Article

Indolactam Dipeptides as Nanomolar Gli Inhibitors

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The Gli transcription factors within the Hedgehog (Hh) signaling pathway play essential roles in human development. However, the reactivation of Gli proteins in adult tissue is tumorigenic and drives the progression of several cancers, including the majority of basal cell carcinomas. Here we describe a novel set of indolactam dipeptides that target protein kinase C (PKC), exploiting the unique capacity of PKC isozymes to act as regulators of Gli. We devised an efficient synthetic route for the indolactam-based natural product (-)-pendolmycin and a series of analogues, and we evaluated these analogues in mechanistically distinct Gli reporter assays. The lead compound from these studies, N-hexylindolactam V, exhibits superior Gli suppression relative to clinical inhibitors and blocks the growth of Gli-dependent basal cell carcinoma cells. More broadly, our structure-activity studies provide inroads for the development of novel Gli antagonists and new avenues for combating Gli-driven cancers.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
GLI1, a key transcription factor of the Hedgehog (Hh) signaling pathway, plays an important role in the development of cancer. However, the function and mechanisms by which GLI1 regulates gene transcription are not fully understood in gastric cancer (GC). Here, we found that GLI1 induced the proliferation and metastasis of GC cells, accompanied by transcriptional upregulation of INHBA. This increased INHBA expression exerted a promoting activity on Smads signaling and then transcriptionally activated GLI1 expression. Notably, our results demonstrate that disrupting the interaction between GLI1 and INHBA could inhibit GC tumorigenesis in vivo. More intriguingly, we confirmed the N6‐methyladenosine (m6A) activation mechanism of the Helicobacter pylori /FTO/YTHDF2/GLI1 pathway in GC cells. In conclusion, our study confirmed that the GLI1/INHBA positive feedback loop influences GC progression and revealed the mechanism by which H. pylori upregulates GLI1 expression through m6A modification. This positive GLI1/INHBA feedback loop suggests a novel noncanonical mechanism of GLI1 activity in GC and provides potential therapeutic targets for GC treatment.
Article
Full-text available
Diet‐induced obesity, the metabolic syndrome, type 2 diabetes (DIO/MetS/T2DM), and their adverse sequelae have reached pandemic levels. In mice, DIO/MetS/T2DM initiation involves diet‐dependent increases in lipids that activate hepatic atypical PKC (aPKC) and thereby increase lipogenic enzymes and proinflammatory cytokines. These or other hepatic aberrations, via adverse liver‐to‐muscle cross talk, rapidly impair postreceptor insulin signaling to glucose transport in muscle. The ensuing hyperinsulinemia further activates hepatic aPKC, which first blocks the ability of Akt to suppress gluconeogenic enzyme expression, and later impairs Akt activation, further increasing hepatic glucose production. Recent findings suggest that hepatic aPKC also increases a proteolytic enzyme that degrades insulin receptors. Fortunately, all hepatic aberrations and muscle impairments are prevented/reversed by inhibition or deficiency of hepatic aPKC. But, in the absence of treatment, hyperinsulinemia induces adverse events, some by using “spare receptors” to bypass receptor defects. Thus, in brain, hyperinsulinemia increases Aβ‐plaque precursors and Alzheimer risk; in kidney, hyperinsulinemia activates the renin–angiotensin–adrenal axis, thus increasing vasoconstriction, sodium retention, and cardiovascular risk; and in liver, hyperinsulinemia increases lipogenesis, obesity, hepatosteatosis, hyperlipidemia, and cardiovascular risk. In summary, increases in hepatic aPKC are critically required for development of DIO/MetS/T2DM and its adverse sequelae, and therapeutic approaches that limit hepatic aPKC may be particularly effective.
Article
Full-text available
Gli transcription factors within the Hedgehog (Hh) signaling pathway direct key events in mammalian development and promote a number of human cancers. Current therapies for Gli‐driven tumors target Smoothened (SMO), a G protein‐coupled receptor‐like protein that functions upstream in the Hh pathway. Although these drugs can have remarkable clinical efficacy, mutations in SMO and downstream Hh pathway components frequently lead to chemoresistance. In principle, therapies that act at the level of Gli proteins, through direct or indirect mechanisms, would be more efficacious. We therefore screened 325 120 compounds for their ability to block the constitutive Gli activity induced by loss of Suppressor of Fused (SUFU), a scaffolding protein that directly inhibits Gli function. Our studies reveal a family of bicyclic imidazolium derivatives that can inhibit Gli‐dependent transcription without affecting the ciliary trafficking or proteolytic processing of these transcription factors. We anticipate that these chemical antagonists will be valuable tools for investigating the mechanisms of Gli regulation and developing new strategies for targeting Gli‐driven cancers.
