ArticlePDF Available

Cellular Biogenetic Law and Its Distortion by Protein Interactions: A Possible Unified Framework for Cancer Biology and Regenerative Medicine

Authors:

Abstract and Figures

The biogenetic law (recapitulation law) states that ontogenesis recapitulates phylogenesis. However, this law can be distorted by the modification of development. We showed the recapitulation of phylogenesis during the differentiation of various cell types, using a meta-analysis of human single-cell transcriptomes, with the control for cell cycle activity and the improved phylostratigraphy (gene dating). The multipotent progenitors, differentiated from pluripotent embryonic stem cells (ESC), showed the downregulation of unicellular (UC) genes and the upregulation of multicellular (MC) genes, but only in the case of those originating up to the Euteleostomi (bony vertebrates). This picture strikingly resembles the evolutionary profile of regulatory gene expansion due to gene duplication in the human genome. The recapitulation of phylogenesis in the induced pluripotent stem cells (iPSC) during their differentiation resembles the ESC pattern. The unipotent erythroblasts differentiating into erythrocytes showed the downregulation of UC genes and the upregulation of MC genes originating after the Euteleostomi. The MC interactome neighborhood of a protein encoded by a UC gene reverses the gene expression pattern. The functional analysis showed that the evolved environment of the UC proteins is typical for protein modifiers and signaling-related proteins. Besides a fundamental aspect, this approach can provide a unified framework for cancer biology and regenerative/rejuvenation medicine because oncogenesis can be defined as an atavistic reversal to a UC state, while regeneration and rejuvenation require an ontogenetic reversal.
Content may be subject to copyright.
Int.J.Mol.Sci.2022,23,11486.https://doi.org/10.3390/ijms231911486www.mdpi.com/journal/ijms
Article
CellularBiogeneticLawandItsDistortionbyProtein
Interactions:APossibleUnifiedFrameworkforCancerBiology
andRegenerativeMedicine
AlexanderE.Vinogradov*andOlgaV.Anatskaya
InstituteofCytology,RussianAcademyofSciences,194064St.Petersburg,Russia
*Correspondence:aevin@incras.ru
Abstract:Thebiogeneticlaw(recapitulationlaw)statesthatontogenesisrecapitulatesphylogenesis.
However,thislawcanbedistortedbythemodificationofdevelopment.Weshowedtherecapitula
tionofphylogenesisduringthedifferentiationofvariouscelltypes,usingametaanalysisofhuman
singlecelltranscriptomes,withthecontrolforcellcycleactivityandtheimprovedphylostratigra
phy(genedating).Themultipotentprogenitors,differentiatedfrompluripotentembryonicstem
cells(ESC),showedthedownregulationofunicellular(UC)genesandtheupregulationofmulticel
lular(MC)genes,butonlyinthecaseofthoseoriginatinguptotheEuteleostomi(bonyvertebrates).
Thispicturestrikinglyresemblestheevolutionaryprofileofregulatorygeneexpansionduetogene
duplicationinthehumangenome.Therecapitulationofphylogenesisintheinducedpluripotent
stemcells(iPSC)duringtheirdifferentiationresemblestheESCpattern.Theunipotenterythroblasts
differentiatingintoerythrocytesshowedthedownregulationofUCgenesandtheupregulationof
MCgenesoriginatingaftertheEuteleostomi.TheMCinteractomeneighborhoodofaproteinen
codedbyaUCgenereversesthegeneexpressionpattern.Thefunctionalanalysisshowedthatthe
evolvedenvironmentoftheUCproteinsistypicalforproteinmodifiersandsignalingrelatedpro
teins.Besidesafundamentalaspect,thisapproachcanprovideaunifiedframeworkforcancerbi
ologyandregenerative/rejuvenationmedicinebecauseoncogenesiscanbedefinedasanatavistic
reversaltoaUCstate,whileregenerationandrejuvenationrequireanontogeneticreversal.
Keywords:celldifferentiation;genephylostratigraphy;geneexpression;interactome;embryonic
stemcells;inducedpluripotentstemcells;recapitulationlaw;Heckel’slaw;humans;wholegenome
duplication;evolutionarymedicine
1.Introduction
Thebiogeneticlaw(recapitulationlaw,vonBaer’slaw,Heckel’slaw)statesthaton
togenesisrecapitulatesphylogenesis[1–3].Thislawassumesa‘terminaladdition’when
recentlyevolvedfeaturesareaddedatthelaststagesofdevelopment,nearingtheadult
state[4].However,recapitulationcanbedistortedbyevolutionarymodificationsappear
ingatanydevelopmentalstage,especiallybyembryonicadaptations[1,5].Foralong
time,thishasbeenadebatedtopic;however,recently,theconceptofontogeneticrecapit
ulationhasacquirednewsupportfrommolecularandanatomicalstudies[1,3,4].Cur
rently,thebiogeneticlawisbecomingespeciallyimportantbecauseoftheatavistictheory
ofoncogenesis,whichsuggeststhatcancerisanevolutionaryreversaltoaunicellular
state[6–10].
Thegenesofunicellular(UC)originareoverexpressedincancertissues,whereasthe
genesappearinginthemulticellular(MC)evolutionarystagesaredownregulated[11–
13].Thehumaninteractome(globalproteininteractionnetwork)containsgiantclusters,
oneofwhichisstronglyenrichedwiththegenesofUCoriginandcorresponding
Citation:Vinogradov,A.E.;
Anatskaya,O.V.CellularBiogenetic
LawandItsDistortionbyProtein
Interactions:APossibleUnified
FrameworkforCancerBiologyand
RegenerativeMedicine.Int.J.Mol.
Sci.2022,23,11486.https://doi.org/
10.3390/ijms231911486
AcademicEditor:CristoforoComi,
BenoitGauthier,DimitriosH.
RoukosandAlfredoFusco
Received:29August2022
Accepted:26September2022
Published:29September2022
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu
tionalaffiliations.
Copyright:©2022bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(https://cre
ativecommons.org/licenses/by/4.0/).
Int.J.Mol.Sci.2022,23,114862of18
functions,whiletheothersareenrichedwiththegenesofMCoriginandtheirfunctions,
whichsuggeststheexistenceofanMC/UCcontrastincellularnetworks[14].Thegenes
downregulatedwithhumanagingareenrichedintheUCcluster,whereastheupregu
latedgenesareoverrepresentedintheMCcluster.Theclustersshowdenserinteractions
withinthemthanbetweenthem;therefore,theycanserveasattractors(stablestatesof
dynamicsystems)forcellularprograms.Importantly,theUCclusterhasahigherin
side/outsideconnectionratiocomparedwiththeMCclusters(i.e.,itisdenser),whichsug
gestsastrongerattractoreffectandmayexplainwhythecellsofMCorganismsareprone
tooncogenesis(reversaltotheUCstate)[14].
TheUCclusterisupregulatedinhumancancers,whichwasshowninthecaseofthe
singlecelltranscriptomesofvariouscancertypeswiththecontrolofthecellcycleactivity
[15].Theexpressionofgenesinvolvedinthecellcycleiscorrelatedwiththeexpressionof
UCgenes,eveniftheoverlappedgenesareremoved;therefore,thecontrolofthecellcycle
activityisnecessaryforthedemonstrationofevolutionaryreversalincancercells.These
datasuggestthatoncogenesisisnotjustthealterationofafewgenesbuttheswitchto
ancientunicellularprograms.Therefore,thecomparisonofcancercellswiththeorgan
ismsbelongingtotheUCevolutionarystagemayhelpustoelucidatetheetiologyofdis
easesandagingandeventosuggestpossibleremedies.Forinstance,certainunicellular
specificdrugscanbeappliedforthetreatmentofcancer[16,17].Certainotherdiseases
canalsobeunderstoodasaresultofevolutionaryreversal[4].Thegeneexpressionshift
towardsearlierevolutionarystageswasalsoobservedinthepolyploidizationofsomatic
cells,whichcanbeconsideredastheactivationofthecellemergencyreserveunderstress
fulconditions[18].
Thebiogeneticprinciplemayalsobeimportantforregenerative/rejuvenationmedi
cine,whichisintrinsicallyintertwinedwithcancerbiology.Themaincontradictionof
multicellularity(MCM)isthatbetweenthecellularandorganismallevels[14].Thecell
pluripotencyandproliferativepotentialarevitalforthehealthydevelopmentandlongev
ityofMCorganismsifheldincheck.Inthiscase,theactivityoftheUClevelpromotesthe
organism’svitality.Incontrast,uncheckedunicellularityresultsinoncogenesiswhenthe
cellstendtobehaveasindependentevolutionaryunits[8,16,19].Inthiscase,theactivity
oftheUClevelunderminestheorganism’svitality.Themainproblemfortheapplication
ofstemcelltechnologyinregenerativemedicineisthequestionofhowtoavoidoncogen
esis[20,21].Thesetwooppositeforces—promotionvs.suppressionoftheMCorganism’s
vitalitybytheactivityoftheUClevel—areencapsulatedbytheterm‘MCM’.Asanexam
pleoftheUC/MCcontrastincellularnetworks,thetotalpluripotencysignature(PluriNet)
isenrichedintheUCgiantcluster,whereasthegenescontrollingpluripotency(theKEGG
pathway)areenrichedintheMCcluster[14].
Theatavistictheoryofcancerentailsthatthestudyofthebiogeneticlawatthecellu
larlevelisespeciallyimportant.Beforethestudyofapathology,itisnecessarytoknow
thebasicsofthenormaldevelopment,i.e.,howtheevolutionisrecapitulatedincelldif
ferentiation,whichconstitutesanessentialpartofontogenesis(andwhosereversalisan
essentialpartofoncogenesis).Thisknowledgecanalsobehelpfulforregenerativemedi
cineandrejuvenation(orprolongationofthehealthylifespan)becausethereversalofde
velopmentmaybeassociatedwiththereversalofexpressiontomoreancientgenesand
cellularprograms.Thisprocessmaybesimilartooncogenesisbutshouldincludediffer
ences,ensuringsafereversal.Thus,thecellularlevelstudyofrecapitulationcanextend
theimportanceofthebiogeneticlawfromapurelyacademicfieldtothepracticaldimen
sionandhelpresearcherstobuildaunifiedframeworkforcancerbiologyandregenera
tive/rejuvenationmedicine.
Recently,theappearanceofsinglecelltranscriptomeshasmadeitpossibleforre
searcherstoinvestigatethebiogeneticlawatthecellularlevel.Here,westudythecellular
recapitulationofphylogenesiswithanemphasisontheUC–MCevolutionarytransition.
