ArticlePDF Available

A cryptic powdery mildew (Golovinomyces hieraciorum sp. nov.) on Hieracium and Pilosella (Compositae)

Authors:

Abstract and Figures

The Golovinomyces cichoracearum complex is morphologically highly variable and causes powdery mildew on a wide range of Compositae, including Hieracium spp. and Lapsana communis. A comprehensive phylogenetic analysis of Golovinomyces, published in 2013, revealed that G. cichoracearum s. str. was confined to Scorzonera and Tragopogon spp. as hosts (Compositae, tribe Lactuceae, subtribe Scorzonerinae). To clarify the phylogeny and taxonomy of Golovinomyces on Hieracium spp. (Compositae, tribe Lactuceae, subtribe Hieraciinae), which is common in Asia and Europe, morphology and phylogenetic analyses of ITS + 28S rDNA sequences were conducted for 57 powdery mildew specimens of Hieracium spp. and Lapsana communis. Golovinomyces on Hieracium spp. in Asia and Europe, previously referred to as G. cichoracearum, is a previously undescribed, cryptic species, which is described here as Golovinomyces hieraciorum sp. nov.. Since a sequence retrieved from a powdery mildew on Lapsana communis in Switzerland clustered in sister position to the G. hieraciorum clade, numerous German specimens identified as G. cichoracearum were included in the present examinations. All the re-examined collections of “G. cichoracearum” on L. communis were misidentified, and were shown to belong to Neoërysiphe nevoi or Podosphaera ergerontis-canadensis.
Content may be subject to copyright.
Phytopathologia Mediterranea 61(1): 107-117, 2022
Firenze University Press
www.fupress.com/pm
ISSN 0031-9465 (print) | ISSN 1593-2095 (online) | DOI: 10.36253/phyto-12992
Phytopathologia Mediterranea
The international journal of the
Mediterranean Phytopathological Union
Citation: G.-X. Guan, S.-Y. Liu, U.
Braun, P.-L. Qiu, J. Liu, F.-Y. Zhao,
S.-R. Tang, J.-N. Li, V.-N. Nguyen (2022) A
cryptic powdery mildew (Golovinomy-
ces hieraciorum sp. nov.) on Hieracium
and Pilosella (Compositae). Phytopath-
ologia Mediterranea 61(1): 107-117. doi:
10.36253/phyto-12992
Accepted: November 30, 2021
Published: March 25, 2022
Copyright: © 2022 G.-X. Guan, S.-Y. Liu,
U. Braun, P.-L. Qiu, J. Liu, F.-Y. Zhao,
S.-R. Tang, J.-N. Li, V.-N. Nguyen.
This is an open access, peer-reviewed
article published by Firenze Univer-
sity Press (http://www.fupress.com/pm)
and distributed under the terms of the
Creative Commons Attribution License,
which permits unrestricted use, distri-
bution, and reproduction in any medi-
um, provided the original author and
source are credited.
Data Availability Statement: All rel-
evant data are within the paper and its
Supporting Information les.
Competing Interests: The Author(s)
declare(s) no conict of interest.
Editor: Tito Caf, Università Cattolica
del Sacro Cuore, Piacenza , Italy.
Research Papers
A cryptic powdery mildew (Golovinomyces
hieraciorum sp. nov.) on Hieracium and Pilosella
(Compositae)
G-X GUAN1, S-Y LIU1,2,*, U BRAUN3, P-L QIU1, J
LIU1, F-Y ZHAO1, S-R TAN G1, J-N LI1, V-N NGUYEN1
1 Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin
Agricultural University, No. 2888 Xincheng Street, Changchun130118, Jilin Province, China
2 Department of Plant Pathology, College of Plant Protection, Jilin Agricultural University,
No. 2888 Xincheng Street, Changchun130118, Jilin Province, China
3 Herbarium, Department of Geobotany and Botanical Garden, Institute for Biology,
Martin Luther University, Halle (Saale), Germany
*Corresponding author. E-mail: liussyan@163.com
Summary. e Golovinomyces cichoracearum complex is morphologically highly vari-
able and causes powdery mildew on a wide range of Compositae, including Hieracium
spp. and Lapsana communis. A comprehensive phylogenetic analysis of Golovinomyces,
published in 2013, revealed that G. cichoracearum s. str. was conned to Scorzonera
and Tragopogon spp. as hosts (Compositae, tribe Lactuceae, subtribe Scorzonerinae). To
clarify the phylogeny and taxonomy of Golovinomyces on Hieracium spp. (Compositae,
tribe Lactuceae, subtribe Hieraciinae), which is common in Asia and Europe, morphol-
ogy and phylogenetic analyses of ITS + 28S rDNA sequences were conducted for 57
powdery mildew specimens of Hieracium spp. and Lapsana communis. Golovinomy-
ces on Hieracium spp. in Asia and Europe, previously referred to as G. cichoracearum,
is a previously undescribed, cryptic species, which is described here as Golovino-
myces hieraciorum sp. nov.. Since a sequence retrieved from a powdery mildew on
Lapsana communis in Switzerland clustered in sister position to the G. hieraciorum
clade, numerous German specimens identied as G. cichoracearum were included in
the present examinations. All the re-examined collections of “G. cichoracearum” on
L. communis were misidentied, and were shown to belong to Neoërysiphe nevoi or
Podosphaera ergerontis-canadensis.
Keywords. Golovinomyces cichoracearum, Erysiphaceae, Ascomycota, taxonomy, phylo-
genetic analysis.
INTRODUCTION
Hieracium L. (Compositae, tribe Lactuceae; hawkweed) is a taxonomical-
ly challenging genus of herbaceous perennial herbs, with ligulate owers and
milky latex in stems and leaves. is genus comprises terrestrial perennial
plants, native to Africa, Asia, Europe and North to South America, which
are used as forage for livestock (Wilson et al., 2006). Hieracium comprises ca.
108 Guan-Xiu Guan et alii
770 sexually producing species, and ca. 5200 apomictic
microspecies, according to e International Compositae
Alliance (TICA) (CWG, 2021). Hieracium is divided into
three subgenera, viz. Pilosella, Hieracium, and Chionora-
cium (Wilson et al., 2006). Subgenus Pilosella is consid-
ered a separate genus, Pilosella, i.e., the former subgenus
Hieracium is treated as Hieracium s. str., and subgenus
Chionoracium is assigned to the genus Crepis (Gask in
and Wilson, 2007). Members of the genera Hieracium
and Pilosella are model plants that are used to study the
mechanisms of apomixis (not involving the fusion of
male and female gametes in reproduction) (Hand et al.,
2015; Płachno et al., 2017; Chrtek et al., 2020). Apomixis
is a key evolutionary mechanism in certain angiosperms,
providing reproductive assurance and isolation (Mráz
and Zdvořák, 2019).
Hieracium spp. are susceptible to powdery mildews.
Six species, viz. Erysiphe lamprocarpa, Golovinomyces
cichoracearum, Leveillula taurica, Podosphaera fusca,
Po. fuliginea, and Po. macularis, have been reported on
Hieracium from many countries (Farr and Rossman,
2021). However, these names do not reflect the cur-
rent taxonomy, i.e., they were based on outdated broad
species concepts. Golovinomyces cichoracearum (basio-
nym: Erysiphe cichoracearum) was originally described
on Scorzonera hispanica and Tragopogon porrifolius (de
Lamarck and de Candolle, 1805). Salmon (1900) widened
the concept of G. cichoracearum by assigning powdery
mildew on numerous hosts of various plant families,
including Boraginaceae and Plantaginaceae, to this spe-
cies. Braun (1987) conned G. cichoracearum to a wide
range of Compositae hosts. Braun and Cook (2012) fur-
ther reduced its circumscription to Golovinomyces on
hosts in the subfamily Cichorioideae of Compositae, but
emphasized that this circumscription still represented
a heterogenic complex species. is is demonstrated by
molecular sequence analyses (Matsuda and Takamatsu,
2003; Lebeda and Mieslerová, 2011), which supported
this compound species comprising at least several for-
mae speciales or possibly cryptic species.
e morphology of G. cichoracearum s. lat. is not
uniform on various hosts, i.e., somewhat lobed hyphal
appressoria and conidiophores with curved foot-cells
are common on Lactuca, Scorzonera, and Tragopogon,
whereas most appressoria are nipple-shaped and the
foot-cells are mostly straight on Hieracium and Picris
(Lebeda and Mieslerová, 2011; Braun and Cook, 2012).
Takamatsu et al. (2013) showed in comprehensive phy-
logenetic analyses that G. cichoracearum s . str. is further
conned to host species of the genera Scorzonera and
Tragopogon (Compositae, Cichorioideae, tribe Lactuceae,
subtribe Scorzonerinae), since the powdery mildews on
hosts of these genera morphologically coincide and are
a clade which is separate from all other clades within
Golovinomyces.
Golovinomyces cichoracearum (or E. cichoracearum)
on Hieracium (tribe Lactuceae, subtribe Hieraciinae)
and L. communis (tribe Lactuceae, subtribe Crepidinae)
is common throughout Europe, North America, and in
parts of Asia (Zeller and Levy, 1995; Braun and Cook,
2012; Farr and Rossman, 2021). Takamatsu et al. (2013)
showed a sequence retrieved from Golovinomyces on
L. communis in Switzerland was genetically distinct
from G. cichoracearum s . str., and forms a separate line-
age. Additional sequences and morphological observa-
tions are required to clarify the relationship between G.
cichoracearum s. str., Golovinomyces collections on Hiera-
cium, and Golovinomyces collections on L. communis.
In 2014 and 2017, Golovinomyces sp. was found
on H. umbellatum in Heihe City, Heilongjiang Prov-
ince, China. To identify the powdery mildew species
involved, morphological and molecular phylogenetic
analyses (based on ITS and 28S rDNA sequences) were
conducted. Morphologically, this fungus is close to G.
cichoracearum as circumscribed in Braun and Cook
(2012), but genetically it clusters far away from G.
cichoracearum s. str. and forms a clade of its own in sis-
ter position to a sequence obtained from Golovinomyces
on L. communis in Europe. erefore, the present study
aimed to: (i) clarify the identity of the causal agent of
the Hieracium powdery mildew based on morphological
re-examinations and molecular analyses, and determine
if this pathogen is distributed and common in Asia and
Europe; and (ii) identify the Golovinomyces on L. com-
munis in Europe.
MATERIALS AND METHODS
Fungal material
A total of 57 specimens were examined from four
countries. Twenty-eight specimens of Hieracium (includ-
ing 14 species) with Golovinomyces were examined,
including two samples collected in China, one specimen
from Russia, one from Slovakia, and 24 additional col-
lections from Germany. One specimen on Pilosella pro-
cera from China was included, and 27 Lapsana commu-
nis specimens from Germany were also examined.
Morphological examination
For morphological observations, dried samples from
herbarium collections were mounted in lactic acid and
109
A cryptic powdery mildew on Hieracium and Pilosella
examined using a light microscope (Zeiss Axio Scope
A1, Germany). Dimensions of at least 30 dierent fungus
anamorph and teleomorph structures were measured for
each sample.
DNA extractions, PCR amplication and sequencing
Whole-cell DNA was extracted from chasmothecia
or conidia and mycelia using the Chelex-100 method
(Walsh et al., 1991; Hirata and Takamatsu, 1996). e
rDNA internal transcribed spacer (ITS) regions includ-
ing the 5.8S rDNA were amplied with primers ITS5
and ITS4 (White et al., 1990), or PM10 and PM2 (Brad-
shaw and Tobin, 2020). And the partial 28S rDNA,
including D1 and D2 domains, was amplified with
primers LSU1 and LSU2 (Scholin et al., 1994; Mori et
al., 2000), or PM28F and PM28R (Bradshaw and Tobin,
2020). e DNA amplication and sequencing were car-
ried out as outlined in Qiu et al. (2018).