Article
Full-text available
The Hedgehog-GLI (HH-GLI) pathway is a highly conserved signaling that plays a critical role in controlling cell specification, cell–cell interaction and tissue patterning during embryonic development. Canonical activation of HH-GLI signaling occurs through binding of HH ligands to the twelve-pass transmembrane receptor Patched 1 (PTCH1), which derepresses the seven-pass transmembrane G protein-coupled receptor Smoothened (SMO). Thus, active SMO initiates a complex intracellular cascade that leads to the activation of the three GLI transcription factors, the final effectors of the HH-GLI pathway. Aberrant activation of this signaling has been implicated in a wide variety of tumors, such as those of the brain, skin, breast, gastrointestinal, lung, pancreas, prostate and ovary. In several of these cases, activation of HH-GLI signaling is mediated by overproduction of HH ligands (e.g., prostate cancer), loss-of-function mutations in PTCH1 or gain-of-function mutations in SMO, which occur in the majority of basal cell carcinoma (BCC), SHH-subtype medulloblastoma and rhabdomyosarcoma. Besides the classical canonical ligand-PTCH1-SMO route, mounting evidence points toward additional, non-canonical ways of GLI activation in cancer. By non-canonical we refer to all those mechanisms of activation of the GLI transcription factors occurring independently of SMO. Often, in a given cancer type canonical and non-canonical activation of HH-GLI signaling co-exist, and in some cancer types, more than one mechanism of non-canonical activation may occur. Tumors harboring non-canonical HH-GLI signaling are less sensitive to SMO inhibition, posing a threat for therapeutic efficacy of these antagonists. Here we will review the most recent findings on the involvement of alternative signaling pathways in inducing GLI activity in cancer and stem cells. We will also discuss the rationale of targeting these oncogenic pathways in combination with HH-GLI inhibitors as a promising anti-cancer therapies.
Article
Full-text available
The sonic hedgehog (Shh) signaling pathway is a major regulator of cell differentiation, cell proliferation, and tissue polarity. Aberrant activation of the Shh pathway has been shown in a variety of human cancers, including, basal cell carcinoma, malignant gliomas, medulloblastoma, leukemias, and cancers of the breast, lung, pancreas, and prostate. Tumorigenesis, tumor progression and therapeutic response have all been shown to be impacted by the Shh signaling pathway. Downstream effectors of the Shh pathway include smoothened (SMO) and glioma-associated oncogene homolog (GLI) family of zinc finger transcription factors. Both are regarded as important targets for cancer therapeutics. While most efforts have been devoted towards pharmacologically targeting SMO, developing GLI-targeted approach has its merit because of the fact that GLI proteins can be activated by both Shh ligand-dependent and -independent mechanisms. To date, two SMO inhibitors (LDE225/Sonidegib and GDC-0449/Vismodegib) have received FDA approval for treating basal cell carcinoma while many clinical trials are being conducted to evaluate the efficacy of this exciting class of targeted therapy in a variety of cancers. In this review, we provide an overview of the biology of the Shh pathway and then detail the current landscape of the Shh-SMO-GLI pathway inhibitors including those in preclinical studies and clinical trials.
Article
Full-text available
An efficient method for the selective removal of aryl silyl protection using NaH in DMF solvent is developed. The method is rapid, opera-tionally simple and can be carried out at room temperature. Excellent chemoselectivity and high yields of phenol products are other advantages of this method. A one-pot desilylation and reprotection as aryl alkyl ethers and esters has also been demonstrated.
Article
Full-text available
Medulloblastoma, a small blue cell malignancy of the cerebellum, is a major cause of morbidity and mortality in pediatric oncology. Current mechanisms for clinical prognostication and stratification include clinical factors (age, presence of metastases, and extent of resection) as well as histological subgrouping (classic, desmoplastic, and large cell/anaplastic histology). Transcriptional profiling studies of medulloblastoma cohorts from several research groups around the globe have suggested the existence of multiple distinct molecular subgroups that differ in their demographics, transcriptomes, somatic genetic events, and clinical outcomes. Variations in the number, composition, and nature of the subgroups between studies brought about a consensus conference in Boston in the fall of 2010. Discussants at the conference came to a consensus that the evidence supported the existence of four main subgroups of medulloblastoma (Wnt, Shh, Group 3, and Group 4). Participants outlined the demographic, transcriptional, genetic, and clinical differences between the four subgroups. While it is anticipated that the molecular classification of medulloblastoma will continue to evolve and diversify in the future as larger cohorts are studied at greater depth, herein we outline the current consensus nomenclature, and the differences between the medulloblastoma subgroups.