Thisworkpresentsametaanalysisofhumansinglecelltranscriptomesinthepluripotent
embryonicstemcells(ESC),moredifferentiatedcells(multipotentprogenitorsand
Int.J.Mol.Sci.2022,23,114863of18
unipotenterythroblasts),embryoniccellsduringzygoticcleavage,andinducedpluripo
tentstemcells(iPSC).Weestimatedtherelativeeffectsofontogeneticrecapitulationand
developmentmodernization,assessingtheimpactoftheevolutionaryoriginoftested
genesandthegenesencodingforinteractomesoftheproteinsencodedbythetestedgenes
ontheexpressionofthetestedgenesduringcelldifferentiation.
Ourapproachisbasedontheconceptthatthemodernizationofdevelopmentcanbe
performedbytheinteractionoftheproteinsencodedbyoldergeneswithmorerecent
ones.Touncoverthepurerecapitulationeffects,wecontrolledforthecellcycleactivity.
Thiswasnecessarybecausetheearlierembryoniccellshaveahighercellcycleactivity
comparedwithmoredifferentiatedcells,andthehighercellcycleactivityisassociated
withtheupregulationofUCgenes[15].Thisconnectioncoulddistortthepurerecapitu
lationeffectsifstudiedwithoutthecorrectionforthecellcycleactivity.
2.Results
2.1.TheProofofConcept
Weanalyzedthetranscriptlevels(henceforthcalled“expression”forthesakeof
brevity)ofthegenesoriginatingatdifferentevolutionarystages(phylostrata)inthesin
glecelltranscriptomesofhumancells,whichdifferinthestateofcelldifferentiation.In
thefirstexample,thepluripotentembryonicstemcells(ESC)werecomparedwiththe
moredifferentiatedmultipotentprogenitors(MP).Asthecontrolforthecellcycleactivity,
weusedtheregressionlinesoftheexpressionofthetestedgenesontheexpressionofthe
cellcyclegenes,aspreviouslydescribed[15].ThegenesoriginatinginUCphylostrata
showedalowerregressionlineintheMPascomparedwiththeESC,whereasthegenes
fromtheMCphylostratashowedahigherline(Figure1;SupplementaryFiguresS1–S17).
2nd phylostratum (Eukaryota)
Cell cycle
A
ESC
12 3456 78
1.8
2.2
2.6
3
3.4
3.8
4.2
4.6
MP
Int.J.Mol.Sci.2022,23,114864of18
Figure1.Regressionlinesofthegenesbelongingtodifferentphylostrataonthecellcyclesignature
inthesinglecelltranscriptomesofmultipotentprogenitors(MP)(blue)andpluripotentembryonic
stemcells(ESC)(red).Themeanexpressionofthegenesbelongingtoaphylostratumisplotted
versusthemeanexpressionofcellcyclesignaturegenes(withindividualcellsasseparatepoints).
(A)The2ndphylostratum(unicellularEukaryota);(B)the5thphylostratum(Eumetazoa).Forthe
differencebetweenintercepts,(A)p<10103and(B)p<1041.ThetranscriptomesarefromGSE75748
(‘celltype’dataset).
Importantly,inbothcelltypes,theexpressionofUCorigingenescorrelateswiththe
expressionofcellcyclegenes(Figure1).IntheMCphylostrata,thiscorrelationsharply
decreases,whileinthepostBilateriaphylostrata,itbecomesnegative(Figure2),butit
alsorequirescorrection.Thenegativecorrelationofthegenesfromthelaterphylostrata
isunderstandablebecausethesegenesaremostlyinvolvedindifferentiationandtissue
specificfunctions(whiletheUCorigingenesareinvolvedinhousekeepingandthecell
cyclefunctions),whichareusuallyassociatedwiththesuppressionofthecellcycleactiv
ity.
Figure2.Evolutionaryprofileoftheslopeoftheregressionlinesoftheexpressionofgenesbelong
ingtodifferentphylostrataonthecellcyclesignatureinthesinglecelltranscriptomes,with
5th phylostratum (Eumetazoa)
Cell cycle
B
ESC
MP
12 3456 78
0.9
1
1.1
1.2
1.3
1.4
1.5
Int.J.Mol.Sci.2022,23,114865of18
confidenceintervals(p=0.05).TheregressionlinesareshowninFigure1andSupplementaryFig
uresS1–S17.ThetranscriptomesarefromGSE75748(‘celltype’dataset).Phylostrata:1—cellular
organisms(Prokaryota);2—Eukaryota;3—Opisthokonta;4—Metazoa;5—Eumetazoa;6—Bilateria;
7—Chordata;8—Vertebrata;9—Euteleostomi;10—Tetrapoda;11—Amniota;12—Mammalia;13—
Theria;14—Eutheria;15—Boreoeutheria;16—Primates;17—Hominidae.Thepicturesatthetop
showrecentorganismscorrespondingtothephyleticbranchingusedforhumangenedating.
Moreover,theESCshowahigherexpressionofcellcyclegenesascomparedwith
theMP.Thesefactsjustifythecorrectionforthecellcycleactivity.Otherwise,theeffectof
theevolutionarygeneoriginontheESC–MPdifferenceinthegeneexpressionmaybe
distortedbythehighercellcycleactivityintheESC.Forthiscorrection,weusedthedif
ferenceintheinterceptsbetweentheregressionlinesfortheMPandESCatequalslopes
(seeMaterialsandMethods).Byextrapolation,thiscanbeinterpretedasthedifferencein
theexpressionbetweentheMPandESCatzerocellcycleactivity.
Forthewholepictureacrosstotalphylogenesis,weplottedtheMPESCdifferences
intheinterceptsforallthephylostrata(Figure3A).Therearethreephasesintheevolu
tionaryprofileofESCtoMPdifferentiation.ThegenesthatoriginatedintheUCevolu
tionarystage(thefirsttwophylostrata)aredownregulatedintheMPascomparedwith
theESC.Then,atthethirdphylostratum,thereisasharptransitiontothesecondphase.
Thedifferenceintheinterceptschangessign,indicatingtheupregulationofgenesorigi
natinginthethird(andlater)phylostrataintheMPascomparedwiththeESC.Thethird
phylostratumisOpisthokonta(representedbytherecentcolonialChoanoflagellata),
whichcanbeconsideredasthelastunicellularsorfirstmulticellulars,dependingonthe
viewpoint.Thesecondphaseoftheevolutionaryprofile(theupregulationintheMP)con
tinuesuptothe9thphylostratum(Euteleostomi,bonyvertebrates).Beginningfromthe
10thphylostratum(Tetrapoda:amphibians,reptiles,birds,andmammals),anydifference
disappeared,whichindicatedthethirdphase(theabsenceofrecapitulation).
Int.J.Mol.Sci.2022,23,114866of18
Figure3.Evolutionaryprofiles:thedifferencesintheinterceptsbetweentheregressionlinesofthe
expressionofgenesbelongingtodifferentphylostrataonthecellcyclesignatureinthesinglecell
transcriptomes(regressionlinesasinFigure1)forthedifferentcelltypes,withconfidenceintervals
(p=0.05).(A)Multipotentprogenitors(differentiatedfromESC)vs.ESC(GSE75748,‘celltype’da
taset).(B)Erythrocytes(differentiatedfromerythroblasts)vs.erythroblasts(GSE123899).(C)
Hepatocytelikecells(differentiatedfromiPSC)vs.iPSC(GSE90749).Phylostrata:1—cellularorgan
isms(Prokaryota);2—Eukaryota;3—Opisthokonta;4—Metazoa;5—Eumetazoa;6—Bilateria;7—
Chordata;8—Vertebrata;9—Euteleostomi;10—Tetrapoda;11—Amniota;12—Mammalia;13—The
ria;14—Eutheria;15—Boreoeutheria;16—Primates;17—Hominidae.Thepicturesatthetopshow
recentorganismscorrespondingtothephyleticbranchingusedforhumangenedating.
Thus,theMPESCcomparisondemonstratesthatontogenesis,atthecellularlevel
(reflectedintheESCtoMPcelldifferentiation),recapitulatesphylogenesisinaphaselike
manner,withasharpUC/MCcontrast,butonlyuptotheEuteleostomi.Asimilarthree
phasepicture,withasharpUC/MCcontrastattheOpisthokontaandtheterminationof
therecapitulationaftertheEuteleostomi,canbeseenduringthe4daysoftheESCcultur
ing,demonstratingtheprocessofdifferentiation(SupplementaryFiguresS18andS19).
TheESCwererepresentedbytwocelllines(H1,H9)behavingsimilarly,whereasthe
MPwererepresentedbyfivecelllines,anditistheconsolidatedpicturethatisshownin
Figure3A.Takenseparately,theMPcelllinesshowacertainvariation,butthethreephase
patterngenerallyremains(SupplementaryFiguresS20andS21).Theonlydifferencein
thepatternoftheUCMCtransitionwasobservedintheneuralprogenitors(NPC)(Sup
plementaryFigureS20A).IntheNPC,thegenesoriginatinginthethirdphylostratum
Intecept difference
B
1234567891011121314151617
Phylostrata
-0.1
-0.05
0
0.05
0.1
0.15
0.2
0.25
Phylostrata
Intercept difference
1234567891011121314151617
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
C
Int.J.Mol.Sci.2022,23,114867of18
(Opisthokonta)showalowerexpressionintheMPcomparedwiththeESC,andtheUC
MCtransitionisthusdelayedtothefourthphylostratum(Metazoa,recentsponges).This
differencecanarisebecausethenervoussystemisofalaterevolutionaryorigin[22].After
the9thphylostratum(Euteleostomi),thereisalsosomelimitedvariation.TheNPCand
theendothelialcells(EC)showaslightlyhigher(butconsistentintheadjacentphy
lostrata)expressioncomparedwiththeESC,i.e.,acontinuedrecapitulationofphylogen
esis(SupplementaryFigureS20A,B).Atthesametime,theforeskinfibroblasts(HFF),
trophoblastlikecells(TB)andendodermderivatives(DEC)showaslightly(butconsist
ently)lowerexpression,whichcanbeinterpretedasasmalldistortionoftherecapitula
tion(SupplementaryFigureS21A–C).
Themultipotentprogenitors(MP)arenotcompletelydifferentiatedcells.Forthelater
stages,westudiedthedifferentiationoftheunipotenterythroblaststhatareprecursorsof
erythrocytes(Figure3B).Theerythrocytesareprobablyoneofthemoststronglydifferen
tiatedcelltypes,whichultimatelylosetheirabilityforreplicationandeventranscription.
Inthedifferentiatingerythroblasts,thefirstphasetransitionisthesame(UCMC),but
withamorecomplicatedpictureafterthatstage(Figure3B).Importantly,incontrastto
theESCMPdifferentiation,thedifferentiatingerythroblastsshowapronouncedrecapit
ulationinthegenesoriginatingaftertheEuteleostomi,withthestrongesteffectinthelast
phylostratum(Hominidae).Thus,therecapitulationduringcelldifferentiationwasob
servedforthewholeevolutionaryrangefromtheunicellularstohominids(albeit,forthe
laterevolutionarystages,onlyintheterminallydifferentiatedcells).
