ArticlePublisher preview available

Feasibility of non-invasive neuromonitoring in general intensive care patients using a multi-parameter transcranial Doppler approach

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract and Figures

Purpose To assess the feasibility of Transcranial Doppler ultrasonography (TCD) neuromonitoring in a general intensive care environment, in the prognosis and outcome prediction of patients who are in coma due to a variety of critical conditions. Methods The prospective trial was performed between March 2017 and March 2019 Addenbrooke’s Hospital, Cambridge, UK. Forty adult patients who failed to awake appropriately after resuscitation from cardiac arrest or were in coma due to conditions such as meningitis, seizures, sepsis, metabolic encephalopathies, overdose, multiorgan failure or transplant were eligible for inclusion. Gathered data included admission diagnosis, duration of ventilation, length of stay in the ICU, length of stay in hospital, discharge status using Cerebral Performance Categories (CPC). All patients received intermittent extended TCD monitoring following inclusion in the study. Parameters of interest included TCD-based indices of cerebral autoregulation, non-invasive intracranial pressure, autonomic system parameters (based on heart rate variability), critical closing pressure, the cerebrovascular time constant and indices describing the shape of the TCD pulse waveform. Results Thirty-seven patients were included in the final analysis, with 21 patients classified as good outcome (CPC 1-2) and 16 as poor neurological outcomes (CPC 3-5). Three patients were excluded due to inadequacies identified in the TCD acquisition. The results indicated that irrespective of the primary diagnosis, non-survivors had significantly disturbed cerebral autoregulation, a shorter cerebrovascular time constant and a more distorted TCD pulse waveform (all p<0.05). Conclusions Preliminary results from the trial indicate that multi-parameter TCD neuromonitoring increases outcome-predictive power and TCD-based indices can be applied to general intensive care monitoring.
This content is subject to copyright. Terms and conditions apply.
ORIGINAL RESEARCH
1 3
Journal of Clinical Monitoring and Computing (2022) 36:1805–1815
https://doi.org/10.1007/s10877-022-00829-x
Danilo Cardim
danilo.cardim@gmail.com
1 Brain Physics Laboratory, Division of Neurosurgery,
Department of Clinical Neurosciences, University of
Cambridge, Cambridge Biomedical Campus, Cambridge,
United Kingdom
2 Department of Neurology, University of Texas Southwestern
Medical Center, Dallas, TX, USA
3 Institute for Exercise and Environmental Medicine, Texas
Health Presbyterian Hospital, Dallas, TX, USA
4 Institute of Electronic Systems, Warsaw University of
Technology, Warsaw, Poland
5 John Farman Intensive Care Unit, Addenbrooke’s Hospital,
Cambridge University Hospitals NHS Foundation,
Cambridge, United Kingdom
6 Department of Neurology and Neurocritical Care Unit,
Addenbrooke’s Hospital, Cambridge University Hospitals
NHS Foundation, Cambridge, United Kingdom
7 Department of Neurology and the Institute for Exercise and
Environmental Medicine, University of Texas Southwestern
Medical Center, Texas Health Presbyterian Hospital, 7232
Greenville Avenue, 75231 Dallas, Texas, USA
Abstract
Purpose To assess the feasibility of Transcranial Doppler ultrasonography (TCD) neuromonitoring in a general intensive
care environment, in the prognosis and outcome prediction of patients who are in coma due to a variety of critical conditions.
Methods The prospective trial was performed between March 2017 and March 2019 Addenbrooke’s Hospital, Cambridge,
UK. Forty adult patients who failed to awake appropriately after resuscitation from cardiac arrest or were in coma due
to conditions such as meningitis, seizures, sepsis, metabolic encephalopathies, overdose, multiorgan failure or transplant
were eligible for inclusion. Gathered data included admission diagnosis, duration of ventilation, length of stay in the ICU,
length of stay in hospital, discharge status using Cerebral Performance Categories (CPC). All patients received intermittent
extended TCD monitoring following inclusion in the study. Parameters of interest included TCD-based indices of cerebral
autoregulation, non-invasive intracranial pressure, autonomic system parameters (based on heart rate variability), critical
closing pressure, the cerebrovascular time constant and indices describing the shape of the TCD pulse waveform.