Article
Full-text available
Inappropriate Hedgehog (Hh) signaling has been directly linked to medulloblastoma (MB), a common malignant brain tumor in children. GDC-0449 is an Hh pathway inhibitor (HPI) currently under clinical investigation as an anticancer agent. Treatment of a MB patient with GDC-0449 initially regressed tumors, but this individual ultimately relapsed with a D473H resistance mutation in Smoothened (SMO), the molecular target of GDC-0449. To explore the role of the mutated aspartic acid residue in SMO function, we substituted D473 with every amino acid and found that all functional mutants were resistant to GDC-0449, with positively charged residues conferring potential oncogenic properties. Alanine scan mutagenesis of SMO further identified E518 as a novel prospective mutation site for GDC-0449 resistance. To overcome this form of acquired resistance, we screened a panel of chemically diverse HPIs and identified several antagonists with potent in vitro activity against these GDC-0449-resistant SMO mutants. The bis-amide compound 5 was of particular interest, as it was able to inhibit tumor growth mediated by drug resistant SMO in a murine allograft model of MB. However, focal amplifications of the Hh pathway transcription factor Gli2 and the Hh target gene cyclin D1 (Ccnd1) were observed in two additional resistant models, indicating that resistance may also occur downstream of SMO. Importantly, these HPI resistant MB allografts retained their sensitivity to PI3K inhibition, presenting additional opportunities for the treatment of such tumors.
Article
Full-text available
A Smooth(ened) Path to Drug Resistance The Hedgehog (Hh) signaling pathway has emerged as a key contributor to the growth of medulloblastoma, an aggressive brain tumor. GDC-0449, a drug that ramps down this signaling pathway by binding to the Hh pathway component Smoothened, was recently shown to induce rapid and dramatic tumor regression in a patient with metastatic medulloblastoma, but the tumor eventually developed resistance to the drug. Yauch et al. (p. 572 , published online 3 September) show that resistance arose because the tumor acquired a mutation in Smoothened that disrupts binding of the drug. Identification of this resistance mechanism may facilitate the design of next-generation drugs for this type of cancer.
Article
Full-text available
Constitutive activation of the hedgehog pathway is implicated in the development of many human malignancies; hedgehog targets, PTCH1 and Gli1, are markers of hedgehog signaling activation and are expressed in most hedgehog-associated tumors. Protein kinase Cδ (PKCδ) generally slows proliferation and induces cell cycle arrest of various cell lines. In this study, we show that activated PKCδ (wild-type PKCδ stimulated by phorbol 12-myristate 13-acetate or constitutively active PKCδ) decreased Gli-luciferase reporter activity in NIH/3T3 cells, as well as the endogenous hedgehog-responsive gene PTCH1. In human hepatoma (i.e. Hep3B) cells, wild-type PKCδ and constitutively active PKCδ decreased the expression levels of endogenous Gli1 and PTCH1. In contrast, PKCδ siRNA increased the expression levels of these target genes. Silencing of PKCδ by siRNA rescued the inhibition of cell growth by KAAD-cyclopamine, an antagonist of hedgehog signaling element Smoothened, suggesting that PKCδ acts downstream of Smoothened. The biological relevance of our study is shown in hepatocellular carcinoma where we found that hepatocellular carcinoma with detectable hedgehog signaling had weak or no detectable expression of PKCδ, whereas PKCδ highly expressing tumors had no detectable hedgehog signaling. Our results demonstrate that PKCδ alters hedgehog signaling by inhibition of Gli protein transcriptional activity. Furthermore, our findings suggest that, in certain cancers, PKCδ plays a role as a negative regulator of tumorigenesis by regulating hedgehog signaling.
Article
Full-text available
It is widely accepted that disruption of the hedgehog-patched pathway is a key event in development of basal cell cancer. In addition to patched gene alterations, p53 gene mutations are also frequent in basal cell cancer. We determined loss of heterozygosity in the patched and p53 loci as well as sequencing the p53 gene in tumors both from sporadic and hereditary cases. A total of 70 microdissected samples from tumor and adjacent skin were subjected to PCR followed by fragment analysis and DNA sequencing. We found allelic loss in the patched locus in 6/8 sporadic basal cell cancer and 17/19 hereditary tumors. All sporadic and 7/20 hereditary tumors showed p53 gene mutations. Loss of heterozygosity in the p53 locus was rare in both groups. The p53 mutations detected in hereditary tumors included rare single nucleotide deletions and unusual double-base substitutions compared to the typical ultraviolet light induced missense mutations found in sporadic tumors. Careful microdissection of individual tumors revealed genetically linked subclones with different p53 and/or patched genotype providing an insight on time sequence of genetic events. The high frequency and co-existence of genetic alterations in the patched and p53 genes suggest that both these genes are important in the development of basal cell cancer.
