Article

Effects of dissolved organic matter on the adsorption of norfloxacin on a sandy soil (fraction) from the Yellow River of Northern China

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Dissolved organic matter (DOM), which exists widely in the environment, coming from different sources, may greatly affect the adsorption of antibiotics. However, the adsorption mechanisms of antibiotics in a sandy soil and the effects of DOM from different sources on the adsorption remain poorly understood. This study systematically investigated the adsorption characteristics of norfloxacin (NOR) onto a sandy soil obtained from the banks of Xi'an in Yellow River and in the presence of three DOM including HDOM (commercially available humic acids), LDOM (derived from fallen leaves) and MDOM (derived from cattle manure). Elemental analysis, UV–vis spectroscopy, 3D-EEM, XPS, TOC, SEM, and FTIR were used to analyze the adsorption mechanism. It was found that all the DOM sources we used could reduce the adsorption of NOR on sandy soil and prolong the reaction time to reach adsorption equilibrium. The decreasing adsorption capacities of NOR by the three types of DOM (10 mg/L) followed the order as: HDOM < LDOM < MDOM, which was related to their aromaticity, polarity and hydrophobicity. These adsorption processes of NOR on sandy soil in the presence of DOM were well fitted by Double-chamber first-order kinetics, Linear model and Freundlich models. Besides, the adsorption reaction was endothermic and spontaneous. Adsorption competition of DOM molecules with NOR, or formation of DOM-NOR complexes in solution resulted in a decrease of sandy soil adsorption capacity. Correspondingly, co-adsorption and cumulative adsorption were also considered to be the key processes that determined NOR adsorption towards sandy soil after adding DOM. Moreover, the adsorption of NOR onto sandy soil exhibited strong pH-dependent characteristic and NOR might be more easily leached from sandy soil in the aquifer at an alkaline pH. High-ion strength suppressed the adsorption. These results would help to understand the fate and risk of NOR under the action of different DOM.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Indiscriminate discharge of these drugs has increased their presence in the environment, with a consequential impact on aquatic life, triggering changes in their growth and survival [4,5]. In addition, they also aid bacterial resistance, posing serious human health and environmental concerns [2,6]. ...
... Several wastewater treatment methods have been investigated for the degradation/removal of NRFX from wastewater such as adsorption [1,4,6,7,9,[12][13][14][15][16][17][18], membrane filtration [19], adsorption-photocatalytic [20], coagulation [21], electrocoagulation [22][23][24], photo-Fenton [25], electro-Fenton [26], photocatalyst [27], sonocatalytic [28], etc. The membrane separation method is costly and susceptible to fouling [18]. ...
... Amongst these alternatives, adsorption is the most attractive technique in terms of economic viability [3,5]. Other advantages of adsorption over other alternatives in the removal of antibiotics from aqueous solutions include operational simplicity, high removal efficiency, applicability in a large sorbate concentration range, instrumentation cost benefit, etc., [4,13]. ...
Article
Full-text available
Norfloxacin (NRFX) is one of a class of antibiotics known as broad-spectrum fluoroquinolone antibiotic that is frequently used to treat infectious disorders in both animals and humans. NRFX is considered an emergent pharmaceutical contaminate. This review's objective is to evaluate empirical data on NRFX's removal from aqueous medium. The environmental danger of NRFX in the aquatic environment was validated by an initial ecotoxicological study. Graphene oxide/Metal Organic Framework (MOF) based composite, followed by Magnesium oxide/Chitosan/Graphene oxide composite gave the highest NRFX adsorption capacities (Qmax) of 1114.8 and 1000 mg/g, respectively. The main adsorption mechanisms for NRFX uptake include electrostatic interactions, H-bonds, π–π interactions, electron donor-acceptor interactions, hydrophobic interactions, and pore diffusion. The adsorptive uptake of NRFX were most suitably described by Langmuir isotherm and pseudo-second order implying adsorbate-to-adsorbent electron transfer on a monolayer surface. The thermodynamics of NRFX uptake is heavily dependent on the makeup of the adsorbent, and the selection of the eluent for desorption from the solid phase is equally important. There were detected knowledge gaps in column studies and adsorbent disposal method. There's great interest in scale-up and industrial applications of research results that will aid in management of water resources for sustainability.
... The low WEOM concentration in Lake Baiyangdian (0.47-5.62 g/kg, 1.61%-9.35%) may be related to the abundance of microorganisms in the water and in the shoreline soil ( Yuan et al., 2014 ;Wang et al., 2022b ;Zhang et al., 2023a ). This change may be caused by the annual water transfer projects implemented in Lake Baiyangdian, which further accelerate the growth and reproduction of microorganisms. ...
... Wang et al. (2016) found that the distribution and interaction of parent and alkyl polycyclic aromatic hydrocarbons among multiple phases were mainly determined by SPM. Wang et al. (2022) suggested that partitioning processes into SPM might affect the distribution of detected antibiotics in rivers. ...
Article
Full-text available
Antibiotics are commonly detected in natural waters. The organic matter (OM) in suspended particulate matter (SPM) has a critical impact on the adsorption of antibiotics in water. We investigated the contribution of OM content and form to the adsorption of tetracycline (TC) and norfloxacin (NOR) in the SPM of Taihu Lake. To change the content and form of OM in SPM, the samples were subjected to pyrolysis at 505 ˚C and oxidization with H2O2, respectively. Combustion almost completely removed OM, while oxidation removed most of the OM and transformed the remaining OM. Regardless of whether the OM changed or not, the adsorption of NOR and TC by SPM was more in line with the pseudo-second-order kinetic model instead of pseudo-first-order. The fitting of the intraparticle diffusion model showed that the removal of OM had a certain degree of change in the adsorption process. The isothermal adsorption of TC in all samples was more in line with the Temkin model. The isothermal adsorption of NOR in the oxidized sample conformed to the Temkin model, while it conformed to the Langmuir model in the original sample and the sample removed OM via combustion. The adsorption capacity of SPM with almost complete removal of OM significantly decreased, while conversely, the adsorption capacity of SPM after oxidation increased. This indicates that both the content and form of OM affect the adsorption of antibiotics by SPM, and the form of OM has a greater impact. The contribution of OM to NOR adsorption was greater than that of TC. In conclusion, the results verify the importance of OM in adsorbing antibiotics onto SPM, which may provide basic data for antibiotic migration in surface water. Graphical abstract
... Wang et al. (2016) found that the distribution and interaction of parent and alkyl polycyclic aromatic hydrocarbons among multiple phases were mainly determined by SPM. Wang et al. (2022) suggested that partitioning processes into SPM might affect the distribution of detected antibiotics in rivers. ...
Preprint
Full-text available
Antibiotics are commonly detected in natural waters. Suspended particulate matter (SPM) in surface water has a good adsorption capacity for antibiotics, and the organic matter (OM) in SPM is the key factor for this adsorption. We investigated the contribution of OM content and form to the adsorption of tetracycline (TC) and norfloxacin (NOR) in the SPM of Taihu Lake. To change the content and form of OM in SPM, we burned it at 505 ℃ and oxidised it with H 2 O 2, respectively. The OM in the sample that was combusted (expressed as SPM-505 ℃) was almost entirely eliminated, and the adsorption amount of TC decreased by 14.8% when compared to the original sample, while the adsorption amount of NOR decreased by 64.8%, indicating that OM content contributes to the adsorption of antibiotics. Although the OM content in the oxidised sample (expressed as SPM-H 2 O 2 ) decreased, the adsorption amounts of TC and NOR increased by 31.7% and 2.8%, respectively, compared with the original sample. The infrared spectrum and elemental analysis results showed that the morphology of the OM changed, suggesting that the structure of the OM contributes substantially to the adsorption of antibiotics. The contribution of OM to NOR adsorption was greater than that of TC. In conclusion, the results verify the importance of OM in adsorbing antibiotics onto SPM, which may provide basic data for antibiotic migration in surface water.
Article
Full-text available
Iron-containing minerals are key factors controlling arsenic (As) transport in groundwater environments. However, few studies have observed the effect of aqueous Fe [Fe(aq)] on As behavior in a water environment. In this study, river sand in the riparian zone was collected for batch experiments to analyze the effect of Fe(aq) on the adsorption of As on river sand, utilizing characterization analyses to identify the reaction mechanism. The results showed that (1) as the concentration of Fe(aq) in the reaction system increased from 0.1 to 20 mg/L, the equilibrium adsorption capacity (Qe) of river sand for As(III) and As(V) gradually increased. For concentrations of Fe(aq) equal to or greater than 1 mg/L, the Qe for As(V) exceeds that for As(III), whereas at a Fe(aq) concentration of 0.1 mg/L, the Qe for As(III) is higher than that for As(V). (2) Compared to the reaction system without added Fe(aq), the adsorption of As(V) onto river sand was inhibited, while the adsorption of As(III) was enhanced under conditions with low concentrations (0.1, 1 mg/L) of Fe(aq). (3) At higher Fe(aq) concentrations (5, 20 mg/L), the adsorption of both As(V) and As(III) by river sand was more effective than in systems without Fe(aq). Characterization tests confirmed this, while Fe(II) reduced As(V), and Fe(aq) adhered to the surface of river sand to form Fe(OH)3 colloids, thereby facilitating the adsorption of As onto river sand.
Chapter
In this study, montmorillonite was used as an adsorbent. The adsorption mechanism of Norfloxacin (NOR) on montmorillonite and the effects of pH, Dissolved Humic Acid (DHA) concentration, and DHA addition order on the adsorption effect were explored using a static adsorption batch experiment method. The aim is to study the adsorption mechanism and influencing factors of antibiotic pollutants in typical clay minerals, and to provide theoretical support for the study of the effects of recycled water on long-term agricultural irrigation. The results showed that the addition of DHA would slow down the initial reaction rate, and 24 and 48 h were selected as the equilibrium time for isothermal adsorption experiments without and with DHA added; As the pH of the solution increases, the adsorption coefficients Kf and KL have the same trend of change, with a maximum value at pH 7.5. The cation exchange interaction of montmorillonite became the main mechanism at lower pH conditions. The concentration and addition order of DHA can have an impact on the adsorption of NOR on montmorillonite. When the initial concentration of NOR is low, the inhibitory effect of DHA on the adsorption of NOR+ and NOR± on montmorillonite becomes more obvious as the concentration of NOR− increases. The promoting effect of DHA on adsorption of NOR on montmorillonite is first strong and then weak. When the initial concentration of NOR is high, as the concentration of DHA increases, DHA has a promoting and then inhibiting effect on the adsorption of NOR+ and NOR− on montmorillonite, DHA exhibits an overall inhibitory effect on the adsorption of NOR± on montmorillonite; When DHA is added first, the adsorption ratio of NOR on montmorillonite will be higher; The main reason for DHA to promote adsorption is the result of co adsorption or cumulative adsorption, while the reasons for inhibiting adsorption mainly include competitive adsorption at sites, solubilization, and the blocking effect of DHA on NOR entering the montmorillonite layer.