Results 
-
    
autoregulation, a shorter cerebrovascular time constant and a more distorted TCD pulse waveform (all p<0.05).
Conclusions Preliminary results from the trial indicate that multi-parameter TCD neuromonitoring increases outcome-pre-
dictive power and TCD-based indices can be applied to general intensive care monitoring.
Keywords Cardiac arrest · Cerebral autoregulation · General intensive care · Neuromonitoring · Transcranial Doppler
ultrasonography
Received: 9 December 2021 / Accepted: 2 February 2022 / Published online: 1 March 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022
Feasibility of non-invasive neuromonitoring in general intensive care
patients using a multi-parameter transcranial Doppler approach
Leanne A.Calviello1· DaniloCardim1,2,3,7 · MarekCzosnyka1,4· JacobusPreller5· PeterSmielewski1· AnishaSiyal5·
Maxwell S.Damian6
Content courtesy of Springer Nature, terms of use apply. Rights reserved.
... A low-flow state defined as MCA MFV below 40 cm/s, occurs in over half of TBI patients during the first 24 h after injury, most often ipsilateral to focal pathology and correlates with the burden of cerebral hypoxia (PbtO 2 <20 mmHg) (155,156). The combination of elevated PI (suggesting increased resistance) with MFV 35-40 cm/s or EDV <20-25 cm/s (signifying impaired CBF) identifies TBI patients with particularly high risk of poor outcome and has even been validated in a mixed ICU population of patients with coma for mortality (152,153,157,158). In addition to prognostication, TCD based thresholds may be used to recognize patients at risk for early deterioration and guide targeted therapy in hopes of preventing cerebral hypoperfusion. ...
Article
Full-text available
Given the complexity of cerebral pathology in patients with acute brain injury, various neuromonitoring strategies have been developed to better appreciate physiologic relationships and potentially harmful derangements. There is ample evidence that bundling several neuromonitoring devices, termed “multimodal monitoring,” is more beneficial compared to monitoring individual parameters as each may capture different and complementary aspects of cerebral physiology to provide a comprehensive picture that can help guide management. Furthermore, each modality has specific strengths and limitations that depend largely on spatiotemporal characteristics and complexity of the signal acquired. In this review we focus on the common clinical neuromonitoring techniques including intracranial pressure, brain tissue oxygenation, transcranial doppler and near-infrared spectroscopy with a focus on how each modality can also provide useful information about cerebral autoregulation capacity. Finally, we discuss the current evidence in using these modalities to support clinical decision making as well as potential insights into the future of advanced cerebral homeostatic assessments including neurovascular coupling.
Article
Cerebral autoregulation is an intrinsic myogenic response of cerebral vasculature that allows for preservation of stable cerebral blood flow levels in response to changing systemic blood pressure. It is effective across a broad range of blood pressure levels through precapillary vasoconstriction and dilation. Autoregulation is difficult to directly measure and methods to indirectly ascertain cerebral autoregulation status inherently require certain assumptions. Patients with impaired cerebral autoregulation may be at risk of brain ischemia. One of the central mechanisms of ischemia in patients with metabolically compromised states is likely the triggering of spreading depolarization (SD) events and ultimately, terminal (or anoxic) depolarization. Cerebral autoregulation and SD are therefore linked when considering the risk of ischemia. In this scoping review, we will discuss the range of methods to measure cerebral autoregulation, their theoretical strengths and weaknesses, and the available clinical evidence to support their utility. We will then discuss the emerging link between impaired cerebral autoregulation and the occurrence of SD events. Such an approach offers the opportunity to better understand an individual patient’s physiology and provide targeted treatments.