Article
Full-text available
Activation of the Sonic hedgehog signaling pathway, primarily through mutational inactivation of the PTCH1 gene, is associated with the development of basal cell carcinoma (BCC). Gli1, a member of the Gli family of transcription factors, is expressed in BCC and in transgenic mice targeted expression of Gli1 in basal keratinocytes leads to BCC development. In addition to BCC, previous studies have shown that Gli1 is expressed in the outer root sheath (ORS) of the hair follicle but is absent in interfollicular epidermis. In this study, we have characterized the expression pattern of two protein kinase C (PKC) isoforms expressed in BCC and hair follicles. We have then used reporter assays to investigate the effects of these isoforms on Gli1 transcriptional activity. We report that in BCC sections, PKCalpha but not PKCdelta was weakly expressed in the epidermis, whereas in the hair follicle, PKCalpha was expressed in the ORS and PKCdelta in the inner root sheath. In contrast, neither PKCalpha nor PKCdelta was expressed in BCC tumor islands, although both isoforms were often expressed in the surrounding stroma. In mammalian 293T cells, coexpression of constitutively active PKCalpha reduced the activity of Gli1 in a dose-dependent manner, whereas constitutively active PKCdelta increased the activity of Gli1, although this required higher expression levels. Regulation of mutant Gli1 protein localized exclusively to the nucleus was similar to that of the wild-type protein, indicating that nuclear-cytoplasmic shuttling is not a determinant of Gli1 control by either PKC isoform. Furthermore, PKC regulation of Gli1 did not involve activation of mitogen-activated protein kinase signaling. Finally, we show that exogenous Gli1 does not alter the expression of PKCalpha in human primary keratinocytes, suggesting that loss of this isoform in BCC is not via Hedgehog signaling. As BCCs have been proposed to originate from the ORS, loss of PKCalpha expression may be relevant to tumor formation; this may, in part, be because of the predicted increase in Gli1 transcriptional activity.
Article
Full-text available
One third of all lethal cancers are associated with excessive activation of the Hedgehog (HH) pathway by mutations of its signaling components or by increased responsiveness of cells to the HH ligand. HH signaling through the GLI transcription factors leads to increased cell proliferation by up-regulation of the extracellular regulated kinase (ERK) pathway and by expression of S phase cyclins. In this study, we have tested the hypothesis that the HH pathway can integrate ERK signaling to modulate the activity of GLI. Using NIH 3T3 cells, we show that phorbol esters, acting through protein kinase C-delta (PKCdelta) and mitogen-activated protein/extracellular signal-regulated kinase-1 (MEK-1), fully stimulate the transcriptional activity of endogenous and overexpressed GLI proteins, as assessed by GLI-luciferase reporter assays, and induce the expression of endogenous GLI1 and PTCH-1 target genes, as assessed by reverse transcription-PCR. Moreover, activation of GLI elicited by Sonic Hedgehog also requires PKCdelta and MEK-1 function. Remarkably, coexpression of activated MEK-1 and GLI1 or GLI2 induced a 10-fold synergistic increase in GLI-luciferase activity that was totally blocked by PD98059. The NH(2)-terminal region of GLI1 (amino acids 1-130) is required for sensing the ERK pathway, as deletion of this domain produces active GLI1 protein with greatly reduced response to activation by MEK-1. Basic fibroblast growth factor activation of the ERK pathway also stimulated GLI1 activity through its NH(2)-terminal domain. Our results identify PKCdelta and MEK-1 as essential, positive regulators of GLI-mediated HH signaling. Furthermore, our findings suggest that tumors with deregulated HH and ERK synergize to stimulate cell proliferation pathways.
Article
Aberrations in the Hedgehog signaling pathway are responsible for a broad range of human cancers, yet only a subset rely on the activity of the clinical target, Smoothened (Smo). Emerging cases of cancers that are insensitive to Smo-targeting drugs demand new therapeutic targets and agents for inhibition. As such, we sought to pursue a recently discovered connection between the Hedgehog pathway transcription factors, the Gli oncogenes, and protein kinase C (PKC) isozymes. Here, we report our assessment of a structurally diverse library of PKC effectors for their influence on Gli function. Using cell lines that employ distinct mechanisms of Gli activation up- and downstream of Smo, we identify a PKC effector that acts as a nanomolar Gli antagonist downstream of Smo through a MEK-independent mechanism. This agent provides a unique tool to illuminate crosstalk between PKC isozymes and Hh signaling and new opportunities for therapeutic intervention in Hh pathway-dependent cancers.
Article
In this work, we execute a general synthetic strategy to access novel indolactam alkaloids, which are agonists of protein kinase C. This protocol allowed for the most efficient reported syntheses of indolactam V (ILV) stereoisomers, while also affording the large-scale production of natural product (–)-ILV. Structure–activity studies were conducted with these compounds to elucidate the elements necessary to promote PKC-mediated cellular response. EC50 measurements in leukemia and lymphoma cell lines, as well as molecular docking analyses with the PKCδ C1B domain, provided the foundation for these studies. A distinct correlation between in vitro activity and the conformation of the macrocyclic lactam ring was discovered, which can guide design efforts for therapeutics that target the PKC regulatory domain.
