Article

Pseudomonodictys aquatica sp. nov., the sexual morph of Pseudomonodictys from freshwater habitats

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Pseudomonodictys aquatica was found on a submerged decaying wood from freshwater habitat in Chiang Rai Province, Thailand. Based on phylogenetic analyses of combined ITS, LSU, SSU and TEF1-α sequence data, Pseudomonodictys aquatica is introduced as a new species and it is the first report of sexual morph in this genus. Pseudomonodictys aquatica is characterized by semi-immersed to immersed, globose to subglobose ascomata, clavate, short pedicellate asci and fusiform to cylindrical, (6)–8-septate, hyaline ascospores that are enlarged at the 4th-middle cells and surrounded by a mucilaginous sheath. Morphological characters of the species are compared with the similar taxa in Parabambusicolaceae. The detailed description and illustration of the new species are provided.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Species of Parabambusicolaceae are saprobic in nature and occur on a wide range of hosts in both aquatic and terrestrial environments, and are mainly distributed in China (Guizhou and Yunnan), Japan, and Thailand (Ariyawansa et al. 2015a, Liu et al. 2015, Phukhamsakda et al. 2018, Phookamsak et al. 2019, 2022, Yasanthika et al. 2020, Bao et al. 2022, Wijayawardene et al. 2022, Xie et al. 2022, Yang et al. 2022. Tanaka et al. (2015) erected the family to accommodate two novel genera, Aquastroma and Parabambusicola, and also included two unidentified species of Monodictys and Multiseptospora in this family. ...
... Lonicericola, Multilocularia, Neoaquastroma, Neomultiseptospora, Paramonodictys, Paramultiseptospora, Paratrimmatostroma, Pseudomonodictys, and Scolecohyalosporium were introduced in this family , Phookamsak et al. 2019, 2022, Xie et al. 2022). However, the species numbers of these genera have increased in recent years (Phukhamsakda et al. 2018, Yasanthika et al. 2020, Bao et al. 2022, Wijayawardene et al. 2022, Yang et al. 2022. There are currently 24 species accommodated in Parabambusicolaceae (Ariyawansa et al. 2015a, Liu et al. 2015, Phukhamsakda et al. 2018, Phookamsak et al. 2019, 2022, Yasanthika et al. 2020, Bao et al. 2022, Wijayawardene et al. 2022, Xie et al. 2022, Yang et al. 2022. ...
... However, the species numbers of these genera have increased in recent years (Phukhamsakda et al. 2018, Yasanthika et al. 2020, Bao et al. 2022, Wijayawardene et al. 2022, Yang et al. 2022. There are currently 24 species accommodated in Parabambusicolaceae (Ariyawansa et al. 2015a, Liu et al. 2015, Phukhamsakda et al. 2018, Phookamsak et al. 2019, 2022, Yasanthika et al. 2020, Bao et al. 2022, Wijayawardene et al. 2022, Xie et al. 2022, Yang et al. 2022. ...
Article
In the present study, a new species, Scolecohyalosporium thailandense, is introduced based on morphological and molecular approaches. The species was found as a saprobe occurring on Imperata sp. (Poaceae) in terrestrial habitats in Chiang Rai Province, Thailand. This species is characterized by solitary, semi-immersed to erumpent, subglobose to ampulliform, papillate ascomata, dark brown pseudoparenchymatous peridium, fissitunicate, cylindrical to subcylindrical asci embedded in a hyaline, filamentous to cellular pseudoparaphysate hamathecium, and filiform, yellowish, septate ascospores. Phylogenetic analyses based on a concatenated ITS, LSU, SSU, and TEF1-α sequence matrix demonstrated that S. thailandense formed a well-resolved clade with S. submersum (the type species of this genus) and Scolecohyalosporium sp. within the Parabambusicolaceae. Therefore, S. thailandense is introduced herein as the second species of the genus Scolecohyalosporium. Morphological characteristics, illustrations, and updated phylogenetic analyses are provided, and notes on species distinctiveness with closely related taxa are discussed.
Article
Full-text available
An observation of lignicolous freshwater fungi in Thailand resulted in the discovery of a novel taxon and recollection of Acrocalymma aquaticum. Morphology coupled with phylogenetic analysis support the placement of the new species in Acrocalymma. Acrocalymma bilobatum sp. nov. resembles A. ampeli, A. bipolare, and A. medicaginis in conidial shape and the mucoid appendages at both ends but differs in the sizes of conidia and appearance of appendages. Phylogenetic analysis of SSU, LSU, ITS, and TEF1-α sequence data shows that A. bilobatum is closely related to A. bipolare, A. chuxiongense, A. medicaginis, and A. pterocarpi. Acrocalymma aquatica was recollected in Thailand and a detailed description and photographic documentation of its morphological characteristics is provided. The herbarium specimen of Acrocalymma fici, collected from freshwater habitats in Thailand, was reexamined to complete a review of Acrocalymmaceae species in the country.