Molecular phylogenetic analyses
The obtained sequences, including complete ITS
and partial 28S rDNA, were deposited in GenBank.
e combined dataset of ITS and 28S rDNA sequences
was aligned with closely related sequences of the genus
Golovinomyces (Table S1) (Kiss et al., 2001; Matsuda and
Takamatsu, 2003; Takamatsu et al., 2006; 2008; 2009;
2013; Park et al., 2010; Scholler et al., 2016; Bradshaw et
al., 2017; Braun et al., 2018; 2019; Meeboon et al., 2018;
Ellingham et al., 2019; Qiu et al., 2020). Golovinomyces
inulae was selected as the outgroup taxon (Takamatsu et
al., 2013). Multiple sequence alignments were carried out
using MUSCLE implemented in the MEGA X (Kumar et
al., 2018). Subsequently, the alignments were manually
rened with MEGA X and deposited in TreeBASE (Piel
et al., 2009) under the accession number of S28413. Phy-
logenetic trees were obtained from the generated dataset
using the maximum parsimony (MP), maximum likeli-
hood (ML) and Bayesian Inference (BI) methods. MP
analysis was implemented in PAUP* 4.0 (Swoord, 2002)
with the heuristic search option using the “tree-bisec-
tion-reconnection” (TBR) algorithm with 100 random
sequence additions to nd the global optimum tree. All
sites were treated as unordered and unweighted, with
gaps treated as missing data. e strength of the internal
branches of the resulting trees was tested with bootstrap
(BS) analysis using 1000 replications with the step-wise
addition option set as simple and maximum tree num-
ber as 100 to save analysis time. Tree scores, including
tree length (TL), consistency index (CI), retention index
(RI), and rescaled consistency index (RC), were also cal-
culated. ML analyses were carried out in raxmlGUI 2.0
beta (Edler et al., 2021) under a GTRGAMMA model.
e BS supports and trees were obtained by running
rapid bootstrap analyses of 1000 replicates followed by
a search for the tree with the greatest likelihood. Boot-
strap supports below 75% were discarded for both anal-
yses. In BI analyses, the best-t substitution models for
dierent datasets were estimated by MrModeltest ver. 2.3
based on the implementation of the Akaike information
criterion (AIC) (Nylander, 2004). Four Markov Chain
Monte Carlo (MCMC) were run from random starting
trees for 2,000,000 generations, and trees were sampled
every 100 generations by MrBayes v. 3.2.7 (Ronquist and
Huelsenbeck, 2003). e runs ended when the standard
deviation of split frequencies reached below 0.01. e
rst 25% of all generations were discarded as burn-in
and a majority rule consensus tree of all remaining trees
was calculated to determine the posterior probabilities
for individual branches. e resulting trees were visual-
ized using FigTree 1.3.1 (Rambaut, 2009).
RESULTS
Morphological description
Golovinomyces hieraciorum G.-X. Guan & S.-Y. Liu sp.
nov. (Figure 1).
MycoBank Number: MB10001660
Etymology. Epithet derived from the name of the
host genus, Hieracium, using the plural genitive, mean-
ing “Golovinomyces of Hieracium spp.”
Typificat i on. on Hieracium umbellatum, China.
Heilongjiang Province, Heihe City, Sunwu County, the
south coast of Xunbiela River, 20 Sep. 2014, Feng-Yun
Zhao, Jian Liu, Shu-Rong Tang, Peng-Lei Qiu (holotype,
HMJAU-PM91858; isotype, HMAS249776); GenBank
number: MZ420204 (ITS+28S). Paratype: Heilongji-
ang Province, Heihe City, Sunwu County, 2 Sep. 2017,
Feng-Yun Zhao, Van-Ninh Nguyen, Jia-Ni Li, Jing-Sheng
Lu (HMJAU-PM91859), GenBank number: MZ420205
(ITS+28S).
Description. Mycelium on leaves, amphigenous, and
stems, forming irregular white patches or euse, nally
covering whole leaf surfaces, persistent. Hyphae straight
to sinuous-geniculate, hyaline, thin-walled, septate,
hyphal cells 60–90 µm long and 4–10 µm wide. Later
in the season hyphae becoming pigmented, above and
all around chasmothecia (secondary hyphae). Hyphal
appressoria nipple-shaped, solitary or in opposite pairs,
4–8 µm diam. Conidiophores on the upper surfaces
of hyphal mother cells, erect, position usually towards
110 Guan-Xiu Guan et alii
Figure 1. Golovinomyces hieraciorum on Hieracium umbellatum (HMJAU-PM91858). A and B, symptoms on host plants. C to E, hyphal
appressoria. F and G, conidiophores. H to J, conidia. K, conidium with germ tube. L, chasmothecium. M, peridium cells. N, asci. O and P,
ascospores. Bars = 10 m.
111
A cryptic powdery mildew on Hieracium and Pilosella
one septum of each mother cell, rarely in the middle or
almost so, (40–)47–90(–120) × 9–15 m. Conidiophores
foot-cells cylindrical or slightly increasing in width from
bases to tops, straight, occasionally somewhat curved at
the bases, with basal septae at the junctions (or almost
so) with the hyphal mother cells, occasionally slightly
elevated (5–10 µm), 22–80 × 8–15 m, followed by 1–3
short cells. Conidia formation catenescent, outline of
conidium chains distinctly sinuate. Conidia ellipsoid-
ovoid to doliiform-cylindrical, 22–35(–40) × 11–20 m,
length/width ratio (1.3–)1.5–2.1(–2.7). Germ tubes club-
shaped, produced in perihilar positions, short, without
swollen tips. Euoidium type. Chasmothecia, amphig-
enous, scattered to gregarious, when mature oen sur-
rounded by secondary (pigmented) hyphae, 80–156 m
diam. Peridium cells with irregularly curved-sinuous
walls, (7.4–)10–25 m diam. Appendages numerous,
in the lower half of the ascomata, sometimes also in
the upper half, mycelioid, simple but rarely irregularly
branched and interlaced with each other, 0.2–2.3 times
as long as the chasmothecial diam., 3–9 µm wide, sep-
tate, walls thin, smooth or somewhat rough, at first
hyaline, later brown, paler towards the apices or colour-
less near the apices, shorter appendages may be brown
throughout (differentiation between appendages and
secondary hyphae oen dicult). Asci 6–16 per chasmo-
thecium, clavate to saccate, (28–)45–75(–80) × (18–)20–
40(–45) µm, length/width ratio (1.2–)1.5–2.5(–3.3), usu-
ally with numerous small to moderately large oil drop-
lets, sessile to short-stalked, stalks 5–15 µm long, rarely
longer, to 25 µm, walls thin, 1–2 µm, terminal oculi
inconspicuous, 7–15 µm diam., 2-spored. Ascospores
ellipsoid-ovoid, (11–)15–20(–31) × 11–18 µm, length/
width ratio 1.0–1.9(–2.3), colourless.
Host range and distribution. Compositae (tr ibe
Lactuceae, subtribe Hieraciinae): On Hieracium (albi-
florum, alpinum, amplexicaule, anchusoides, argilla-
ceum, aurantiacum, auricula, belonodontum, bidum,
bombycinum, boreale, bupleuroides, caesium, caespito-
sum, canadense, carpathicum, carpaticum, cinerascens,
cymosum, danubiale, dentatum, echioides, fallax, fla-
gellare, orentinum, ×oribundum, gentile, glaucinum,
glaucum, groenlandicum, hryniawiense, humile, incisum,
integrifolium, jankae, juranum, kotschyanum, lachenalii,
laevicaule, laevigatum, lanatum, lanceolatum, lehbertii,
leucophaeum, longifolium, lycopifolium, murorum, ois-
tophyllum, onosmoides, pallidum, paniculatum, pictum,
pilosella, piloselloides, pleiotrichum, porrifolium, prae-
altum, praecox, pratense, prenanthoides, pulmonarioides,
quercetorum, racemosum, rapunculoides, regelianum,
robustum, rotundatum, rubrum, sabaudum, scabrum,
schmidtii, semisylvaticum, sp., staticifolium, subinuloides,
submurorum, sylvaticum, sylvularum, tenuiorum, trach-
selianum, transylvanicum, tridentatum, tritum, umbel-
latum, vagum, villosum, virosum, viscosum, vulgatum),
and Pilosella (aurantiaca, procera). Asia (Armenia, Chi-
na), Europe (Belarus, Czechoslovakia, Denmark, Esto-
nia, Finland, France, Germany, Hungary, Iceland, Italy,
Netherlands, Norway, Poland, Romania, Russia, Slova-
kia, Spain, Sweden, Switzerland, UK, Ukraine, Yugosla-
via), and North America (Amano, 1986; Braun, 1995;
Farr and Rossman, 2021).
Additional material examined. on H. amplexi-
caule, Germany, Sachsen-Anhalt, Landkreis Jerichower
Land, Burg, 10 June 1997, H. Jage (GLM-F-50151); on H.
bombycinum, Germany, Sachsen, Dresden, Großer Gar-
ten, 27 Sep. 1994, F. Klenke (GLM-F-102977); on H. fal-
lax, Germany, Sachsen-Anhalt, Landkreis Wittenberg,
Kemberg, 25 Aug. 2009, H. Jage (GLM-F-97335); on H.
glaucinum, Germany, Sachsen, Görlitz, 1 Nov. 2009,
H. Boyle (GLM-F-99602); Germany, Sachsen-Anhalt,
Landkreis Mansfeld-Südharz, between Questenberg and
Hainrode, 15 May 2009, A. Hoch (GLM-F-97576); on H.
lachenalii, Germany, Sachsen-Anhalt, Landkreis Anhalt-
Bitterfeld, Gröbzig, 10 Oct. 2006, H. Zimmermann
(GLM-F-95815); on H. laevigatum, Germany, Sachsen-
Anhalt, Sandersdorf, Stakendorfer Busch, 13 Sep. 1977,
U. Braun (HAL 946 F); Germany, Sachsen, landkreis
Görlitz, Boxberg, OT Bärwalde, 26 Aug. 2004, H. Boyle
(GLM-F-53711); Germany, Sachsen-Anhalt, Eisleben,
Steinmetzgrund, 18 Oct. 2001, H. John (GLM-F-54365);
Germany, üringen, Landkreis Gotha, Friedrichroda,
25 Sep. 2004, H. Jage & H. Boyle (GLM-F-64230); on H.
murorum, Germany, Sachsen-Anhalt, Landkreis Wit-
tenberg, north west of Oranienbaum, 20 May 2003, H.
Jage (GLM-F-63253); Germany, Sachsen-Anhalt, Land-
kreis Mansfeld-Südharz, Grillenberg, 9 Nov. 2003,
H. Jage (GLM-F-63260); on H. porrifolium, Slovakia,
Žilinský kraj, Okres Bytča, Súľovské vrchy, 26 Jul. 2011,
F. Klenke (GLM-F-105347); on H. racemosum, Germany,
Nordrhein-Westfalen, Mönchengladbach, Schloß Dyk, 6
Sep. 2003, U. Raabe (GLM-F-63139); on H. sabaudum,
Germany, Sachsen-Anhalt, Dübener Heide, Rotta, 09
Oct. 1976, U. Braun (HAL 953 F), GenBank number:
MZ420213 (28S rDNA); Germany, Sachsen, Bautzen, 15
Oct. 2003, H. Boyle (GLM-F-51367); Germany, Sachsen,
Landkreis Bautzen, Bischofwerda, 12 Jul. 2007, H. Boyle
(GLM-F-81076); Germany, Sachsen, Görlitz, 2 Sep. 2003,
H. Boyle (GLM-F- 51329); Germany, Sachsen, Görlitz, 9
Sep. 2003, S. Hoeich & H. Boyle (GLM-F-51429); Ger-
many, Sachsen, Landkreis Görlitz, Niesky, 16 Nov. 2006,
H. Boyle (GLM-F-78755); Germany, Sachsen, Bautzen, 19
Sep. 2006, H. Boyle (GLM-F-74935); Germany, Sachsen,
Landkreis Görlitz, Herrenhut, 28 June 2007, H. Boyle
112 Guan-Xiu Guan et alii
(GLM-F-79431); Germany, Sachsen, Landkreis Görlitz,
Seiennersdorf, 28 June 2007, H. Boyle & G. Zschi-
eschang (GLM-F-79445); Germany, Sachsen, Landkreis
Bautzen, Großröhrsdorf, 23 Sep. 2009, H. Boyle (GLM-
F-99681); H. schmidtii, Germany, Sachsen-Anhalt, Saal-
ekreis, Gimritzer Porphyrlandschaft, 21 Nov. 2007,
H. John (GLM-F-94444); on Hieracium sp., Germany,
Thüringen, Greiz, Cossengrün, 5 Sep. 1999, H. Jage
(GLM-F-47535); on H. virosum, Russia, Bashkortostan
Tujmazinskij Rayon, south west of Tujmazy, Kandri-
kul Lake, 12 Jul. 1977, U. Braun (HAL 859 F), GenBank
number: MZ420206 (ITS+28S); on Pilosella procera,
China, Xinjiang, Altay, Fuhai, 6 Aug. 1975, Z.Y. Zhao
(HMAS39956).