Article
The first total synthesis of (−)-indolactam I (1)is reported. An efficient synthetic route was established to furnish the natural product in 8 steps. This strategy employed a copper-catalyzed amino acid arylation, peptide coupling, and Lewis acid-mediated macrocyclization to yield 1 from readily available building blocks. In addition, the cell growth inhibition activity of the natural product was examined through assays with the K562 leukemia cell line.
Article
The Hedgehog pathway is critical for the development of diverse organs. Misactivation of the Hedgehog pathway can cause developmental abnormalities and cancers, including medulloblastoma, the most common pediatric brain tumor, and basal cell carcinoma, the most common cancer in the United States. Here, we review how basic, translational, and clinical studies of the Hedgehog pathway have helped reveal how cells communicate, how intercellular communication controls development, how signaling goes awry to cause cancer, and how to use targeted molecular agents to treat both inherited and sporadic cancers. © 2018 American Society for Clinical Investigation.All right reserved.
Article
A unified and modular approach to the teleocidin B-family of natural products is presented that proceeds in 11 steps and features an array of interesting strategies and meth-ods. Indolactam V, the known biosynthetic precursor to this family, was accessed through electrochemical amina-tion, Cu-mediated aziridine opening, and a remarkable base-induced macrolactamization. Guided by a desire to mini-mize concession steps, the tactical combination of C–H borylation and a Sigman-Heck transform enabled its con-vergent, stereocontrolled synthesis of the teleocidins.
Article
Bipolar disorder (BD) is a major health problem. It causes significant morbidity and imposes a burden on the society. Available treatments help a substantial proportion of patients but are not beneficial for an estimated 40-50%. Thus, there is a great need to further our understanding the pathophysiology of BD to identify new therapeutic avenues. The preponderance of evidence pointed towards a role of protein kinase C (PKC) in BD. We reviewed the literature pertinent to the role of PKC in BD. We present recent advances from preclinical and clinical studies that further support the role of PKC. Moreover, we discuss the role of PKC on synaptogenesis and neuroplasticity in the context of BD. The recent development of animal models of BD, such as stimulant-treated and paradoxical sleep deprivation, and the ability to intervene pharmacologically provide further insights into the involvement of PKC in BD. In addition, the effect of PKC inhibitors, such as tamoxifen, in the resolution of manic symptoms in patients with BD further points in that direction. Furthermore, a wide variety of growth factors influence neurotransmission through several molecular pathways that involve downstream effects of PKC. Our current understanding identifies the PKC pathway as a potential therapeutic avenue for BD.
Article
The Hedgehog (HH) signaling pathway was discovered originally as a key pathway in embryonic patterning and development. Since its discovery, it has become increasingly clear that the HH pathway also plays important roles in a multitude of cancers. Therefore, HH signaling has emerged as a therapeutic target of interest for cancer therapy. In this review, we provide a brief overview of HH signaling and the key molecular players involved and offer an up-to-date summary of our current knowledge of endogenous and exogenous small molecules that modulate HH signaling. We discuss experiences and lessons learned from the decades-long efforts toward the development of cancer therapies targeting the HH pathway. Challenges to develop next-generation cancer therapies are highlighted.
Article
The Hedgehog (Hh) signaling pathway governs complex developmental processes, including proliferation and patterning within diverse tissues. These activities rely on a tightly regulated transduction system that converts graded Hh input signals into specific levels of pathway activity. Uncontrolled activation of Hh signaling drives tumor initiation and maintenance. However, recent entry of pathway-specific inhibitors into the clinic reveals mixed patient responses and thus prompts further exploration of pathway activation and inhibition. In this review, we share emerging insights into regulated and oncogenic Hh signaling, supplemented with updates on the development and use of Hh pathway-targeted therapies.
Article
A concise, eight-step total synthesis of (-)-indolactam V, a nanomolar agonist of protein kinase C, is reported. The synthesis relies upon an efficient copper-catalyzed amino acid arylation to establish the indole C4-nitrogen bond. This cross-coupling method is applicable to a range of hydrophobic amino acids, providing a platform for further diversification of indolactam alkaloid scaffolds and studies on their potent biological activity.
Article
One-pot synthesis of tryptophanol derivative from N-Boc-aziridine and indole has been developed. The ring opening reaction of the aziridine takes place smoothly at -30 °C in a regioselective manner and tolerates a wide range of functional groups including halogens attached to the aromatic ring, which was also performed on a gram scale. The resulting tryptophanol derivative was converted to (-)-indolactam V from commercially available 4-bromoindole through a copper-mediated aryl amination in nine steps with an overall yield of 32%.