Article
Full-text available
A comprehensive account of fungal classification from freshwater habitats is outlined and discussed in the present review based on literature of biodiversity studies and recent morpho-phylogenetic analyses. A total of 3,870 freshwater fungal species are listed with additional details on the isolation source, habitat, geographical distribution, and molecular data. The Ascomycota (2,968 species, 1,018 genera) dominated the freshwater fungal taxa wherein Sordariomycetes (823 species, 298 genera) had the largest number, followed by Dothideomycetes (677 species, 229 genera), Eurotiomycetes (276 species, 49 genera), and Leotiomycetes (260 species, 83 genera). Other phyla included in the updated classification of freshwater fungi are: Chytridiomycota (333 species, 97 genera), Rozellomycota (221 species, 105 genera), Basidiomycota (218 species, 100 genera), Blastocladiomycota (47 species, 10 genera), Monoblepharomycota (29 species, 6 genera), Mucoromycota (19 species, 10 genera), Aphelidiomycota (15 species, 3 genera), Entomophthoromycota (6 species, 4 genera), Mortierellomycota (5 species, 3 genera), Olpidiomycota (4 species, 1 genus), Zoopagomycota (3 species, 2 genera), and Sanchytriomycota (2 species, 2 genera). The freshwater fungi belong to 1,361 genera, 386 families and 145 orders. The Pleosporales and Laboulbeniaceae are the largest freshwater fungal order and family comprised of 391 and 185 species, respectively. The most speciose genera are Chitonomyces (87, Laboulbeniomycetes), Verrucaria (50, Eurotiomycetes), Rhizophydium (52, Rhizophydiomycetes), Penicillium (47, Eurotiomycetes), and Candida (42, Saccharomycetes).
Article
Full-text available
Parabambusicolaceae is a well-studied family in Massarineae, Pleosporales, comprising nine genera and approximately 16 species. The family was introduced to accommodate saprobic bambusicola-like species in both freshwater and terrestrial environments that mostly occur on bamboos and grasses but are also found on different host substrates. In the present study, we surveyed and collected ascomycetes from bamboo and submerged grass across Yunnan Province, China. A biphasic approach based on morphological characteristics and multigene phylogeny demonstrated five new taxa in Parabambusicolaceae. A novel genus Scolecohyalosporium is introduced as a monotypic genus to accommodate S. submersum sp. nov., collected from dead culms of grass submerged in a freshwater stream. The genus is unique in forming filiform ascospores, which differ from other known genera in Parabambusicolaceae. Multigene phylogeny showed that the genus has a close relationship with Multiseptospora. Moreover, the novel monotypic genus Neomultiseptospora, isolated from bamboo, was introduced to accommodate N. yunnanensis sp. nov. Neomultiseptospora yunnanensis formed a separated branch basal to Scolecohyalosporium submersum and Multiseptospora thailandica with high support (100% ML, 1.00 PP). Furthermore, the newly introduced species, Parabambusicola hongheensis sp. nov. was also isolated from bamboo in terrestrial habitats. Parabambusicola hongheensis clustered with the other three described Parabambusicola species and has a close relationship with P. bambusina with significant support (88% ML, 1.00 PP). Parabambusicola hongheensis was reported as the fourth species in this genus. Detailed description, illustration, and updated phylogeny of Parabambusicolaceae were provided.
Article
Full-text available
The Greater Mekong Subregion is a biodiversity hotspot including Yunnan Province, China and Thailand. It is home to an extremely large diversity of microfungi. The highly variable climate and vast range of floral diversity facilitates rapid speciation and diversity in microfungi. During the last few decades, microfungi from the Greater Mekong Subregion on different substrates have been published and reclassified, and many new species have been introduced. However, numerous knowledge gaps concerning species diversity and systematics, challenge the current understanding of the fungi in the region. Basic information of microfungi in the Greater Mekong Subregion, such as taxonomic diversity, molecular phylogeny and host-specificity is incomplete, and available data have not been integrated on a specific platform where all data can be easily retrieved. To address this issue, a website: https://gmsmicrofungi.org, focusing on the microfungi reported from the Greater Mekong Subregion has been developed. This website is a portal to comprehensive information on microfungi and updated notes of species reported from the Greater Mekong Subregion, with easily accessible and searchable functions
Article
Full-text available
Traditionally, fungal taxonomy was based on observable phenotypic characters. Recent advances have driven taxonomic conclusions towards DNA-based approaches and these techniques have corresponding pros and cons. Species concepts must therefore rely on incorporated approaches of genotypic, phenotypic and physiological characters and chemotaxonomy. Examination and interpretation of morphological characters however vary from person to person. Standardized procedures are used in the taxonomic study of fungi and general practices of phenotypic approaches are herein outlined. It is not possible to detail all techniques for all fungi and thus, this paper emphasizes on microfungi. Specimen collection is the initial step in any Mycosphere 11(1): 2678-2754 (2020) www.mycosphere.org ISSN 2077 7019
Article
Full-text available
The class Dothideomycetes is the largest and most ecologically diverse class of fungi, comprising endophytes, epiphytes, saprobes, human and plant pathogens, lichens, and lichenicolous, nematode trapping and rock-inhabiting taxa. Members of this class are mainly characterized by bitunicate asci with fissitunicate dehiscence, and occur on broad range of hosts in aquatic and terrestrial habitats. Since the last monograph of families of Dothideomycetes in 2013, numerous novel species, genera, families and orders have been discovered. This has expanded information which has led to the modern classification in Dothideomycetes. In this paper, we provide a refined updated document on families of Dothideomycetes with emphasis on Dothideomycetidae and Pleosporomycetidae. We accept three orders with 25 families and four orders with 94 families in Dothideomycetidae and Pleosporomycetidae, respectively. The new family Paralophiostomataceae is introduced in Pleosporales. Each family is provided with an updated description, notes, including figures to represent the morphology, list of accepted genera, and economic and ecological significances. We also provide an overall phylogenetic tree of families in Dothideomycetes based on combined analysis of LSU, SSU, rpb-2 and tef1 sequence data, and phylogenetic trees for each order in Dothideomycetidae and Pleosporomycetidae. Family-level trees are provided for the families which include several genera such as Mycosphaerellaceae and Teratosphaeriaceae. Two new genera (Ligninsphaeriopsis and Paralophiostoma) are introduced. Five new species (Biatrisopora borsei, Comoclathris galatellae, Ligninsphaeriopsis thailandica, Paralophiostoma hysterioides and Torula thailandica) are introduced based on morphology and phylogeny, together with nine new reports and seven new collections from different families.
