (HE) staining, in mouse ears and dorsal skin, measuring serum levels of interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, interferon (IFN)-γ, the tumour necrosis factor (TNF)-α, and determining the splenic index, number of splenic CD4+/CD8+ T-lymphocytes, as well as the phosphorylation levels of mitogen-activated protein kinases (including MAPKs-p38, ERK, and JNK), IκB-α, and nuclear factor kappa B (NF-κB) (p65) within dermal lesions. Morphological changes in LPS-induced inflammation were observed under a microscope, and ELISA and qPCR assays were used to measure IL-1α, IL-1β, IL-6, and TNF-α expression levels. The protein expression levels of P-ERK/ERK, P-p38/p38, P-JNK/JNK, P-IKβ-α, and P-p65 were measured through western blotting. Additionally, p65 expression was assessed by immunofluorescence, and LPS binding to RAW264.7 cell membrane was studied with laser confocal microscopy. Results: HLJDT could remarkably mitigate DNCB-induced AD-like lesion symptoms, alleviating inflammatory mediator infiltration in mouse ears and dorsal skin tissue, down-regulating serum expression levels of IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IFN-γ, and TNF-α, normalising the splenic CD4+/CD8+ T-lymphocyte ratio, and inactivating MAPKs (including p38, ERK, and JNK), IκB-α, and NF-κB (p65) in dorsal skin. Furthermore, HLJDT inhibited LPS-induced differentiation of RAW264.7 cells, as evidenced by the decreased protein and mRNA expression of IL-1α, IL-1β, IL-6, and TNF-α. Additionally, it decreased ERK, p38, JNK, IKβ-α, and p65 phosphorylation levels in the MAPKs/NF-κB pathway, inhibited p65 nuclear translocation, and reduced LPS binding to the RAW264.7 cell membrane. Conclusions: HLJDT significantly improved AD-like symptoms via inhibition of the MAPKs/NF-κB pathway. Therefore, administration of HLJDT might be a potential treatment for AD in the clinical setting.
Article
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease. Genetic predisposition, epidermal barrier disruption, and dysregulation of the immune system are some of the critical components of AD. An impaired skin barrier may be the initial step in the development of the atopic march as well as AD, which leads to further skin inflammation and allergic sensitization. Type 2 cytokines as well as interleukin 17 and interleukin 22 contribute to skin barrier dysfunction and the development of AD. New insights into the pathophysiology of AD have focused on epidermal lipid profiles, neuroimmune interactions, and microbial dysbiosis. Newer therapeutic strategies focus on improving skin barrier function and targeting polarized immune pathways found in AD. Further understanding of AD pathophysiology will allow us to achieve a more precision medicine approach to the prevention and the treatment of AD.
Article
We investigated whether obtusin, obtusifolin, and cassiaside isolated from the seeds of Cassia obtusifolia inhibit the gene expression and production of airway mucin 5AC (MUC5AC). Confluent NCI‐H292 cells were pretreated with obtusin, obtusifolin, or cassiaside for 30 min and then stimulated with epidermal growth factor (EGF), phorbol 12‐myristate 13‐acetate (PMA), or tumor necrosis factor‐α (TNF‐α) for 24 hr. The MUC5AC mucin gene expression was measured by reverse transcription‐polymerase chain reaction. Production of MUC5AC mucin protein was measured by enzyme‐linked immunosorbent assay. To elucidate the action mechanism of obtusifolin, effect of obtusifolin on PMA‐induced nuclear factor kappa B (NF‐κB) signaling pathway was investigated by western blot analysis. Obtusin, obtusifolin, or cassiaside inhibited the expression of MUC5AC mucin gene and the production of MUC5AC mucin protein, induced by EGF, PMA, or TNF‐α. Obtusifolin inhibited PMA‐induced activation (phosphorylation) of inhibitory kappa B kinase, and thus phosphorylation and degradation of inhibitory kappa B alpha. Obtusifolin inhibited PMA‐induced nuclear translocation of NF‐κB p65. These results suggest that obtusifolin can regulate the production and gene expression of mucin by acting on airway epithelial cells through regulation of NF‐κB signaling pathway.
Article
Epicatechin (EC) is the most effective compound in Euonymus alatus (Thunb.)Sieb, and possesses a series of benefits, including anti-inflammatory, antioxidant, antiobesity and anticancer effects. In this study, we investigated the protective effects of EC in Acetaminophen(N-acetyl-p-aminophenol, APAP)-induced acute liver injury in C57BL/6J mice and explored the possible mechanisms involved in these effects.
Article
Atopic dermatitis (AD), also known as atopic eczema, is a chronic relapsing inflammatory skin condition. Incidence of AD has increased 2- to 3-fold in industrialized nations, impacting approximately 15% to 20% of children and 1% to 3% of adults worldwide. AD has a wide-ranging impact on a patient's quality of life and the burden from direct and indirect costs (approximately $37.7 billion in out-of-pocket costs) is shared by the families and caregivers of patients with AD. This article reviews the epidemiology, burden of disease, pathophysiology, and diagnostic criteria important for early diagnosis and treatment. New insights related to the genetic, immunologic, and environmental impacts of AD have created new treatment opportunities. Nonpharmacologic and pharmacologic interventions are discussed, with an emphasis on emerging treatments for AD. Healthcare providers play an important role in the management of AD to improve economic and clinical outcomes. Treatment strategies need to be individualized with a strong emphasis on patient education and self-management strategies to optimize outcomes and reduce unnecessary costs associated with the management of AD.