Article
A versatile strategy for C7-selective boronation of tryptophans, tryptamines, and 3-alkylindoles by way of a single-pot C2/C7-diboronation–C2-protodeboronation sequence is described. The combination of a mild iridium-catalyzed C2/C7-diboronation followed by an in situ palladium-catalyzed C2-protodeboronation allows efficient entry to valuable C7-boroindoles that enable further C7-derivatization. The versatility of the chemistry is highlighted by the gram-scale synthesis of C7-boronated N-Boc-L-tryptophan methyl ester and the rapid synthesis of C7-halo, C7-hydroxy, and C7-aryl tryptophan derivatives.
Article
We report the total syntheses of (-)-indolactam V and the C7-substituted indolactam alkaloids (-)-pendolmycin, (-)-lyngbyatoxin A, and (-)-teleocidin A-2. The strategy for preparing indolactam V relies on a distortion-controlled indolyne functionalization reaction to establish the C4-N linkage, in addition to an intramolecular conjugate addition to build the conformationally-flexible nine-membered ring. The total synthesis of indolactam V then sets the stage for the divergent synthesis of the other targeted alkaloids. Specifically, late-stage sp(2)-sp(3) cross-couplings on an indolactam V derivative are used to introduce the key C7 substituents and the necessary quaternary carbons. These challenging couplings, in addition to other delicate manipulations, all proceed in the presence of a basic tertiary amine, an unprotected secondary amide, and an unprotected indole. Thus, our approach not only enables the enantiospecific total syntheses of four indolactam alkaloids, but also serves as a platform for probing complexity-generating and chemoselective transformations in the context of alkaloid total synthesis.
Article
Since their discovery in the late 1970s, protein kinase C (PKC) isozymes represent one of the most extensively studied signaling kinases. PKCs signal through multiple pathways and control the expression of genes relevant for cell cycle progression, tumorigenesis and metastatic dissemination. Despite the vast amount of information concerning the mechanisms that control PKC activation and function in cellular models, the relevance of individual PKC isozymes in the progression of human cancer is still a matter of controversy. Although the expression of PKC isozymes is altered in multiple cancer types, the causal relationship between such changes and the initiation and progression of the disease remains poorly defined. Animal models developed in the last years helped to better understand the involvement of individual PKCs in various cancer types and in the context of specific oncogenic alterations. Unraveling the enormous complexity in the mechanisms by which PKC isozymes have an impact on tumorigenesis and metastasis is key for reassessing their potential as pharmacological targets for cancer treatment.Oncogene advance online publication, 16 December 2013; doi:10.1038/onc.2013.524.
Article
Total synthesis of a tumor promoter pendolmycin (1) was accomplished in the stereospecific manner using a d-serine derivative 7 and an l-valine derivative 16 as chiral sources. Methyl 2-(bromomethyl)benzoate was used for the critical step of the indole cyclization 25 → 26 and 28.
Article
An orthogonal set of catalyst systems has been developed for the Suzuki-Miyaura coupling of 3,3-disubstituted and 3-monosubstituted allylboronates with (hetero)aryl halides. These methods allow for the highly selective preparation of either the α- or the γ-isomeric coupling product.
Article
The selectivity with which 1- or 12-substituted analogues of indolactam-V (1) bind proteinkinase C (PKC)isozymes was examined. Moderate selectivity for novel PKC isozymes over conventional PKC isozymes was observed in the case of indolactam-nV (13) and indolactam-L (14) without an α-branched side chain at position 12. The introduction of a bulky isopropyl group to position 1 of 1 drastically increased the selectivity for novel PKC isozymes.
Article
(-)-Indolactam-V, which is an active fragment of the potent tumor promoters teleocidins and has also been isolated as a metabolite, has been synthesized starting from 4-nitrogramine. The absolute stereochemistry of (-)-indolactam-V has been determined to be (9S, 12S), which suggests that teleocidins and related compounds are biosynthesized from L-amino acids. Three unnatural diastereoisomers were also synthesized.The NMR spectra of (-)- and (±)-indolactam-V and its derivatives showed that they exist in two conformational states in solution. The structures of the two conformers were deduced from the chemical shifts, coupling constants and nuclear Overhauser effects to be SOFA and TWIST form which are characterized by and amide bonds, respectively. The calculated ratio of the two conformers was consistent with the observed ratio.The correct relative stereochemistry is shown in reference 11. The numbering system of teleocidin derivatives is defined in the following order of preference; the indole ring, the ninemembered ring and the other substituents.10
Article
Tumor promoters are non-carcinogenic chemicals that enhance tumor formation when administered repeatedly after a low dose of a carcinogen. Phorbol esters, teleocidins, and aplysiatoxins are typical examples of naturally occurring tumor promoters. All of them share the ability to bind and activate protein kinase C (PKC) despite the differences in their chemical structures. A variety of analogs with unique chemical and biological properties have been developed to analyze the molecular mechanism of tumor promotion through PKC activation. Moreover, coupled with the emerging significance of PKC in the pathological processes of Alzheimer's disease (AD) and acquired immune deficiency syndrome (AIDS) as well as cancer, several efforts have been made recently to generate analogs of tumor promoters with therapeutic potential. This review focuses on artificial analogs of phorbol esters, teleocidins, and aplysiatoxins, and discusses their potential as biochemical tools and therapeutic leads.