Article
Full-text available
Fungal diversity notes is one of the important journal series of fungal taxonomy that provide detailed descriptions and illustrations of new fungal taxa, as well as providing new information of fungal taxa worldwide. This article is the 11th contribution to the fungal diversity notes series, in which 126 taxa distributed in two phyla, six classes, 24 orders and 55 families are described and illustrated. Taxa in this study were mainly collected from Italy by Erio Camporesi and also collected from China, India and Thailand, as well as in some other European, North American and South American countries. Taxa described in the present study include two new families, 12 new genera, 82 new species, five new combinations and 25 new records on new hosts and new geographical distributions as well as sexual-asexual reports. The two new families are Eriomycetaceae (Dothideomycetes, family incertae sedis) and Fasciatisporaceae (Xylariales, Sordariomycetes). The twelve new genera comprise Bhagirathimyces (Phaeosphaeriaceae), Camporesiomyces (Tubeufiaceae), Eriocamporesia (Cryphonectriaceae), Eriomyces (Eriomycetaceae), Neomonodictys (Pleurotheciaceae), Paraloratospora (Phaeosphaeriaceae), Paramonodictys (Parabambusicolaceae), Pseudoconlarium (Diaporthomycetidae, genus incertae sedis), Pseudomurilentithecium (Lentitheciaceae), Setoapiospora (Muyocopronaceae), Srinivasanomyces (Vibrisseaceae) and Xenoanthostomella (Xylariales, genera incertae sedis). The 82 new species comprise Acremonium chiangraiense, Adustochaete nivea, Angustimassarina camporesii, Bhagirathimyces himalayensis, Brunneoclavispora camporesii, Camarosporidiella camporesii, Camporesiomyces mali, Camposporium appendiculatum, Camposporium multiseptatum, Camposporium septatum, Canalisporium aquaticium, Clonostachys eriocamporesiana, Clonostachys eriocamporesii, Colletotrichum hederiicola, Coniochaeta vineae, Conioscypha verrucosa, Cortinarius ainsworthii, Cortinarius aurae, Cortinarius britannicus, Cortinarius heatherae, Cortinarius scoticus, Cortinarius subsaniosus, Cytospora fusispora, Cytospora rosigena, Diaporthe camporesii, Diaporthe nigra, Diatrypella yunnanensis, Dictyosporium muriformis, Didymella camporesii, Diutina bernali, Diutina sipiczkii, Eriocamporesia aurantia, Eriomyces heveae, Ernakulamia tanakae, Falciformispora uttaraditensis, Fasciatispora cocoes, Foliophoma camporesii, Fuscostagonospora camporesii, Helvella subtinta, Kalmusia erioi, Keissleriella camporesiana, Keissleriella camporesii, Lanspora cylindrospora, Loratospora arezzoensis, Mariannaea atlantica, Melanographium phoenicis, Montagnula camporesii, Neodidymelliopsis camporesii, Neokalmusia kunmingensis, Neoleptosporella camporesiana, Neomonodictys muriformis, Neomyrmecridium guizhouense, Neosetophoma camporesii, Paraloratospora camporesii, Paramonodictys solitarius, Periconia palmicola, Plenodomus triseptatus, Pseudocamarosporium camporesii, Pseudocercospora maetaengensis, Pseudochaetosphaeronema kunmingense, Pseudoconlarium punctiforme, Pseudodactylaria camporesiana, Pseudomurilentithecium camporesii, Pseudotetraploa rajmachiensis, Pseudotruncatella camporesii, Rhexocercosporidium senecionis, Rhytidhysteron camporesii, Rhytidhysteron erioi, Septoriella camporesii, Setoapiospora thailandica, Srinivasanomyces kangrensis, Tetraploa dwibahubeeja, Tetraploa pseudoaristata, Tetraploa thrayabahubeeja, Torula camporesii, Tremateia camporesii, Tremateia lamiacearum, Uzbekistanica pruni, Verruconis mangrovei, Wilcoxina verruculosa, Xenoanthostomella chromolaenae and Xenodidymella camporesii. The five new combinations are Camporesiomyces patagoniensis, Camporesiomyces vaccinia, Camposporium lycopodiellae, Paraloratospora gahniae and Rhexocercosporidium microsporum. The 22 new records on host and geographical distribution comprise Arthrinium marii, Ascochyta medicaginicola, Ascochyta pisi, Astrocystis bambusicola, Camposporium pellucidum, Dendryphiella phitsanulokensis, Diaporthe foeniculina, Didymella macrostoma, Diplodia mutila, Diplodia seriata, Heterosphaeria patella, Hysterobrevium constrictum, Neodidymelliopsis ranunculi, Neovaginatispora fuckelii, Nothophoma quercina, Occultibambusa bambusae, Phaeosphaeria chinensis, Pseudopestalotiopsis theae, Pyxine berteriana, Tetraploa sasicola, Torula gaodangensis and Wojnowiciella dactylidis. In addition, the sexual morphs of Dissoconium eucalypti and Phaeosphaeriopsis pseudoagavacearum are reported from Laurus nobilis and Yucca gloriosa in Italy, respectively. The holomorph of Diaporthe cynaroidis is also reported for the first time.