2.2.ArtificialOntogeneticReversal
Theinducedpluripotentstemcells(iPSC)aretheresultofartificialontogeneticre
versal[20].Theevolutionaryprofileoftheirdifferentiationisqualitativelysimilartothe
differentiationoftheESC(Figure3C).However,intherangeof10–12phylostrata,there
isaconsistentdownregulationinthedifferentiatedcellsascomparedwiththeinitialiPSC.
Thisobservationindicatesadistortionofrecapitulation.ThetwootheriPSCexamples
showasimilarviolationinthisphylostraticarea,albeitlesspronounced(Supplementary
FigureS22A,B).However,asimilardistortionwasobservedinHFF,TB,andDEC,differ
ingfromESC(SupplementaryFigureS21A–C).Therefore,thisdistortionmaysimplyin
dicateavariationwithinthegeneralrecapitulationpatternduringthedifferentiationof
pluripotentcells.
2.3.AbOvo
Torevealtheearliestappearanceofcellularontogeneticrecapitulation,westudied
thezygoticcleavage.Atfirstglance,itmaybeexpectedthatthestrongestexpressionof
theUCgeneswilltakeplaceintheUContogeneticstage,i.e.,intheoocyteorzygote.But
thisisnotso.ThehighestupregulationoftheUCgeneswasobservedinthehatching
blastocystonthe6thdayafterfertilization(Figure4).ItisknownthattheESC existinthe
innercellmassofthehumanblastocyst from4thto7thdayafterfertilization,andthey
disappearafterthe7thday[23].Thus,theESCseemtobeveryclosetothestrongestreca
pitulationoftheUCstage,albeitthattheupregulationofUCgenesisslightlylowerinthe
culturedESCascomparedwiththe6dayblastocyst(Figure4A).
Int.J.Mol.Sci.2022,23,114868of18
Figure4.Ontogeneticprofile:thedifferenceintheinterceptsbetweentheregressionlinesofthe
expressionofunicellularorigingenes(1–2phylostrata)onthecellcyclesignatureinthesinglecell
transcriptomesfromearlyembryonicdevelopment(withconfidenceintervals,p=0.05).(A)Embry
oniccellsvs.ESC(GSE36552).(B)Embryoniccellsvs.embryoniccellsatday6(EMTAB3929).
2.4.RegulatoryGeneGroups
TheESCtoMPdifferentiationwaschosenforthefunctionalanalysis(asitprovides
theclearestrecapitulationpatternoftheUC–MCevolutionarytransition).Controllingfor
thecellcycleactivity,westudiedtheexpressionofregulatorygenegroups,whoseexpan
sioninthehumangenomewasstudiedpreviouslyusingthesamephylostratigraphicda
ting[24].Thechaperones,epigeneticfactors,andcofactorsofthetranscriptionfactors(TF)
aredownregulatedinMP(comparedwithESC),whereastheproteinmodifiers,TF,biva
lentgenes,andsignalingreceptorsareupregulatedinMP(Figure5A).
Developmental stage
Intercept difference
ESC
A
Oocyte Zygote 2-cell 4-cell 8-cell Morulae Blastocyst
4 h 19 h 27 h 2 day 3 day 4 day 6 day
1 2 3 4 5 6 7
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
Intecept difference
Developmental stage
B
3 day 4 day 5 day 6 day 7 day
3 4 5 6 7
-1.2
-1
-0.8
-0.6
-0.4
-0.2
0
Int.J.Mol.Sci.2022,23,114869of18
Figure5.Thedifferenceintheinterceptsbetweentheregressionlinesoftheexpressionofdifferent
genegroupsonthecellcyclesignatureinthesinglecelltranscriptomesofMPvs.ESC(GSE75748,
‘celltype’dataset),withconfidenceintervals(p=0.05).(A)Differentregulatorygenegroups.(B)UC
genes,MCgenes,andUCgiantclustergenes.(C)UCandMCgeneswithdifferentfractionsofMC
orUCproteinsintheonestepinteractomeneighborhoodoftheirproteins(e.g.,‘0.25MC’means
0.25oralesserfractionoftheMCproteinsintheneighborhoodofaUCprotein).Thebluecircles
showtheinterceptvalues,theredtrianglesshowtheirconfidenceintervals.
Chaperones Protein Epigenetic TF cofactors TF Signaling
modifiers factors receptors
Intercept difference
Bivalent
genes
1234567
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
A
UC genes MC genes UC cluster UC genes UC genes MC genes
in UC clu ster in UC clu sterout UC cluster
Intercept difference
B
1 2 3 4 5 6
-1.6
-1.3
-1
-0.7
-0.4
-0.1
0.2
Fraction of interactants
UC genes
0.25 MC 0.5 MC 0.75 MC 1.0 MC
MC genes
0.25 UC 0.5 UC
Intercept difference
0.75 UC 1.0 UC
C
1 2 3 4 5 6 7 8
-3
-2.6
-2.2
-1.8
-1.4
-1
-0.6
-0.2
0.2
Int.J.Mol.Sci.2022,23,1148610of18
2.5.TheStrengthofOldandNewTies
Inlightofthesuggestionthatthemodernizationofdevelopment,whichdistortsre
capitulation,canbefulfilledbytheinteractionofproteinsencodedbyoldergeneswith
morerecentgenes,westudiedthedependenceofthegeneexpressionontheevolutionary
ageofgenesencodingfortheinteractantsofproteinsencodedbythetestedgenes.The
effectoftheinteractomeprovedtobeconsiderable.Thus,albeitthatthegenesofMC
originareupregulatedintheMP(comparedwithESC),theMCgenesinsidetheUCgiant
interactomeclusteraredownregulated(Figure5B).FortheUCgenes,thiseffectiseven
morestriking.TheUCgenesinsidetheUCclusteraremuchmoredownregulatedinMP
(comparedwithESC)thanthetotalUCgenes,whereastheUCgenesoutsidetheUCclus
terbecomeevenupregulatedinMP(insteadofbeingdownregulated),thusbehavingsim
ilarlytothetotalMCgenes(Figure5B).
Atthelevelofdirect(onestep)interactions,westudiedtheeffectofthegradualin
creaseintheMCfractionintheneighborhoodofproteinsencodedbythetestedgenes.
WiththeincreaseintheMCfractionintheonestepneighborhoodofaUCprotein,the
encodingUCgeneshowedagradualtransitionfromdownregulationtoupregulationin
MP(comparedwithESC)(Figure5C).WiththedecreaseintheMCfractionintheone
stepneighborhoodofanMCprotein,theencodingMCgeneshowedagradualtransition
fromupregulationtodownregulationinMP,albeitthatthiseffectofsignchangingwas
weakerthanitwasinthecaseofUCgenesinthehighMCenvironment(Figure5C).
2.6.FunctionalAnalysisoftheProteinsinDifferentOneStepInteractomeNeighborhoods
WestudiedthefunctionsoftheUCandMCproteinsdifferingintermsoftheMC
fractionintheironestepinteractomeneighborhoods.FortheUCproteins,theconserva
tiveUCenvironment(i.e.,alowfractionofMCproteinsintheneighborhood)ismain
tainedfortheproteinsinvolvedincellmetabolism,translation,ribonucleoproteincom
plexes,andpluripotencysignatures(Figure6A;SupplementaryTablesS1–S8).The
evolvedenvironmentofUCproteins(highfractionofMCproteinsintheneighborhood)
isobservedmostlyinthemembraneandincludesfunctionsrelatedtosignaling(Figure
6A;SupplementaryTablesS9–S16).Thesameoutcomeisobservedforproteinmodifiers
(Figure6A).Importantly,theevolvedMCenvironmentisalsofoundinthenetworkof
cancerproteins(Figure6A).
Observed/expected gene number ratio
0.25
0.05
e-05
0.9
e-58
e-15
0.04
e-4
e-10
e-4
0.5 0.4
e-136
e-94
e-13
0.9
A
e-138
0.06
e-11
e-6
e-4
e-17
e-3
0.8
e-9
0.02
e-30.9
e-8 e-21
0.9
0.9
0.9
0.9
e-10
e-10
UC genes
-1
0
1
2
3
4
5
6
7
Cellular metabolic process
Ribonucleopr otein co mplex
Plasma membrane
G protein recepto r pathway
Mitotic cell cycle
Protein modification process
Netw ork of ca ncer g enes
ESC signature
PluriNet
0.25 MC
0.5 MC
0.75 MC
1.0 MC
Int.J.Mol.Sci.2022,23,1148611of18
Figure6.ThefunctionalenrichmentoftheUCandMCproteinswithdifferentfractionsofMCor
UCproteinsintheironestepinteractomeneighborhood.(A)UCproteinsintheMCenvironment.
(B)MCproteinsintheUCenvironment.Thesignificanceiseitherforenrichment(ifobserved/ex
pected>1)orforunderrepresentation(ifO/E<1).
FortheMCproteins,theneighborhoodwiththehighUCfractionisobservedforthe
proteinsrelatedtoRNAprocessing(Figure6B;SupplementaryTablesS17–S24).Theen
vironmentwithahighMClowUCfractionisobservedfortheproteinsrelatedtodevel
opment,celldifferentiation,cellcommunication,theregulationoftranscription,andtran
scriptionfactors(Figure5B6B;SupplementaryTablesS25–S32).Thebivalentgenes,ohno
logs,tumorsuppressors,and‘cosmic’genes(whosemutationsarefoundincancercells)
alsoshowastepwiseenrichmentwiththeincreaseintheMCfractionintheinteractome
oftheirproteins(Figure6B;SupplementaryTablesS20,S24,S28,andS32).
3.Discussion
3.1.CellularBiogeneticLaw
Wedemonstratedtheontogeneticrecapitulationofphylogenesisatthecellularlevel.
ThehighestupregulationofUCgeneswasobservednotinthesinglecelloocyteorzygote
butinthehatchingblastocyst(aboutthe6thdayafterfertilization).Thismayappeartobe
adistortionofthebiogeneticlaw,butitonlysupportsitbecausethisobservationcanbe
explainedbythematernalmRNAsinthezygote.BecauseofthematernalmRNAs,the
oocyteorzygotedoesnotcorrespondtotheUCevolutionarystagebutpresentsaproduct
oftheMCorganism.Probably,onlyinthehatchingblastocystdoesthematernaltozy
gotictransition(MZT)causethecompletedecayofmaternalmRNAs[25],andtheblasto
cysttranscriptomebecomesofapurelyzygoticorigin.Thisontogeneticstage(containing
abouttencells)isthestrongestrecapitulationoftheUCevolutionarystage.Theupregu
lationofUCgenesinthehatchingblastocystisonlyslightlyhigherthaninthecultured
embryonicstemcells(ESC).Notably,theculturedESCwereinitiallytakenfromonlythe
hatchingblastocyst[23].