Article
We report the design and synthesis of an indolyne that displays a reversal in regioselectivity, in both nucleophilic addition and cycloaddition reactions, compared to typical 4,5-indolynes. Our approach utilizes simple computations to predict regioselectivity in reactions of unsymmetrical arynes. With this methodology, novel benzenoid-substituted indoles can be accessed with significant regiocontrol. Furthermore, the technology provides an unconventional tactic for the synthesis of C4-substituted indole alkaloids, as demonstrated by a synthesis of indolactam V.
Article
The total synthesis of protein kinase C activator (-)-indolactam V (IL-V) has been successfully completed with two separate approaches: From known 4-nitrotryptophan derivative 3 in 8 steps (49% overall yield) and from L-glutamic acid in 12 steps (18% overall yield), where 4-nitrotryptophanol derivative 4 served as a key intermediate. Derivatives 3 and 4, both incorporating indole 4-substitution and the C-9 stereocenter in IL-V, were synthesized via the Pd-catalyzed indole synthesis from 3-nitro-2-iodoaniline 5 with aldehydes 6 and 7, respectively. Aldehyde 7 was, meanwhile, synthesized from l-glutamic acid in 5 steps (68% yield). Lactamization of the 9-membered ring was achieved using HATU in THF in good yield.
Article
Nine indolactam congeners with L-Abu, γ,δ-δ-Nva, Nva, Phg, tert-Leu, Leu, Ile, allo-Ile, Nle, instead of L-Val In (-)-indolactam-Val, were synthesized by microbial conversion and examined using two biological tests related to tumor promotion. The tests were inhibition of the specific binding of [3H]12-O-tetradecanoylphorbol-13-acetate (TPA) to the mouse epidermal particulate fraction, and stimulation of radioactive inorganic phosphate incorporation into phospholipids of HeLa cells. These two biological activities correlated well for each derivative. (-)-Indolactam-Ile with L-Ile in place of L-Val in (-)-indolactam-Val, which we have recently confirmed to occur naturally, was the most active of the ten indolactam congeners tested, suggesting that (-)-indolactam Ile is a more potent tumor promoter than (-)-indolactam Val in vivo. The effects of the substituents at position 12 on the TPA receptor binding were analyzed quantitatively using physicochemical substituent parameters and regression analysis. The results indicated that both hydrophobicity and bulkiness of the substituents at position 12 increased the binding ability to the TPA receptor, supporting the recent hypothesis that the isopropyl group at position 12 of (-)-indolactam-Val is involved in the hydrophobic interaction on the receptor site.
Article
This chapter presents two classes of 12-O-tetradecanoylphorbol-13-aceta (TPA)-type tumor promoters, teleocidin and aplysiatoxin; and the non-TPA-type tumor promoters, palytoxin and thapsigargin. The TPA-type tumor promoters have provided several important new pieces of evidence that are summarized in this chapter. In contrast to phorbol esters, which are present only in plants, such as the families Euphorbiaceae and Thymelaeaceae, the new tumor promoters are found in a wide range of living things, including Streptomyces, Streptoverticillium, blue–green algae, coelenterates, and umbelliferous plants. Because teleocidin A-1 is present in both Streptomyces and blue–green algae, it may be synthesized by algae, Streptomyces, Streptoverticillium, and other fungi. Also, a biosynthetic intermediate of teleocidins, (-)-indolactam-V, has weak tumor-promoting activity but not strong activity in the irritant test. Other Streptomyces and blue–green algae biosynthesizing (-)-indolactam-V may be present in the environment. The teleocidin, aplysiatoxin, and also non-TPA-type tumor promoters are found to be useful in investigating the heterogeneous steps in the complicated process of promotion at the biochemical and molecular levels.