Notes. Golovinomyces cichoracearum s. lat. (sy n.
Erysiphe cichoracearum) on Hieracium and Pilosella spp.
is common and widespread in Europe, North America
and parts of Asia. Golovinomyces cichoracearum s . str.
does not occur on Hieracium spp. Based on comprehen-
sive phylogenetic examinations, Takamatsu et al. (2013)
demonstrated that G. cichoracearum s. str. is conned to
host species of Scorzonera and Tragopogon. A single re-
examined collection on H. sabaudum (HAL 953 F) was
a mixed infection with G. hieraciorum and Neoërysiphe
nevoi. is is the rst report of the N. nevoi on Hiera-
cium. e asexual stage in this collection was N. nevoi,
conrmed by ITS rDNA sequence data retrieved from
mycelia and conidia, whereas the chasmothecia in this
collection were of G. hieraciorum, which was also con-
rmed by ITS rDNA sequences data obtained from chas-
mothecia.
Golovinomyces cichoracearum on L. communis
has been reported from numerous European countries
(Amano, 1986; Braun, 1995; Farr and Rossman, 2021).
In order to clarify the phylogenetic and taxonomic posi-
tion of this taxon and to nd appropriate material for
additional sequence analyses, all German powdery mil-
dew collections on L. communis, deposited at GLM and
HAL, have been re-examined. All of these collections
were shown to be either misidentied or were powdery
mildew species other than G. cichoracearum s. lat.
e following re-examined collections, including
some originally misidentied as G. cichoracearum, per-
tain to Podosphaera ergerontis-canadensis on L. com-
munis. Germany, Hessen, Schwalm-Eder-Kreis, Bad
Zwesten, 14 Jul. 2007, C. Klencke (GLM-F-104902). Ger-
many, Sachsen, Landkreis Nordsachsen, Zschepplin,
OT Krippehna, 29 Sep. 1997, H. Jage (GLM-F-48602).
Germany, Sachsen, Landkreis Nordsachen, Laußig, OT
Pressel, 22 Oct. 1998, H. Jage (GLM-F-50206). Ger-
many, Sachsen, Oschatz, park, 8 Oct. 2006, H. Jage
(GLM-F-86559). Germany, Sachsen, Landkreis Görlitz,
Oberoderwitz, Kirchweg, 19 Jul. 2007, H. Boyle (GLM-
F-80873). Germany, Sachsen, Landkreis Görlitz, Niesky,
Stannewisch, 5 Jul. 2007, H. Boyle & S. Hoeich (GLM-
F-79525). Germany, Sachsen, Landkreis Görlitz, Box-
berg, Uhyst, 20 Oct. 2005, H. Boyle (GLM-F-70244).
Germany, Sachsen, Görlitz, 26 Aug. 2005, H. Boyle
(GLM-F-70145). Germany, Sachsen, Zittau, Westpark,
9 Aug. 2007, H. Boyle (GLM-F-80893). Germany, Sach-
sen-Anhalt, Landkreis Börde, north east of Samswe-
gen, Heidberg, 16 Oct. 2006, H. Jage (GLM-F-86402).
Germany, Sachsen-Anhalt, Landkreis Wittenberg,
Wörlitz, Wörlitzer Park, 16 Nov. 2000, H. Jage (GLM-
F-47950). Germany, Sachsen-Anhalt, Burgenlandkreis,
Burg Saaleck, 29 Sep. 2003, H. Jage (GLM-F-66171).
Germany, Sachsen-Anhalt, Dessau, Kühnauer Park, 13
Sep. 2001, H. Jage (GLM-F-54331). Germany, Sachsen-
Anhalt, Burgenlandkreis, Osterfeld, east of OT Wal-
dau, 27 Aug. 2003, H. Jage (GLM-F-63279). Germany,
Sachsen-Anhalt, Landkreis Wittenberg, Bleddin, west
of Bleddiner Riß, 31 Oct. 2000, H. Jage (GLM-F-48009).
Germany, Sachsen-Anhalt, Halle (Saale), Herrmann-
Street, 1 Jun. 2020, U. Braun (HAL 3350 F). Other col-
lections (only asexual morphs), mostly identied as G.
cichoracearum, proved to be N. nevoi on L. communis
[Germany, Mecklenburg-Vorpommern, Usedon, east
of Ückeritz, 9 Aug. 1988, H.Jage (GLM-F-58821). Ger-
many, Rheinland-Pfalz, Kreis Cochem, Zell, OT Tellig,
12 Jul. 1999, H. Jage (GLM-F-46819). Germany, Sachsen,
Landkreis Nordsachsen, Laußig, OT Görschlitz, 22 June
1997, H. Jage (GLM-F-50126). Germany, Sachsen, Land-
kreis Nordsachen, Zscheppelin, OT Hohenprießnitz,
10 May 1998, H. Jage et al. (GLM-F-49966). Germany,
Sachsen, Landkreis Görlitz, Bertsdorf, 31 May 2007, H.
Boyle (GLM-F-79245). Germany, Sachsen, Landkreis
Görlitz, Johnsdorf, Hänischmühe, 21 June 2007, H.
Boyle & S. Hoeich (GLM-F-79470). Germany, Sachsen-
Anhalt, Landkreis Wittenberg, Kemberg, 3 Apr. 1999,
H. Jage (GLM-F-46829). Germany, Sachsen-Anhalt, Sal-
zlandkreis, Calbe, 5 May 2001, H. Jage (GLM-F-57042).
Germany, Sachsen-Anhalt, Landkreis Börde, Oscherle-
ben, OT Hadmersleben, 12 June 2002, H. Jage (GLM-
F-57288). Germany, Sachsen-Anhalt, Halle (Saale), Gus-
tav-Anlauf-Street, 2 Jun. 2020, U. Braun (HAL 3349 F).
Germany, üringen, Ilm-Kreis, Arnstadt, 5 June 1997,
H. Jage (GLM-F-50147)].
erefore, reports of G. cichoracearum s. lat. (sy n.
Erysiphe cichoracearum) on L. communis from various
countries [Europe (Belarus, England, France, Hungary,
Italy, Netherlands, Norway, Poland, Romania, Sweden,
Switzerland, Ukraine, United Kingdom, Yugoslavia),
Asia (Armenia)] are doubtful, and need to be reviewed
and conrmed.
113
A cryptic powdery mildew on Hieracium and Pilosella
Phylogenetic analyses
ITS and 28S rDNA sequences were generated from
four Hieracium spp. specimens (highlighted in bold font
in Figure 2). Newly determined sequences were aligned
with other closely related sequences that were retrieved
from DNA databases, and were based on Scholler et al.
(2016), Bradshaw et al. (2017), and Meeboon et al. (2018).
Figure 2. Phylogenetic analysis of the ITS and 28S rDNA regions. e bootstrap support values greater than 75% for maximum parsimony
(MP) and maximum likelihood (ML) are displayed followed by posterior probabilities greater than 0.90 for Bayesian Inference (BI). e
sequences determined in this study were shown in bold font and pink shade. Golovinomyces inulae was used as the outgroup taxon.
114 Guan-Xiu Guan et alii
Golovinomyces inulae was used as the outgroup taxon.
e combined dataset of ITS and 28S rDNA sequences
consisted of 48 sequences including 1488 characters, of
which 108 (7.3%) were parsimony informative and 14
(0.9%) were parsimony-uninformative. e maximum
parsimony tree (TL = 178, CI = 0.8539, RI = 0.9762, RC
= 0.8336) with the greatest likelihood value is shown in
Figure 2. A phylogenetic tree generated from ML and BI
analysis was almost identical to the MP tree, so this tree
is not presented here.
The tree comprises three groups with high reli-
ability, one comprising isolates from Compositae (tribe
Anthemideae) (MP = 95%, ML = 99%, BI = 1.00), the
second representing the G. biocellatus complex clade,
comprising isolates from Lamiaceae with high reliability
(MP =100%, ML = 100%, BI = 1.00), and the third was
a cluster composed of isolates from Compositae (tribe
Lactuceae) also with high reliability (MP =100%, ML =
100%, BI = 1.00). e second and third groups formed a
big clade with high reliability (ML = 87%, BI = 0.97).
Sequences from Hieracium spp. and Pilosella auran-
tiaca as hosts are situated in lineages IX, comprising iso-
lates from Compositae (tribe Lactuceae) with strong reli-
ability (Figure S1). Two sequences from powdery mildew
on Pilosella aurantiaca formed a subclade with strong BS
supports (ML = 90%) (Figure 2).
DISCUSSION
Golovinomyces, with Euoidium as the synonymous
anamorph genus, currently comprises 71 species and
ve varieties (Braun and Cook, 2012; Liu and Wen, 2013;
Bradshaw et al., 2017; Meeboon et al., 2018; Braun et al.,
2019; Qiu et al., 2020). Takamatsu et al. (2013) published
comprehensive phylogenetic analyses of 33 Golovino-
myces spp., which were split into 11 genetically distinct
lineages. Sequences obtained from seven collections
from hosts in tribe Lactuceae of the Compositae were in
two genetically distinct lineages. One was composed of
sequences from collections on Scorzonera and Tragopo-
gon (tribe Lactuceae, subtribe Scorzonerinae), viz. G.
cichoracearum s. str.. e second lineage consisted of a
single sequence from a collection on L. communis (tribe
Lactuceae, subtribe Crepidinae) from Switzerland, which
can currently only be referred to as Golovinomyces sp.
New sequences retrieved from Golovinomyces collections
on Hieracium spp. and Pilosella aurantiaca (tribe Lac-
tuceae, subtribe Hieraciinae) have been generated and
added to the current phylogenetic ITS and 28S rDNA
analyses (Figure S1, including 43 species of Golovinomy-
ces), which signicantly increased the Golovinomyces lin-
eage. is lineage, with high reliability (MP = 100%, ML
= 100%, BI = 1.00), is distant from all other clades within
Golovinomyces, and remains divided into two clades, viz.,
the Hieracium clades (including Pilosella aurantiaca) and
a L. communis clade. e present study supports previous
presumptions of a close co-evolution between Golovino-
myces species and particular host tribes and subtribes of
the Compositae (Matsuda and Takamatsu, 2003; Taka-
matsu et al., 2013; Qiu et al., 2020).
The Hieracium clade, represents a new, hitherto
undescribed species of Golovinomyces, previously hid-
den within G. cichoracearum s. lat., which is described
here as G. hieraciorum. e new species is conned to
Hieracium and Pilosella spp. (tribe Lactuceae, subtribe
Hieraciinae), which reects the close co-evolution of
Golovinomyces with host tribes and subtribes within the
Compositae. Pilosella is phylogenetically close to Hiera-
cium and was previously oen treated as a subgenus of
Hieracium. Fehrer et al. (2007) and Krak et al. (2013)
conducted comprehensive phylogenetic analyses, indicat-
ing that Hieracium and Pilosella should be two distinct
plant genera. e phylogenetically proven occurrence of
G. hieraciorum on Hieracium and Pilosella spp. reects
the close anity of these two host genera.