Article
Full-text available
Managing traumatic brain injury (TBI) patients with a cerebral perfusion pressure (CPP) near to the cerebral autoregulation (CA)-guided "optimal" CPP (CPPopt) value is associated with improved outcome and might be useful to individualize care, but has never been prospectively evaluated. This study evaluated the feasibility and safety of CA-guided CPP management in TBI patients requiring intracranial pressure monitoring and therapy (TBIicp patients). The CPPopt Guided Therapy: Assessment of Target Effectiveness (COGiTATE) parallel two-arm feasibility trial took place in four tertiary centers. TBIicp patients were randomized to either the Brain Trauma Foundation (BTF) guideline CPP target range (control group) or to the individualized CA-guided CPP targets (intervention group). CPP targets were guided by six times daily software-based alerts for up to 5 days. The primary feasibility end-point was the percentage of time with CPP concordant (±5 mm Hg) with the set CPP targets. The main secondary safety end-point was an increase in therapeutic intensity level (TIL) between the control and intervention group. Twenty-eight patients were randomized to the control and 32 patients to the intervention group. CPP in the intervention group was in the target range for 46.5% (interquartile range, 41.2-58) of the monitored time, significantly higher than the feasibility target specified in the published protocol (36%; p < 0.001). There were no significant differences between groups for TIL or for other safety end-points. Conclusively, targeting an individual and dynamic CA-guided CPP is feasible and safe in TBIicp patients. This encourages a prospective trial powered for clinical outcomes.
Article
Full-text available
Introduction Cerebral perfusion pressure (CPP) is one of the most important parameters in preventing ischemic brain insults. Guidelines have used CPP values to guide treatment of traumatic brain injury (TBI) for many years. We tested the feasibility of a novel non-invasive method for CPP estimation (nCPP) in children with severe TBI. Methods Retrospective analysis of prospectively monitored pediatric TBI patients with invasive intracranial pressure (ICP) monitoring, arterial blood pressure, and Transcranial Doppler (TCD) studies was performed daily. A novel estimator of CPP (nCPP) was calculated using TCD-spectral accounting method. We analyzed the correlation coefficient and correlation in time domain between CPP and nCPP, prediction ability of nCPP to detect low CPP, and the confidence intervals for CPP prediction (95% CI). Results We retrospectively analyzed 69 TCD recordings from 19 children (median age 15 years, range 3–16 years). There was a good correlation between CPP and nCPP (Spearman correlation coefficient, R = 0.67 (p < 0.0001), and a good mean correlation in time domain (R = 0.55 ± 0.42). The ability of nCPP to predict values of CPP below 70 mmHg was excellent as demonstrated by an area under the curve of 0.908 (95% CI = 0.83–0.98) using a receiver operating curve analysis. Bland-Altman analysis revealed that nCPP overestimated CPP by 19.61 mmHg with a wide 95% CI of ± 40.4 mmHg. Conclusions nCPP monitoring with TCD appears to be a feasible method for CPP assessment in pediatric TBI. The novel spectral CPP tested in this study has a decent correlation with invasive CPP and can predict low CPP with excellent accuracy at the 70-mmHg threshold.
Article
Full-text available
Brain ultrasonography can be used to evaluate cerebral anatomy and pathology, as well as cerebral circulation through analysis of blood flow velocities. Transcranial colour-coded duplex sonography is a generally safe, repeatable, non-invasive, bedside technique that has a strong potential in neurocritical care patients in many clinical scenarios, including traumatic brain injury, aneurysmal subarachnoid haemorrhage, hydrocephalus, and the diagnosis of cerebral circulatory arrest. Furthermore, the clinical applications of this technique may extend to different settings, including the general intensive care unit and the emergency department. Its increasing use reflects a growing interest in non-invasive cerebral and systemic assessment. The aim of this manuscript is to provide an overview of the basic and advanced principles underlying brain ultrasonography, and to review the different techniques and different clinical applications of this approach in the monitoring and treatment of critically ill patients.
Article
Full-text available
Transcranial Doppler (TCD) ultrasonography allows continuous non-invasive monitoring of cerebral blood flow velocity in a variety of clinical conditions. Recently, signal processing of TCD signals has provided several comprehensive parameters for the assessment of cerebral haemodynamics. In this work, we applied a TCD multimodal approach in patients with acute liver failure undergoing orthotopic liver transplant (OLT) to assess the clinical feasibility of using TCD for cerebral haemodynamics assessment in this setting. We retrospectively studied six patients undergoing OLT with continuous monitoring of arterial blood pressure and blood flow velocity in the middle cerebral artery. The main cerebral haemodynamic parameters assessed were non-invasive intracranial pressure, cerebral perfusion pressure, cerebral autoregulation, pulsatility index, critical closing pressure and diastolic closing margin. TCD monitoring revealed marked alterations of these parameters in the OLT setting, which could provide relevant clinical information when there is imminent risk of neurologic impairment.