Article
Full-text available
The monotypic genus Neoaquastroma (Parabambusicolaceae, Pleosporales) was introduced for a micro-fungus isolated from a collection of dried stems of a dicotyledonous plant in Thailand. In this paper, we introduce two novel species, N. bauhiniae and N. krabiense, in this genus. Their asexual morphs comprise conidiomata with aseptate and hyaline conidia. Neoaquastroma bauhiniae has ascomata, asci and ascospores that are smaller than those of N. krabiense. Descriptions and illustrations of N. bauhiniae and N. krabiense are provided and the two species compared with the type species of the genus, N. guttulatum. Evidence for the introduction of the new taxa is also provided from phylogenetic analysis of a combined dataset of partial LSU, SSU, ITS and tef1 sequence data. The phylogenetic analysis revealed a distinct lineage for N. bauhiniae and N. krabiense within the family Parabambusicolaceae.
Article
Full-text available
This is the second in a series of papers on lignicolous freshwater fungi from China. In this paper, eight fresh collections of asexual morphs of Distoseptispora, isolated from submerged wood in northwestern Yunnan Province, China, are characterized based on morphological characters and phylogenetic analyses of combined ITS, LSU, RPB2 and TEF1α sequence data. Four new Distoseptispora species (D. cangshanensis, D. obpyriformis, D. rostrata and D. submersa) are introduced, described and illustrated, with notes on their taxonomy and phylogeny. Newly generated molecular data of Distoseptispora fluminicola is also provided. We also provide a unified method for studying lignicolous freshwater fungi to standardize the findings of future Asian studies.
Article
Full-text available
In this paper we introduce Neoaquastroma, a novel genus from dead twigs, collected in northern Thailand. The genus is characterized by immersed, globose to subglobose or irregular-shaped ascomata, short papillate ostioles, a thin peridium, clavate asci with short pedicels, and multi-septate, hyaline ascospores with guttules in each cell. The morphological character differences and analyses of combined LSU, TEF, SSU and ITS sequence datasets, from a single ascospore isolate, support the validity of the new genus and its placement in Parabambusicolaceae. The new genus is compared with other genera in the family and a comprehensive description, and micrographs are provided.
Article
Full-text available
This paper is a compilation of notes on 142 fungal taxa, including five new families, 20 new genera, and 100 new species, representing a wide taxonomic and geographic range. The new families, Ascocylindricaceae, Caryosporaceae and Wicklowiaceae (Ascomycota) are introduced based on their distinct lineages and unique morphology. The new Dothideomycete genera Pseudomassariosphaeria (Amniculicolaceae), Heracleicola, Neodidymella and Pseudomicrosphaeriopsis (Didymellaceae), Pseudopithomyces (Didymosphaeriaceae), Brunneoclavispora, Neolophiostoma and Sulcosporium (Halotthiaceae), Lophiohelichrysum (Lophiostomataceae), Galliicola, Populocrescentia and Vagicola (Phaeosphaeriaceae), Ascocylindrica (Ascocylindricaceae), Elongatopedicellata (Roussoellaceae), Pseudoasteromassaria (Latoruaceae) and Pseudomonodictys (Macrodiplodiopsidaceae) are introduced. The newly described species of Dothideomycetes (Ascomycota) are Pseudomassariosphaeria bromicola (Amniculicolaceae), Flammeascoma lignicola (Anteagloniaceae), Ascocylindrica marina (Ascocylindricaceae), Lembosia xyliae (Asterinaceae), Diplodia crataegicola and Diplodia galiicola (Botryosphaeriaceae), Caryospora aquatica (Caryosporaceae), Heracleicola premilcurensis and Neodidymella thailandicum (Didymellaceae), Pseudopithomyces palmicola (Didymosphaeriaceae), Floricola viticola (Floricolaceae), Brunneoclavispora bambusae, Neolophiostoma pigmentatum and Sulcosporium thailandica (Halotthiaceae), Pseudoasteromassaria fagi (Latoruaceae), Keissleriella dactylidicola (Lentitheciaceae), Lophiohelichrysum helichrysi (Lophiostomataceae), Aquasubmersa japonica (Lophiotremataceae), Pseudomonodictys tectonae (Macrodiplodiopsidaceae), Microthyrium buxicola and Tumidispora shoreae (Microthyriaceae), Alloleptosphaeria clematidis, Allophaeosphaeria cytisi, Allophaeosphaeria subcylindrospora, Dematiopleospora luzulae, Entodesmium artemisiae, Galiicola pseudophaeosphaeria, Loratospora luzulae, Nodulosphaeria senecionis, Ophiosphaerella aquaticus, Populocrescentia forlicesenensis and Vagicola vagans (Phaeosphaeriaceae), Elongatopedicellata lignicola, Roussoella magnatum and Roussoella angustior (Roussoellaceae) and Shrungabeeja longiappendiculata (Tetraploasphaeriaceae). The new combinations Pseudomassariosphaeria