Article
Antibiotics from sulfonamide, fluoroquinolone, and diaminopyrimidine classes are widely used in human and veterinary medicine, and their combined occurrence in the aquatic environment is increasing around the world. In parallel, the understanding of how mixtures of these compounds affect non‐target species from tropical freshwaters is scarce. Thus, this work aimed to study the long‐term reproductive, recovery, and swimming effects of mixtures of 12 antibiotics from three different classes (up to 10 μg L ⁻¹ ) added to freshwater (FWM) and synthetic wastewater (SWM) matrices on freshwater worm Allonais inaequalis . Results revealed that at the reproduction level, the exposure to antibiotics in the SWM matrix does not cause a significant toxic effect on species after 10 days. On the other hand, exposures to initial dose mixtures (10 μg L ⁻¹ each) in FWM caused a significant reduction of offspring by 19.2%. In addition, recovery bioassays (10 days in an antibiotic‐free environment) suggested that A. inaequalis has reduced offspring production due to previous exposure to antibiotic mixtures in both matrices. Furthermore, despite slight variation in swimming speed over treatments, no significant differences were pointed out. Regarding antibiotics in the water matrices after 10‐day exposures, the highest concentrations were up to 2.7, 7.8, and 4.2 μg L ⁻¹ for antibiotics from sulfonamide, fluoroquinolone, and diaminopyrimidine classes, respectively. These findings suggest that a species positioned between primary producers and secondary consumers may experience late reproductive damage even in an antibiotic‐free zone, after previous 10‐day exposure to antibiotic mixtures. Practitioner Points A mixture of sulfonamide, fluoroquinolone, and diaminopyrimidine antibiotics in freshwater affects the offspring production of A. inaequalis after 10 days. After the 10‐day antibiotic exposure, the reproduction of A. inaequalis remains affected in an antibiotic‐free environment over the recovery period. The swimming speed of the worms does not change after 10 days of exposure to the antibiotic mixture. The concentration of dissolved solids can limit the natural degradation of sulfonamide, fluoroquinolone, and diaminopyrimidine antibiotics in the aquatic environment.
Article
Full-text available
Trace levels of the β-lactam antibiotic cephalexin are known to persist through wastewater treatment processes, representing a possible route for promoting antibiotic resistance in environments that receive treated wastewater. Processes...
Article
Algae are ubiquitous in eutrophic surface waters and they play important roles in the sunlight-driven transformation of environmental contaminants. The present study aims to investigate the role of algal organic matter (AOM) separated from Microcystis aeruginosa at different growth stages in tetracycline photodegradation along with the related photosensitive mechanisms. The results showed that AOM, both extracellular organic matter (EOM) and intracellular organic matter (IOM) at different growth phases all promote tetracycline photodegradation, but in different ways and performances. EOM exerts greater photolysis effectiveness than IOM with logarithmic phase (LP) organic matter more effective than that from the algae’s declining growth phase (DP). The promoting efficiencies of tetracycline photodegradation by four AOM types follow the order of LP-EOM > DP-EOM > LP-IOM > DP-IOM, accounting for 1.0420 h−1, 0.8281 h−1, 0.6527 h−1 and 0.4974 h−1, respectively. Such discrepant effectiveness is related to the different chemical constituents and structures of EOM and IOM. Scavenger experiments further demonstrated that triplet-state AOM (3AOM*) contributes the most to tetracycline degradation (30.01%∼48.51%), followed by radical dotOH (1.68%∼10.66%) and 1O2 (1.34%∼10.08%). The steady-state concentrations of 3AOM*, radical dotOH and 1O2 were measured with probe compounds in the range of 13.950 ∼ 155.234 L/mol, 2.494 × 10−17 ∼ 27.636 × 10−17 M and 1.410 × 10−14 ∼ 26.493 × 10−14 M, respectively. Interestingly, the photolytic intermediates show increasing toxicity to Photobacterium phosphoreum at first which then decreases with the extension of irradiation. These results provide comprehensive insight into the transport and environmental behavior of antibiotics in a eutrophic aqueous environment.
Article
Full-text available
Particles are ubiquitous and abundant in natural waters and play a crucial role in the fate and bioavailability of organic pollution. In the present study, natural mineral (kaolinites, KL), organic (humic/fulvic acid, HA/FA) and their composite particles were further separated into particles fractions (PFs, >1 μm) and colloidal fractions (CFs, 1 kDa-1 μm) by cross-flow ultrafiltration (CFUF). This research demonstrated the role of kaolinite-humic composite colloids on the adsorption of fluoroquinolone norfloxacin (NOR). The Freundlich model satisfactory described adsorption curves, showing strong affinity of NOR to CFs, with sorption capacity (KF) between 8975.50 and 16638.13 for NOR. The adsorption capacities of NOR decreased with the particle size increasing from CFs to PFs. In addition, composite CFs showed excellent adsorption capacity, which was mainly attributed to the larger specific surface area of composite CFs and electronegativity and numerous oxygen-containing functional groups on the surfaces of the complexes, and electrostatic attraction, hydrogen bond and cation exchange could dominate the NOR adsorption onto the composite CFs. The best pH value under adsorption condition of composite CFs varied from weakly acidic to neutral with the increase of load amount of humic and fulvic acids on the surface of inorganic particles. The adsorption decreased with higher cation strength, larger cation radius and higher cation valence, which depended on the surface charge of colloids and the molecular shape of NOR. These results provided insight into the interfacial behaviors of NOR on the surfaces of natural colloids and promoted the understanding of the migration and transport of antibiotics in environmental systems.
Article
Full-text available
In this study, we developed an airlift-electrocoagulation (AL-EC) reactor to remove norfloxacin (NOR) from water. Six parameters influencing NOR removal were investigated, and the possible removal mechanism was proposed based on flocs characterization and intermediates analysis. The performances for treating different antibiotics and removing NOR from 3 types of water were also evaluated. The best NOR removal efficiency was obtained with the iron anode and aluminum cathode combination, a current density of 2 mA cm-2, an initial pH of 7, a treatment time of 32 minutes and an air flow rate of 200 mL min-1, the supporting electrolyte type was NaCl, and the initial NOR concentration was 10 mg L-1. Flocs adsorption and electrochemical oxidation were the main ways to remove NOR from water. The average removal efficiency of the AL-EC reactor exceeded 60% of the different antibiotic concentrations in artificial and real water. The highest NOR removal rate reached 93.48% with an operating cost of 0.153 USD m-3. The present work offers a strategy for NOR removal from water with high efficiency and low cost, showing a huge potential for the application of the AL-EC in antibiotic contaminated water treatment.
Article
Full-text available
Per- and polyfluoroalkyl substances (PFASs) have received extensive attention due to their various harmful effects. In this study, the adsorptive removal of 10 legacy and emerging PFASs by four anion-exchange resins (including gel and macroreticular resins) were systematically investigated. Our results showed that the capacities of resins absorbing PFASs were ranked in the following order: gel strong base HPR4700 (297~300 μg/g) ≈ macroreticular strong base S6368 (294~300 μg/g) ≈ macroreticular weak base A111S (289~300 μg/g) > gel weak base WA10 (233~297 μg/g). Adsorption kinetic results indicated that the adsorption process might involve chemical and Henry regime adsorption or reaction control. Intraparticle diffusion was probably the major removal step. Co-existing fulvic acid (0.5, 1, 5 mg/L) and inorganic anions (5 mg/L of sulfate, carbonate, bicarbonate) would hinder the PFAS removal by resins with WA10 showing the highest inhibition rate of 17% and 71%, respectively. The adsorption capacities of PFBA decreased from 233 μg/g to 194 μg/g, and from 233 μg/g to 67 μg/g in the presence of fulvic acid and inorganic anions, respectively. PFASs were more easily removed by HPR4700, S6368, and A111S under neutral and alkaline environment. Moreover, WA10 was not able to remove PFASs under an alkaline medium. This study offered theoretical support for removing PFASs from aqueous phases with various resins.
Article
Full-text available
Quantitative assessment of the impact of groundwater depletion on phreatophytes in (hyper-) arid regions is key to sustainable groundwater management. However, a parsimonious model for predicting the response of phreatophytes to a decrease of the water table is lacking. A variable saturated flow model, HYDRUS-1D, was used to numerically assess the influences of depth to the water table (DWT) and mean annual precipitation (MAP) on transpiration of groundwater-dependent vegetation in (hyper-) arid regions of northwest China. An exponential relationship is found for the normalized transpiration (a ratio of transpiration at a certain DWT to transpiration at 1 m depth, Ta*) with increasing DWT, while a positive linear relationship is identified between Ta* and annual precipitation. Sensitivity analysis shows that the model is insensitive to parameters, such as saturated soil hydraulic conductivity and water stress parameters, indicated by an insignificant variation (less than 20% in most cases) under ± 50% changes of these parameters. Based on these two relationships, a universal model has been developed to predict the response of phreatophyte transpiration to groundwater drawdown for (hyper-) arid regions using MAP only. The estimated Ta* from the model is reasonable by comparing with published measured values.© 2021 China Geology Editorial Office.