Article
Phorbol esters (12-O-tetradecanoylphorbol 13-acetate; TPA) and teleocidins are known to be potent tumor promoters and to activate protein kinase C (PKC) by binding competitively to the enzyme. The relationship between the chemical structures and the activities of these compounds has attracted much attention because of the marked structural dissimilarities. The benzolactam 5, with an eight-membered lactam ring and benzene ring instead of the nine-membered lactam ring and indole ring of teleocidins, reproduces the active ring conformation and biological activities of teleocidins. Herein we describe the synthesis of benzolactams with hydrophobic substituents at various positions. Structure-activity data indicate that the existence of a hydrophobic region between C-2 and C-9 and the steric factor at C-8 play critical roles in the appearance of biological activities. We also computationally simulated the docking of teleocidin and the modified benzolactam molecules to the Cys2 domain structure observed in the crystalline complex of PKCdelta with phorbol 13-acetate. Teleocidin and benzolactams fitted well into the same cavity as phorbol 13-acetate. Of the three functional groups hydrogen-bonding to the protein, two hydrogen-bonded with protein atoms in common with phorbol 13-acetate, but the third one hydrogen-bonded with a different protein atom from that in the case of phorbol 13-acetate. The model explains well the remarkable difference in activity between 5 and its analogue having a bulky substituent at C-8.
Article
The recommendations that follow have been updated from the proposals of a Technical Subcommittee set up by the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification (Jenkinson DH, Barnard EA, Hoyer D, Humphrey PPA, Leff P, and Shankley NP (1995) International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. IX. Recommendations on terms and symbols in quantitative pharmacology. Pharmacol Rev 47:255-266).
Article
Protein kinase C (PKC) isozymes (alpha, betaI, betaII, gamma, delta, epsilon, eta, theta) are major receptors of tumor promoters and also play a crucial role in cellular signal transduction via the second messenger, 1,2-diacyl-sn-glycerol (DG). Each isozyme of PKC is involved in diverse biological events, indicating that it serves as a novel therapeutic target. Since PKC isozymes contain two possible binding sites of tumor promoters and DG (C1A and C1B domains), the design of agents with binding selectivity for individual PKC C1 domains is a pressing need. We developed a synthetic C1 peptide library of all PKC isozymes for high-throughput screening of new ligands with such binding selectivity. This peptide library enabled us to determine that indolactam and benzolactam compounds bound to the C1B domains of novel PKC isozymes (delta, epsilon, eta, theta) in some selective manner, unlike phorbol esters and DG. Simpler in structure and higher in stability than the other potent tumor promoters, a number of indolactam and benzolactam derivatives have been synthesized to develop new PKC isozyme modulators by several groups. We focused on the amide function of these compounds because recent investigations revealed that both the amide hydrogen and carbonyl oxygen of indolactam-V (ILV) are involved in hydrogen bonding with the C1B domains of PKCdelta. Synthesis of several conformationally fixed analogues of ILV led to the conclusion that the trans-amide restricted analogues with a hydrophobic chain at an appropriate position (2,7) are promising leads with a high binding selectivity for novel PKC isozyme C1B domains. We also developed a new lactone analogue of benzolactam-V8 (17) which shows significant binding selectivity for the C1B domains of PKCepsilon and PKCeta. Furthermore, our synthetic approach with the PKC C1 homology domains clarified that diacylglycerol kinase beta and gamma are new targets of phorbol esters.
Article
There have been few reports of successful long-term culture of cells established from cutaneous basal cell carcinoma (BCC) tumors. Here, we describe techniques that have enabled us to establish three long-term cultures of BCC cells isolated from BCC tumors that arose in irradiated Patched 1 (Ptch1)(+/-) mice. All three cell lines showed cellular morphology similar to that of BCC tumors and could be propagated for at least 20 passages. In addition, similar to BCC tumors, all cell lines had lost the wildtype Ptch1 allele, expressed BCC molecular markers, and responded similarly to cyclopamine, a small molecule inhibitor of Hedgehog signaling. Finally, we describe an efficient electroporation technique for DNA transfection into the BCC cell lines and show that they have activated Hedgehog signaling activity, albeit at a level lower than that of murine BCCs in vivo. These data indicate that the cell lines are bona fide long-term cultures of BCC cells and that DNA plasmids can be introduced into the BCC cell lines with relatively high transfection efficiency using a modified electroporation technique.
Article
The developmentally important Hedgehog (Hh) signal transduction pathway, which has recently been implicated in several forms of cancer, is subject to regulation by several protein kinases. Here, we address the role of protein kinase Cdelta in pathway inhibition and show that cellular depletion or pharmacological inhibition of this kinase isoform results in a blockade of signalling between Suppressor of Fused and the Gli transcription factors. We further provide evidence that the observed pathway inhibition is independent of primary cilia and the mitogen-activated protein kinase kinase (Mek1) kinase. These findings allowed for the rapid dissection of downstream Hh pathway activation mechanisms in human tumour cells and demonstrate a surprising variation in how cells can activate signalling in a ligand- and receptor-independent manner.