grandispora, Austropleospora archidendri, Pseudopithomyces chartarum, Pseudopithomyces maydicus, Pseudopithomyces sacchari, Vagicola vagans, Punctulariopsis cremeoalbida and Punctulariopsis efibulata Dothideomycetes. The new genera Dictyosporella (Annulatascaceae), and Tinhaudeus (Halosphaeriaceae) are introduced in Sordariomycetes (Ascomycota) while Dictyosporella aquatica (Annulatascaceae), Chaetosphaeria rivularia (Chaetosphaeriaceae), Beauveria gryllotalpidicola and Beauveria loeiensis (Cordycipitaceae), Seimatosporium sorbi and Seimatosporium pseudorosarum (Discosiaceae), Colletotrichum aciculare, Colletotrichum fusiforme and Colletotrichum hymenocallidicola (Glomerellaceae), Tinhaudeus formosanus (Halosphaeriaceae), Pestalotiopsis subshorea and Pestalotiopsis dracaenea (Pestalotiopsiceae), Phaeoacremonium tectonae (Togniniaceae), Cytospora parasitica and Cytospora tanaitica (Valsaceae), Annulohypoxylon palmicola, Biscogniauxia effusae and Nemania fusoideis (Xylariaceae) are introduced as novel species to order Sordariomycetes. The newly described species of Eurotiomycetes are Mycocalicium hyaloparvicellulum (Mycocaliciaceae). Acarospora septentrionalis and Acarospora castaneocarpa (Acarosporaceae), Chapsa multicarpa and Fissurina carassensis (Graphidaceae), Sticta fuscotomentosa and Sticta subfilicinella (Lobariaceae) are newly introduced in class Lecanoromycetes. In class Pezizomycetes, Helvella pseudolacunosa and Helvella rugosa (Helvellaceae) are introduced as new species. The new families, Dendrominiaceae and Neoantrodiellaceae (Basidiomycota) are introduced together with a new genus Neoantrodiella (Neoantrodiellaceae), here based on both morphology coupled with molecular data. In the class Agaricomycetes, Agaricus pseudolangei, Agaricus haematinus, Agaricus atrodiscus and Agaricus exilissimus (Agaricaceae), Amanita melleialba, Amanita pseudosychnopyramis and Amanita subparvipantherina (Amanitaceae), Entoloma calabrum, Cora barbulata, Dictyonema gomezianum and Inocybe granulosa (Inocybaceae), Xerocomellus sarnarii (Boletaceae), Cantharellus eucalyptorum, Cantharellus nigrescens, Cantharellus tricolor and Cantharellus variabilicolor (Cantharellaceae), Cortinarius alboamarescens, Cortinarius brunneoalbus, Cortinarius ochroamarus, Cortinarius putorius and Cortinarius seidlii (Cortinariaceae), Hymenochaete micropora and Hymenochaete subporioides (Hymenochaetaceae), Xylodon ramicida (Schizoporaceae), Colospora andalasii (Polyporaceae), Russula guangxiensis and Russula hakkae (Russulaceae), Tremella dirinariae, Tremella graphidis and Tremella pyrenulae (Tremellaceae) are introduced. Four new combinations Neoantrodiella gypsea, Neoantrodiella thujae (Neoantrodiellaceae), Punctulariopsis cremeoalbida, Punctulariopsis efibulata (Punctulariaceae) are also introduced here for the division Basidiomycota. Furthermore Absidia caatinguensis, Absidia koreana and Gongronella koreana (Cunninghamellaceae), Mortierella pisiformis and Mortierella formosana (Mortierellaceae) are newly introduced in the Zygomycota, while Neocallimastix cameroonii and Piromyces irregularis (Neocallimastigaceae) are introduced in the Neocallimastigomycota. Reference specimens or changes in classification and notes are provided for Alternaria ethzedia, Cucurbitaria ephedricola, Austropleospora, Austropleospora archidendri, Byssosphaeria rhodomphala, Lophiostoma caulium, Pseudopithomyces maydicus, Massariosphaeria, Neomassariosphaeria and Pestalotiopsis montellica.
Article
Full-text available
A new method is presented for inferring evolutionary trees using nucleotide sequence data. The birth–death process is used as a model of speciation and extinction to specify the prior distribution of phylogenies and branching times. Nucleotide substitution is modeled by a continuous-time Markov process. Parameters of the branching model and the substitution model are estimated by maximum likelihood. The posterior probabilities of different phylogenies are calculated and the phy-logeny with the highest posterior probability is chosen as the best estimate of the evolutionary relationship among species. We refer to this as the maximum posterior probability (MAP) tree. The posterior probability provides a natural measure of the reliability of the estimated phy-logeny. Two example data sets are analyzed to infer the phylogenetic relationship of human, chimpanzee, gorilla, and orangutan. The best trees estimated by the new method are the same as those from the maximum likelihood analysis of separate topologies, but the posterior probabilities are quite different from the bootstrap proportions. The results of the method are found to be insensitive to changes in the rate parameter of the branching process.