Article
Full-text available
Objectives: In patients at risk of hypoxic ischemic brain injury following cardiac arrest, we sought to: 1) characterize brain oxygenation and determine the prevalence of brain hypoxia, 2) characterize autoregulation using the pressure reactivity index and identify the optimal mean arterial pressure, and 3) assess the relationship between optimal mean arterial pressure and brain tissue oxygenation. Design: Prospective interventional study. Setting: Quaternary ICU. Patients: Adult patients with return of spontaneous circulation greater than 10 minutes and a postresuscitation Glasgow Coma Scale score under 9 within 72 hours of cardiac arrest. Interventions: All patients underwent multimodal neuromonitoring which included: 1) brain tissue oxygenation, 2) intracranial pressure, 3) jugular venous continuous oximetry, 4) regional saturation of oxygen using near-infrared spectroscopy, and 5) pressure reactivity index-based determination of optimal mean arterial pressure, lower and upper limit of autoregulation. We additionally collected mean arterial pressure, end-tidal CO2, and temperature. All data were captured at 300 Hz using ICM+ (Cambridge Enterprise, Cambridge, United Kingdom) brain monitoring software. Measurements and main results: Ten patients (7 males) were included with a median age 47 (range 20-71) and return to spontaneous circulation 22 minutes (12-36 min). The median duration of monitoring was 47 hours (15-88 hr), and median duration from cardiac arrest to inclusion was 15 hours (6-44 hr). The mean brain tissue oxygenation was 23 mm Hg (SD 8 mm Hg), and the mean percentage of time with a brain tissue oxygenation below 20 mm Hg was 38% (6-100%). The mean pressure reactivity index was 0.23 (0.27), and the percentage of time with a pressure reactivity index greater than 0.3 was 50% (12-91%). The mean optimal mean arterial pressure, lower and upper of autoregulation were 89 mm Hg (11), 82 mm Hg (8), and 96 mm Hg (9), respectively. There was marked between-patient variability in the relationship between mean arterial pressure and indices of brain oxygenation. As the patients' actual mean arterial pressure approached optimal mean arterial pressure, brain tissue oxygenation increased (p < 0.001). This positive relationship did not persist when the actual mean arterial pressure was above optimal mean arterial pressure. Conclusions: Episodes of brain hypoxia in hypoxic ischemic brain injury are frequent, and perfusion within proximity of optimal mean arterial pressure is associated with increased brain tissue oxygenation. Pressure reactivity index can yield optimal mean arterial pressure, lower and upper limit of autoregulation in patients following cardiac arrest.
Article
Full-text available
Although the beach-chair position (BCP) is widely used during shoulder surgery, it has been reported to associate with a reduction in cerebral blood flow, oxygenation, and risk of brain ischaemia. We assessed cerebral haemodynamics using a multiparameter transcranial Doppler-derived approach in patients undergoing shoulder surgery. 23 anaesthetised patients (propofol (2 mg/kg)) without history of neurologic pathology undergoing elective shoulder surgery were included. Arterial blood pressure (ABP, monitored with a finger-cuff plethysmograph calibrated at the auditory meatus level) and cerebral blood flow velocity (FV, monitored in the middle cerebral artery) were recorded in supine and in BCP. All subjects underwent interscalene block ipsilateral to the side of FV measurement. We evaluated non-invasive intracranial pressure (nICP) and cerebral perfusion pressure (nCPP) calculated with a black-box mathematical model; critical closing pressure (CrCP); diastolic closing margin (DCM—pressure reserve available to avoid diastolic flow cessation); cerebral autoregulation index (Mxa); pulsatility index (PI). Significant changes occured for DCM [mean decrease of 6.43 mm Hg (p = 0.01)] and PI [mean increase of 0.11 (p = 0.05)]. ABP, FV, nICP, nCPP and CrCP showed a decreasing trend. Cerebral autoregulation was dysfunctional (Mxa > 0.3) and PI deviated from normal ranges (PI > 0.8) in both phases. ABP and nCPP values were low (< 60 mm Hg) in both phases. Changes between phases did not result in CrCP reaching diastolic ABP, therefore DCM did not reach critical values (≤ 0 mm Hg). BCP resulted in significant cerebral haemodynamic changes. If left untreated, reduction in cerebral blood flow may result in brain ischaemia and post-operative neurologic deficit.