DuringthedifferentiationofthepluripotentESCintomultipotentprogenitors(MP),
thedownregulationofUCgenesandtheupregulationofMCgenestakeplace,albeitonly
thoseMCgenesthatoriginateuptotheEuteleostomi(bonyvertebrates).Thispicture
strikinglyresemblestheevolutionaryprofileofregulatorygeneexpansionduetogene
Observed/Expected gene number ratio
e-34
e-15
0.6
e-23
e-181
e-17
e-7
e-5
e-52 e-65
e-9
0.9
B
e-128
e-16
e-7e-2
e-48
e-14
e-2
e-2
e-137
e-2
e-6
e-6
e-56
e-250.1
e-3
e-79
e-7
0.8
0.3
e-15 e-20
0.6
0.9
e-10 e-11
0.6
0.3
MC genes
-1
0
1
2
3
4
5
6
RNA processing
System development
Regulation of transcription
Transcription factors
Cell differentiation
Cell communication
Bivalent genes
Tumor suppressors
Cosmic
Ohnologs
0.25 UC
0.5 UC
0.75 UC
1.0 UC
Int.J.Mol.Sci.2022,23,1148612of18
duplicationinthehumangenome,whichshowsasimilardecayaftertheEuteleostomi
[24].Theupregulationoftheregulatorygenegroupsalsoresemblestheevolutionarypro
fileofthesegroups’expansions.Thechaperones,epigeneticfactors,andcofactorsoftran
scriptionfactors(TF)areupregulatedintheESC,whereastheproteinmodifiers,TF,biva
lentgenes,andsignalingreceptorsareupregulatedintheMP.
Theonlyexceptionistheproteinmodifiers.Inthehumangenome,thechaperones,
epigeneticfactors,TFcofactor,andproteinmodifiersexpandedattheUCevolutionary
stage,whereastheTF,bivalentgenes,andsignalingreceptorsmostlyexpandedattheMC
stages[24].Theexceptionoftheproteinmodifiersisprobablyrelatedtothefactthatthey
wereadoptedfortheMCregulationinthecourseofevolution..Therefore,theybecame
upregulatedinthemoredifferentiatedcells(MPvs.ESC),wheretheMCgenesaregener
allyupregulated.Similarly,theproteinmodifiers,whichfirstlyexpandedinthegenomes
ofprokaryotes,asthemainprokaryoticregulatorylevel,wereadoptedintheUCeukary
otestoplaytheroleofepigeneticfactors,therebyanticipatingantecedentingtheexpan
sionofTF[24].Forinstance,histonemodifiers,HATsandHDACs,acetylateanddeacety
latethousandsofotherproteinsbesideshistones[26].Thus,therecapitulationpatternof
theexpressionofregulatorygenegroupsinthecourseofESCtoMPdifferentiation,in
general,coincideswiththeevolutionarycourseoftheexpansionofthesegenegroupsin
thehumangenomeduetogeneduplication(exceptforproteinmodifiers),providingad
ditionalsupportforthecellularbiogeneticlaw.
TheEuteleostomievolutionarystage,inwhichtherecapitulationduringESC–MP
differentiationiscompleted,isclosetothecladewherethevertebratephylotypicstageis
mostpronounced[5,27].Aphylotypicstageisadevelopmentalstage,wheretheembryos
ofdifferentspeciesbelongingtoaclademoststronglyresembleeachother[1,28].The
similarityintheearlierontogeneticstagesisdistortedbyembryonicadaptations,inthe
laterstages ‐‐byterminaladditionsinthecourseofcladediversification[5,28].Inthe
ontogenesis,thephylotypicstageisclosetotheonsetoforganogenesis,andthedifferen
tiationofMPfromESCisnecessaryfororganogenesis[29–31].Therecapitulationofthe
laterevolutionarystagescanbeobservedduringthedifferentiationoftheunipotent
erythroblasts,wherethegenesoriginatingatthemorerecentphylostrata(uptothe
Hominidae)wereupregulated.Thisdifferentiationcorrespondstothemaintenanceofde
finitivetissues.
3.2.ModificationofDevelopment
Themodificationofdevelopmentdistortstherecapitulationlaw.Thisprocessisman
ifestedin(andprobablycausedby)theinteractomeofproteinsencodedbythegenesun
derconsideration.ThemoststrikingeffectfortheMCenvironmentisthatontheexpres
sionofUCgenes.ThereisastepwisereductioninthedownregulationofUCgenesinMP
(comparedwithESC)dependingontheMCfractionintheonestepinteractomeofthe
UCproteins.Moreover,intheenvironmentwithafractionofMCproteinsofabout3/4or
higher,eventheupregulationofUCgenestakesplace.Similarly,theMCgenesencoding
forproteinsintheenvironmentwithaUCfractionabove3/4aredownregulatedinstead
ofbeingupregulated.Genesworkintheformofproteins,whichinturnactasparticipants
ofproteininteractionnetworks.Itisreasonabletosuggestthat,aftertheproteininterac
tionswererewired,theexpressionoftheencodinggenesbecomeadaptedtothenewcon
ditions,inwhichtheencodedproteinsfoundthemselvesintherewiredinteractome.This
meansthatanevolutionarychangemaybeginwithachangeintheproteinsequence
(causingchangesintheproteininteractions)followedbytheadjustmentofthecoding
geneexpression.
TheevolvedenvironmentoftheUCproteins(i.e.,ahighfractionofMCproteinsin
theinteractomeofaUCprotein)includesfunctionsrelatedtosignaling,whicharemostly
performedbyproteinmodifiers.Thisfactcanexplainwhyproteinmodifiersareupregu
latedinthemoredifferentiatedcells(MPvs.ESC),albeitthattheirexpansioninthehu
mangenometookplaceattheUCevolutionarystage[24].Thesignalingisinvolvedin
Int.J.Mol.Sci.2022,23,1148613of18
intercellularcommunications,whoseroledrasticallyincreasesinthemulticellulars.The
signalingshouldbeperformedswiftly,andthiscanbebetterachievedbyproteinmodifi
cationascomparedwithchangesinthetranscription.TheevolvedMCenvironmentis
alsofoundinthenetworkofcancerproteins,whichindicatesthatthecontrolofoncogen
esisistheprerogativeoftheMClevel.
FortheMCproteins,theenvironmentwithahighUCfractionwasobservedinthe
proteinsrelatedtoRNAprocessing.TheenvironmentwithalowUCfractionwasob
servedintheproteinsrelatedtodevelopment,celldifferentiation,cellcommunication,
andregulationoftranscription.Thebivalentgenes,whichenablerapidswitchingbetween
cellularprograms[32],alsoshowastepwiseenrichmentwiththedecreaseintheUCfrac
tionintheinteractomesoftheirproteins.Asimilarpicturewasobservedforthetumor
suppressorand‘cosmic’genes(whosemutationswerefoundincancercells).Notably,
ohnologs(genesretainedinduplicatesafterwholegenomeduplication)alsoshowastep
wisegrowthwiththedecreaseintheUCfractionintheirinteractomeenvironment.Ohno
logsaremoststronglyinvolvedinboththeregulatorylevelsofMCorganisms,thenucle
omeandthenervoussystem[33].
3.3.AUnifiedFrameworkforCancerBiologyandRegenerativeMedicine
Besidestheirimportanceforevolutionaryanddevelopmentalbiology,studiesofthe
cellularbiogeneticlawcanprovideaunifiedframeworkforcancerbiologyandregenera
tive/rejuvenationmedicine.TheCancerGenomeProjectrevealedamultitudeandgreat
diversityofsomaticmutationsincancercells[34].Inaddition,alargenumberofepige
nomicalterationswereuncovered[35,36].Theseunexpectedresultsraisedconcernswith
respecttotheclassic‘somaticmutationtheory’ofoncogenesis,whichassumesthatcancer
iscausedbythealterationofafewoncogenes,andstimulatedinterestinthemoresys
temicexplanations[34,37,38].Oneofthemostprominentsystemicconceptsistheatavistic
theory,suggestingthatcancerarisesbecauseofMCcellreversaltoaUCstate[6–10].Sim
ilarly,theregeneration/rejuvenationrequiresareversaltoayoungerorganismstate,
which,inaccordancewiththerecapitulationlaw,mayresembleearlierevolutionary
stages.
Regenerationisverystronglyandparadoxicallyintertwinedwithbothphylogeny
andoncogenesis.Theregenerativeabilityishigherinsimplerorganisms[39–41].Moreo
ver,inhighlyregenerativeanimals(suchassalamandersandfrogs),regenerativepro
cessescanrevertmalignantcellsbacktoaphysiologicalstate[39].Inhumans,theregen
erativeabilityisstrongerinearlierdevelopment,whenitcanbeassociatedwithanticancer
activity.Thus,themicroenvironmentofhumanembryonicstemcellswasreportedtosup
pressthetumorigenicphenotypeofaggressivecancercells[42].Atthesametime,the
applicationofstemcelltechnologyforthepurposeofregenerationishinderedbytheon
cogenicpotentialofstemcells[20,21].Thecellularbiogeneticlawanditsnormal(evolu
tionacquired)distortionbythemodificationofdevelopmentmayofferasystemicframe
workfordisentanglingthisknotofintertwinedandcontroversialphenomena.
Thegenesworknotseparatelybutaspartsofcellularprograms,andtheseprograms
wereformedinthecourseofevolution.Probably,theywerecreatedbytheadditionof
extralayerstocellularnetworks,becausethehumaninteractomeshowsacoretoperiph
eryevolutionarygrowth[14],whichwasaccompaniedbynetworkrewiring,mixingnovel
andancientgenesandcausingthedistortionofthebiogeneticlaw.Beforethestudyofa
pathology,itisnecessarytoobtainaclearpictureofnormalrecapitulation(accompanied
bytheevolutionacquiredmodificationofdevelopment).Thedeviationfromthenormal
recapitulationcanelucidatetheetiologyofpathologicalconditions.