Article
Full-text available
Organic dyes are common constituents in wastewater and contribute to accumulation of persistent organic pollutants in the environment. Common dyes are aromatic compounds, bearing a variety of hydrophilic functional groups. Their interaction with solid surfaces can thus involve both van-der-Waals and hydrophobic interactions and electrostatic and/or hydrogen bonding. Aiming to tailor adsorbents with specific capacity for removal of dyes, silica microspheres were synthesized, combining aminopropyl functions as moderators of hydrophilic interaction and bridging aliphatic and aromatic functions as potential moderators of hydrophobic and π-stacking interactions. Two groups of samples were produced: non-porous silica spheres with amino or combined amino and hydrophobic residues; and porous polysilsesquioxane spheres incorporating aminopropyl components and organic bridges in the silica network. The hydrophilicity/hydrophobicity of the samples was studied by the absorption of water and benzene vapors. Bridged fragments, expected to promote the porosity of the samples, as well as hydrophobicity, did not contribute to the latter, because polysilsesquioxanes were bearing large numbers of residual silanol groups. Particles synthesized using tetraethoxysilane were up to 130 nm in size and held 1.6-1.8 mmol/g of amino groups, while, materials prepared from bridged silanes featured particle agglomerates up to 300 nm, 2.2-2.7 mmol/g amino groups content, and specific surface area of 540-620 m²/g. Interaction with Cu²⁺ was used to probe concentration and surface location of the amino functions, reaching 76-203 mg/g. Adsorption of anionic (Acid red 88), neutral (Fluorescein) and cationic (Methylene blue) dyes was investigated revealing multiple interactions between the sorbent and sorbate. The dye sorption capacity values were 81-262 mg/g for Acid red 88, 26-132 mg/g for Fluorescein, and 55-146 mg/g for Methylene blue. Produced silica microspheres have potential as high performance sorbents for the extraction of copper(II) ions and the dyes, and can act as fluorescent carriers after the dye adsorption.
Article
Full-text available
The influences of water washing treatment on the properties of Ulva prolifera -derived biochar ( U.P- biochar) and its sorption characteristics of ofloxacin (OFL) were investigated. The results showed that the water washing treatment significantly changed the physiochemical structures of U.P- biochars, and improved the sorption capacity of OFL. The sorption capacity of OFL by U.P -biochar was closely dependent on pyrolysis temperature (200–600 °C) and equilibrium solution pH (3–11). Different sorption mechanisms (e.g. cation exchange, electrostatic attraction, H-bond and cationic–π and π–π interactions) were dominant for specific U.P- biochars under various pH regions (acidic, neutral and alkaline). Moreover, the unwashed and washed U.P- biochars prepared at 200 °C (BC200 and BCW200) showed a higher sorption capacity of OFL at pH = 7. The two-compartment first-order model provided an appropriate description of the sorption kinetics of OFL by BC200 and BCW200 ( R ² > 0.98), which revealed that the contribution ratios between the fast and slow sorption compartments ( f fast /f slow , 1.55 for BC200 and 1.25 for BCW200) reduced after water washing treatment of U.P -biochar. The values of n for the Freundlich model were less than 1, which demonstrated that the sorption of OFL by BC200 and BCW200 was favourable and nonlinear. Also, the sorption of OFL by BC200 and BCW200 increased with an increase in solution temperature and the sorption process was spontaneous and endothermic. This study provides valuable information for being a primary consideration in the production and application of U.P- biochar.
Article
Full-text available
The presence of sulfamethoxazole (SMX) in croplands has become an international concern. The environmental behavior and fate of SMX in agricultural soils are not well understood, especially when the adsorption behavior is disturbed by the dissolved organic matter (DOM) released by crop straw. As canola straw is one of the biomasses widely returned to farmlands, we characterized DOM derived from pristine and decomposed canola straw, and explored the effects and mechanisms of the DOMs on regulating SMX adsorption to purple paddy soils. The spectral analysis showed that the molecular weight, aromaticity, and hydrophobicity of canola straw-derived DOM increased as decomposition proceeded. These physicochemical properties collectively determined the effects of the DOM on SMX adsorption. The DOM derived from pristine canola straw increased SMX maximum adsorption capacity of the soils by approximately 2.6 times, but this positive effect gradually decreased to a steady state by day 90 in the straw decomposition period. Nevertheless, the SMX adsorption behavior in the soils was invariably determined by the DOM extracts. These adsorption processes of SMX were well fitted by the double-chamber kinetics model and the Langmuir and Freundlich thermodynamic models. Thermodynamic parameters indicated that SMX adsorption onto the soils was spontaneous and endothermic, and this adsorption characteristics was not significantly (p > 0.05) changed by the DOM extracts. However, the adsorption kinetics were altered by those DOMs, i.e., the fast and slow adsorption processes were both diminished. Correspondingly, co-adsorption and cumulative adsorption were identified as the main mechanisms determining SMX adsorption to the purple paddy soils in the presence of the straw-derived DOMs. These results collectively indicated that the DOMs released by straw in croplands may decrease the ecological risks of organic pollutants by inhibiting their migration processes.
Article
Full-text available
To reveal the adsorption mechanism of sediment to antibiotics with the presence of dissolved organic matter (DOM), batch experiments were carried out by oxytetracycline (OTC) on sediments with decayed plants (PDOM) and composted chicken manure (MDOM), and the zeta potential in the system before and after adsorption was measured. Results showed that the PDOM promoted the adsorption process, while the MDOM inhibited the adsorption. Adding PDOM, the change of zeta potential (Δζ) increased by 40.08% for first terrace sediments (FT) and 63.98% for riverbed sediments (RB), respectively; meanwhile, MDOM decreased by 20.04% for FT and 28.39% for RB, respectively. The results of kinetic fitting models of replacing the adsorption amount with Δζ were consistent with the initial. It indicated that there was a positive correlation between the adsorption amount and Δζ, and the zeta potential can be used to quickly judge the degree of adsorption process. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory describes the interactions of sediment particles. In terms of adsorption amount, zeta potential (absolute value) and total interaction energy all followed the order: RB > FT, RB-PDOM > FT-PDOM, and RB-MDOM > FT-MDOM. The more negative the zeta potential is, the better the dispersion of the particles is. Stronger repulsion is more conducive to adsorbing positively charged OTC. The site energy distribution theory further explained that the distribution of adsorption site in the various states of sediments increased while adding the PDOM and decreased while adding the MDOM.
Article
Full-text available
Dissolved organic matter (DOM) can become a carrier of soil contaminants. Therefore, an understanding of the evolution and characteristics of DOM produced by Chinese milk vetch during green manuring is crucial. In this study, DOM solutions from 28 days’ manuring with three different organic materials were characterized using three-dimensional fluorescence excitation–emission matrix (3D-EEM) with parallel factor (PARAFAC) analysis, and ultraviolet–visible spectroscopy. With the green manuring milk vetch at flowering period (MVFP), the DOC and water-soluble cadmium (WS-Cd) in soil solution reached 1875 mg/l and 2.64 μg/l, respectively, on day 6 after manuring. The PARAFAC analysis modeled three components: protein-like (tryptophan) and two humic-like components (humic acid and fulvic acid); DOM produced by MVFP was primarily protein-like during the early stage of decomposition. The aromaticity and molecular weight of DOM in the MVFP treatment was lower than in the other treatments, which could promote the release of soil particle-adsorbed Cd to soil solution. Principal components analysis showed that aromaticity was the main factor affecting Cd solubility, and the negative linear correlation of aromaticity with WS-Cd reached 0.4827. The results of this study supported the idea that manuring with MVFP might accelerate Cd infiltration to deep soil with water under gravity.
Article
Full-text available
Sedimentary soil was selected as the original sample (SOS). The adsorption fractions were obtained by the removal of dissolved organic matter (SRDOM), removal of minerals (SRM), removal of free fat (SRLF), and removal of nonhydrolyzable organic carbon (SNHC) respectively to investigate the adsorption characteristic of oxytetracycline (OTC) by different fractions of organic matter in sedimentary soil. The adsorption mechanism was investigated by elemental analysis, infrared spectra, and UV-visible spectroscopy. The results showed that the DOM in the sedimentary soil inhibited the adsorption of OTC, but the adsorption of different fractions of organic matter was quite different. The sorption kinetics of OTC were fitted to the pseudo-second-order model and the adsorption capacity of each fraction was: SNHC≈SRDOM > SOS > SRLF> SRM. The adsorption processes of OTC by different fractions were spontaneous. Alkaline pH condition had an effect on the adsorption of four fractions except for SNHC, while neutral and acidic pH affects SOS and SRDOM more obviously, the SNHC fraction was almost free from pH varies. Mechanism analysis showed that the main factors determining the adsorption capacity were the aromaticity and polarity of organic matter fractions. For the organic matter–based fractions (SRM, SRLF, and SNHC), the adsorption coefficient was positively correlated with the aromaticity. Furthermore, for SOS and SRDOM based on inorganic minerals, it was not only related to aromaticity, but also the content and composition of inorganic minerals.
Article
Full-text available
The effects of two representative dissolved organic matters (DOMs) (derived from corrupt plants (PDOM) and chicken manure (MDOM)) on sorption characteristic of oxytetracycline to three typical sediments (first terrace (FT), river floodplain (RF), and riverbed (RB) sediments collected from the Weihe River) were investigated. Results showed that both DOMs can make the adsorption equilibrium time advance about 6 hours. The presence of DOMs changed the sorption kinetics model and the spontaneous degree of the reaction but did not change the sorption isotherm models. The adsorption of oxytetracycline (OTC) could be promoted by adding PDOM, and its maximum adsorption amount increased by 23.8% for FT, 38.0% for RB, and 28.3% for RF, respectively, whereas MDOM could inhibit the adsorption and maximum adsorption amount decreased by 23.3% for FT, 11.6% for RB, and 16.1% for RF, respectively. In addition, the DOM concentration also affected the adsorption. Overall, this study suggests that the humus-like DOM can promote the adsorption of OTC while the protein-like DOM can inhibit the adsorption of OTC to sediments, which is determined by the aromaticity, hydrophilicity, and polarity of the DOMs.
Article
Full-text available
Veterinary antimicrobials are emerging environmental contaminants of concern. In this study, the sorption of enrofloxacin (ENR) onto humic acids (HAs) extracted from three Brazilian soils was evaluated. HAs were characterized by elemental analysis and solid (13)C nuclear magnetic resonance spectroscopy. The sorption of ENR onto HAs was at least 20-fold higher than onto the soils from which they were separated. Ionic and cation bridging are the primary interactions involved. The interactions driven by cation exchange are predominant on HAs, which appear to have abundant carboxylic groups and a relatively high proportion of H-bond donor moieties with carbohydrate-like structures. Interactions explained by cation bridging and/or surface complexation on HAs are facilitated by moieties containing conjugated ligands, significant content of oxygen-containing functional groups, such as phenolic-OH or lignin-like structures. HAs containing electron-donating phenolic moieties and carboxylic acid ligand groups exhibit a sorption mechanism that is primarily driven by strong metal binding, favoring the formation of ternary complexes between functional groups of the organic matter and drugs.