Golovinomyces on Hieracium and Pilosella spp. is
widespread in Europe, North America, and parts of
Asia. Besides G. hieraciorum, two additional powdery
mildews may occur on Hieracium spp., viz. Neoërysiphe
nevoi and Podosphaera erigerontis-canadensis. Mixed
infections with these two pathogens have to be previ-
ously taken into consideration. One collection on H.
sabaudum from Germany was such a mixed infection
of G. hieraciorum and N. nevoi. is is the rst report
of N. nevoi on Hieracium. Neoërysiphe nevoi and G.
hieraciorum, two powdery mildew species on Composi-
tae, are easily confusable and not easily distinguishable
based on morphology. However, the asci of Neoërysiphe
spp. remain immature, and ascospores do not develop in
2–8-spored asci until aer overwintering. In Golovino-
myces spp., including G. hieraciorum, ascospores mature
in the current season and usually develop in 2-spored
asci. Furthermore, the hyphal appressoria in N. nevoi are
lobed, in contrast to nipple-shaped hyphal appressoria
on G. hieraciorum.
e L. communis clade within Golovinomyces posed
a special problem. Lapsana belongs to subtribe Crepidi-
nae of tribe Lactuceae and is now conned to a single
species, L. communis (Pak and Bremer, 1995). Attempts
failed to solve this problem by tracing additional col-
lections for detailed morphological and phylogenetical
examinations of this powdery mildew. Numerous collec-
tions on L. communis from the herbaria GLM and HAL,
115
A cryptic powdery mildew on Hieracium and Pilosella
identied as Erysiphe cichoracearum or G. cichoracearum,
have been re-examined, but all were misidentied. Most
collections (without chasmothecia) were shown to belong
to N. nevoi (hyphal appressoria lobed, foot-cells of the
conidiophores characteristically short, 20–50 × 9–15 µm,
basal septae of conidiophores foot-cells oen conspicu-
ously constricted, conidia with striate surfaces [as shown
by scanning electron microscopy]). e occurrence of
N. nevoi on L. communis has also been conrmed by
sequence analyses and armed in the rst report of this
species on this host from Germany (Schmidt and Braun,
2020). ere were even some collections with chasmoth-
ecia, originally identied as “Golovinomyces cichoracear-
um”, which turned out to be Po. erigerontis-canadensis
(chasmothecia with single asci). Podosphaera erigerontis-
canadensis is already known on L. communis in Germa-
ny (reported in Jage et al. (2010), under the name Po. fus-
ca). In summary, all collections on L. communis assigned
to G. cichoracearum or E. cichoracearum, including those
reported in Jage et al. (2010), were here shown to be misi-
dentied. erefore, the identity of the true Golovinomy-
ces on L. communis could not be claried in the course
of the present study. Records of G. cichoracearum and
E. cichoracearum, respectively, on Lapsana from various
countries in Europe (Belarus, England, France, Hungary,
Italy, Netherlands, Norway, Poland, Romania, Sweden,
Switzerland, Ukraine, United Kingdom, former Yugosla-
via) and Near East-Caucasus (Armenia) remain unclear
and need to be veried.
ACKNOWLEDGMENTS
e authors thank Susumu Takamatsu for help with
the literature. e curators of the Herbarium Myco-
logicum Academiae Sinicae (HMAS) are acknowledged
for allowing access to specimens for this study. is
research was nancially supported by the National Nat-
ural Science Foundation of China (Nos 31970019 and
31670022).
LITERATURE CITED
Amano K., 1986. Host Range and Geographical Distribu-
tion of the Powdery Mildew Fungi. Japan Scientic
Societies Press: Tokyo, Japan, 740 pp.
Bradshaw M., Braun U., Götz M., Meeboon J., Takamatsu
S., 2017. Powdery mildew of Chrysanthemum × mori-
folium: phylogeny and taxonomy in the context of
Golovinomyces species on Asteraceae hosts. Mycologia
109: 508–519.
Bradshaw M., Tobin P.C., 2020. Sequencing Herbarium
Specimens of a Common Detrimental Plant Disease
(Powdery Mildew). Phytopathology 110: 1248–1254.
Braun U., 1987. A monograph of the Erysiphales (powdery
mildews). Beihee zur Nova Hedwigia 700 pp.
Braun U., 1995. The Powdery Mildews (Erysiphales) of
Europe. Gustav Fischer Verlag: New York, USA, 337 pp.
Braun U., Cook R.T., 2012. Taxonomic manual of the Ery-
siphales (powdery mildews). CBS-KNAW Fungal Bio-
diversity Centre: Utrecht, e Netherlands, 707 pp.
Braun U., Bradshaw M., Zhao T., Cho S., Shin H., 2018.
Taxonomy of the Golovinomyces cynoglossi Complex
(Erysiphales, Ascomycota) Disentangled by Phyloge-
netic Analyses and Reassessments of Morphological
Traits. Mycobiology 46: 192–204.
Braun U., Shin H.D., Takamatsu S., Meeboon J., Kiss
L., … Götz M., 2019. Phylogeny and taxonomy of
Golovinomyces orontii revisited. Mycological Progress
18: 335–357.
Chrtek J., Mraz P., Belyayev A., Pastova L., Mrazova V.,
… Fehrer J., 2020. Evolutionary history and genetic
diversity of apomictic allopolyploids in Hieracium s.
str.: morphological versus genomic features. Ameri-
can Journal of Botany 107: 66–90.
CWG, 2021. Compositae Working Group (CWG), Global
Compositae Database. Available at: https://www.com-
positae.org/.
de Lamarck J., de Candolle A., 1805. Flore française. Tri-
osieme édition, Tom second, Paris: Agasse.
Edler D., Klein J., Antonelli A., Silvestro D., 2021. raxm-
lGUI 2.0 beta: a graphical interface and toolkit for
phylogenetic analyses using RAxML. Methods in
Ecology and Evolution 12: 373–377.
Ellingham O., David J., Culham A., 2019. Enhancing
identication accuracy for powdery mildews using
previously underexploited DNA loci. Mycologia 111:
1–15.
Farr D.F., Rossman A.Y., 2021. Fungal Databases. U.S.
National Fungus Collections, ARS, USDA Available
online: https://nt.ars-grin.gov/fungaldatabases/
Fehrer J., Krahulcová, A., Krahulec F., Chrtek Jr. J.,
Rosenbaumová R., Bräutigam S., 2007. Evolutionary
aspects in Hieracium subgenus Pilosella. In Apomixis:
Evolution, Mechanisms and Perspectives. Königstein,
Germany; Hörandl E., Grossniklaus U., van Dijk P.,
Sharbel T., Eds.; Gantner Verlag: Koenigstein, Ger-
many, 359–390 pp.
Gaskin J.F., Wilson L.M., 2007. Phylogenetic Relation-
ships Among Native and Naturalized Hieracium
(Asteraceae) in Canada and the United States Based
on Plastid DNA Sequences. Systematic Botany 32:
478–485.
116 Guan-Xiu Guan et alii
Hand M.L., Vít P., Krahulcová A., Johnson S.D., Oelkers K.,
… Koltunow A.M.G., 2015. Evolution of apomixis loci
in Pilosella and Hieracium (Asteraceae) inferred from
the conservation of apomixis-linked markers in natural
and experimental populations. Heredity 114: 17–26.
Hirata T., Takamatsu S., 1996. Nucleotide sequence diver-
sity of rDNA internal transcribed spacers extracted
from conidia and cleistothecia of several powdery
mildew fungi. Mycoscience 37: 283–288.
Jage H., Klenke F., Kummer V., 2010. Neufunde und
bemerkenswerte Bestätigungen von phytoparasitisch-
en Kleinpilzen in Deutschland – Erysiphales (Echte
Mehltaupilze). Schlechtendalia 21: 1–140 (in German).
Kiss L., Cook R.T.A., Saenz G.S., Cunnington J.H., Taka-
matsu S., … Rossman A.Y., 2001. Identication of
two powdery mildew fungi, Oidium neolycopersici
sp. nov. and O. lycopersici, infecting tomato in dif-
ferent parts of the world. Mycological Research 105:
684–697.
Krak K., Caklova P., Chrtek J., Fehrer J., 2013. Recon-
struction of phylogenetic relationships in a highly
reticulate group with deep coalescence and recent
speciation (Hieracium, Asteraceae). Heredity 110:
138–151.
Kumar S., Stecher G., Li M., Knyaz C., Tamura K., 2018.
MEGA X: Molecular Evolutionary Genetics Analysis
across Computing Platforms. Molecular Biology and
Evolution 35: 1547–1549.
Lebeda A., Mieslerová B., 2011. Taxonomy, distribution
and biology of lettuce powdery mildew (Golovinomy-
ces cichoracearum sensu stricto). Plant Pathology 60:
400–415.
Liu T., Wen J., 2013. Golovinomyces clematidis sp. nov.
from China. Mycotaxon 125: 107–110.
Matsuda S., Takamatsu S., 2003. Evolution of host–para-
site relationships of Golovinomyces (Ascomycete: Ery-
siphaceae) inferred from nuclear rDNA sequences.
Molecular Phylogenetics and Evolution 27: 314–327.
Meeboon, J., Kokaew, J., Takamatsu, S., 2018. Notes
on powdery mildews (Erysiphales) in ailand V.
Golovinomyces. Tropical Plant Pathology 43: 202–217.
Mori Y., Sato Y., Takamatsu S., 2000. Evolutionary Analy-
sis of the Powdery Mildew Fungi Using Nucleotide
Sequences of the Nuclear Ribosomal DNA. Mycologia
92: 74–93.
Mráz P., Zdvořák P., 2019. Reproductive pathways in
Hieracium s.s. (Asteraceae): strict sexuality in dip-
loids and apomixis in polyploids. Annals of Botany
123: 391–403.
Nylander J.A.A., 2004. MrModeltest v2. Program dis-
tributed by the author. Evolutionary Biology Centre,
Uppsala University, Sweden.
Pak J., Bremer K., 1995. Phytogeny and reclassication of
the genus Lapsana (Asteraceae: Lactuceae). Tax o n 44:
13–21.
Park M., Han K., Hong S., Shin H., 2010. Powdery Mil-
dew of Inula britannica var. chinensis in Korea. e
Plant Pathology Journal 26: 99–99.
Piel W.H., Auman J., Chan L., Dominus M.J., Gapeyev V.,
… Vos R., 2009. TreeBASE v2: A Database of Phylo-
genetic Knowledge. In: e-BioSphere 2009, London.
Available at: http://www.treebase.org/.
Płachno B.J., Świątek P., Kozieradzka-Kiszkurno M.,
Szeląg Z., Stolarczyk P., 2017. Integument cell gelati-
nisation—the fate of the integumentary cells in
Hieracium and Pilosella (Asteraceae). Protoplasma
254: 2287–2294.
Qiu P., Nguyen V., Guan G., Li Y., Takamatsu S., Liu S.,
2018. Occurrence of powdery mildew caused by
Golovinomyces orontii on Lactuca sativa var. ramosa
(lettuce) in China. Crop Protection 110: 108–111.
Qiu P., Liu S., Bradshaw M., Rooney-Latham S., Takamatsu
S., … Braun, U., 2020. Multi-locus phylogeny and tax-
onomy of an unresolved, heterogeneous species com-
plex within the genus Golovinomyces (Ascomycota, Ery-
siphales), including G. ambrosiae, G. circumfusus and G.
spadiceus. BMC Microbiology 20: s12820–s12866.
Rambaut A., 2009. FigTree v1.3.1., Institute of Evolution-
ary Biology, University of Edinburgh, Edinburgh,
Scotland. Available online: http://tree.bio.ed.ac.uk/
soware/gtree/
Ronquist F., Huelsenbeck J.P., 2003. MrBayes 3: Bayesian
phylogenetic inference under mixed models. Bioin-
formatics 19: 1572–1574.
Salmon, E., 1900. A monograph of the Erysiphaceae.
Memoirs of the Torrey Botanical Club, New York,
USA, 292 pp.
Schmidt A., Braun U., 2020. Asexual morphs of powdery
mildew species (Erysiphaceae) -new and supplemen-
tary morphological descriptions and illustrations.
Schlechtendalia 37: 30–79.
Scholin C.A., Herzog M., Sogin M., Anderson D.M.,
1994. Identification of group and strain-specific
markers for globally distributed Alexandrium (Dino-
phyceae). II. Sequence analysis of a fragment of the
LSU rRNA gene. Journal of Phycology 30: 999–1011.
Scholler M., Schmidt A., Siahaan S.A.S., Takamatsu S.,
Braun U., 2016. A taxonomic and phylogenetic study
of the Golovinomyces biocellatus complex (Erysiphales,
Ascomycota) using asexual state morphology and
rDNA sequence data. Mycological Progress 15: 1–13.
Swoord D.L., 2002. PAUP. Phylogenetic Analysis Using
Parsimony (and other methods). Version 4.0b10. Sin-
auer Associates, Sunderland, MA, USA.
117
A cryptic powdery mildew on Hieracium and Pilosella
Takamatsu S., Matsuda S., Niinomi S., Havrylenko M.,
2006. Molecular phylogeny supports a Northern
Hemisphere origin of Golovinomyces (Ascomycota:
Erysiphales). Mycological Research 110: 1093–1101.