Article
Full-text available
Individualized cerebral perfusion pressure (CPP) targets may be derived via assessing the minimum of the parabolic relationship between an index of cerebrovascular reactivity and CPP. This minimum is termed the optimal CPP (CPPopt), and literature suggests that the further away CPP is from CPPopt, the worse is clinical outcome in adult traumatic brain injury (TBI). Typically, CPPopt estimation is based on intracranial pressure (ICP)-derived cerebrovascular reactivity indices, given ICP is commonly measured and provides continuous long duration data streams. The goal of this study is to describe for the first time the application of robotic transcranial Doppler (TCD) and the feasibility of determining CPPopt based on TCD autoregulation indices. Electronic supplementary material The online version of this article (10.1007/s00701-018-3687-5) contains supplementary material, which is available to authorized users.
Chapter
We present the application of a new method for non-invasive cerebral perfusion pressure estimation (spectral nCPP or nCPPs) accounting for changes in transcranial Doppler-derived pulsatile cerebral blood volume. Primarily, we analysed cases in which CPP was changing (delta [∆],magnitude of changes]): (1) rise during vasopressor-induced augmentation of ABP (N = 16); and (2) spontaneous changes in intracranial pressure (ICP) during plateau waves (N = 14). Secondarily, we assessed nCPPs in a larger cohort in which CPP presented a wider range of values. The average correlation in the time domain between CPP and nCPPs for patients undergoing an induced rise in arterial blood pressure (ABP) was 0.95 ± 0.07. For the greater traumatic brain injury (TBI) cohort, this correlation was 0.63 ± 0.37. ∆ correlations between mean values of CPP and nCPPs were 0.73 (p = 0.002) and 0.78 (p < 0.001) respectively for induced rise in ABP and ICP plateau wave cohorts. The area under the curve (AUC) for ∆CPP was of 0.71 with a 95% confidence interval of 0.54–0.88. To detect low CPP, AUC was 0.817 with a 95% confidence interval of 0.79–0.85. nCPPs can reliably identify changes in direct CPP across time and the magnitude of these changes in absolute values. The ability to detect changes in CPP is reasonable but stronger for detecting low CPP, ≤70 mmHg.
Article
Aim: Increased intracranial pressure (ICP) in hypoxic ischaemic brain injury (HIBI) can cause secondary ischaemic brain injury and culminate in brain death. Invasive ICP monitoring is limited by associated risks in HIBI patients. We sought to evaluate the agreement between invasive ICP measurements and non-invasive estimators of ICP (nICP) in HIBI patients. Methods: Eligible consecutive adult (age>18) cardiac arrest patients with HIBI were included as part of a single centre prospective interventional study. Invasive ICP monitoring and nICP measurements were undertaken using: a) transcranial Doppler ultrasonography (TCD), b) optic nerve sheet diameter ultrasound (ONSD) and c) jugular venous bulb pressure (JVP). Multiple measurements applied in linear mixed-effects models were considered to obtain the correlation coefficient between ICP and nICP as well as their predictive abilities to detect intracranial hypertension (ICP≥20mm Hg). Results: Eleven patients were included (median age of 47 [range 20-71], 8 males and 3 females). There was a linear relationship between ICP and nICP with ONSD (R=0.53 [p<0.0001]), JVP (R=0.38 [p<0.001]) and TCD (R=0.30 [p<0.01]). The ability to predict intracranial hypertension was highest for ONSD and TCD (area under the receiver operating curve (AUC)=0.96 [95% CI: 0.90-1.00] and AUC=0.91 [95% CI: 0.83-1.00], respectively). JVP presented the weakest prediction ability (AUC=0.75 [95% CI: 0.56-0.94]). Conclusions: ONSD and TCD methods demonstrated agreement with invasively-monitored ICP, suggesting their potential roles in the detection of intracranial hypertension in HIBI after cardiac arrest.