Article
Manure application increases the transfer risk of antibiotic resistance to farmland. Especially, its impact remains unclear when it occurs in arsenic (As)-contaminated paddy soils, which is considered as a global environmental problem. In this work, we investigated the fate of antibiotic resistance genes (ARGs) in As-antibiotic co-contaminated paddy soils under the application of manure from different sources (pig manure, cow dung, and chicken manure). Differences in the aliphatic carbon and electron-donating capacities of these dissolved organic matters (DOMs) regulated the transformation of iron and As by both biotic and abiotic processes. The regulation by pig manure was stronger than that by cow dung and chicken manure. DOM regulation increased the abundance of As-related functional genes (arsC, arrA, aioA, and arsM) in the soil and accelerated the transformation of As speciation, the highest proportion of As(III) being 45–61%. Meanwhile, the continuous selection pressure provided by the highly toxic As(III) increased the risk of ARGs and mobile genetic elements (MGEs) via horizontal gene transfer. As-resistant bacteria, including Bacillus, Geobacter, and Desulfitobacterium, were finally considered as potential host bacteria for ARGs and MGEs. In summary, this study clarified the synergistic mechanism of As-antibiotic on the fate of ARGs in co-contaminated paddy soils, and provided practical guidance for the proper application of organic fertilizers.
Article
Dissolved organic matter (DOM), which is generally expressed in terms of dissolved organic carbon (DOC), is a key indicator used to monitor the short-term dynamics of soil quality. However, its content and molecular composition are strongly influenced by agricultural practices, and the determination of DOC content is cumbersome and expensive. A field experiment with three treatments, including (i) no mulching (CK), (ii) gravel mulching (GM) and (iii) film mulching (FM), was selected to study the content and composition characteristics of DOC under different agricultural practices using ultraviolet visible (UV–Vis) technology. The results showed that the GM and FM treatments significantly decreased the DOC contents in topsoil (0–20 cm) by 6.15% and 12.18%, respectively, in comparison with the control. The FM treatment significantly decreased the values of specific UV absorbance at 254 nm (SUVA254), 260 nm (SUVA260) and Chromophoric DOM (CDOM) in each soil layer, indicating the aromaticity, hydrophobicity and CDOM content in the FM treatment were significantly decreased in each soil layer. To establish an accurate model for rapid determination of soil DOC, Spearman correlation analysis was performed on normally and non-normally distributed datasets, and linear regression analysis was utilized for modeling with normalized data. The results of linear regression analysis showed that the regression models established among CDOM/DOC, CDOM, SUVA254, SUVA260, and specific UV absorbance at 280 nm (SUVA280) had a high degree of fit, with coefficients of determination (R²) all exceeding 0.95. The model validation results showed that the regression model established between CDOM/DOC and CDOM had the highest accuracy with the lowest root mean squared error (RMSE) (3.58 mg kg⁻¹) and the lowest relative error (RE) (2.74%), which was DOC = 58.065 + 184.355 × A(355) mg kg⁻¹. The results showed that the estimation of soil DOC can be achieved with good prediction using UV–Vis technology. This study highlights the potential of UV–Vis spectroscopic technology to rapidly estimate soil DOM in agriculture.
Article
Riparian zone is a hub for microplastics (MPs), and MPs accumulation also changes the function of the riparian zone (e.g., carbon pool) to pose a great threat to river ecosystems. Although it is known that MPs can be aged for changing their characteristic after accumulating in riparian sediment, the effect of MP aging behavior on sediment dissolved organic matter (DOM) bioavailability and carbon emission has not been elucidated. In this study, effects of pristine and aged MPs on the DOM characteristics and components were investigated in sediment. The results showed that pristine MPs increased DOM humification and promoted the formation of larger molecular weight components, thereby reducing DOM bioavailability by approximately 16%~23% and inducing negative priming effect. However, inhibition of MPs on DOM bioavailability and the priming effect decreased with aging behavior. Mathematical models revealed that the fulvic acid-like substance of sediment DOM was the driven factor in the influence of sediment carbon stability. Further microbial analysis found that higher carbohydrate metabolism promoted DOM humification, thereby reducing CO2 emissions approximately by 19%~26% after MPs accumulation. Thus, this study provided an integrated picture to understand the risk of MPs accumulation in sediment for a long term on terrestrial and aquatic ecosystems.
Article
Dissolved organic matter (DOM) is composed of numerous fluorescent components. It is an indispensable parameter to affect the environmental fate of antibiotics in various ways. To assess the migration of antibiotics in environment compartments, it is crucial to understand the binding mechanism between DOM and antibiotics. How a particular component in DOM interacts with coexistence antibiotics is not still fully understood. Therefore, in the present study, interactions of two antibiotics oxytetracycline (OTC) and sulfadiazine (SD) with humic acid (HA) and L-tryptophan (L-Trp) which were representative DOM components, were investigated by multispectral techniques and density functional theory (DFT) calculations. The fluorescence quenching mechanism was static quenching. In the binding process, the quenching ability of OTC was stronger than that of SD in HA, which was the same as in L-Trp. DFT calculations were applied to confirm a stronger interaction between OTC and HA or L-Trp than SD. Meanwhile, analyzing the binding sequence by two-dimensional correlation spectroscopy (2D-COS), a humic-like substance bound antibiotics was earlier than a protein-like substance. In HA system, the combination of two antibiotics had a synergistic effect on HA quenching. In L-Trp system, the quenching relationship between the two antibiotics and L-Trp was antagonistic. The FTIR spectra showed that hydroxyl and amide were involved in the binding process of individual DOM components with OTC and SD. The work will help to further understand the behavior of coexistence antibiotics in the environment.
Article
Fluoroquinolones are one of most commonly used antibiotics for preventing and treating bacterial infections and their unsatisfactory removal by conventional wastewater treatment technology have aroused widespread attention. A novel adsorbent of KMSBC was the first time synthesized and tested to adsorb three typical fluoroquinolone antibiotics of CIP, NOR and OFL from water. The characterization analysis showed that KMSBC possessed the superior porous structure, abundant functional groups and greater graphitic degree. Together with kinetics, isotherms, thermodynamics and critical factors (e.g., biochar dose, reaction time/temperature, fluoroquinolone antibiotics concentration, pH, co-existing ionic strength and HA concentration) analysis suggested that pore filling, π-π conjugation, H-bonding and electrostatic interaction were the key mechanisms for fluoroquinolone antibiotics adsorption by KMSBC. KMSBC exhibited the optimum adsorption performance at pH = 5 despite the adsorbates. The maximum adsorption capacity of KMSBC for CIP, NOR and OFL were 49.9, 55.7 and 47.4 mg/g at 25 °C, respectively. Also, KMSBC exhibited the good magnetic sensitivity and stability with the leaching concentrations of Fe were far below than environmental limit (GB5749-2006) at various pH (from 3 to 12), ionic strength and HA concentrations. Additionally, KMSBC performed a stable sustainable adsorption performance in recycles by NaOH regeneration. Thus, KMSBC had the potential to be a promising adsorbent for fluoroquinolone antibiotics removal with favorable adsorption capacity, environmental security and easy regeneration performance.
Article
Global production and use of plastics have resulted in the wide dissemination of micro- and nano-plastics (MNPs) to the natural environment. Potentially acting as a vector, the role of MNPs on the fate and transport of environmental pollutants (e.g., antibiotics such as chlortetracycline hydrochloride; CTC) has garnered global concern recently. Herein, the cotransport of MNPs and CTC in columns packed with uncoated sand or soil colloid-coated sand (SCCS) under different degrees of physicochemical heterogeneity and ionic strength was systematically explored. Our results show that MNPs and CTC inhibit the transport of each other when they coexist. The adsorption of CTC onto sand grains, MNPs, and soil colloids, as well as the aggregation of MNPs in the presence of CTC could be the major contributors to the enhanced retention of CTC and MNPs. In SCCS with different degrees of soil colloid coating, the adsorption of CTC on soil colloids is critical to influence the transport of CTC, and the nonlinear retention of MNPs to soil colloids is mainly attributed to the alteration of collector surface roughness by soil colloids. High ionic strength slightly facilitates CTC transport due to the competition for adsorption sites and the formation of CTC macromolecules, but significantly inhibits MNPs transport by suppressing the electrostatic double layers based on colloid stability theory. Consequently, the cotransport of MNPs and CTC is governed by the coupled interplay of collector surface roughness and chemical heterogeneity, due to the soil colloid coatings and the adsorbed CTC on the surfaces associated with solution chemistries such as ionic strength. Increased cotransport of MNPs and CTC occurred under a higher concentration of MNPs due to a larger number of adsorption sites for CTC. Our findings advance the current understanding of the complex cotransport of MNPs and antibiotics in the environment. This information is valuable for understanding contaminant fate and formulating strategies for environmental remediation due to contamination of MNPs and co-occurring contaminants.
Article
In contrast to good knowledge of dissolved organic matter (DOM) adsorption on mineral soils in temperate climate, the behavior of DOM in frozen mineral horizons located under peat soils of permafrost-affected regions remains poorly characterized. Yet, these regions contain sizeable and potentially highly labile pools of organic (peat) carbon (C) that may migrate downwards across mineral layers in case of massive thaw in frozen peatlands induced by on-going climate warming. To quantify these pools and the lability of DOM in permafrost peat soils, we performed experiments focusing on dissolved organic carbon (DOC) desorption from, and adsorption onto, mineral horizons (iron-poor and iron-rich sands as well as silt loam) from the largest frozen peatland in the world, the Western Siberia Lowland (WSL). Desorbed DOC ranged between 0.1 and 0.6 mg C gsoil⁻¹ depending on type of mineral substrate. The adsorption of peat leachate DOM ranged between 0.1 and 0.5 mg C gsoil⁻¹ being highest in Al-Fe-rich mineral horizons. Field measurements of C pools in peat and underlying mineral horizons over 1 m depth in the discontinuous permafrost zone yielded 47 and 15 kg C m⁻², respectively. The organic carbon (OC) adsorption capacity of the 1 m – thick mineral layers represented <2% of total amount of OC containing in the 1 m – thick peat layer. However, this adsorption capacity is comparable to the amount of DOC that can be leached from overlaying peat horizons (18%). On average, out of 1.38 ± 0.13 kg C m⁻² capable of being initially released from the upper 0–100 cm of peat, 0.25 ± 0.19 kg C m⁻² can be adsorbed by the underlying 100–200 cm of Fe- and Al-rich sands and clays. The remaining 1.13 kg C m⁻² can be exported to lakes and rivers. Therefore, DOC released during peat thaw in upper soil horizons in permafrost regions can be sizably attenuated via adsorption on mineral layers. This should be taken into account when modeling the feedback of permafrost thaw on C export and CO2 emissions.