Takamatsu S., Havrylenko M., Wolcan S.M., Matsuda S.,
Niinomi S., 2008. Molecular phylogeny and evolution
of the genus Neoerysiphe (Erysiphaceae, Ascomyco-
ta). Mycological Research 112: 639–649.
Takamatsu S., Heluta V., Havrylenko M., Divarangkoon
R., 2009. Four powdery mildew species with catenate
conidia infect Galium: molecular and morphological
evidence. Mycological Research 113: 117–129.
Takamatsu S., Matsuda S., Grigaliunaite B., 2013. Com-
prehensive phylogenetic analysis of the genus
Golovinomyces (Ascomycota: Erysiphales) reveals
close evolutionary relationships with its host plants.
Mycologia 105: 1135–1152.
Walsh P.S., Metzger D.A., Higuchi R., 1991. Chelex 100
as a medium for simple extraction of DNA for PCR-
based typing from forensic material. Biotechniques
10: 506–513.
White T.J., Bruns T.D., Lee S.B., Taylor J.W., Innis M.A.,
… Sninsky J.J., 1990. Amplification and direct
sequencing of fungal ribosomal RNA genes for phy-
logenetics, In PCR Protocols: A Guide to Methods and
Applications; Innis, M.A., Gelfand, D.H., Sninsky,
J.J., White, T.J., Eds.; Academic Press: New York, NY,
USA, 315–322.
Wilson L.M., Fehrer J., Bräutigam S., Grosskopf G., 2006.
A new invasive hawkweed, Hieracium glomeratum
(Lactuceae, Asteraceae), in the Pacific Northwest.
Canadian Journal of Botany 84: 133–142.
Zeller K.A., Levy M., 1995. Intraspecies dierentiation in
the powdery mildew Erysiphe cichoracearum deter-
mined with rDNA RFLPs. Molecular Ecology 4: 277–
284.
Firenze University Press
www.fupress.com/pm
ISSN 0031-9465 (print) | ISSN 1593-2095 (online) | DOI: 10.36253/phyto-12992
Phytopathologia Mediterranea 61(1): 107-117, 2022
G.-X. Guan, S.-Y. Liu, U. Braun, P.-L. Qiu, J. Liu, F.-Y. Zhao, S.-R. Tang, J.-N. Li, V.-N. Nguyen (2022). A cryptic
powdery mildew (Golovinomyces hieraciorum sp. nov.) on Hieracium and Pilosella (Compositae). Phytopathologia
Mediterranea 61(1): 107-117. doi: 10. 36253/phyto-12992
G. sordidus ex Plantago lanceolata MUMH661 Switzerland
G. sordidus ex Plantago sp. AB769467 Argentina
G. sordidus ex Plantago asiatica MUMHn41 Japan
G. cichoracearum ex Scorzonera hispanica MUMH759 Lithuania
G. cichoracearum ex Tragopogon pratensis AB769449 Lithuania
G. orontii ex Valeriana officinalis AB769471 Lithuania
G. orontii ex Viola arvensis AB769472 Switzerland
G. orontii ex Papaver rhoeas AB769466 Switzerland
G. bolayi ex Cucumis sativus AB427187 Japan
G. bolayi ex Arabidopsis thaliana A B769456 Japan
G. bolayi ex Incarvillea mairei AB 769453 Switzerland
G. bolayi ex Kalanchoe sp. LC417096 Germ any
G. bolayi ex Lamium amplexicaule AB427188 Japan
G. bolayi ex Papaver somniferum A B769463 USA
G. tabaci ex Galium spurium AB430815 Japan
G. tabaci ex Galium spurium var. echinospermon AB430816 Japan
G. tabaci ex Galium spurium var. echinospermon AB430817 Japan
G. tabaci ex Inula helenium AB769445 Lithuania
G.t abaci ex Capsella bursa-pastoris LC417098 Japan
G. tabaci ex Galium spurium var. echinospermon AB430818 Japan
G. tabaci ex Capsella bursa-pastoris LC417100 Japan
G. tabaci ex Capsella rubella LC417099 Switzerland
G. tabaci ex Galium aparine AB430813 Ukraine
G. leuceriae ex Leuceria thermarum AB246765 Argentina
G. leuceriae ex Leuceria thermarum AB246766 Argentina
Euoidium reginae ex Mutisia decurrens AB246759 Argentina
Euoidium reginae ex Mutisia decurrens AB246760 Argentina
Euoidium reginae ex Mutisia decurrens AB246761 Argentina
G. adenophorae ex Adenophora triphylla AB769459 Japan
G. sparsus ex Euphorbia collina AB769460 Brazil
G. sparsus ex Euphorbia collina AB769461 Argentina
G. sonchicola ex Sonchus arvensis AB453762 Lithuania
G. sonchicola ex Sonchus oleraceus DNA70 Japan
G. sonchicola ex Sonchus arvensis MUMH683
G.vincae e x Vinca pervinca AB769444 Argentina
G. cynoglossi ex Myosotis sp. AB769455 Australia
G. circumfusus ex Eupatorium cannabinum GLM49501 Germany
G. circumfusus ex Eupatorium cannabinum GLM74796 Germany
G. circumfusus ex Eupatorium cannabinum HAL3300F Germany
G. verbasci exV erbascum densiflorum MUMH958 Lithuania
G. verbasci ex Verbascum thapsus HMJAU-PM91935 China
G.asperifoliorum ex Pulmonaria officinalis MH189691 Germany
G. asperifoliorum ex Symphytum officinale MH189692 Russia
G. fischeri ex Senecio doronicum AB769450 Switzerland
G. calceolariae ex Calceolaria polyrrhiza AB430810 Argentina
G. calceolariae ex Galium aparin AB430812 Argentina
G. magnicellulatus ex Phlox paniculata AB769441 Lithuania
G. magnicellulatus ex Phlox paniculata AB769442 USA
G. magnicellulatus ex Physalis alkekengi HMJAU PM91840 China
Euoidium fuegianum ex Ranunculus sp AB769443 Argentina
Pilosella aurantiaca KY660945 UK
Pilosella aurantiaca KY660935 UK
Hieracium umbellatum HMJAU-PM91858 China
Hieracium umbellatum HMJAU-PM91859 China
Hieracium virosum HAL859F Russia
Hieracium sabaudum HAL953F Germany
Golovinomyces sp. ex Lapsana communis MUMH637 Switzerland
G. longipes ex Petunia hybrida AB769440 Argentina
G. lycopersici ex Lycopesicon esculentum AF229021 Australia
G. neosalviae ex Salvia fructicosa KR M 33266 Germany
G. neosalviae ex Salvia lavandulifolia KR M 39098 Germany
G. neosalviae ex Salvia lavandulifolia KR M 39099 Germany
G. neosalviae ex Salvia officinalis KR M 35012 Germany
G. neosalviae ex Salvia officinalis KR M 38203 Germany
G. biocellatus s. str. ex Lycopus europaeus KR M 27775 Germany
G. biocellatus s. str. ex Lycopus europaeus KR M 35014 Germany
G. biocellatus s. str. ex Glechoma hederacea KR M 21890 Germany
G. biocellatus s. str. ex Glechoma hederacea KR M 21901 Germany
G. salviae ex Salvia nemorosa KR M 46020 Germany
G. salviae ex Salvia pratensis KR M 18634 Germany
G. salviae ex Salvia pratensis MUMH935 Lithuania
G. monardae ex Mentha piperita KR M 39096 Germany
G. monardae ex Monarda citriodora KR M 24044 Germany
G. monardae ex Monarda fistulosa KR M 35023 Germany
G. monardae ex Thymus citriodorus KR M 33259 Germany
G. ocimi ex Ocimum tenuiflorum LC306656 Thailand
G. ocimi ex Ocimum tenuiflorum LC306657 Thailand
G. riedlianus ex Galium ruthenicum AB430814 Ukraine
G. riedlianus ex Galium verum AB430820 Ukraine
G. riedlianus ex Galium verum AB430819 Japan
G. riedlianus ex Galium album AB430811 Switzerland
G. chrysanthemi ex Chrysanthemum morifolium GLM F047617 Germany
G. chrysanthemi ex Chrysanthemum morifolium GLM F048600 Germany
G. chrysanthemi ex Chrysanthemum morifolium MUMH6851 USA
G. chrysanthemi ex Chrysanthemum morifolium JKI 2250 C14 Germany
G. chrysanthemi ex Chrysanthemum morifolium MUMH853 Japan
G. artemisiae exA rtemisia dubia MUMH175 Japan
G. artemisiae ex Artemisia vulgaris MUMH1041 USA
G. artemisiae ex Artemisia montana MUMH519 Japan
G. artemisiae ex Nipponanthemum nipponicum MUMH1084 Japan
G. artemisiae ex Artemisia verlotiorum MUMH1877 Argentina
G. artemisiae ex Artemisia vulgaris MUMH6848 Japan
G. artemisiae ex Artemisia vulgaris MUMH6849 Japan
G. macrocarpus ex Achillea millefolium MUMH939 Lithuania
G. macrocarpus ex Tanacetum sp. VPRI20160 Australia
G. macrocarpus ex Tanacetum vulgare HAL 3153F Germany
G. asperifolii ex Myosotis arvensis MH189704 Germany
G. asperifolii ex Trigonotis peduncularis MH189708 Korea
G. asperifolii ex Cynoglossum officinale MH189702 USA
Golovinomyces sp ex Ageratum conyzoides MUMH6739 Thailand
Golovinomyces sp ex Bidens pilosa MUMH6685 Thailand
Euoidium sp. ex Wedelia glauca AB769423 Argentina
Euoidium sp. ex Wedelia glauca AB769424 Argentina
G. ambrosiae ex Ambrosia artemisiifolia HMJAU-PM91812 China
G. ambrosiae ex Ambrosia trifida HMJAU-PM91813 China
G. ambrosiae ex Aster novi-belgii HMJAU-PM91804 China
G. ambrosiae ex Dahlia pinnata HMJAU-PM91822 China
G. ambrosiae ex Zinnia elegans HMJAU-PM91842 China
G. latisporus ex Helianthus annuus MUMH731 Lithuania
G. latisporus ex Helianthus tuberosus AB769419 Lithuania
Euoidium mutisiae ex Mutisia spinosa AB246762 Argentina
Euoidium mutisiae ex Mutisia spinosa AB246764 Argentina
Euoidium mutisiae ex Mutisia spinosa AB246763 Argentina
G. asterum var. asterum ex Aster sp. AB769416 Australia
G. inulae ex Inula britannica GU143089 Korea
G. inulae ex Inula salicina MUMH1334 Switzerland
G. depressus ex Arctium lappa MUMH696 Hungary
G. depressus ex Arctium lappa MUMH957 Lithuania
G. echinopis ex Echinops exaltatus AB769414 Switzerland
G. montagnei ex Cirsium japonicum AB769413 Japan
G. montagnei ex Serratula coronata AB077656 Japan
Arthrocladiella mougeotii ex Lycium chinense AB329690 Japan
1 change
97
100/100/1
100/100/1
75/-/-
96/991
100/100/1
99/96/1
-/-/0.96
97/98/1
-/-/1
84/-/1
100/100/1
92/94/0.98
100/100/1
94/96/1
-/7/-
100/100/1
90/94/1
-/76/0.96
100/100/1
75/85/-
94/96/1
98/95/1
-/89/0.95
100/100/1
100/100/1
100/100/1
-/78/0.99
86/98/-
98/87/0.90
-/-/0.91
99/100/1
100/100/1
90/95/1
93/96/1
93/92/1
99/100/1
77/82/0.97
85/93/1
88/96/1
100/99/1
100/99/1
75/-/0.95
-/86/0.98
-/-/0.92
-/-0.97
-/-0.91
-/-/1
-/-/0.97
-/-/0.97
ITS+28S rDNA
122 sequences
1194 characters
TL = 538
CI = 0.5818
RI = 0.9196
RC = 0.5350
Lamiaceae
Asteraceae [Trib. Lactuceae]
Solanaceae
Asteraceae [Trib. Anthemideae]
Asteraceae [Trib. Cardueae]
Asteraceae [Trib. Astereae]
Asteraceae [Trib. Inuleae]
Boraginaceae
Rubiaceae
Polemoniaceae
Ranunculaceae
Golovinomyces hieraciorum sp. nov.