Becausetheregenerativeabilityishigheramongsimplerorganisms,thecontrolled
activationofearlierevolutionaryprogramsinhumansmayfacilitateinjuryhealingand
rejuvenation.‘Controlled’isakeywordhere,becausethedangerofoncogenesisisthe
mainproblemconcerningstemcellusageforregeneration.Probably,healthyregeneration
shouldinvolvetheontogeneticreversaltoayoungerstatewithoutthephylogenetic
Int.J.Mol.Sci.2022,23,1148614of18
reversaltoaunicellularstate.Thesearchforcriticaldifferencesbetweenhealthyontoge
neticreversalandpathologicalphylogeneticreversalcouldbenefitfromaphylostrati
graphicframeworkrepresentingthehistoryofcellularnetworkbuilding.Everythingis
thewayitisbecauseitgotthatway”[43](i.e.,everythingisexplainedbyitshistory).The
biogeneticlawlinkingdevelopmentandevolutionmightofferacentralconceptforsys
temicanalyses.
Theevolutionaryapproachisalsoimportantbecausemanybiomedicalproblemsare
studiedusingthemodelorganisms(e.g.,rodents,zebrafish,fruitflies,andnematodes).
Notably,cancerappearedintheevolutionasearlyasthebasaleumetazoans(itwasfound
inhydraandcorrals)[19].Ourunderstandingofthedifferentevolutionarytrajectoriesof
modelorganismscoupledwiththeirrecapitulationinontogenesisisnecessaryforthecor
recttranslationofobtainedresultstohumans.
4.MaterialsandMethods
ThehumansinglecelltranscriptomeswereacquiredfromGeneExpressionOmnibus
[44]andBioStudies[45].ThedatabaseswereGSE75748(twodatasets:‘celltype’and‘time
course’)[46],GSE123899[47],GSE90749(twodatasets:‘hepatocytelike’and‘whiteadi
pocytes’)(unpublished),GSE36552[48],EMTAB3929[49],andGSE81252[50].Thecell
typesareindicatedinthefigurelegends(withdatasetidentifiers).
Thecontrolforcellcycleactivitywasconductedaspreviouslydescribed[15].Briefly,
thedatawerenormalizedusingthe‘limma’softwareimplementedintheRpackageusing
the‘quantile’normalizationmethod[51].Thenormalizedtranscriptlevelsofthegenes
belongingtoatestedgenegroup(e.g.,thegenesfromaphylostratum)wereaveragedfor
eachgenegroupineachcelltranscriptome.Thelimmaprovideslogtransformation.After
genegroupaveraging,themeanswerebacktransformed.Weanalyzedtheregressionof
themeanofatestedgenegrouponthemeanofthecellcyclesignature(thegenesfrom
theGOcategoryGO:0000278,‘mitoticcellcycle’),withthetranscriptomesofindividual
cellstakenasseparatepoints.Inthetext,thetranscriptleveliscalled“expression”forthe
sakeofbrevity.Tocomparethetworegressionlines(e.g.,MPvs.ESC),weusedthedif
ferenceintheinterceptsbetweentheseregressionlines(atequalslopes),withthecorre
spondingstatisticalsignificance.TheanalyseswereperformedusingtheStatgraphics
CenturionXVIIIpackage.
Asafirstapproximation,weusedthelinearmodelbecauseitenablesthestrictcom
parisonoftheregressionlines(withthedeterminationofthestatisticalsignificanceofthe
interceptdifferencebetweenthelines).Thecomparisonofinterceptsfornonlinearcurves
ispointless.Moreover,thelinearmodelgraspstheoverwhelmingpartofthevarianceof
thedependentvariableexplainedbythenonlinearmodel(>90%).Forinstance,thelinear
modelfortheESCinFigure1Aexplained33.6%ofthevariance(rsquaredcoefficient),
whilethe2orderpolynomialmodelexplained35.9%.(Thehigherorderpolynomial
membersarenotsignificant.)Inotherwords,linearmodelrepresents94%ofthenonlinear
model.FortheMPinFigure1A,thersquaredvaluesare34.7%and35.5%,respectively.
Here,thelinearmodelrepresents98%ofthenonlinearmodel.FortheESCinFigure1B,
thersquaredvaluesare6.5%and6.6%,respectively.Here,linearmodelrepresents98%
ofthenonlinearmodel.FortheMPinFigure1B,thersquaredvaluesare18.9%and19.7%.
Here,thelinearmodelrepresents96%ofthenonlinearmodel.
Theevolutionarystratificationofhumangenes(phylostratigraphy,orgenedating)
wasacquiredfrom[24],wheretheproblemsofdifferentgenedatingresultsweredis
cussed.Here,weusedshallowphylostratigraphy,whichisbasedonthestrictgeneorthol
ogyobtainedusingthebestreciprocalhitswiththeaccurateSmith–Watermanalgorithm.
(Incontrast,deepphylostratigraphyincludesinparalogs,thusprovidingthedatingof
wholegenefamilies.)
ThehumanproteininteractionswereacquiredfromtheSTRINGdatabase[52].We
selectedtheinteractionswithatophalfconfidence(>0.5),whichisslightlyhigherthan
thedefaultconfidenceusedbytheSTRINGserver(>0.4).
Int.J.Mol.Sci.2022,23,1148615of18
ThegenesencodingfortheproteinsbelongingtotheUCandMCgiantclustersof
thehumaninteractome(usedinFigure5B)wereacquiredfrom[14].Forthedetermination
ofthefractionsofUC‐andMCoriginproteinsintheonestepinteractomeneighborhood
ofaprotein(usedinFigures5Cand6),theinteractantsofthisproteinweretakenfrom
theSTRING.Phylostraticgenedatingwasappliedtothegenesencodingfortheseinter
actants.Then,thefractionsoftheUC‐andMCorigingeneswerecalculatedforthisgene
set.
Thefunctionalover‐andunderrepresentationanalysiswasperformedaspreviously
described[53].Foreachgeneontology(GO)category,wecollectedallitssubcategories
usingGOdirectedacyclicgraphs(DAG),andagenewasregardedasbelongingtoagiven
categoryifitwasmappedtoanyofitssubcategories.Thisisnecessarybecause,forin
stance,onlyonegeneismappedtothe‘proteinmodificationprocess’(GO:0036211)di
rectly,whereas2500+genescanbemappedtothisprocessusingtheGODAG(because
proteinmodifiersaredistributedamongspecificproteinmodificationprocesses).Themo
lecularpathwayswereacquiredfromtheNCBIBioSystems.Aredundancyofthisre
source,whichconstitutesamostcompletecompendiumofthepathwaysfromdifferent
databases,wasremovedbyunitingtheentrieswithidenticalgenesets.
Tothispathwayscompendium,weaddedthefollowinggenesignatures:theMolec
ularSignaturesDatabase(MSigDB)[54],tumorsuppressorgenesfromtheTSGdatabase
[55],genesfromtheCatalogueofSomaticMutationsinCancer(COSMIC)[56],human
transcriptionfactorsfrom[57]andAnimalTFDB[58],bivalentgenesfrom[32],and
genesfromtheOHNOLOGSdatabase[59].Asthepluripotencysignatures,weused
PluriNetfromMSigDBandthesetofgenesupregulatedintheESCvs.differentiatedcells
observedinatleastthreeindependentstudies[60].
Thehypergeometricdistributionofprobability(implementedintheRenvironment)
wasusedforthedeterminationofthestatisticalsignificanceoftheratioofobservedto
expectednumbersofgenesbelongingtoaGOcategory/pathwayinatestedgenesample.
Theexpectednumberwascalculatedonthebasisofthenumberofcategory/pathway
genesinthetotalgenedataset(assumingarandomgenedistributionacrosscatego
ries/pathways).Afterthedeterminationoftheenrichedcategories/pathways,thestatisti
calsignificanceoftheenrichmentwascorrectedformultipletests,accordingto[61].
SupplementaryMaterials:Thefollowingsupportinginformationcanbedownloadedat:
https://www.mdpi.com/article/10.3390/ijms231911486/s1,FiguresS1–S22,TablesS1–S32.
AuthorContributions:A.E.V.designedthestudy,performedtheanalyses,andwrotethepaper.
O.V.A.analyzedthedataandwrotethepaper.Allauthorshavereadandagreedtothepublished
versionofthemanuscript.
Funding:ThisworkwasfundedbytheMinistryofScienceandHigherEducationoftheRussian
Federation(AgreementNo.0751520211075,signed28.09.2021).
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Thedataunderlyingthisarticleareavailableinthearticleandits
onlineSupplementaryMaterials.
Acknowledgments:Wethankthethreeanonymousreviewersfortheirvaluablecomments.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Abzhanov,A.VonBaer’sLawfortheAges:LostandFoundPrinciplesofDevelopmentalEvolution.TrendsGenet.TIG2013,29,
712–722.https://doi.org/10.1016/j.tig.2013.09.004.
2. Dobreva,M.P.;Camacho,J.;Abzhanov,A.TimetoSynchronizeOurClocks:ConnectingDevelopmentalMechanismsandEvolution
aryConsequencesofHeterochrony.J.Exp.Zoolog.BMol.Dev.Evol.2022,338,87–106.https://doi.org/10.1002/jez.b.23103.
Int.J.Mol.Sci.2022,23,1148616of18
3. Uesaka,M.;Irie,N.BeyondRecapitulation:Past,Present,andFuture.J.Exp.Zoolog.BMol.Dev.Evol.2022,338,9–12.
https://doi.org/10.1002/jez.b.23116.
4. Torday,J.S.;Miller,W.B.TerminalAdditioninaCellularWorld.Prog.Biophys.Mol.Biol.2018,135,1–10.
https://doi.org/10.1016/j.pbiomolbio.2017.12.003.
5. Uesaka,M.;Kuratani,S.;Takeda,H.;Irie,N.RecapitulationlikeDevelopmentalTransitionsofChromatinAccessibilityinVer
tebrates.Zool.Lett.2019,5,33.https://doi.org/10.1186/s4085101901489.
6. Davies,P.C.W.;Lineweaver,C.H.CancerTumorsasMetazoa1.0:TappingGenesofAncientAncestors.Phys.Biol.2011,8,015001.
https://doi.org/10.1088/14783975/8/1/015001.
7. Vincent,M.Cancer:ADeRepressionofaDefaultSurvivalProgramCommontoAllCells?:ALifeHistoryPerspectiveonthe
NatureofCancer.BioEssaysNewsRev.Mol.Cell.Dev.Biol.2012,34,72–82.https://doi.org/10.1002/bies.201100049.
8. Greaves,M.EvolutionaryDeterminantsofCancer.CancerDiscov.2015,5,806–820.https://doi.org/10.1158/21598290.CD150439.
9. Bussey,K.J.;Davies,P.C.W.RevertingtoSingleCellBiology:ThePredictionsoftheAtavismTheoryofCancer.Prog.Biophys.
Mol.Biol.2021,165,49–55.https://doi.org/10.1016/j.pbiomolbio.2021.08.002.