Article
Full-text available
We here taxonomically revise the suborder Massarineae (Pleosporales, Dothideomycetes, Ascomycota). Sequences of SSU and LSU nrDNA and the translation elongation factor 1-alpha gene (tef1) are newly obtained from 106 Massarineae taxa that are phylogenetically analysed along with published sequences of 131 taxa in this suborder retrieved from GenBank. We recognise 12 families and five unknown lineages in the Massarineae. Among the nine families previously known, the monophyletic status of the Dictyosporiaceae, Didymosphaeriaceae, Latoruaceae, Macrodiplodiopsidaceae, Massarinaceae, Morosphaeriaceae, and Trematosphaeriaceae was strongly supported with bootstrap support values above 96 %, while the clades of the Bambusicolaceae and the Lentitheciaceae are moderately supported. Two new families, Parabambusicolaceae and Sulcatisporaceae, are proposed. The Parabambusicolaceae is erected to accommodate Aquastroma and Parabambusicola genera nova, as well as two unnamed Monodictys species. The Parabambusicolaceae is characterised by depressed globose to hemispherical ascomata with or without surrounding stromatic tissue, and multi-septate, clavate to fusiform, hyaline ascospores. The Sulcatisporaceae is established for Magnicamarosporium and Sulcatispora genera nova and Neobambusicola. The Sulcatisporaceae is characterised by subglobose ascomata with a short ostiolar neck, trabeculate pseudoparaphyses, clavate asci, broadly fusiform ascospores, and ellipsoid to subglobose conidia with or without striate ornamentation. The genus Periconia and its relatives are segregated from the Massarinaceae and placed in a resurrected family, the Periconiaceae. We have summarised the morphological and ecological features, and clarified the accepted members of each family. Ten new genera, 22 new species, and seven new combinations are described and illustrated. The complete ITS sequences of nrDNA are also provided for all new taxa for use as barcode markers.
Conference Paper
Full-text available
Understanding the evolutionary history of living organisms is a central problem in biology. Until recently the ability to infer evolutionary relationships was limited by the amount of DNA sequence data available, but new DNA sequencing technologies have largely removed this limitation. As a result, DNA sequence data are readily available or obtainable for a wide spectrum of organisms, thus creating an unprecedented opportunity to explore evolutionary relationships broadly and deeply across the Tree of Life. Unfortunately, the algorithms used to infer evolutionary relationships are NP-hard, so the dramatic increase in available DNA sequence data has created a commensurate increase in the need for access to powerful computational resources. Local laptop or desktop machines are no longer viable for analysis of the larger data sets available today, and progress in the field relies upon access to large, scalable high-performance computing resources. This paper describes development of the CIPRES Science Gateway, a web portal designed to provide researchers with transparent access to the fastest available community codes for inference of phylogenetic relationships, and implementation of these codes on scalable computational resources. Meeting the needs of the community has included developing infrastructure to provide access, working with the community to improve existing community codes, developing infrastructure to insure the portal is scalable to the entire systematics community, and adopting strategies that make the project sustainable by the community. The CIPRES Science Gateway has allowed more than 1800 unique users to run jobs that required 2.5 million Service Units since its release in December 2009. (A Service Unit is a CPU-hour at unit priority).
Article
Full-text available
Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d(N)/d(S) rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.
Article
Full-text available
In an effort to establish a suitable alternative to the widely used 18S rRNA system for molecular systematics of fungi, we examined the nuclear gene RPB2, encoding the second largest subunit of RNA polymerase II. Because RPB2 is a single-copy gene of large size with a modest rate of evolutionary change, it provides good phylogenetic resolution of Ascomycota. While the RPB2 and 18S rDNA phylogenies were highly congruent, the RPB2 phylogeny did result in much higher bootstrap support for all the deeper branches within the orders and for several branches between orders of the Ascomycota. There are several strongly supported phylogenetic conclusions. The Ascomycota is composed of three major lineages: Archiascomycetes, Saccharomycetales, and Euascomycetes. Within the Euascomycetes, plectomycetes, and pyrenomycetes are monophyletic groups, and the Pleosporales and Dothideales are distinct sister groups within the Loculoascomycetes. We confirm the placement of Neolecta within the Archiascomycetes, suggesting that fruiting body formation and forcible discharge of ascospores were characters gained early in the evolution of the Ascomycota. These findings show that a slowly evolving protein-coding gene such as RPB2 is useful for diagnosing phylogenetic relationships among fungi.