Figure S1. Phylogenetic analysis from maximum parsimony (MP), maximum likelihood (ML) and Bayesian Inference (BI) analyses of all
available Golovinomyces species, based on combined ITS and 28S rDNA regions. e bootstrap support values greater than 75% for MP and
ML are displayed followed by posterior probabilities greater than 0.90 for BI. e sequences determined in this study are shown in bold font
and pink shade. Arthrocladiella mougeoti was used as the outgroup taxon.
10
Table S1. List of hosts, countries of collection, and accession numbers of the ITS and 28S rDNA sequences used in this study.
Species Host Host family VoucheraCountry of
origin
Accession number Reference
ITS 28S
Arthrocladiella mougeotii Lycium chinense Solanaceae MUMH851 Japan AB329690 AB329690 Takamatsu et al., 2008
Euoidium fuegianum Ranunculus sp. Ranunculaceae BCRU1608 Argentina AB769443 Takamatsu et al., 2013
Euoidium mutisiae Mutisia spinosa Compositae (Mutisieae) BCRU330 Argentina AB246762 AB246762 Takamatsu et al., 2006
Euoidium mutisiae Mutisia spinosa Compositae (Mutisieae) BCRU4644 Argentina AB246763 AB246763 Takamatsu et al., 2006
Euoidium mutisiae Mutisia spinosa Compositae (Mutisieae) MUMH2457 Argentina AB246764 AB246764 Takamatsu et al., 2006
Euoidium reginae Mutisia decurrens Compositae (Mutisieae) BCRU4645 Argentina AB246759 AB246759 Takamatsu et al., 2006
Euoidium reginae Mutisia decurrens Compositae (Mutisieae) MUMH1882 Argentina AB246760 AB246760 Takamatsu et al., 2006
Euoidium reginae Mutisia decurrens Compositae (Mutisieae) MUMH2458 Argentina AB246761 AB246761 Takamatsu et al., 2006
Euoidium sp. Wedelia glauca Compositae (Heliantheae) MUMH3042 Argentina AB769423 AB769423 Takamatsu et al., 2013
Euoidium sp. Wedelia glauca Compositae (Heliantheae) MUMH3081 Argentina AB769424 AB769424 Takamatsu et al., 2013
G. adenophorae Adenophora triphylla Campanulaceae Japan AB769459 AB769459 Takamatsu et al., 2013
G. ambrosiae Ambrosia artemisiifolia Compositae (Heliantheae) HMJAU-PM91812 China MK452583 MK452656 Qiu et al., 2020
G. ambrosiae Ambrosia trida Compositae (Heliantheae) HMJAU-PM91813 China MK452584 MK452657 Qiu et al., 2020
G. ambrosiae Aster novi-belgii Compositae (Astereae) HMJAU-PM91804 China MK452575 MK452648 Qiu et al., 2020
G. ambrosiae Dahlia pinnata Compositae (Heliantheae) HMJAU-PM91822 China MK452593 MK452666 Qiu et al., 2020
G. ambrosiae Zinnia elegans Compositae (Heliantheae) HMJAU-PM91842 China MK452612 MK452685 Qiu et al., 2020
G. artemisiae Artemisia montana Compositae (Anthemideae) MUMH519 Japan AB077649 AB077648 Matsuda and Takamatsu, 2003
G. artemisiae Artemisia princeps Compositae (Anthemideae) MUMH175 Japan AB077637 AB077636 Matsuda and Takamatsu, 2003
G. artemisiae Artemisia verlotiorum Compositae (Anthemideae) MUMH1877 Argentina AB769431 AB769431 Takamatsu et al., 2013
G. artemisiae Artemisia vulgaris Compositae (Anthemideae) MUMH1041 USA AB769432 AB769432 Takamatsu et al., 2013
G. artemisiae Artemisia vulgaris Compositae (Anthemideae) MUMH6848 Japan LC217863 LC217863 Bradshaw et al., 2017
G. artemisiae Artemisia vulgaris Compositae (Anthemideae) MUMH6849 Japan LC217864 LC217864 Bradshaw et al., 2017
G. artemisiae Nipponanthemum nipponicum Compositae (Anthemideae) MUMH1084 Japan AB769433 AB769433 Bradshaw et al., 2017
G. asperifolii Cynoglossum ocinale Boraginaceae KUS-F30414 USA MH189702 Braun et al., 2018
G. asperifolii Myosotis arvensis Boraginaceae GLM-F079306 Germany MH189704 Braun et al., 2018
G. asperifolii Trigonotis peduncularis Boraginaceae KUS-F29281 Korea MH189708 Braun et al., 2018
G. asperifoliorum Pulmonaria ocinalis Boraginaceae GLM-F100040 Germany MH189691 MH189691 Braun et al., 2018
G. asperifoliorum Symphytum ocinale Boraginaceae KUS-F28744 Russia MH189692 MH189692 Braun et al., 2018
G. asterum var. asterum Aster sp. Compositae (Astereae) MUMH684 Australia AB769416 AB769416 Takamatsu et al., 2013
G. biocellatus s. str. Glechoma hederacea Lamiaceae KR-M 21890 Germany LC076805 LC076805 Scholler et al., 2016
G. biocellatus s. str. Glechoma hederacea Lamiaceae KR-M 21901 Germany LC076806 LC076806 Scholler et al., 2016
G. biocellatus s. str. Lycopus europaeus Labiatae KR-M 27775 Germany LC076814 LC076814 Scholler et al., 2016
G. biocellatus s. str. Lycopus europaeus Labiatae KR-M 35014 Germany LC076825 LC076825 Scholler et al., 2016
G. bolayi Arabidopsis thaliana Brassicaceae MUMH2603 Japan AB769456 AB769456 Braun et al., 2019
(Continued)
11
Species Host Host family VoucheraCountry of
origin
Accession number Reference
ITS 28S
G. bolayi Cucumis sativus Cucurbitaceae MUMH1978 Japan AB427187 AB427187 Braun et al., 2019
G. bolayi Incarvillea mairei Bignoniaceae MUMH1387 Switzerland AB769453 AB769453 Braun et al., 2019
G. bolayi Kalanchoe sp. Crassulaceae HAL3275F Germany LC417096 LC417096 Braun et al., 2019
G. bolayi Lamium amplexicaule Lamiaceae MUMH2003 Japan AB427188 AB427188 Braun et al., 2019
G. bolayi Papaver somniferum Papaveraceae MUMH1037 USA AB769463 AB769463 Braun et al., 2019
G. calceolariae Calceolaria polyrrhiza Scrophulariaceae MUMH1934 Argentina AB430810 AB430810 Takamatsu et al., 2009
G. calceolariae Galium aparin Rubiaceae MUMH1879 Argentina AB430812 AB430812 Takamatsu et al., 2009
G. chrysanthemi Chrysanthemum morifolium Compositae (Anthemideae) GLM-F047617 Germany LC217866 LC217866 Bradshaw et al., 2017
G. chrysanthemi Chrysanthemum morifolium Compositae (Anthemideae) GLM-F048600 Germany LC217867 LC217867 Bradshaw et al., 2017
G. chrysanthemi Chrysanthemum morifolium Compositae (Anthemideae) JKI-2250-C14 Germany LC217869 LC217869 Bradshaw et al., 2017
G. chrysanthemi Chrysanthemum morifolium Compositae (Anthemideae) HAL3171F USA LC217865 LC217865 Bradshaw et al., 2017
G. chrysanthemi Chrysanthemum morifolium Compositae (Anthemideae) MUMH853 Japan AB077654 AB077653 Bradshaw et al., 2017
G. cichoracearum Scorzonera hispanica Compositae (Lactuceae) MUMH759 Lithuania AB077682 AB077681 Matsuda and Takamatsu, 2003
G. cichoracearum Tragopogon pratensis Compositae (Lactuceae) MUMH937 Lithuania AB769449 AB769449 Takamatsu et al., 2013
G. circumfusus Eupatorium cannabinum Compositae (Eupatorieae) GLM-F49501 Germany MK452630 MK452703 Qiu et al., 2020
G. circumfusus Eupatorium cannabinum Compositae (Eupatorieae) GLM-F74796 Germany MK452629 MK452702 Qiu et al., 2020
G. circumfusus Eupatorium cannabinum Compositae (Eupatorieae) HAL3300F Germany MK452628 MK452701 Qiu et al., 2020
G. cynoglossi Myos otis sp. Boraginaceae VPRI20429 Australia AB769455 AB769455 Takamatsu et al., 2013
G. depressus Arctium lappa Compositae (Cynareae) MUMH696 Hungary AB077675 AB077676 Matsuda and Takamatsu, 2003
G. depressus Arctium lappa Compositae (Cynareae) MUMH957 Lithuania AB769411 AB769412 Takamatsu et al., 2013
G. echinopis Echinops exaltatus Compositae (Cynareae) MUMH1363 Switzerland AB769414 AB769414 Takamatsu et al., 2013
G. scheri Senecio doronicum Compositae (Senecioneae) MUMH1343 Switzerland AB769450 AB769450 Takamatsu et al., 2013
G. hieraciorum Hieracium sabaudum Compositae (Lactuceae) HAL953F Germany MZ420213 is study
G. hieraciorum Hieracium umbellatum Compositae (Lactuceae) HMJAU-PM91858 China MZ420204 MZ420204 is study
G. hieraciorum Hieracium umbellatum Compositae (Lactuceae) HMJAU-PM91859 China MZ420205 MZ420205 is study
G. hieraciorum Hieracium virosum Compositae (Lactuceae) HAL859F Russia MZ420206 MZ420206 is study
G. hieraciorum Pilosella aurantiaca Compositae (Lactuceae) UK KY660945 Ellingham et al., 2019
G. hieraciorum Pilosella aurantiaca Compositae (Lactuceae) UK KY660935 Ellingham et al., 2019
G. inulae Inula britannica var. chinensis Compositae (Inuleae) KUS-F24692 Korea GU143089 Park et al., 2010
G. inulae Inula salicina Compositae (Inuleae) MUMH1334 Switzerland AB769428 AB769428 Takamatsu et al., 2013
G. latisporus Helianthus annuus Compositae (Heliantheae) MUMH731 Lithuania AB077679 AB077680 Matsuda and Takamatsu, 2003
G. latisporus Helianthus tuberosus Compositae (Heliantheae) MUMH3081 Lithuania AB769419 AB769419 Takamatsu et al., 2013
G. leuceriae Leuceria thermarum Compositae (Mutisieae) MUMH1880 Argentina AB246765 AB246765 Takamatsu et al., 2006
Table S1. (Continued).