10. Lineweaver,C.H.;Bussey,K.J.;Blackburn,A.C.;Davies,P.C.W.CancerProgressionasaSequenceofAtavisticReversions.Bi
oEssaysNewsRev.Mol.Cell.Dev.Biol.2021,43,e2000305.https://doi.org/10.1002/bies.202000305.
11. Trigos,A.S.;Pearson,R.B.;Papenfuss,A.T.;Goode,D.L.AlteredInteractionsbetweenUnicellularandMulticellularGenesDrive
HallmarksofTransformationinaDiverseRangeofSolidTumors.Proc.Natl.Acad.Sci.USA2017,114,6406–6411.
https://doi.org/10.1073/pnas.1617743114.
12. Trigos,A.S.;Pearson,R.B.;Papenfuss,A.T.;Goode,D.L.SomaticMutationsinEarlyMetazoanGenesDisruptRegulatoryLinks
betweenUnicellularandMulticellularGenesinCancer.eLife2019,8,e40947.https://doi.org/10.7554/eLife.40947.
13. Bussey,K.J.;Cisneros,L.H.;Lineweaver,C.H.;Davies,P.C.W.AncestralGeneRegulatoryNetworksDriveCancer.Proc.Natl.
Acad.Sci.USA2017,114,6160–6162.https://doi.org/10.1073/pnas.1706990114.
14. Vinogradov,A.E.;Anatskaya,O.V.EvolutionaryFrameworkoftheHumanInteractome:UnicellularandMulticellularGiant
Clusters.Biosystems2019,181,82–87.https://doi.org/10.1016/j.biosystems.2019.05.004.
15. Vinogradov,A.E.;Anatskaya,O.V.CellCycleDependenceofTranscriptomeGeneModules:ComparisonofRegressionLines.
FEBSJ.2020,287,4427–4439.https://doi.org/10.1111/febs.15257.
16. Lineweaver,C.H.;Davies,P.C.W.;Vincent,M.D.TargetingCancer’sWeaknesses(NotItsStrengths):TherapeuticStrategiesSuggested
bytheAtavisticModel.BioEssaysNewsRev.Mol.Cell.Dev.Biol.2014,36,827–835.https://doi.org/10.1002/bies.201400070.
17. Trigos,A.S.;Pearson,R.B.;Papenfuss,A.T.;Goode,D.L.HowtheEvolutionofMulticellularitySettheStageforCancer.Br.J.
Cancer2018,118,145–152.https://doi.org/10.1038/bjc.2017.398.
18. Anatskaya,O.V.;Vinogradov,A.E.WholeGenomeDuplicationsinEvolution,Ontogeny,andPathology:Complexityand
EmergencyReserves.Mol.Biol.2021,55,813–827.https://doi.org/10.1134/S0026893321050022.
19. Aktipis,C.A.;Boddy,A.M.;Jansen,G.;Hibner,U.;Hochberg,M.E.;Maley,C.C.;Wilkinson,G.S.CanceracrosstheTreeofLife:Coopera
tionandCheatinginMulticellularity.Philos.Trans.R.Soc.Lond.BBiol.Sci.2015,370,20140219.https://doi.org/10.1098/rstb.2014.0219.
20. Scudellari,M.HowIPSCellsChangedtheWorld.Nature2016,534,310–312.https://doi.org/10.1038/534310a.
21. Vinogradov,A.E.;Shilina,M.A.;Anatskaya,O.V.;Alekseenko,L.L.;Fridlyanskaya,I.I.;Krasnenko,A.;Kim,A.;Korostin,D.;
Ilynsky,V.;Elmuratov,A.;etal.MolecularGeneticAnalysisofHumanEndometrialMesenchymalStemCellsThatSurvived
SublethalHeatShock.StemCellsInt.2017,2017,2362630.https://doi.org/10.1155/2017/2362630.
22. Moroz,L.L.;Romanova,D.Y.SelectiveAdvantagesofSynapsesinEvolution.Front.CellDev.Biol.2021,9,726563.
https://doi.org/10.3389/fcell.2021.726563.
23. NationalResearchCouncil(US);InstituteofMedicine(US)CommitteeontheBiologicalandBiomedicalApplicationsofStem
CellResearch.StemCellsandtheFutureofRegenerativeMedicine;NationalAcademiesPress:Washington,DC,USA,2002;ISBN
9780309076302.
24. Vinogradov,A.E.;Anatskaya,O.V.GrowthofBiologicalComplexityfromProkaryotestoHominidsReflectedintheHuman
Genome.Int.J.Mol.Sci.2021,22,11640.https://doi.org/10.3390/ijms222111640.
25. Sha,Q.Q.;Zheng,W.;Wu,Y.W.;Li,S.;Guo,L.;Zhang,S.;Lin,G.;Ou,X.H.;Fan,H.Y.DynamicsandClinicalRelevanceof
MaternalMRNAClearanceduringtheOocytetoEmbryoTransitioninHumans.Nat.Commun.2020,11,4917.
https://doi.org/10.1038/s41467020186806.
26. Talbert,P.B.;Meers,M.P.;Henikoff,S.OldCogs,NewTricks:TheEvolutionofGeneExpressioninaChromatinContext.Nat.
Rev.Genet.2019,20,283–297.https://doi.org/10.1038/s4157601901057.
27. Irie,N.;Satoh,N.;Kuratani,S.ThePhylumVertebrata:ACaseforZoologicalRecognition.Zool.Lett.2018,4,32.
https://doi.org/10.1186/s408510180114y.
28. Uesaka,M.;Kuratani,S.;Irie,N.TheDevelopmentalHourglassModelandRecapitulation:AnAttempttoIntegratetheTwo
Models.J.Exp.Zoolog.BMol.Dev.Evol.2022,338,76–86.https://doi.org/10.1002/jez.b.23027.
29. Ossipova,O.;Kerney,R.;SaintJeannet,J.P.;Sokol,S.Y.RegulationofNeuralCrestDevelopmentbytheForminFamilyProtein
Daam1.Genes.J.Genet.Dev.2018,56,e23108.https://doi.org/10.1002/dvg.23108.
Int.J.Mol.Sci.2022,23,1148617of18
30. Mononen,M.M.;Leung,C.Y.;Xu,J.;Chien,K.R.TrajectoryMappingofHumanEmbryonicStemCellCardiogenesisReveals
LineageBranchPointsandanISL1ProgenitorDerivedCardiacFibroblastLineage.StemCells2020,38,1267–1278.
https://doi.org/10.1002/stem.3236.
31. Willnow,D.;Benary,U.;Margineanu,A.;Vignola,M.L.;Konrath,F.;Pongrac,I.M.;Karimaddini,Z.;Vigilante,A.;Wolf,J.;
Spagnoli,F.M.QuantitativeLineageAnalysisIdentifiesaHepatoPancreatoBiliaryProgenitorNiche.Nature2021,597,87–91.
https://doi.org/10.1038/s41586021038441.
32. Court,F.;Arnaud,P.AnAnnotatedListofBivalentChromatinRegionsinHumanESCells:ANewToolforCancerEpigenetic
Research.Oncotarget2017,8,4110–4124.https://doi.org/10.18632/oncotarget.13746.
33. Anatskaya,O.V.;Vinogradov,A.E.PolyploidyasaFundamentalPhenomenoninEvolution,Development,Adaptationand
Diseases.Int.J.Mol.Sci.2022,23,3542.https://doi.org/10.3390/ijms23073542.
34. Heng,J.;Heng,H.H.GenomeChaos:CreatingNewGenomicInformationEssentialforCancerMacroevolution.Semin.Cancer
Biol.2022,81,160–175.https://doi.org/10.1016/j.semcancer.2020.11.003.
35. Pisco,A.O.;Huang,S.NonGeneticCancerCellPlasticityandTherapyInducedStemnessinTumourRelapse:“WhatDoesNot
KillMeStrengthensMe.”Br.J.Cancer2015,112,1725–1732.https://doi.org/10.1038/bjc.2015.146.
36. Mackay,A.;Burford,A.;Carvalho,D.;Izquierdo,E.;FazalSalom,J.;Taylor,K.R.;Bjerke,L.;Clarke,M.;Vinci,M.;Nandhabalan,
M.;etal.IntegratedMolecularMetaAnalysisof1,000PediatricHighGradeandDiffuseIntrinsicPontineGlioma.CancerCell
2017,32,520–537.e5.https://doi.org/10.1016/j.ccell.2017.08.017.
37. Sonnenschein,C.;Soto,A.M.CancerMetastases:SoCloseandSoFar.J.Natl.CancerInst.2015,107,djv236.
https://doi.org/10.1093/jnci/djv236.
38. Huang,S.ReconcilingNonGeneticPlasticitywithSomaticEvolutioninCancer.TrendsCancer2021,7,309–322.
https://doi.org/10.1016/j.trecan.2020.12.007.
39. Corradetti,B.;Dogra,P.;Pisano,S.;Wang,Z.;Ferrari,M.;Chen,S.H.;Sidman,R.L.;Pasqualini,R.;Arap,W.;Cristini,V.Am
phibianRegenerationandMammalianCancer:SimilaritiesandContrastsfromanEvolutionaryBiologyPerspective:Compar
ingtheRegenerativePotentialofMammalianEmbryosandUrodelestoDevelopEffectiveStrategiesagainstHumanCancer.
BioEssaysNewsRev.Mol.Cell.Dev.Biol.2021,43,e2000339.https://doi.org/10.1002/bies.202000339.
40. Khyeam,S.;Lee,S.;Huang,G.N.Genetic,Epigenetic,andPostTranscriptionalBasisofDivergentTissueRegenerativeCapaci
tiesAmongVertebrates.Adv.Genet.2021,2,e10042.https://doi.org/10.1002/ggn2.10042.
41. Nguyen,P.D.;deBakker,D.E.M.;Bakkers,J.CardiacRegenerativeCapacity:AnEvolutionaryAfterthought?Cell.Mol.LifeSci.
2021,78,5107–5122.https://doi.org/10.1007/s00018021038319.
42. Postovit,L.M.;Margaryan,N.V.;Seftor,E.A.;Kirschmann,D.A.;Lipavsky,A.;Wheaton,W.W.;Abbott,D.E.;Seftor,R.E.B.;
Hendrix,M.J.C.HumanEmbryonicStemCellMicroenvironmentSuppressestheTumorigenicPhenotypeofAggressiveCancer
Cells.Proc.Natl.Acad.Sci.USA2008,105,4329–4334.https://doi.org/10.1073/pnas.0800467105.
43. Thompson,D.W.OnGrowthandForm;Dover:NewYork,NY,USA,1917;ISBN9780486671352.
44. Sayers,E.W.;Bolton,E.E.;Brister,J.R.;Canese,K.;Chan,J.;Comeau,D.C.;Connor,R.;Funk,K.;Kelly,C.;Kim,S.;etal.Database
ResourcesoftheNationalCenterforBiotechnologyInformation.NucleicAcidsRes.2022,50,D20–D26.
https://doi.org/10.1093/nar/gkab1112.