Article
In this study, biochar derived from spent coffee grounds (SCGB) was used to adsorb norfloxacin (NOR) in water. The biochar properties were interpreted by analysis of the specific surface area, morphology, structure, thermal stability, and functional groups. The impacts of pH, NOR, and ion's present on SCGB performance were examined. The NOR adsorption mode of SCGB is best suited to the Langmuir model (R² = 0.974) with maximum absorption capacity (69.8 mg g⁻¹). By using a Response Surface Method (RSM), optimal adsorption was also found at pH of 6.26, NOR of 24.69 mg L⁻¹, and SCGB of 1.32 g L⁻¹. Compared with biochars derived from agriculture such as corn stalks, willow branches, potato stem, reed stalks, cauliflower roots, wheat straw, the NOR adsorption capacity of SCGB was 2–30 times higher, but less than 3–4 times for biochars made from Salix mongolica, luffa sponge and polydopamine microspheres. These findings reveal that spent coffee grounds biochar could effectively remove NOR from aqueous solutions. Approaching biochar derived from coffee grounds would be a promising eco-friendly solution because it utilizes solid waste, saves costs, and creates adsorbents to deal with emerging pollutants like antibiotics.
Article
The presence of antibiotic in aquatic environments has become a topic of great concern with respect to both environment and global public health. However, to date, only a few studies have been carried out on the sorption behavior of antibiotics in aquatic environments. In this study, batch equilibrium experiments were conducted to explore the sorption/desorption behavior of chlortetracycline (CTC) on the sediments in the Lanzhou section of the Yellow River. The results showed multilayer chemisorption on heterogeneous surfaces dominated by hydrophobic distribution and an obvious hysteresis phenomenon was observed. In addition, the sorption was found to be influenced by factors such as a continuous increase in the temperature, reduction in the initial concentration of CTC, and the increasing particle size of the sediments. The pH was found to affect the dissociation degree of CTC, and the sorptive amount was found to decrease with the increase in the pH value. The presence of other ions which with high valence state and concentration presenting an obvious inhibitory effect in the sorption process. Additionally, the large sorptive amount of antibiotics in the sediments due to the high cation exchange capacity (CEC), organic matter, and clay particles indicated the influence of the physicochemical properties of sediments on the sorption behavior of antibiotics. This study preliminarily grasps the trend of CTC sorption/desorption on sediments, which is helpful in understanding the fate of CTC and assessing its ecological risks in the upper reaches of the Yellow River.
Article
Dissolved organic matter (DOM) originated from livestock manure often co-exists with cadmium ion (Cd) in livestock effluent. However, the effects of DOM on removal efficiency of Cd by adsorbent remain unknown. This study investigated the effects of DOM originated from cattle manure on adsorption behaviors of Cd by periphyton, and the possible mechanisms were also explored through desorption analyses, Fourier transform infrared spectroscopy (FTIR) determination, and histochemical staining. The adsorption kinetics and isotherm of Cd by periphyton could be explained by pseudo-second-order model and Freundlich model, respectively. DOM addition did not change the adsorption kinetics and isotherm of periphyton toward Cd, but it decreased the adsorption capacity of Cd by periphyton. Ion exchange and complexation were the main binding forces for the adsorption of Cd by periphyton, while the adsorption of Cd by DOM mainly through complexation. Amide and hydroxyl in the DOM were involved in its adsorption toward Cd, and may contribute to the competition for Cd with periphyton. Thus, the decrease of DOM concentration in livestock effluent is helpful to remove Cd by periphyton adsorption.
Article
Organic matter (OM) is the most critical factor in controlling the sorption-desorption of SMZ in soil, however, few studies have explored the effects of OM removal on these important behaviors among different soils. Batch experiments were conducted to investigate the sorption and desorption characteristics of SMZ in three different soils: fluvo-aquic soil (FS), paddy soil (PS), and red soil (RS). The SMZ sorption in the evaluated soils was dominated by physisorption. The SMZ sorption capacities of FS and PS, which had a relatively higher OM content than RS, were higher than that of RS. The SMZ sorption in FS was dominated by linear partitioning. In contrast, the SMZ sorption in PS and RS was mainly nonlinear surface adsorption. After OM removal, the SMZ sorption capacity was significantly reduced in FS but increased in PS and RS. Furthermore, OM removal restrained the sorption intensity of SMZ in soils. Relatively higher OM and clay contents inhibited the SMZ desorption in FS and PS. The strong negative desorption hysteresis of SMZ in the three soils indicated that SMZ was able to move into the soil solution, thereby posing a risk to humans. Taken together, the findings of this study showed that OM indeed plays an important role during SMZ sorption-desorption in soil.
Article
Microplastics (MPs) as carriers of various contaminants have attracted more attentions in water environments. However, the interactions between MPs and norfloxacin (NOR) in natural water environments were still not systematically studied. In this study, the adsorption of NOR onto four typical types of MPs (polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC)) was investigated in simulated natural water and real surface water, and the adsorption mechanisms were deeply explored to provide fundamental understandings of the MPs-NOR complicated pollution. The results showed that the kinetics of NOR onto all MPs obeyed pseudo-second-order model, and was greatly slowed down at lower temperature or higher salinity. The intrinsic structure and surface area of MPs played important roles in the adsorption behavior of NOR on these four types of MPs. The adsorption isotherm of NOR onto all MPs could be well described by linear model, with the Kd values following the order of PVC > PS > PE > PP (i.e. 6.229–11.901 L/μg) in simulated natural water. However, in surface water the adsorption isotherms of NOR on all MPs could be well fitted by Freundlich model. For all MPs, the adsorption of NOR was quite pH-dependent due to the electrostatic interactions. Furthermore, the salinity and the presence of natural organic matters (NOM) had significantly hindered the NOR adsorption. More importantly, compared with adsorption behavior in simulated natural water, the competition of coexisting substances such as cations and NOM for adsorption sites and higher water pH dramatically reduced the adsorption of NOR onto all types of MPs in Jiang'an River, with the reduction rate of 19.7–41.2%. Finally, the mechanism studies indicated that the electrostatic attractions played a key role in the adsorptions of NOR onto MPs, and π-π, H-bonding, polar-polar, and Van Der Waals interactions were also involved in adsorption processes.
Article
Soil recovery, particularly soil organic matter (SOM), after land-use changes is crucial for the maintenance of ecosystem functioning and sustainability. The objective of this study was to investigate the influence of wheat dry-farming and subsequent abandonment of dry-farming on the quantity and quality of SOM and humic substances (HS) in a semi-humid upland pasture ecosystem. Soil samples were collected at 0–15 and 15–30 cm depths from cultivated pastures under dry-farming, restored pastures after dry-farming abandonment and never-cultivated pastures as a reference site. The samples were analyzed for total organic C (TOC), chemically labile organic C (LOC) and non-labile C (NLC) fractions; and further fractionated into conventional fulvic acid (FA), humic acid (HA) and humin (HU) components. Land-use changes in pastures altered both labile C and highly recalcitrant C fractions, depending on soil sampling depth. Long-term dry-farming reduced soil TOC (33%), LOC (64%) and NLC (29%) fractions, while dry-farming abandonment resulted in an increase in soil TOC (18–35%), LOC (45–65%) and NLC (17–33%), depending on the age of cultivation abandonment. The quantity of both FA and HU fractions decreased (40–43%) following dry-farming in pasture soils but increased (17–81%) after dry-farming abandonment when compared with cultivated pasture soils. Nevertheless, neither dry-farming nor abandonment of dry-farming affected the HA fraction. Although dry-farming practices increased the HA/FA ratio, (FA + HA)/TOC ratio and E4/E6 ratio of HA, the abandonment of dry-farming reduced these qualitative parameters of soil HS. Dry-farming abandonment in native pastures caused HA structure to be become more aromatic and stable. This study indicated that land-use changes in primary pastures can affect not only the quantity, but also the quality of SOM and its major fractions. Changes in both quantity and quality of SOM and HS could be used as sensitive indicators of soil degradation and ecological restoration in semi-humid pastures.
Article
Biomass-derived biochar is a carbon-rich product for soil amendment and sulfapyridine (SPY) is a typical sulfonamide of antibiotics in the soil. Amendment with biochar for soil could control SPY sorption or mobility. However, the pristine biochar inevitably goes through the long-term ageing in the environment and the information on such ageing impact on SPY sorption is not fully recognized. The simulated ageing process methods were employed for high-temperature and freeze-thraw climate to treat the biochar for two months in the present study. The batch adsorption of SPY and leaching column experiments were conducted for comparison of the fresh/aged biochar-soil system. The results showed that biochar addition could increase soil pH and saturated moisture, aged biochars own more O-containing functional groups and exhibit higher hydrophilicity and polarity. The sorption mechanism of unamended soil with SPY primarily resulted from the weak hydrophobic distribution. All fresh and aged biochar amended soil increased SPY sorption due to improvement of H-bonding interaction between SPY and biochar surface functional groups, indicating such initiative adsorption was stronger than passive partitioning. It is of importance for us to reconsider that aged biochar-amended soil, especially two-month high-temperature aged biochar-amended soil showed the highest adsorption performance and the lowest desorption capacity towards SPY. Both SPY leaching column experiments and the acid rain leaching tests suggested that the application of biochar in tropical or high-temperature climate regions for organics polluted soil remediation is favorable, but we should be aware of the uncertainty of soil amendment with biochar in cold regions.
Article
Adding livestock manure to soil to improve soil quality is a common agricultural practice. However, information on the effect of manure soil amendments on the sorption of veterinary antibiotics is scarce. Batch equilibrium experiments were utilized to investigate the effects of livestock manures on the sorption of chlortetracycline (CTC) onto sierozem. Kinetic sorption results showed that sorption equilibrium for CTC was reached within 2 h, and the presence of livestock manures lengthened the time to equilibrium attainment and promoted the sorption capacity of CTC onto sierozem. A good fit of the sorption kinetic data was achieved with a pseudo-second-order model with or without the presence of animal manure. Both boundary layer control and intraparticle diffusion were related to the sorption kinetic process. The CTC sorption isotherm of sierozem fit well with both Freundlich isothermal and linear models. The sorption of CTC onto sierozem exhibited strong pH dependence and was strongly governed by the ability of each substance to ionize as a function of pH. A decrease in CTC sorption was observed with increasing ionic strength as electrolyte cations competed with the positively charged CTC species and complexes for sorption sites. CTC sorption capacity declined when the solution contained Ca²⁺ compared to Na⁺ and Mg²⁺ solutions at similar ionic strength. The sorption of CTC by sierozem affected by livestock manures exhibited strong dependence on the amendment amount. The results suggest that manure application may change the sorption behavior and mechanism of CTC on loess soil. These findings contribute to understanding the fate and risk of veterinary antibiotics in loess soil affected by manure application.