Article
Full-text available
Unlabelled: RAxML-VI-HPC (randomized axelerated maximum likelihood for high performance computing) is a sequential and parallel program for inference of large phylogenies with maximum likelihood (ML). Low-level technical optimizations, a modification of the search algorithm, and the use of the GTR+CAT approximation as replacement for GTR+Gamma yield a program that is between 2.7 and 52 times faster than the previous version of RAxML. A large-scale performance comparison with GARLI, PHYML, IQPNNI and MrBayes on real data containing 1000 up to 6722 taxa shows that RAxML requires at least 5.6 times less main memory and yields better trees in similar times than the best competing program (GARLI) on datasets up to 2500 taxa. On datasets > or =4000 taxa it also runs 2-3 times faster than GARLI. RAxML has been parallelized with MPI to conduct parallel multiple bootstraps and inferences on distinct starting trees. The program has been used to compute ML trees on two of the largest alignments to date containing 25,057 (1463 bp) and 2182 (51,089 bp) taxa, respectively. Availability: icwww.epfl.ch/~stamatak
Article
This article is the ninth in the series of Fungal Diversity Notes, where 107 taxa distributed in three phyla, nine classes, 31 orders and 57 families are described and illustrated. Taxa described in the present study include 12 new genera, 74 new species, three new combinations, two reference specimens, a re-circumscription of the epitype, and 15 records of sexualasexual morph connections, new hosts and new geographical distributions. Twelve new genera comprise Brunneofusispora, Brunneomurispora, Liua, Lonicericola, Neoeutypella, Paratrimmatostroma, Parazalerion, Proliferophorum, Pseudoastrosphaeriellopsis, Septomelanconiella, Velebitea and Vicosamyces. Seventy-four new species are Agaricus memnonius, A. langensis, Aleurodiscus patagonicus, Amanita flavoalba, A. subtropicana, Amphisphaeria mangrovei, Baorangia major, Bartalinia kunmingensis, Brunneofusispora sinensis, Brunneomurispora lonicerae, Capronia camelliaeyunnanensis, Clavulina thindii, Coniochaeta simbalensis, Conlarium thailandense, Coprinus trigonosporus, Liua muriformis, Cyphellophora filicis, Cytospora ulmicola, Dacrymyces invisibilis, Dictyocheirospora metroxylonis, Distoseptispora thysanolaenae, Emericellopsis koreana, Galiicola baoshanensis, Hygrocybe lucida, Hypoxylon teeravasati, Hyweljonesia indica, Keissleriella caraganae, Lactarius olivaceopallidus, Lactifluus midnapurensis, Lembosia brigadeirensis, Leptosphaeria urticae, Lonicericola hyaloseptispora, Lophiotrema mucilaginosis, Marasmiellus bicoloripes, Marasmius indojasminodorus, Micropeltis phetchaburiensis, Mucor orantomantidis, Murilentithecium lonicerae, Neobambusicola brunnea, Neoeutypella baoshanensis, Neoroussoella heveae, Neosetophoma lonicerae, Ophiobolus malleolus, Parabambusicola thysanolaenae, Paratrimmatostroma kunmingensis, Parazalerion indica, Penicillium dokdoense, Peroneutypa mangrovei, Phaeosphaeria cycadis, Phanerochaete australosanguinea, Plectosphaerella kunmingensis, Plenodomus artemisiae, P. lijiangensis, Proliferophorum thailandicum, Pseudoastrosphaeriellopsis kaveriana, Pseudohelicomyces menglunicus, Pseudoplagiostoma mangiferae, Robillarda mangiferae, Roussoella elaeicola, Russula choptae, R. uttarakhandia, Septomelanconiella thailandica, Spencermartinsia acericola, Sphaerellopsis isthmospora, Thozetella lithocarpi, Trechispora echinospora, Tremellochaete atlantica, Trichoderma koreanum, T. pinicola, T. rugulosum, Velebitea chrysotexta, Vicosamyces venturisporus, Wojnowiciella kunmingensis and Zopfiella indica. Three new combinations are Baorangia rufomaculata, Lanmaoa pallidorosea and Wojnowiciella rosicola. The reference specimens of Canalisporium kenyense and Tamsiniella labiosa are designated. The epitype of Sarcopeziza sicula is re-circumscribed based on cyto- and histochemical analyses. The sexual-asexual morph connection of Plenodomus sinensis is reported from ferns and Cirsium for the first time. In addition, the new host records and country records are Amanita altipes, A. melleialba, Amarenomyces dactylidis, Chaetosphaeria panamensis, Coniella vitis, Coprinopsis kubickae, Dothiorella sarmentorum, Leptobacillium leptobactrum var. calidus, Muyocopron lithocarpi, Neoroussoella solani, Periconia cortaderiae, Phragmocamarosporium hederae, Sphaerellopsis paraphysata and Sphaeropsis eucalypticola.
Article
Detailed restriction analyses of many samples often require substantial amounts of time and effort for DNA extraction, restriction digests, Southern blotting, and hybridization. We describe a novel approach that uses the polymerase chain reaction (PCR) for rapid simplified restriction typing and mapping of DNA from many different isolates. DNA fragments up to 2 kilobase pairs in length were efficiently amplified from crude DNA samples of several pathogenic Cryptococcus species, including C. neoformans, C. albidus, C. laurentii, and C. uniguttulatus. Digestion and electrophoresis of the PCR products by using frequent-cutting restriction enzymes produced complex restriction phenotypes (fingerprints) that were often unique for each strain or species. We used the PCR to amplify and analyze restriction pattern variation within three major portions of the ribosomal DNA (rDNA) repeats from these fungi. Detailed mapping of many restriction sites within the rDNA locus was determined by fingerprint analysis of progressively larger PCR fragments sharing a common primer site at one end. As judged by PCR fingerprints, the rDNA of 19 C. neoformans isolates showed no variation for four restriction enzymes that we surveyed. Other Cryptococcus spp. showed varying levels of restriction pattern variation within their rDNAs and were shown to be genetically distinct from C. neoformans. The PCR primers used in this study have also been successfully applied for amplification of rDNAs from other pathogenic and nonpathogenic fungi, including Candida spp., and ought to have wide applicability for clinical detection and other studies.