45. Sarkans,U.;Füllgrabe,A.;Ali,A.;Athar,A.;Behrangi,E.;Diaz,N.;Fexova,S.;George,N.;Iqbal,H.;Kurri,S.;etal.From
ArrayExpresstoBioStudies.NucleicAcidsRes.2021,49,D1502–D1506.https://doi.org/10.1093/nar/gkaa1062.
46. Chu,L.F.;Leng,N.;Zhang,J.;Hou,Z.;Mamott,D.;Vereide,D.T.;Choi,J.;Kendziorski,C.;Stewart,R.;Thomson,J.A.Single
CellRNASeqRevealsNovelRegulatorsofHumanEmbryonicStemCellDifferentiationtoDefinitiveEndoderm.GenomeBiol.
2016,17,173.https://doi.org/10.1186/s130590161033x.
47. Xing,Q.R.;Farran,C.A.E.;Zeng,Y.Y.;Yi,Y.;Warrier,T.;Gautam,P.;Collins,J.J.;Xu,J.;Dröge,P.;Koh,C.G.;etal.Parallel
BimodalSingleCellSequencingofTranscriptomeandChromatinAccessibility.GenomeRes.2020,30,1027–1039.
https://doi.org/10.1101/gr.257840.119.
48. Yan,L.;Yang,M.;Guo,H.;Yang,L.;Wu,J.;Li,R.;Liu,P.;Lian,Y.;Zheng,X.;Yan,J.;etal.SingleCellRNASeqProfilingof
HumanPreimplantationEmbryosandEmbryonicStemCells.Nat.Struct.Mol.Biol.2013,20,1131–1139.
https://doi.org/10.1038/nsmb.2660.
49. Petropoulos,S.;Edsgärd,D.;Reinius,B.;Deng,Q.;Panula,S.P.;Codeluppi,S.;PlazaReyes,A.;Linnarsson,S.;Sandberg,R.;
Lanner,F.SingleCellRNASeqRevealsLineageandXChromosomeDynamicsinHumanPreimplantationEmbryos.Cell2016,
165,1012–1026.https://doi.org/10.1016/j.cell.2016.03.023.
50. Camp,J.G.;Sekine,K.;Gerber,T.;LoefflerWirth,H.;Binder,H.;Gac,M.;Kanton,S.;Kageyama,J.;Damm,G.;Seehofer,D.;et
al.MultilineageCommunicationRegulatesHumanLiverBudDevelopmentfromPluripotency.Nature2017,546,533–538.
https://doi.org/10.1038/nature22796.
51. Ritchie,M.E.;Phipson,B.;Wu,D.;Hu,Y.;Law,C.W.;Shi,W.;Smyth,G.K.LimmaPowersDifferentialExpressionAnalysesfor
RNASequencingandMicroarrayStudies.NucleicAcidsRes.2015,43,e47.https://doi.org/10.1093/nar/gkv007.
52. Szklarczyk,D.;Gable,A.L.;Nastou,K.C.;Lyon,D.;Kirsch,R.;Pyysalo,S.;Doncheva,N.T.;Legeay,M.;Fang,T.;Bork,P.;etal.
TheSTRINGDatabasein2021:CustomizableProteinProteinNetworks,andFunctionalCharacterizationofUserUploaded
Gene/MeasurementSets.NucleicAcidsRes.2021,49,D605–D612.https://doi.org/10.1093/nar/gkaa1074.
Int.J.Mol.Sci.2022,23,1148618of18
53. Vinogradov,A.E.“GenomeDesign”ModelandMulticellularComplexity:GoldenMiddle.NucleicAcidsRes.2006,34,5906–5914.
https://doi.org/10.1093/nar/gkl773.
54. Liberzon,A.;Birger,C.;Thorvaldsdóttir,H.;Ghandi,M.;Mesirov,J.P.;Tamayo,P.TheMolecularSignaturesDatabase
(MSigDB)HallmarkGeneSetCollection.CellSyst.2015,1,417–425.https://doi.org/10.1016/j.cels.2015.12.004.
55. Zhao,M.;Kim,P.;Mitra,R.;Zhao,J.;Zhao,Z.TSGene2.0:AnUpdatedLiteratureBasedKnowledgebaseforTumorSuppressor
Genes.NucleicAcidsRes.2016,44,D1023–D1031.https://doi.org/10.1093/nar/gkv1268.
56. Tate,J.G.;Bamford,S.;Jubb,H.C.;Sondka,Z.;Beare,D.M.;Bindal,N.;Boutselakis,H.;Cole,C.G.;Creatore,C.;Dawson,E.;etal.COSMIC:
TheCatalogueofSomaticMutationsinCancer.NucleicAcidsRes.2019,47,D941–D947.https://doi.org/10.1093/nar/gky1015.
57. Lambert,S.A.;Jolma,A.;Campitelli,L.F.;Das,P.K.;Yin,Y.;Albu,M.;Chen,X.;Taipale,J.;Hughes,T.R.;Weirauch,M.T.The
HumanTranscriptionFactors.Cell2018,172,650–665.https://doi.org/10.1016/j.cell.2018.01.029.
58. Hu,H.;Miao,Y.R.;Jia,L.H.;Yu,Q.Y.;Zhang,Q.;Guo,A.Y.AnimalTFDB3.0:AComprehensiveResourceforAnnotation
andPredictionofAnimalTranscriptionFactors.NucleicAcidsRes.2019,47,D33–D38.https://doi.org/10.1093/nar/gky822.
59. Singh,P.P.;Isambert,H.OHNOLOGSv2:AComprehensiveResourcefortheGenesRetainedfromWholeGenomeDuplication
inVertebrates.NucleicAcidsRes.2020,48,D724–D730.https://doi.org/10.1093/nar/gkz909.
60. Assou,S.;LeCarrour,T.;Tondeur,S.;Ström,S.;Gabelle,A.;Marty,S.;Nadal,L.;Pantesco,V.;Réme,T.;Hugnot,J.P.;etal.A
MetaAnalysisofHumanEmbryonicStemCellsTranscriptomeIntegratedintoaWebBasedExpressionAtlas.StemCells2007,
25,961–973.https://doi.org/10.1634/stemcells.20060352.
61. Storey,J.D.;Tibshirani,R.StatisticalSignificanceforGenomewideStudies.Proc.Natl.Acad.Sci.USA2003,100,9440–9445.
https://doi.org/10.1073/pnas.1530509100.
... We assume that these random walks can simulate random alterations in the interactome caused by mutations in encoding genes or disturbances in gene expression or protein configuration. It was shown previously that alterations in protein interactions are associated with changes in gene expression [57]. ...
... Thus, there can be a synergism between the high gene expression in the UC center and the UC interactome attractor that is triggered by intensive cell stress, especially during cell proliferation. As a result, the Waddington epigenetic landscape of ontogenesis [70,71], which, in accordance with the biogenetic law, roughly recapitulates phylogenesis [57,72], can turn over. (The biogenetic law was validated on the cellular level [57].) ...
... As a result, the Waddington epigenetic landscape of ontogenesis [70,71], which, in accordance with the biogenetic law, roughly recapitulates phylogenesis [57,72], can turn over. (The biogenetic law was validated on the cellular level [57].) In normal cells, this landscape is slanted towards cell differentiation, yet under stressful conditions it can be counteracted by the activity of UC attractor, causing landscape turnover and cell dedifferentiation ( Figure 11). ...
Article
Full-text available
Using meta-analyses, we introduce a unicellular attractor (UCA) model integrating essential features of the ‘atavistic reversal’, ‘cancer attractor’, ‘somatic mutation’, ‘genome chaos’, and ‘tissue organization field’ theories. The ‘atavistic reversal’ theory is taken as a keystone. We propose a possible mechanism of this reversal, its refinement called ‘gradual atavism’, and evidence for the ‘serial atavism’ model. We showed the gradual core-to-periphery evolutionary growth of the human interactome resulting in the higher protein interaction density and global interactome centrality in the UC center. In addition, we revealed that UC genes are more actively expressed even in normal cells. The modeling of random walk along protein interaction trajectories demonstrated that random alterations in cellular networks, caused by genetic and epigenetic changes, can result in a further gradual activation of the UC center. These changes can be induced and accelerated by cellular stress that additionally activates UC genes (especially during cell proliferation), because the genes involved in cellular stress response and cell cycle are mostly of UC origin. The functional enrichment analysis showed that cancer cells demonstrate the hyperactivation of energetics and the suppression of multicellular genes involved in communication with the extracellular environment (especially immune surveillance). Collectively, these events can unleash selfish cell behavior aimed at survival at all means. All these changes are boosted by polyploidization. The UCA model may facilitate an understanding of oncogenesis and promote the development of therapeutic strategies.
... Among these features are the response to DNA and telomere damage and the impairment of circadian entrainment [73,[132][133][134]. Our data also uncovered ploidy-related manifestations of the fetal phenotype in the signaling pathways and metabolism [88,[135][136][137]. For example, the associations between polyploidy and the activation of pathways of meiosis, female gametogenesis, programs of unicellularity, and signaling of multipotency (TGFbeta, JAK-STAT, c-KIT) were well documented in heart diseases, cancer, and normal tissues [79,89,134,[138][139][140][141][142][143][144]. ...
Article
Full-text available
Many cardiovascular diseases originate from growth retardation, inflammation, and malnutrition during early postnatal development. The nature of this phenomenon is not completely understood. Here we aimed to verify the hypothesis that systemic inflammation triggered by neonatal lactose intolerance (NLI) may exert long-term pathologic effects on cardiac developmental programs and cardiomyocyte transcriptome regulation. Using the rat model of NLI triggered by lactase overloading with lactose and the methods of cytophotometry, image analysis, and mRNA-seq, we evaluated cardiomyocyte ploidy, signs of DNA damage, and NLI-associated long-term transcriptomic changes of genes and gene modules that differed qualitatively (i.e., were switched on or switched off) in the experiment vs. the control. Our data indicated that NLI triggers the long-term animal growth retardation, cardiomyocyte hyperpolyploidy, and extensive transcriptomic rearrangements. Many of these rearrangements are known as manifestations of heart pathologies, including DNA and telomere instability, inflammation, fibrosis, and reactivation of fetal gene program. Moreover, bioinformatic analysis identified possible causes of these pathologic traits, including the impaired signaling via thyroid hormone, calcium, and glutathione. We also found transcriptomic manifestations of increased cardiomyocyte polyploidy, such as the induction of gene modules related to open chromatin, e.g., “negative regulation of chromosome organization”, “transcription” and “ribosome biogenesis”. These findings suggest that ploidy-related epigenetic alterations acquired in the neonatal period permanently rewire gene regulatory networks and alter cardiomyocyte transcriptome. Here we provided first evidence indicating that NLI can be an important trigger of developmental programming of adult cardiovascular disease. The obtained results can help to develop preventive strategies for reducing the NLI-associated adverse effects of inflammation on the developing cardiovascular system.