(Continued)
12
Species Host Host family VoucheraCountry of
origin
Accession number Reference
ITS 28S
G. leuceriae Leuceria thermarum Compositae (Mutisieae) MUMH2527 Argentina AB246766 AB246766 Takamatsu et al., 2006
G. longipes Petunia hybrida Solanaceae MUMH2489 Argentina AB769440 AB769440 Takamatsu et al., 2013
G. lycopersici Lycopesicon esculentum Solanaceae VPRI 19847 Australia AF229021 Kiss et al., 2001
G. macrocarpus Achillea millefolium Compositae (Anthemideae) MUMH939 Lithuania AB769429 AB769429 Takamatsu et al., 2013
G. macrocarpus Tanacetum sp. Compositae (Anthemideae) VPRI20160 Australia AB769434 AB769435 Takamatsu et al., 2013
G. macrocarpus Tanacetum vulgare Compositae (Anthemideae) HAL3153F Germany LC217868 LC217868 Bradshaw et al., 2017
G. magnicellulatus Phlox paniculata Palemoniaceae MUMH933 Lithuania AB769441 AB769441 Takamatsu et al., 2013
G. magnicellulatus Phlox paniculata Palemoniaceae MUMH1036 USA (AB769441) AB769442 Takamatsu et al., 2013
G. magnicellulatus Physalis alkekengi Solanaceae HMJAU-PM91840 China MK452610 MK452683 Qiu et al., 2020
G. monardae Mentha piperita Labiatae KR-M39096 Germany LC076835 LC076835 Scholler et al., 2016
G. monardae Monarda citriodora Labiatae KR-M24044 Germany LC076809 LC076809 Scholler et al., 2016
G. monardae Monarda stulosa Lamiaceae KR-M35023 Germany LC076830 LC076830 Scholler et al., 2016
G. monardae ymus citriodorus Labiatae KR-M33259 Germany LC076815 LC076815 Scholler et al., 2016
G. montagnei Cirsium japonicum Compositae (Cardueae) MUMH1082 Japan AB769413 AB769413 Takamatsu et al., 2013
G. montagnei Serratula coronata Compositae (Cynareae) YNMH12310 Japan AB077656 AB077656 Matsuda and Takamatsu, 2003
G. neosalviae Salvia fructicosa Lamiaceae KR-M 33266 Germany LC076819 LC076819 Scholler et al., 2016
G. neosalviae Salvia lavandulifolia Lamiaceae KR-M 39098 Germany LC076837 LC076837 Scholler et al., 2016
G. neosalviae Salvia lavandulifolia Lamiaceae KR-M 39099 Germany LC076838 LC076838 Scholler et al., 2016
G. neosalviae Salvia ocinalis Lamiaceae KR-M 35012 Germany LC076823 LC076823 Scholler et al., 2016
G. neosalviae Salvia ocinalis Lamiaceae KR-M 38203 Germany LC076833 LC076833 Scholler et al., 2016
G. ocimi Ocimum tenuiorum Labiatae MUMH1803 ailand LC306656 Meeboon et al., 2018
G. ocimi Ocimum tenuiorum Labiatae MUMH6621 ailand LC306657 Meeboon et al., 2018
G. orontii Papaver rhoeas Papaveraceae MUMH1393 Switzerland AB769466 AB769466 Takamatsu et al., 2013
G. orontii Valeriana ocinalis Valerianaceae MUMH938 Lithuania AB769471 AB769471 Takamatsu et al., 2013
G. orontii Viola arvensis Violaceae MUMH1406 Switzerland AB769472 AB769472 Takamatsu et al., 2013
G. riedlianus Galium album Rubiaceae MUMH1301 Switzerland AB430811 AB430811 Takamatsu et al., 2009
G. riedlianus Galium ruthenicum Rubiaceae MUMH3223 Ukraine AB430814 AB430814 Takamatsu et al., 2009
G. riedlianus Galium verum Rubiaceae MUMH1148 Japan AB430819 AB430819 Takamatsu et al., 2009
G. riedlianus Galium verum Rubiaceae MUMH3217 Ukraine AB430820 AB430820 Takamatsu et al., 2009
G. salviae Salvia nemorosa Lamiaceae KR-M 46020 Germany LC100001 LC100001 Scholler et al., 2016
G. salviae Salvia pratensis Lamiaceae KR-M 18634 Germany LC076803 LC076803 Scholler et al., 2016
G. salviae Salvia pratensis Lamiaceae MUMH935 Lithuania AB769437 AB077690 Takamatsu et al., 2013
G. sonchicola Sonchus arvensis Compositae (Lactuceae) MUMH952 Lithuania AB453762 AB453762 Takamatsu et al., 2013
Table S1. (Continued).
(Continued)
13
Species Host Host family VoucheraCountry of
origin
Accession number Reference
ITS 28S
G. sonchicola Sonchus arvensis Compositae (Lactuceae) MUMH683 Hungary AB077673 AB077672 Matsuda and Takamatsu, 2003
G. sonchicola Sonchus oleraceus Compositae (Lactuceae) — Japan AB077623 AB077624 Matsuda and Takamatsu, 2003
G. sordidus Plantago asiatica Plantaginaceae MUMHn41 Japan AB077658 AB077657 Matsuda and Takamatsu, 2003
G. sordidus Plantago lanceolata Plantaginaceae MUMH661 Switzerland AB077665 AB077664 Matsuda and Takamatsu, 2003
G. sordidus Plantago sp. Plantaginaceae MUMH2433 Argentina AB769467 AB769467 Takamatsu et al., 2013
G. sparsus Euphorbia collina Euphorbiaceae MUMH3807 Brazil AB769460 AB769460 Takamatsu et al., 2013
G. sparsus Euphorbia collina Euphorbiaceae BCRU934 Argentina AB769461 AB769461 Takamatsu et al., 2013
G. tabaci Capsella bursa-pastoris Cruciferae MUMH1388 Japan LC417098 LC417098 Braun et al., 2019
G. tabaci Capsella bursa-pastoris Cruciferae HAL2506F Japan LC417100 LC417100 Braun et al., 2019
G. tabaci Capsella rubella Cruciferae Switzerland LC417099 LC417099 Braun et al., 2019
G. tabaci Galium aparine Rubiaceae MUMH3225 Ukraine AB430813 AB430813 Braun et al., 2019
G. tabaci Galium spurium var. echinospermon Rubiaceae MUMH826 Japan AB430815 AB430815 Braun et al., 2019
G. tabaci Galium spurium var. echinospermon Rubiaceae MUMH2622 Japan AB430816 AB430816 Braun et al., 2019
G. tabaci Galium spurium var. echinospermon Rubiaceae MUMH2623 Japan AB430817 AB430817 Braun et al., 2019
G. tabaci Galium spurium var. echinospermon Rubiaceae MUMH2624 Japan AB430818 AB430818 Takamatsu et al., 2009
G. tabaci Inula helenium Compositae (Inuleae ) MUMH940 Lithuania AB769445 AB769445 Braun et al., 2019
G. verbasci Verbascum densiorum Scrophulariaceae MUMH958 Lithuania AB769468 AB769469 Takamatsu et al., 2013
G. verbasci Verbascum thapsus Scrophulariaceae HMJAU-PM91935 China MZ505461 is study
G. vincae Vinca pervinca Apocynaceae MUMH2480 Argentina AB769444 AB769444 Takamatsu et al., 2013
Golovinomyces sp. Ageratum conyzoides Compositae (Eupatorieae) MUMH6739 ailand LC306669 Meeboon et al., 2018
Golovinomyces sp. Bidens pilosa Compositae (Heliantheae) MUMH6685 ailand LC306668 Meeboon et al., 2018
Golovinomyces sp. Lapsana communis Compositae (Lactuceae) MUMH637 Switzerland AB077662 AB769439 Matsuda and Takamatsu, 2003
a BCRU: Universidad Nacional del Comahue, Argentina; GLM: Senckenberg Gesellscha für Naturforschung: Senckenberg Museum für Naturkunde Görlitz, Görlitz; HAL: Martin
Luther Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Halle; HMJAU: Herbarium of Mycology of Jilin Agricultural University, China; KR:
Herbarium of State Museum of Natural History, Karlsruhe, Germany; KUS: Korea University, Korea; MUMH: Mie University, Mycological Herbarium, Japan; VPRI: Victorian Depart-
ment of Primary Industries, Australia; YNMH: Yukihiko Nomura Mycological Herbarium, Japan.
Table S1. (Continued).
Article
Full-text available
Some interesting records of plant parasitic microfungi of the Erysiphaceae, Peronosporomycetes, Pucciniomycotina, Ustilaginomycotina and Plasmodiophoridae are reported. Erysiphe australiana is documented in Germany for the first time. It was found on cultivatedLagerstroemia indica. Chondrilla juncea, Crepis pulchra, C. setosa and Leontodon saxatilis are new host species for Neoerysiphe nevoi in Central Europe. All earlier records are from Lapsana communis in Germany. The first one dates from 1988. New host species in Germany are Hypericum inodorum for Melampsora hypericorum, Knautia arvensis for Podosphaera dipsacacearum and Cucurbita moschata for P. xanthii. For the latter Dahlia x hortensis is possibly a matrix nova. Viola biflora is a new host species for Peronospora violae in Austria and Plasmoverna pygmaea for Clematis alpina. Recent records of Puccinia stachydis in Germany and a distribution map are provided. A finding of Podosphaera physocarpi on Physocarpus opulifolius is the second record of this fungus in Germany. Sorosphaerula veronicae on Veronica arvensis is portrayed. It is an overlooked species. In addition other interesting records are listed at the end of the publication, e.g. new records for federal states of Germany and Austria.
Article
Powdery mildews are a monophyletic group of obligate plant pathogenic fungi in the family Erysiphaceae. Powdery mildews are economically important in that they cause damage to many agriculturally significant crops and plants in ecologically important habitats. In this contribution, we introduce a new series of publications focusing on the phylogeny and taxonomy of this group, with an emphasis on specimens collected from North America. The first part of the series focuses on the genus Golovinomyces and includes a section detailing the powdery mildew species concept. We conducted analyses of Golovinomyces spp. with available rDNA sequence data from GenBank and supplemented the data set with rDNA (ITS, 28S, IGS) as well as protein-coding (GAPDH) data from 94 North American collections. Many of the species evaluated are included in phylogenetic and morphological analyses for the first time, including the American species G. americanus, G. brunneopunctatus, G. californicus, G. greeneanus, G. hydrophyllacearum, and G. sparsus. A special emphasis was placed on acquiring ex-type or ex-epitype sequences or presenting reference sequences for phylogenetic-taxonomic purposes. Three new species, G. eurybiarum, G. galiorum, and G. malvacearum, are described, and the new combinations G. fuegianus, G. mutisiae, and G. reginae are introduced. Ex-holotype sequences of Erysiphe sparsa (≡ G. sparsus) reveal that it should be reduced to synonymy with G. ambrosiae, and ex-epitype sequences of G. valerianae reveal that it should be reduced to synonymy with G. orontii. Multiple epitypes are designated with ex-epitype sequences.
Article
Full-text available
raxmlGUI is a graphical user interface to RAxML, one of the most popular and widely used softwares for phylogenetic inference using maximum likelihood. Here we present raxmlGUI 2.0, a complete rewrite of the GUI which seamlessly integrates RAxML binaries for all major operating systems with an intuitive graphical front‐end to setup and run phylogenetic analyses. Our program offers automated pipelines for analyses that require multiple successive calls of RAxML, built‐in functions to concatenate alignment files while automatically specifying the appropriate partition settings, and one‐click model testing to select the best substitution models using ModelTest‐NG. In addition to RAxML 8.x, raxmlGUI 2.0 also supports the new RAxML‐NG, which provides new functionality and higher performance on large datasets. raxmlGUI 2.0 facilitates phylogenetic analyses by coupling an intuitive interface with the unmatched performance of RAxML.
Article
Full-text available
Schmidt, A. & Braun, U. 2020: Asexual morphs of powdery mildew species (Erysiphaceae)-new and supplementary morphological descriptions and illustrations. Schlechtendalia 37: 30-79. Descriptions of asexual morphs of powdery mildew species are provided, with a particular focus on characteristics of the conidiophores and conidial germination patterns. Descriptions and illustrations are based on collections made by the first author in the course of long-term examinations of species of the Erysiphaceae. In some cases, detailed descriptions and illustrations of conidiophores and, above all, conidial germination patterns could be obtained for the first time. The first record of Neoerysiphe nevoi for Germany on Lapsana communis is included in this work. Conidial germination patterns of Erysiphe spp. on legumes are compared and discussed in more detail. Zusammenfassung: Schmidt, A. & Braun, U. 2020: Asexuelle Morphen von Mehltauarten (Erysiphaceae)-neue und ergänzende morphologische Beschreibungen und Abbildungen. Schlechtendalia 37: 30-79. Beschreibungen asexueller Morphen von Mehltau-Arten werden zur Verfügung gestellt, mit einem besonderen Schwerpunkt auf Merkmale der Konidien-Träger und Keimungsmuster der Konidien. Beschreibungen und Abbildungen basieren auf Kollektionen der Erstautorin, die sie im Rahmen langjähriger Untersuchungen von Arten der Erysiphaceae gefunden hat. In einigen Fällen war es möglich, erstmalig detaillierte Beschreibungen und Abbildungen von Konidien-Trägern und vor allem von Konidien-Keimungsmustern zu erstellen. Der Erstnachweis von Neoerysiphe nevoi für Deutschland auf Lapsana communis ist in dieser Arbeit enthalten. Keimungsmuster der Konidien von Erysiphe-Arten auf Leguminosen werden detaillierter verglichen und diskutiert.