Article
Vadose zone is an important channel for sulfonamide contamination into groundwater, and the processes of adsorption and migration in the vadose zone are complicated. In this study, we focused on three sulfonamide antibiotics (sulfamethoxazole, sulfamethazine and sulfamethoxypyridazine) in the groundwater of Limin drinking water resource in northeastern China and assessed their migration potential in aquifers. Analysis was based on adsorption batch tests, a column experiment. Some key influencing factors including pH, iron, manganese and ammonia were considered. The results showed that the concentration of sulfamethoxypyridazine in groundwater is higher, ranging between 7 and 30 ng/L, the concentrations of sulfamethoxazole and sulfamethazine are relatively lower and no more than 1 ng/L. The adsorption capacity of the three antibiotics on vadose zone materials shows the following order: sulfamethoxypyridazine > sulfamethazine > sulfamethoxazole. Furthermore, for the three sulfonamides, the adsorption is higher in the medium of 0–20 cm (finer particle size, higher clay content and lower sand content) than that in 80–100 cm. Coexisting ions (iron, manganese and ammonia) promote the adsorption of sulfonamides, and the adsorption of sulfonamides decreases as the water pH increases. The column experiment also shows that the three sulfonamides have strong migration abilities and pose a considerable risk to groundwater.
Article
The impact of antibiotics on denitrification has attracted widespread attention recently. Norfloxacin, as a representative of fluoroquinolone antibiotics, is extensively detected in groundwater. However, whether the release of norfloxacin into the groundwater poses potential risks to denitrification remains unclear. In this study, effect of norfloxacin on denitrification was investigated. The results showed that increasing norfloxacin from 0 to 100 μg/L decreased nitrate removal rate from 0.68 to 0.44 mg/L/h, but enhanced N2O emission by 177 folds. Additionally, 100 μg/L of norfloxacin decreased nitrite accumulation by 50.6%. Corresponding inhibition of norfloxacin on bacterial growth, carbon source utilization, electron transport system activity and genes expression was revealed. Furthermore, denitrifying enzyme dynamic monitoring results showed that norfloxacin inhibited nitrate reductase activity, and enhanced nitrite reductase activity to some extent in denitrification process, which was consistent with the variations of nitrate and nitrite. Meanwhile, sensitivity analysis demonstrated that nitrate reductase was more easily affected by norfloxacin than nitrite reductase. Overall, this study suggests that multiple regulation of denitrifying enzyme activity contributes to evaluating the comprehensive effects of antibiotics on groundwater denitrification.
Article
The sediment load of the Yellow River, once the highest in the world, has decreased to a record low. The annual sediment load (ASL, t·yr⁻¹) in the main stream of the Yellow River in the past 100 years (1919–2018) shows that the ASL was consistently high for the first 60 years and then decreased gradually until 1999, when the Green for Grain Project (GGP) launched on the Loess Plateau caused ASL to drop sharply. The annual runoff did not decrease as much as ASL from 1919 to 2018, while it decreased significantly in the middle reaches. With the construction of sediment storage dams, terraces, and reservoirs, especially after the GGP launched, the ASL of the Yellow River has been reduced to historic lows. For example, the annual average Normalized Difference Vegetation Index (NDVI) of the Yellow River Basin increased significantly from 1982 to 2016, and the ASL decreased exponentially with increasing NDVI. Although the annual precipitation has a stationary behavior in the Yellow River, the daily precipitation extremes affecting erosion showed an increase of 7% per degree of warming but did not change the trend of ASL reduction. Therefore, the effective management on the Loess Plateau can control the trend of the sediment load of the Yellow River. Erosion, sediment load, and runoff in changing environments are affected by flood control and drought resistance, so more attention should be paid to these hydrologic processes.
Article
With the broadly application of antibiotics to treat infectious diseases in humans and animals, antibiotic contaminants such as tetracycline (TC) and ciprofloxacin (CIP) have been detected in soil environments, where iron oxide minerals and phosphate are ubiquitous. To date, the influence of phosphate on the adsorption behaviors of TC/CIP onto iron oxides is still poorly understood. In this study, the effects of phosphate on the adsorptions of TC and CIP onto iron oxide minerals were investigated. Adsorption isotherms showed that the adsorption affinities of TC and CIP onto the three iron oxide minerals were in the order of goethite > hematite > magnetite with or without phosphate, the trend was dominated by different surface area and amount of surface hydroxyl groups of iron oxide minerals. Meanwhile, TC contains more functional groups than CIP for bonding, which resulted in greater adsorption affinity of three iron oxides to TC than that to CIP. Interestingly, phosphate weakened TC adsorption, while enhanced CIP adsorption, on the three iron oxides. This observation was ascribed to that phosphate anion enhanced the surface negative charge of iron oxides, which reinforced the electrostatic repulsion between iron oxides and negatively charged TC, also reinforced the electrostatic attraction between iron oxides and positively charged CIP. Furthermore, the inhibitory effect of phosphate on TC adsorption was dramatically enhanced at high pH, while the promoting effect of phosphate on CIP adsorption was slightly changed with various pH. Our results highlight the importance of phosphate in exploring the environmental fate of antibiotics in natural environment.
Article
UV254 is one of the main disinfection methods used in wastewater treatment plants (WWTPs) for the inactivation of pathogens in the effluents before being discharged into the receiving waters. The effluent organic matters (EfOM) are well-known photosensitizers for the generation of reactive species, mainly including the triplet states of EfOM (³EfOM*), singlet oxygen (¹O2) and hydroxyl radical (•OH), which contribute to the removal of trace pollutants in water. However, the effect of UV254 disinfection on the photoreactivity of EfOM remains unclear. Here we investigated the photophysical and photochemical properties variation of EfOM after UV254 disinfection, along with humic substances (HS) as comparison. The UV254 disinfection caused a decrease of aromaticity, fluorescence intensity and molecular weight for all samples, while a reduction formation of triplet state of these dissolved organic matters (³DOM*), ¹O2, hydrogen peroxide (H2O2), and superoxide anions (O2•−) under simulated sunlight was observed. In contrast, the generation of •OH was increased after UV254 disinfection. The quantum yield of ¹O2 was positively correlated with triplet quantum yield coefficient (fTMP) in all cases. However, the quantum yield of •OH exhibited positive and negative correlations with fTMP for EfOM and HS, respectively. The quantum yields showed positive correlations with E2/E3 (ratio of the absorbance at 254 to 365 nm) for untreated DOM samples, while for the first time we found the trends differ distinctly after UV254 disinfection. These findings indicate that UV254 disinfection in WWTPs significantly increases the potential of •OH photoproduction from effluents and the cost-effective solar irradiation after UV254 disinfection is expected to be a novel technique for further removal of pathogen and trace organic pollutants in wastewater effluents and receiving waters.
Article
One of the most common ways of getting rid of sewage sludge is land spreading on agricultural fields as a source of nutrients and organic matter. However, sewage sludge may be contaminated with pharmaceuticals and can represent a cause of environmental contamination. The objectives of this study was (i) to determine the occurrence and the fate of pharmaceuticals such as antibiotics belonging to different classes: antibiotics (sulfadiazine, sulfamethoxazole, sulfamethoxypyridazine, ciprofloxacin, norfloxacin, tylosin, trimethoprim), anti-inflammatories (diclofenac) and anticonvulsants (carbamazepine) in the soil after spreading stabilized sludge (composted, limed and digested) and solid digestat, (ii) to evaluate agronomic benefits and (iii) to determine the potential ecotoxicological consequences of pharmaceutical compounds on the environment using a risk quotient approach. For this purpose, four different types of sludge samples, coming from the same treatment plant but submitted to different stabilization processes, were incorporated into three soils with different physicochemical characteristics and pedogenetic factors. The obtained results highlighted that the sludge treatments have a great influence on sludge contamination. Once applied onto the soil, the agronomic benefits will depend on the soil’s properties as well as the sludge’s characteristics. The risks concerning the ecotoxicity of pharmaceuticals, found in the sludge, are low but not insignificant.
Article
Norfloxacin (NOR) has been extensively applied worldwide to treat various infectious diseases, which is ubiquitous in the aquatic environments. In this study, ionizing irradiation was used to degrade NOR in aqueous solution. The results showed that 5-40 mg/L NOR could be degraded completely at 0.4-4 kGy. The mineralization of NOR was enhanced by 1.55-3.02 times in the presence of 10-40 mg/L H2O2 at 6 kGy. Scavenging experiments indicated that hydroxyl radical (OH) was the predominant radical species during NOR radiolytic degradation. In addition, three possible degradation steps were proposed, including defluorination, quinolone group transformation, and the opening of the piperazinyl ring. The antimicrobial activity of NOR solution against Staphylococcus aureus was eliminated by gamma irradiation, while some more toxic intermediate products were predicted during irradiation process. Ionizing irradiation could also degrade NOR effectively in real wastewater and ground water. Overall, ionizing irradiation is an efficient technology for degrading NOR, while more attention should be paid to the toxicity of the intermediate products generated during NOR radiolytic degradation.
Article
Microplastics have attracted much attention in recent years as they can interact with pollutants in water environment. However, nanoplastics (NPs) with or without the surface functionalization modification have not been thoroughly explored. Here, the sorption behaviors of two fluoroquinolones (FQs), including norfloxacin (NOR) and levofloxacin (LEV) on polystyrene NPs (nano-PS) and carboxyl-functionalized polystyrene NPs (nano-PS-COOH) were investigated. The results showed that sorption isotherms were nonlinear and well fitted by Langmuir model. The sorption capacities of NOR and LEV on nano-PS-COOH were higher than those on nano-PS, and their physical interactions, including polar interaction, electrostatic interaction and hydrogen bonding may be the dominant mechanisms. Moreover, the increase of pH firstly increased the sorption of two FQs on NPs and then decreased because NOR and LEV had a reverse charge at different pH values. Salinity and dissolved organic matter both inhibited the sorption process. These findings show that NPs with or without the surface functionalization modification have different sorption behaviors for environmental pollutants, which deserve our further concern.