The faces of fungi database: fungal names linked with morphology, phylogeny and human impacts
  • M A Wen
  • T C Boonmee
  • S Dai
  • D Q Daranagama
  • D A Dissanayake
  • A J Ekanayaka
  • A H Fryar
  • S C Hongsanan
  • S Jayawardena
  • R S Li
  • W J Perera
  • R H Phookamsak
  • R De Silva
  • N I Thambugala
  • K M Tian
  • Q Wijayawardene
  • N N Zhao
  • R L Zhao
  • Q Kang
  • J C Promputtha
M.A., Wen, T.C., Boonmee, S., Dai, D.Q., Daranagama, D.A., Dissanayake, A.J., Ekanayaka, A.H., Fryar, S.C., Hongsanan, S., Jayawardena, R.S., Li, W.J., Perera, R.H., Phookamsak, R., de Silva, N.I., Thambugala, K.M., Tian, Q., Wijayawardene, N.N., Zhao, R.L., Zhao, Q., Kang, J.C. & Promputtha, I. (2015) The faces of fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74: 3-18.
  • A J Dissanayake
  • M Doilom
  • E R Drechsler-Santos
  • M Ghobadnejhad
  • S P Gilmore
  • A Góes-Neto
  • M Gorczak
  • G H Haitjema
  • K K Hapuarachchi
  • A Hashimoto
  • M Q He
  • J K Henske
  • K Hirayama
  • M J Iribarren
  • S C Jayasiri
  • R S Jayawardena
  • S J Jeon
  • G H Jerónimo
  • A L Jesus
  • E B G Jones
  • J C Kang
  • S C Karunarathna
  • P M Kirk
  • S Konta
  • E Kuhnert
  • E Langer
  • H S Lee
  • H B Lee
  • W J Li
  • X H Li
  • K Liimatainen
  • D X Lima
  • C G Lin
  • J K Liu
  • X Z Liu
  • Z Y Liu
  • J J Luangsa-Ard
  • R Lücking
  • H T Lumbsch
  • S Lumyong
  • E M Leaño
  • A V Marano
  • M Matsumura
  • E H C Mckenzie
  • S Mongkolsamrit
  • P E Mortimer
  • T T T Nguyen
  • T Niskanen
  • C Norphanphoun
  • M A O'malley
  • S Parnmen
  • J Pawłowska
  • R H Perera
  • R Phookamsak
  • C Phukhamsakda
  • C L A Pires-Zottarelli
  • O Raspe
  • M A Reck
  • S C O Rocha
  • A L C M A De Santiago
  • I C Senanayake
  • L Setti
  • Q J Shang
  • S K Singh
  • E B Sir
  • K V Solomon
  • J Song
  • P Srikitikulchai
  • M Stadler
  • S Suetrong
  • H Takahashi
  • T Takahashi
  • K Tanaka
  • L P Tang
  • K M Thambugala
  • D Thanakitpipattana
  • M K Theodorou
  • B Thongbai
  • T Thummarukcharoen
  • Q Tian
  • S Tibpromma
  • A Verbeken
  • A Vizzini
  • J Vlasák
  • K Voigt
  • D N Wanasinghe
  • Y Wang
  • G Weerakoon
  • H A Wen
  • T C Wen
  • N N Wijayawardene
  • S Wongkanoun
  • M Wrzosek
  • Y P Xiao
  • J C Xu
  • J Y Yan
  • J Yang
  • S D Yang
  • Y Hu
  • J F Zhang
  • J Zhao
  • L W Zhou
Dissanayake, A.J., Doilom, M., Drechsler-Santos, E.R., GhobadNejhad, M., Gilmore, S.P., Góes-Neto, A., Gorczak, M., Haitjema, G.H., Hapuarachchi, K.K., Hashimoto, A., He, M.Q., Henske, J.K., Hirayama, K., Iribarren, M.J., Jayasiri, S.C., Jayawardena, R.S., Jeon, S.J., Jerónimo, G.H., Jesus, A.L., Jones, E.B.G., Kang, J.C., Karunarathna, S.C., Kirk, P.M., Konta, S., Kuhnert, E., Langer, E., Lee, H.S., Lee, H.B., Li, W.J., Li XH, Liimatainen K, Lima DX, Lin CG, Liu JK, Liu XZ, Liu ZY, Luangsa-ard JJ, Lücking R, Lumbsch HT, Lumyong S, Leaño EM, Marano AV, Matsumura M, McKenzie, E.H.C., Mongkolsamrit, S., Mortimer, P.E., Nguyen, T.T.T., Niskanen, T., Norphanphoun, C., O'Malley, M.A., Parnmen, S., Pawłowska, J., Perera, R.H., Phookamsak, R., Phukhamsakda, C., Pires-Zottarelli, C.L.A., Raspe, O., Reck, M.A., Rocha, S.C.O., de Santiago, A.L.C.M.A., Senanayake, I.C., Setti, L., Shang, Q.J., Singh, S.K., Sir, E.B., Solomon, K.V., Song, J., Srikitikulchai, P., Stadler, M., Suetrong, S., Takahashi, H., Takahashi, T., Tanaka, K., Tang, L.P., Thambugala, K.M., Thanakitpipattana, D., Theodorou, M.K., Thongbai, B., Thummarukcharoen, T., Tian, Q., Tibpromma, S., Verbeken, A., Vizzini, A., Vlasák, J., Voigt, K., Wanasinghe, D.N., Wang, Y., Weerakoon, G., Wen, H.A., Wen, T.C., Wijayawardene, N.N., Wongkanoun, S., Wrzosek, M., Xiao, Y.P., Xu, J.C., Yan, J.Y., Yang, J., Yang, S.D., Hu, Y., Zhang, J.F., Zhao, J., Zhou, L.W., Peršoh, D., Phillips, A.J.L. & Maharachchikumbura, S.S.N. (2016) Fungal divers notes 253-366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 78: 1-237.