Article
Full-text available
Background: Previous phylogenetic analyses of species within the genus Golovinomyces (Ascomycota, Erysiphales), based on ITS and 28S rDNA sequence data, revealed a co-evolutionary relationship between powdery mildew species and hosts of certain tribes of the plant family Asteraceae. Golovinomyces growing on host plants belonging to the Heliantheae formed a single lineage, comprised of a morphologically differentiated complex of species, which included G. ambrosiae, G. circumfusus, and G. spadiceus. However, the lineage also encompassed sequences retrieved from Golovinomyces specimens on other Asteraceae tribes as well as other plant families, suggesting the involvement of a plurivorous species. A multilocus phylogenetic examination of this complex, using ITS, 28S, IGS (intergenic spacer), TUB2 (beta-tubulin), and CHS1 (chitin synthase I) sequence data was carried out to clarify the discrepancies between ITS and 28S rDNA sequence data and morphological differences. Furthermore, the circumscription of species and their host ranges were emended. Results: The phylogenetic and morphological analyses conducted in this study revealed three distinct species named, viz., (1) G. ambrosiae emend. (including G. spadiceus), a plurivorous species that occurs on a multitude of hosts including, Ambrosia spp., multiple species of the Heliantheae and plant species of other tribes of Asteraceae including the Asian species of Eupatorium; (2) G. latisporus comb. nov. (≡ Oidium latisporum), the closely related, but morphologically distinct species confined to hosts of the Heliantheae genera Helianthus, Zinnia, and most likely Rudbeckia; and (3) G. circumfusus confined to Eupatorium cannabinum in Europe. Conclusions: The present results provide strong evidence that the combination of multi-locus phylogeny and morphological analysis is an effective way to identify species in the genus Golovinomyces.
Article
Full-text available
The internal transcribed spacer (ITS) DNA marker is routinely used for fungal identification but gives a clear result for only three out of four powdery mildew samples. A search for new markers indicates that some genes offer enhanced identification in comparison with ITS. Others fail due to amplification and sequencing difficulties and lack of informative variability. Powdery mildews (Ascomycota, Erysiphales) are biotrophic, fungal plant pathogens that commonly occur worldwide on a wide range of host plants. They are unsightly and greatly reduce the vigor of their hosts and have major impacts on crop and other cultivated plants. Species within this order are straightforward to spot, but difficult to identify. A citizen science scheme was run in 2013–2016 in the UK to gather a wide array of samples on which identification methods could be developed. Current techniques for identification and phylogenetic reconstruction show scope for improvement. In this paper, we review genes used in other fungal groups for discrimination at species level. Working protocols for amplification and sequencing of seven genes (actin, β-tubulin, calmodulin,Chs, elongation factor 1-α [EF1-α], Mcm7, and Tsr1) are developed with varying success; Mcm7 proves to be the most useful at differentiation between closely related, phylogenetically young powdery mildew species for phylogenetic reconstruction when used separately and in tandem with ITS. We therefore propose this as the most appropriate candidate gene to be used commonly in powdery mildew diagnostics alongside the ITS; furthermore, this could be transferred to similarly troublesome fungal clades.
Article
Full-text available
The nucleotide sequences of the nuclear ribosomal DNA including 18S, 5.8S, and 28S rDNA and the internal transcribed spacer regions were determined for 33 powdery mildew taxa spanning 15 genera to infer the phylogenetic relationships for these fungi. Phylogenetic analyses revealed that Uncinula septata was placed in the primitive base to the large clade composed of all other powdery mildew taxa. Powdery mildews excluding Unc. septata were split into five major lineages. The Pseudoidium lineage consisted of six genera, i.e., Erysiphe, Microsphaera, Uncinula, Uncinuliella, Brasiliomyces, and Typhulochaeta, all of which are characterized by polyascal cleistothecia and Pseudoidium-type anamorph. The Eudoidium lineage consisted of three Erysiphe species (E. cichoracearum, E. orontii and E. galeopsidis) and Arthrocladiella mougeotii, which are characterized by polyascal cleistothecia and Euoidium-type anamorph. The endophytic lineage consisted of two Phyllactinia species (Phy. moricola and Phy. Kakicola), Leveillula taurica and Pleochaeta shiraiana, which are characterized by the presence of endophytic or partly endophytic mycelia. The fibrosin lineage consisted of the genera Sawadaea, Cystotheca, Podosphaera, and Sphaerotheca, all of which are characterized by the presence of well-developed fibrosin bodies in the conidia and conidiophores. The monocot lineage consisted of a single species, Blumeria graminis, which is well characterized by being parasitic to monocots, especially to cereal plants. Character polarization was discussed on several major characteristics. The mycelioid appendage which has long been regarded as an ancestral character may be a derived character as a result of an event that may have occurred multiple times independently due to convergence. Euoidium-type anamorph and clavate appressorial germ tube are considered to be ancestral characters to Pseudoidium-type anamorph and lobed germ tube. Ectophytic nature and polyascal cleistothecia are also regarded as ancestral features to endophytic nature and monoascal cleistothecia.
Article
Full-text available
Golovinomyces orontii is a common plurivorous powdery mildew species with wide host range and worldwide distribution, usually occurring as asexual morph. Ascomata (chasmothecia) are rarely formed on most hosts. Phylogenetic analyses based on rDNA ITS and 28S rDNA data of a wide range of powdery mildew collections of G. orontii s. lat. suggested a high degree of genetic heterogeneity of this species, which is undoubtedly not monophyletic. This study revealed that sequences retrieved from numerous collections referred to as G. orontii (s. lat.) split into three distinct main clusters, previously classified as groups 1 to 3. These groups have been genetically and morphologically analyzed, circumscribed, and named. One cluster (group 2), including a sequence retrieved from powdery mildew on the type host of Erysiphe orontii, Misopates orontium, constitutes G. orontii s. str. G. tabaci comb. nov. (≡ E. tabaci) is introduced for the second cluster in group 1 that is genetically and morphologically clearly distinct from G. orontii s. str. The third assemblage of sequences (group 3) comprises powdery mildews on hosts of the composite tribe Cichorieae, including Cichorium and Lactuca spp., and a wide range of hosts belonging to various other plant families for which the name G. bolayi sp. nov. is proposed. Euoidium longipes and Euoidium lycopersici, two additional powdery mildew species on solanaceous hosts, are briefly discussed and, based on previous phylogenetic analyses, reallocated to Golovinomyces. Oidium lactucae-debilis on Ixeris japonica in Asia is tentatively reduced to synonymy with G. sonchicola, i.e., it does not pertain to the G. orontii s. lat. complex. G. orontii s. lat. on Vinca spp. (Apocynaceae), mostly known as asexual morph, represents a separate species only distantly related to G. orontii s. str., which is described herein as Golovinomyces vincae sp. nov. Some re-examined collections on Vinca major from Germany misidentified as G. orontii turned out to belong to Ramularia vincae and represent first records of this species for Germany. Golovinomyces spadiceus is a further plurivorous Golovinomyces species discussed in this work, which, however, does not belong to the G. orontii complex.
Article
Full-text available
The name Golovinomyces cynoglossi s. lat. is traditionally applied to a complex of morphologically similar powdery mildews on hosts of the plant family Boraginaceae. The current species-level taxonomy within this complex is ambiguous due to the lack of phylogenetic examinations. The present study applied phylogenetic methods to clarify the taxonomy of G. cynoglossi s. lat. Phylogenetic analysis of rDNA ITS sequences retrieved from Asian, European and North American specimens revealed that G. cynoglossi s. lat. collections from different hosts involved several species in five clearly separated lineages. Clade I consists primarily of Golovinomyces cynoglossi s. str. on Cynoglossum. Clade III consists of Golovinomyces sequences retrieved from the host genera Symphytum and Pulmonaria. The taxa within clade III are now assigned to G. asperifoliorum comb. nov. Clade V encompasses G. cynoglossi s. lat. on the host genera Bothriospermum, Buglossoides, Echium, Myosotis, and Trigonotis. The taxa within clade V are now assigned to G. asperifolii comb. nov. The species concerned in this study were lecto-and epitypified to stabilize their nomenclature. ARTICLE HISTORY
Article
Powdery mildew (Erysiphaceae) is a detrimental plant disease that occurs on a variety of economically important crops. Powdery mildew consists of over 873 species of fungal pathogens that affect over 10,000 plant species. Genetic identification of powdery mildew is accomplished using the internal transcribed spacer (ITS) and large subunit (LSU) regions of the nuclear ribosomal RNA gene cluster. The ITS and LSU regions of powdery mildews can be useful in ecological, epidemiological, phylogenetic and taxonomic investigations. However, sequencing these regions is not without its challenges. For example, powdery mildew sequences are often contaminated with plant and/or fungal DNA. Also, there tends to be a limited amount of DNA present in specimens, and older specimens of DNA can fragment over time. The success of sequencing powdery mildew often depends on the primers used for running polymerase chain reaction (PCR). The primers need to be broad enough that they match the majority of powdery mildew DNA yet specific enough that they do not align with other organisms. A review of the taxonomy and phylogeny of the powdery mildews is presented with an emphasis on sequencing the ITS+LSU genomic regions. Additionally, we introduce a new nested primer protocol for sequencing powdery mildew herbarium samples that includes six new powdery mildew specific primers. The new sequencing protocol presented allows specimens up to 130 years old to be sequenced consistently. Sequencing herbarium specimens can be extremely useful for addressing many ecological, epidemiological, phylogenetic and taxonomic problems in multiple plant pathogenic systems including the powdery mildews.
Article
PREMISE: The origin of allopolyploids is believed to shape their evolutionary potential, ecology, and geographical ranges. Morphologically distinct apomictic types sharing the same parental species belong to the most challenging groups of polyploids. We evaluated the origins and variation of two triploid taxa (Hieracium pallidiflorum, H. picroides) presumably derived from the same diploid parental pair (H. intybaceum, H. prenanthoides). METHODS: We used a suite of approaches ranging from morphological, phylogenetic (three unlinked molecular markers), and cytogenetic analyses (in situ hybridization) to genome size screening and genome skimming. RESULTS: Genotyping proved the expected parentage of all analyzed accessions of H. pallidiflorum and H. picroides and revealed that nearly all of them originated independently. Genome sizes and genome dosage largely corresponded to morphology, whereas the maternal origin of the allopolyploids had no discernable effect. Polyploid accessions of both parental species usually contained genetic material from other species. Given the phylogenetic distance of the parents, their chromosomes appeared only weakly differentiated in genomic in situ hybridization (GISH), as well as in overall comparisons of the repetitive fraction of their genomes. Furthermore, the repeatome of a phylogenetically more closely related species (H. umbellatum) differed significantly more. CONCLUSIONS: We proved (1) multiple origins of hybridogeneous apomicts from the same diploid parental taxa, and (2) allopolyploid origins of polyploid accessions of the parental species. We also showed that the evolutionary dynamics of very fast evolving markers such as satellite DNA or transposable elements does not necessarily follow patterns of speciation.
Article
Apomixis or asexual seed reproduction is a key evolutionary mechanism in certain angiosperms providing them with reproductive assurance and isolation. Nevertheless, the frequency of apomixis is largely unknown, especially in groups with autonomous apomixis such as the diploid–polyploid genus Hieracium. Using flow cytometric analyses, we determined the ploidy level and reproductive pathways (sexual vs. apomictic) for 7616 seeds originating from 946 plants belonging to >50 taxa sampled at 130 sites across Europe. Diploid seeds produced by diploids were formed exclusively by the sexual pathway after double fertilization of reduced embryo sacs. An absolute majority of tri- and tetraploid seeds (99.6 %) produced by tri- and tetrapolyploid taxa were formed by autonomous apomixis. Only 20 polyploid seeds (0.4 %) were formed sexually. These seeds, which originated on seven polyploid accessions of four taxa, were formed after fertilization of either unreduced embryo sacs through a so-called triploid bridge or reduced embryo sacs, and frequently resulted in progeny with an increased ploidy. In addition, the formation of seedlings with increased ploidy (4x and 6x) was found in two triploid plants. This is the first firm evidence on functional facultative apomixis in polyploid members of Hieracium sensu stricto (s.s.). The mode of reproduction in Hieracium s.s. is tightly associated with ploidy. While diploids produce seeds exclusively sexually, polyploids produce seeds by obligate or almost obligate apomixis. Strict apomixis can increase the reproductive assurance and this in turn can increase the colonization ability of apomicts. Nevertheless, our data clearly show that certain polyploid plants are still able to reproduce sexually and contribute to the formation of new cytotypes and genotypes. The finding of functional facultative apomicts is essential for future studies focused on evolution, inheritance and ecological significance of apomixis in this genus.