Article
The growth of complexity is an unsolved and underappreciated problem. We consider possible causes of this growth, hypotheses testing, molecular mechanisms, complexity measures, cases of simplification, and significance for biomedicine. We focus on a general ability of regulation, which is based on the growing information storage and processing capacities, as the main proxy of complexity. Natural selection is indifferent to complexity. However, complexification can be inferred from the same first principle, on which natural selection is founded. Natural selection depends on potentially unlimited reproduction under limited environmental conditions. Because of the demographic pressure, the simple ecological niches become fulfilled and diversified (due to species splitting and divergence). Diversification increases complexity of biocenoses. After the filling and diversification of simple niches, the more complex niches can arise. This is the 'atomic orbitals' (AO) model. Complexity has many shortcomings but it has an advantage. This advantage is ability to regulatory adaptation, including behavioral, formed in the evolution by means of genetic adaptation. Regulatory adaptation is much faster than genetic one because it is based on the information previously accumulated via genetic adaptation and learning. Regulatory adaptation further increases complexity of biocenoses. This is the 'regulatory advantage' (RA) model. The comparison of both models allows testable predictions. We focus on the animal evolution because of the appearance of higher regulatory level (nervous system), which is absent in other lineages, and relevance to humans (including biomedical aspects).
Article
Full-text available
DNA replication during cell proliferation is ‘vertical’ copying, which reproduces an initial amount of genetic information. Polyploidy, which results from whole-genome duplication, is a fundamental complement to vertical copying. Both organismal and cell polyploidy can emerge via premature cell cycle exit or via cell-cell fusion, the latter giving rise to polyploid hybrid organisms and epigenetic hybrids of somatic cells. Polyploidy-related increase in biological plasticity, adaptation, and stress resistance manifests in evolution, development, regeneration, aging, oncogenesis, and cardiovascular diseases. Despite the prevalence in nature and importance for medicine, agri- and aquaculture, biological processes and epigenetic mechanisms underlying these fundamental features largely remain unknown. The evolutionarily conserved features of polyploidy include activation of transcription, response to stress, DNA damage and hypoxia, and induction of programs of morphogenesis, unicellularity, and longevity, suggesting that these common features confer adaptive plasticity, viability, and stress resistance to polyploid cells and organisms. By increasing cell viability, polyploidization can provide survival under stressful conditions where diploid cells cannot survive. However, in somatic cells it occurs at the expense of specific function, thus promoting developmental programming of adult cardiovascular diseases and increasing the risk of cancer. Notably, genes arising via evolutionary polyploidization are heavily involved in cancer and other diseases. Ploidy-related changes of gene expression presumably originate from chromatin modifications and the derepression of bivalent genes. The provided evidence elucidates the role of polyploidy in evolution, development, aging, and carcinogenesis, and may contribute to the development of new strategies for promoting regeneration and preventing cardiovascular diseases and cancer.
Article
Full-text available
The National Center for Biotechnology Information (NCBI) produces a variety of online information resources for biology, including the GenBank® nucleic acid sequence database and the PubMed® database of citations and abstracts published in life science journals. NCBI provides search and retrieval operations for most of these data from 35 distinct databases. The E-utilities serve as the programming interface for the most of these databases. Resources receiving significant updates in the past year include PubMed, PMC, Bookshelf, RefSeq, SRA, Virus, dbSNP, dbVar, ClinicalTrials.gov, MMDB, iCn3D and PubChem. These resources can be accessed through the NCBI home page at https://www.ncbi.nlm.nih.gov.
Article
Full-text available
Heterochrony, defined as a change in the timing of developmental events altering the course of evolution, was first recognized by Ernst Haeckel in 1866. Haeckel's original definition was meant to explain the observed parallels between ontogeny and phylogeny, but the interpretation of his work became a source of controversy over time. Heterochrony took its modern meaning following the now classical work in the 1970–80s by Steven J. Gould, Pere Alberch, and co-workers. Predicted and described heterochronic scenarios emphasize the many ways in which developmental changes can influence evolution. However, while important examples of heterochrony detected with comparative morphological methods have multiplied, the more mechanistic understanding of this phenomenon lagged conspicuously behind. Considering the rapid progress in imaging and molecular tools available now for developmental biologists, this review aims to stress the need to take heterochrony research to the next level. It is time to synchronize the different levels of heterochrony research into a single analysis flow: from studies on organismal-level morphology to cells to molecules and genes, using complementary techniques. To illustrate how to achieve a more comprehensive understanding of phyletic morphological diversification associated with heterochrony, we discuss several recent case studies at various phylogenetic scales that combine morphological, cellular, and molecular analyses. Such a synergistic approach offers to more fully integrate phylogenetic and ontogenetic dimensions of the fascinating evolutionary phenomenon of heterochrony. Highlights • Heterochrony research focuses on comparative morphology but lags on mechanistic understanding. • We propose integrating the different levels of study into a single analysis flow: from morphology to cells to molecules and genes, using modern techniques.
Article
Full-text available
The growth of complexity in evolution is a most intriguing phenomenon. Using gene phylostratigraphy, we showed this growth (as reflected in regulatory mechanisms) in the human genome, tracing the path from prokaryotes to hominids. Generally, the different regulatory gene families expanded at different times, yet only up to the Euteleostomi (bony vertebrates). The only exception was the expansion of transcription factors (TF) in placentals; however, we argue that this was not related to increase in general complexity. Surprisingly, although TF originated in the Prokaryota while chromatin appeared only in the Eukaryota, the expansion of epigenetic factors predated the expansion of TF. Signaling receptors, tumor suppressors, oncogenes, and aging- and disease-associated genes (indicating vulnerabilities in terms of complex organization and strongly enrichment in regulatory genes) also expanded only up to the Euteleostomi. The complexity-related gene properties (protein size, number of alternative splicing mRNA, length of untranslated mRNA, number of biological processes per gene, number of disordered regions in a protein, and density of TF-TF interactions) rose in multicellular organisms and declined after the Euteleostomi, and possibly earlier. At the same time, the speed of protein sequence evolution sharply increased in the genes that originated after the Euteleostomi. Thus, several lines of evidence indicate that molecular mechanisms of complexity growth were changing with time, and in the phyletic lineage leading to humans, the most salient shift occurred after the basic vertebrate body plan was fixed with bony skeleton. The obtained results can be useful for evolutionary medicine.
Article
Full-text available
Studies based on single cells have revealed vast cellular heterogeneity in stem cell and progenitor compartments, suggesting continuous differentiation trajectories with intermixing of cells at various states of lineage commitment and notable degrees of plasticity during organogenesis1,2,3,4,5. The hepato-pancreato-biliary organ system relies on a small endoderm progenitor compartment that gives rise to a variety of different adult tissues, including the liver, pancreas, gall bladder and extra-hepatic bile ducts6,7. Experimental manipulation of various developmental signals in the mouse embryo has underscored important cellular plasticity in this embryonic territory⁶. This is reflected in the existence of human genetic syndromes as well as congenital malformations featuring multi-organ phenotypes in liver, pancreas and gall bladder⁶. Nevertheless, the precise lineage hierarchy and succession of events leading to the segregation of an endoderm progenitor compartment into hepatic, biliary and pancreatic structures have not yet been established. Here we combine computational modelling approaches with genetic lineage tracing to accurately reconstruct the hepato-pancreato-biliary lineage tree. We show that a multipotent progenitor subpopulation persists in the pancreato-biliary organ rudiment, contributing cells not only to the pancreas and gall bladder but also to the liver. Moreover, using single-cell RNA sequencing and functional experiments we define a specialized niche that supports this subpopulation in a multipotent state for an extended time during development. Together these findings indicate sustained plasticity underlying hepato-pancreato-biliary development that might also explain the rapid expansion of the liver while attenuating pancreato-biliary growth.
Article
Full-text available
Regeneration is widespread across the animal kingdom but varies vastly across phylogeny and even ontogeny. Adult mammalian regeneration in most organs and appendages is limited, while vertebrates such as zebrafish and salamanders are able to regenerate various organs and body parts. Here, we focus on the regeneration of appendages, spinal cord, and heart—organs and body parts that are highly regenerative among fish and amphibian species but limited in adult mammals. We then describe potential genetic, epigenetic, and post‐transcriptional similarities among these different forms of regeneration across vertebrates and discuss several theories for diminished regenerative capacity throughout evolution.
Article
Whole-genome duplication (WGD), or polyploidy, increases the amount of genetic information in the cell. WGDs of whole organisms are found in all branches of eukaryotes and act as a driving force of speciation, complication, and adaptations. Somatic-cell WGDs are observed in all types of tissues and can result from normal or altered ontogenetic programs, regeneration, pathological conditions, aging, malignancy, and metastasis. Despite the versatility of WGDs, their functional significance, general properties, and causes of their higher adaptive potential are unclear. Comparisons of whole-transcriptome data and information from various fields of molecular biology, genomics, and molecular medicine showed several common features for polyploidy of organisms and somatic and cancer cells, making it possible to understand what WGD properties lead to the emergence of an adaptive phenotype. The adaptation potential of WGDs may be associated with an increase in the complexity of the regulation of networks and signaling systems; a higher resistance to stress; and activation of ancient evolutionary programs of unicellularity and pathways of morphogenesis, survival, and life extension. A balance between the cell and organismal levels in controlling gene regulation may shift in stress towards the priority of cell survival, and the shift can lead to cardiovascular diseases and carcinogenesis. The presented information helps to understand how polyploidy creates new phenotypes and why it acts as a driving force of evolution and an important regulator of biological processes in somatic cells during ontogeny, pathogenesis, regeneration, and transformation.
Article
Cancer or cancer-like phenomena pervade multicellular life, implying deep evolutionary roots. Many of the hallmarks of cancer recapitulate unicellular modalities, suggesting that cancer initiation and progression represent a systematic reversion to simpler ancestral phenotypes in response to a stress or insult. This so-called atavism theory may be tested using phylostratigraphy, which can be used to assign ages to genes. Several research groups have confirmed that cancer cells tend to over-express evolutionary older genes, and rewire the architecture linking unicellular and multicellular gene networks. In addition, some of the elevated mutation rate - a well-known hallmark of cancer - is actually self-inflicted, driven by genes found to be homologs of the ancient SOS genes activated in stressed bacteria, and employed to evolve biological workarounds. These findings have obvious implications for therapy.