Article
In this study, cetyl trimethylammonium bromide (CTAB) (cationic) and sodium dodecyl benzene sulfonate (SDBS) (anionic) were used to modify natural sepiolite (SEP) to obtain a type of organic sepiolite (C-S-SEP). It was further applied for adsorption of oxytetracycline (OTC), a common antibiotic in water. The changes of SEP crystal structure and physicochemical properties before and after modification were analyzed by the means of XRD, FTIR, TG, SEM/EDS, BET, XPS and zeta potential. The adsorption performance and mechanism of OTC on C-S-SEP were studied by static adsorption method. The results showed that the adsorption capacity of C-S-SEP increased significantly, and the removal rate of OTC increased from 50.26% to 99.42%. The partition coefficient of SEP and C-S-SEP was 0.356 and 2.172 mg g-1 μM-1, respectively. CTAB and SDBS were successfully loaded onto the surface of SEP without entering its interlaminar domain, and the original crystal structure of SEP was well maintained. In the range of the studied ratio, anionic and cationic surfactants had the synergistic solubilization effect. The adsorption process conformed to the pseudo-second-order kinetic model and Langmuir isothermal adsorption model. The adsorption reaction was exothermic and a process of entropy reduction. The increase of temperature was not conducive to adsorption, and the adsorption reaction was basically unaffected by the pH value. The adsorption of C-S-SEP on OTC was the result of the combination of distribution and surface adsorption. The organic modified SEP was expected to become a low-cost environmentally friendly adsorption material that can effectively remove OTC from water.
Article
This study evaluated the effects of co-existing cations (Na+ or Ca2+) on the lamellar structure of cross-linked graphene oxide (GO) layers and GO modified membrane performance in terms of their fouling behaviours and retention for single-model organic matter, namely, bull serum albumin (BSA), sodium alginate (SA), humic acid (HA) and tannic acid (TA). In the absence of co-existing cations, the GO layers mitigated membrane fouling for large molecules (SA, BSA, and HA) but led to severer pore blocking for small molecules (TA) compared with pristine membrane. Na+ and Ca2+ altered the performance impacts of the GO modified membrane due to different interactions with the cross-linked GO layers. Low concentrations of Na+ (<0.4 mM) enlarged interlayer spacing of the GO layers and caused a decrease in flux after physical cleaning, but the GO layers maintained the uniform lamellar structure. High concentrations of Na+ (>0.4 mM) promoted the aggregation of cross-linked GO layers through charge shielding and reduced the uniformity of lamellar structure, which weakened the antifouling performance for large molecules and promoted the passage of small molecules through the membrane. However, Ca2+ complexed with GO sheets and reinforced the uniform lamellar structure of the GO layers, leading to a better antifouling performance for the filtration of large molecules than the pristine membrane but aggravated TA fouling.
Article
In this study, the mesoporous silica-magnetic graphene oxide nanocomposite material (mGO-Si) was prepared. The surfactant cetyltrimethyl ammonium bromide (CTAB) was utilized as the mesoporous template while the tetraethyl orthosilicate (TEOS) was used as the silica source. The synthesized nanocomposite was characterized through different analyses, namely XRD, XPS, TEM, FT-IR, VSM, BET, and acid-base titration. Various factors like the effects of the initial concentration, contact time, influence of the pH and the coexistence of other antibiotics on the sulfamethoxazole (SMX) uptake, were investigated. Adsorption results exhibited that the mGO-Si adsorbed the SMX molecules more effectively than the pristine magnetic graphene oxide (mGO). Kinetic data showed good correlation on the basis of the pseudo-second-order model. The equilibrium adsorption data fitted well to the Langmuir model, and a maximum SMX adsorption capacity of 15.46 mg/g was obtained. At high pH, the solution had significantly impaired then declined capacity of SMX adsorption. Electrostatic repulsion occurred between the dissociated SMX and the more negatively charged mGO-Si at basic pH. Adsorption mechanisms between SMX and mGO-Si were plausibly activated by hydrogen bonding, π–π EDA interactions, and solution pH-based electrostatic interactions dependent upon the status of SMX and the pH,PZC of mGO-Si. Moreover, the CIP and OTC competitors in the mixed solute system managed to improve the SMX adsorption by acting as a bridge to form CIP−SMX−mGO-Si/ OTC−SMX−mGO-Si surface complex. At low aqueous phase concentration of SMX, CIP was likely to form a stronger electrostatic interaction system with the adsorbent, thereby resulting in an adsorption level which was more competitive in the process opposing CIP to SMX than in that opposing OTC to SMX.
Article
Biochars are low-cost and environmental-friendly materials, which are promising in wastewater treatment. In this study, biochars were manufactured from C-phycocyanin extracted (C-CP) Spirulina residue (SDBC) via thermal pyrolysis. Simultaneously, N-doping was also achieved from the protein in the algae for obtaining a high-performance carbocatalyst for peroxydisulfate (PDS) activation. The SDBC yielded large specific surface areas, nitrogen loading, and good conductivity, which demonstrated excellent oxidation efficiencies toward a wide array of aqueous microcontaminants. An in-depth mechanistic study was performed by integrating selective radical scavenging, solvent exchange (H2O to D2O), diverse organic probes, and electrochemical measurement, unveiling that SDBC/PDS did not rely on free radicals or singlet oxygen but a nonradical pathway. PDS intimately was bonded with a biochar (SDBC 900-acid, pyrolysis at 900 °C) to form a surface reactive complex that subsequently attacked an organic sulfamethoxazole (SMX) adsorbed on the biochar via an electron-transfer regime. During this process, the SDBC 900-acid played versatile roles in PDS activation, organic accumulation and mediating the electron shuttle from SMX to PDS. This nonradical system can maintain a superior oxidation efficiency in complicated water matrix and long-term stable operation. More importantly, the nonradical species in SDBC 900-acid/PDS system were capable of inactivating the bacteria (Escherichia coli) in wastewater. Therefore, the biochar based nonradical system can provide a mild and high-efficiency strategy for disinfection in waste and drinking water by green carbocatalysis. This study provides not only a value-added biochar catalyst for wastewater purification but also the first insight into the bacteria inactivation via nonradical oxidation.
Article
Fluoroquinolones (FQs) are widely used in human and veterinary medicaments, and as such are ubiquitous environmental contaminants. Dissolved organic matter (DOM) is widely distributed in natural water and sediment and dissolved humic acid (DHA) is a major component of DOM. The coexistence of DHA might influence the sorption, migration and transformation of FQs, thus determining their environmental fate. In this study, the interaction of DHA and ofloxacin (OFL)/flumequine (FLU) was evaluated using dialysis-bag assays. The sorption of OFL and FLU to kaolinite in the presence of DHA under different pH conditions was investigated. The results revealed that the binding affinities of FQs to DHA were weakened with increasing pH from 4.0 to 10.0 due to the increased negative charge of DHA and subsequent electrostatic repulsion. Sorption experiments indicated that co-precipitation was an important mechanism for OFL/FLU removal from the aqueous phase under acidic conditions. At pH 7.0, the affinity of OFL-DHA/FLU-DHA to kaolinite was weaker than that of OFL/FLU thus suppressed its sorption. At pH 9.5, the affinity of OFL-DHA to kaolinite was stronger than that of OFL and consequently promoted its sorption, but there was no observed effect of DHA on FLU sorption. During desorption, DHA could bind to OFL/FLU and promote its desorption from kaolinite at neutral pH. In binary solute systems of OFL and FLU, OFL was a more effective competitor for the sorption sites of kaolinite than FLU.
Article
Microplastics and sulfamethoxazole (SMX) are ubiquitous in aquatic environment. In this study, we investigated the sorption of SMX onto six types of microplastics (polyamide (PA), polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC) and polypropylene (PP)). The sorption rate and mass transfer steps of SMX was studied by using the phenomenological kinetics models. The effect of pH and salinity on SMX sorption was examined. The results showed that the sorption of SMX onto microplastics reached equilibrium within 16 h. The external mass transfer was the slowest sorption step. The linear and Freundlich isotherms fitted well the sorption equilibrium data. PA had the highest sorption capacity (2.36 mg g ⁻¹ at SMX concentrations of 12 mg L ⁻¹ ), with high distribution coefficient (K d ) value (284 L kg ⁻¹ ). The K d values of PE, PS, PET, PVC, and PP ranged from 22.2 to 30.9 L kg ⁻¹ . The sorption capacity of SMX decreased with increase of pH and salinity in the solution.
Article
Iron (oxyhydr)oxides are highly reactive, environmentally ubiquitous organic matter (OM) sorbents that act as mediators of terrestrial and aqueous OM cycling. However, current understanding of environmental iron (oxyhydr)oxide affinity for OM is limited primarily to abiogenic oxides. Bacteriogenic iron (oxyhydr)oxides (BIOs), common to quiescent waterways and soil redox transitions, possess a high affinity for oxyanions (i.e., arsenate and chromate) and suggests that BIOs may be similarly reactive for OM. Using adsorption and desorption batch reactions, paired with Fourier transform infrared spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry, this work demonstrates that BIOs are capable of sorbing leaf litter-extracted DOM and Suwannee River Humic/Fulvic Acid (SRHA/SRFA) and have sorptive preference for distinct organic carbon compound classes at the biomineral interface. BIOs were found to sorb DOM and SRFA to half the extent of 2-line ferrihydrite per mass of sorbent and was resilient to desorption at high ionic strength and in the presence of a competitive ligand. We observed the preferential sorption of aromatic and carboxylic-containing species and concurrent solution enrichment of aliphatic groups unassociated with carboxylic acids. These findings suggest that DOM cycling may be significantly affected by BIOs, which may impact nutrient and contaminant transport in circumneutral environments.
Article
This study focused on the adsorption/desorption behavior and mechanisms of sulfadiazine (SDZ) and sulfamethoxazole (SMX) in two Chinese agricultural soils. The sorption on these two soil systems was investigated through a batch reactor at different initial concentrations (0.5–10 mg L⁻¹), different pH values (4–9) and ionic strengths (0.01–0.5 M). The obtained isotherms were linear within experimental uncertainty. The reversibility of adsorption process was assessed through desorption experiments of SDZ and SMX loaded soil samples. The results demonstrated that sorption was mainly influenced by the physicochemical properties of soil and the adsorbable species. It means that the sorption ability is stronger at higher organic carbon, higher clay fraction, lower pH value and intermediate ionic strength. An apparent decrease in the sorption capacity of SDZ and SMX with increasing pH was primarily attributed to the electrostatic repulsion between anionic species and negatively charged soil particles. Under various ionic strengths, the sorption affinity of SDZ and SMX in two soils revealed that sorption first increased and then decreased with increasing ionic strength. The thermodynamic analyses suggested that the sorption of SDZ and SMX was a spontaneous process. The results from Fourier transform infrared spectroscopy (FTIR) verified that the sorption of these sulfonamides was dominated by hydrogen bonds, electrostatic interactions and π-π interactions. This study contributed substantially to understanding the adsorption/desorption behavior and mechanisms of SDZ and SMX in the environment.
Article
The Dubinin–Radushkevich (D–R) isotherm model was frequently applied in adsorption equilibrium studies. However, its mathematical characteristics with respect to the parameter β and the correct calculation of the adsorption potential ε have still not been discussed. In this work, attempts have been made to address these problems. This work indicated that the D–R isotherm model represented three types of the isotherm curves: S-, L- and H-shaped isotherm. The logarithmic term must be dimensionless in the formula of the adsorption potential. A misconception pertaining to the calculation of the adsorption potential in past publications was identified to avoid the repetition of this mistake in future publications. The author hopes that this work will help readers to better understand the D–R isotherm model.
Article
Municipal sewage sludge (MS)-derived biochar shows low-cost superiority as a potential adsorbent in organic contaminants removal, but limited by its poor adsorption capacity and heavy metal leaking risk. Herein, a novel and effective alkali-acid combined method was proposed for its modification and applied to tetracycline adsorption. The associative facilitation between the alkali and acid modifications was explored, and the influences of pyrolysis temperatures on MS-biochar’s properties were investigated. The successfully preserved γ-Fe2O3 vested SNMS-800 with magnetism. It turned out that SNMS-800 exhibited optimum performance for tetracycline removal with adsorption capacity up to 286.913 mg/g, where all goodness-of-fit indexes of isothermal models were measured by MPSD model. The strong adsorption mechanisms were dominated by two considerable interactions, including strong π-π stacking interaction and pore-filling effect due to the significantly enhanced porosity which was proved by density functional theory model calculations. It manifested that appropriate multiple relation (1.7–6 times) between adsorbent’s pore size and adsorbate size closely related to the adsorption strength. The remarkably improved and stable adsorption capacity, extremely low-cost, easy magnetic preparation, and good reusability in natural water samples entrusted SNMS-800 with good potential for actual aqueous contaminant removal on a large scale. Meanwhile, it provides a clue for materials modification starting with its specific components, and supplies a cost-effective way for municipal sewage sludge’s resource disposal.
Article
Many antibiotics, including sulfonamides, are being frequently detected in soil and groundwater. Livestock waste is an important source of antibiotic pollution, and sulfonamides may be present along with organic-rich substances. This study aims to investigate the sorption reaction of two sulfonamides, sulfamethoxazole (SMZ) and sulfapyridine (SPY) in two organic-rich sorbents: a commercial peat soil (38.41% carbon content) and a composted manure (24.33% carbon content). Batch reactions were conducted to evaluate the impacts of pH (4.5-9.5) and background ions (0.001 M-0.1 M CaCl2) on their sorption. Both linear partitioning and Freundlich sorption isotherms fit the reaction well. The n values of Freundlich isotherm were close to 1 in most conditions suggesting that the hydrophobic partition is the major adsorption mechanism. In terms of SMZ, Kd declined with increases in the pH. SPY has a pyridine group that is responsible for adsorption at high pH values, and thus, no significant trend between Kd and pH was observed. At high pH ranges, SPY sorption deviated significantly from linear partitioning. The results suggested the sorption mechanism of these two sulfonamide antibiotics tended to be hydrophobic partitioning under most of the experimental conditions, especially at pH values lower than their corresponding pKa2. The fluorescence excitation emission matrix and dissolved organic carbon leaching test suggested composted manure has higher fulvic acid organics and that peat soil has higher humus-like organics. Small organic molecules showed stronger affinity toward sulfonamide antibiotics and cause the composted manure to exhibit higher sorption capacity. Overall, this study suggests that the chemical structure and properties of sulfonamides antibiotics and the type of organic matter in soils will greatly influence the fate and transport of these contaminants into the environment.
Article
Phytoplankton-derived dissolved organic matter (PDOM) and macrophyte-derived dissolved organic matter (MDOM) exist ubiquitously in eutrophic freshwater lakes. To understand the heterogeneous roles of individual fluorescent DOM components in the adsorption of antibiotics onto sediment minerals, the adsorptive fractionation of DOM on goethite (α–FeOOH) and its interaction with sulfamethazine (SMT) were investigated using fluorescence excitation-emission matrix combined with parallel factor analysis (EEM–PARAFAC). The affinity sequence for goethite of the 4 fluorescent PARAFAC components followed the order of: tryptophan- > tyrosine- > long emission wavelength (LEW) humic- > and short emission wavelength (SEW) humic-like component. This sequence indicated the preferential adsorption of protein-like substances. Meanwhile, tyrosine-like components can strongly form complexes with SMT with a large binding constant, followed by tryptophan- and SEW humic-like components. However, LEW humic-like component did not effectively react with SMT. The main mechanism of fluorescence quenching between DOM and SMT was static quenching. The result indicated that protein-like substances in DOM were favorable to SMT adsorption by acting as a bridge to form complexes with both goethite surface and SMT molecules, whereas humic-like substances played secondary roles in the DOM–goethite–SMT ternary system. Due to its higher content of protein-like substances, PDOM improved the SMT adsorption on goethite more than MDOM. Therefore, the abundant DOM released from phytoplankton and macrophytes affected the transport of antibiotics to sediments and might eventually change their bioavailability and toxicity to organisms.
Article
The past decade has seen a boom in environmental adsorption studies on the adsorptive removal of pollutants from the aqueous phase. A large majority of works treat kinetic modeling as a mere routine to describe the macroscopic trend of adsorptive uptake by using common models, often without careful appraisal of the characteristics and validity of the models. This review compiles common kinetic models and discusses their origins, features, modified versions (if any), and applicability with regard to liquid adsorption modeling for both batch adsorption and dynamic adsorption systems. Indiscriminate applications, ambiguities, and controversies are highlighted and clarified. The appropriateness of linear regression for correlating kinetic data is discussed. This review concludes with a note on the current scenario and the future of kinetics modeling of liquid adsorption.
Article
Photodegradation is an important abiotic pathway transforming organic pollutants in natural waters. Humic substances (HS), including humic and fulvic acids, are capable of accelerating the photodegradation of steroid estrogens. However, how the photodegradtion of the emerging pollutants influenced by HS is not clear. Thus, we studied the roles and mechanisms of HS in inducing the photodegradation of 17α-ethynylestradiol (EE2). HS generally induces EE2 photodegradation through binding and reactive species generation. Apart from hydroxyl radical (HO), the excited triplets of humic substances ((3)HS*) are other key reactive species degrading EE2 by abstracting electrons. HO and (3)HS* were responsible for about 60% of the overall EE2 photodegradation at 250μmol HS L(-1). Most of EE2 molecules bound to the HS via H-bonding, π-π and hydrophobic interactions. The binding role of HS in promoting EE2 photodegradation was rationalized by 17β-estradiol competitive binding with EE2 to the humic and fulvic acids. Furthermore, HS-promoted photodegradation can alter EE2 toxicity to wheat, rice and Ormosia plants. This study extends our knowledge on the photochemical behaviors and ecological risks of steroid estrogens in natural waters.
Article
Numerous ionizable organic micropollutants contain positively charged moieties at pH values typical of environmental systems. Describing organic cation and zwitterion interaction with dissolved natural organic matter requires explicit consideration of the pH-dependent speciation of both sorbate and sorbent. We studied the pH-, ionic strength-, and concentration-dependent binding of relatively large, organic cations and zwitterions (viz., the antibiotics clarithromycin and tetracycline) to dissolved humic acid in the absence and presence of Ca(2+) and examined the applicability of the NICA-Donnan model to describe the data. Clarithromycin interaction with dissolved humic acid was well described by the model including the competitive effect of Ca(2+) on clarithromycin binding over a wide range of solution conditions by considering only the binding of cationic species to low proton-affinity sites in humic acid. Tetracycline possesses multiple ionizable moieties and forms complexes with Ca(2+). An excellent fit to experimental data was achieved by considering tetracycline cation interaction with both low and high proton-affinity sites of humic acid and zwitterion interaction with high proton-affinity sites. In contrast to clarithromycin, tetracycline binding to humic acid increased in the presence of Ca(2+), especially under alkaline conditions. Model calculations indicate that this increase is due to electrostatic interaction of positively charged tetracycline-Ca complexes with humic acid rather than due to the formation of ternary complexes, except at very low TC concentrations.
Article
Three fluoroquinolone antibiotics agents (FQs) in groundwater and reclaimed water have been investigated in Changzhou and Beijing, China. The occurrence of ofloxacin (OFL), enrofloxacin (ENR) and norfloxacin (NOR) is in nanograms per liter and has 100% frequency. The concentration order of FQs in reclaimed water is NOR>OFL>ENR, whilst the order in groundwater is NOR>ENR>OFL. And then the single and mixture adsorption-desorption have been studied and showed that (i) silty clay loam has higher sorption capacity than loamy sand, (ii) competitive adsorption exists when the three selected FQs coexist, (iii) ENR has a significantly priority sorption to NOR, whilst OFL has a least sorption among the mixture, (iv) there is no significant difference between the desorption results of mixture and the indivdual compound in relatively low concentration, (v) the formed chemical bonds and the irreversible combination of adsorption point are the significant influential factors for explaining desorption hysteresis of the selected FQs. Based on the above study, transport model and risk quotient have been performed, and the calculated risk quotient reveals that: (i) the selected FQs risk order in reclaimed water is OFL>ENR>NOR, (ii) in groundwater, OFL and ENR pose a higher risk than NOR no matter whether considering the long time groundwater recharge. This study will help policy makers to decide which FQs need to be covered in the priority substance lists defined in legislative frameworks.