ArticlePDF Available

Abstract

Herein, we have undertaken the synthesis and investigated the reactivity of a 6-membered saturated NHC borane adduct (1). Direct electrophilic halogenation of 1 with a stoichiometric amount of I2 led to NHC boryl iodides, 6-SIDipp·BH2I (2) and 6-SIDipp·BHI2 (3), which were further reacted with various nucleophiles to give novel 6-SIDipp based mono and disubstituted boranes with OTf (4 and 6) or ONO2 (5 and 7) functional groups. The addition of Br2/H2O to 1 smoothly results in a dihydroxyborenium cation (8).
Supporting Information
for
Substitution at sp3 boron of a six-membered NHC·BH3: convenient
access to a dihydroxyborenium cation
Gargi Kundu,ab V. S. Ajithkumar,ab K. Vipin Raj,bc Kumar Vanka,bc Srinu Tothadibd and Sakya S.
Sen*ab
aInorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi
Bhabha Road, Pashan, Pune 411008 (India); bAcademy of Scientific and Innovative Research
(AcSIR), Ghaziabad-201002 (India); cPhysical and Material Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India; dAnalytical and
Environmental Science Division, CSIR-Central Salt & Marine Chemicals Research Institute,
Gijubhai Badheka Marg, Bhavnagar-364002 (India).
Author to whom correspondence should be addressed: E-mail: ss.sen@ncl.res.in
Electronic Supplementary Material (ESI) for ChemComm.
This journal is © The Royal Society of Chemistry 2022
Table of Contents
S1 General procedures and instrumentation
S2 Synthetic procedure and spectroscopic characterization of 1-9
S3 Synthetic procedure and spectroscopic characterization of IDipp·BH3 reactivity with 1 and
1.2 equivalent of iodine
S4 Molecular structures with bond lengths (Å) and bond angles (degree) of 9
S5 The cyclic voltammogram of 8
S6 Crystallographic data for the structural analysis of compounds 1-4 and 6-9
S7 Details of theoretical calculations for the fromation of 3
S8 Reference
S9 PBE-D3/def-TZVP optimized geometries for the structures shown in Figure 3.
S1. General procedures and instrumentation
All manipulations were carried out in an inert atmosphere of argon using standard Schlenk
techniques and in argon filled glove box. The solvents, especially toluene, tetrahydrofuran,
dichloromethane and n-hexane were purified by MBRAUN solvent purification system MB SPS-
800. Benzene-d6 was dried and distilled over Na/benzophenone mixture prior to use. Other
chemicals were purchased from Sigma Aldrich and TCI Chemicals and were used without further
purification. The starting material, 6-SIDipp was synthesized by using literature procedure.1 The
1H, 13C, 11B NMR and 19F spectra were recorded in C6D6 and CDCl3, using a Bruker Advance
DPX 200, Bruker Avance DPX 400, or a Bruker Avance DPX 500 spectrometer. Chemical shifts
(δ) are given in ppm. NMR spectra were referenced to external SiMe4 (1H and 13C), BF3·OEt2
(11B), CFCl3 (19F) respectively . Mass spectra (ESI-MS) were obtained using a Q Exactive Thermo
Scientific at the CSIR National Chemical Laboratory, Pune. Elemental analyses were performed
at the CSIR National Chemical Laboratory, Pune, India.
S2. Synthetic procedure and spectroscopic characterization of 1-9
1: BH3·SMe2 (0.05 ml, 0.70 mmol) was added to a solution of 6-SIDipp (0.2 g, 0.50 mmol) in 5
ml toluene solvent at -36 °C. The resulting mixture was stirred for 2 hours at room temperature.
Colorless crystals of 1 were isolated from the concentrated toluene solution with a yield of 0.15 g
(70 %).
1H NMR (400 MHz, 298 K, CDCl3): δ = 0.25 (s, 3 H, BH3), 1.30 (d, J = 6.97 Hz, 12 H, CH(CH3)2),
1.36 (d, J = 6.72, 12H, CH(CH3)2), 2.33 (q, J = 5.88 Hz, 2H, NCH2CH2CH2N), 3.06 (sept, J = 6.88
Hz, 4 H, CH(CH3)2), 3.52 (t, J = 5.87 Hz, 4H, NCH2CH2CH2N), 7.18 (d, J = 7.70 Hz, 4H, Ar-H),
7.32 (t, J = 7.70 Hz, 2 H, Ar-H) ppm.
13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 20.5, 23.5, 25.3, 28.7, 49.3, 124.1, 128.2, 142.0,
144.3 ppm.
11B{1H} NMR (128 MHz, 298 K, CDCl3): δ = -31.3 (q, 1B, BH3) ppm.
ESI-MS (CH3CN): m/z Calcd. for C28H43BN2 [M+H]+ 419.3592, found 419.3409.
Elemental Analysis: calcd. C, 80.36; H, 10.36; N, 6.69; found: C, 80.41; H, 10.53; N, 6.61.
AV-500-20211108-104433-12065.001.001.1r.esp
11 10 9 8 7 6 5 4 3 2 1 0 -1
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
12.0412.062.084.084.004.041.96
CDCL3
7.32
7.20
7.18
3.52
3.06
2.33
1.37
1.36
1.32
1.30
Figure S1.1H NMR spectrum of 1.
N
N
BH3
Dipp
Dipp
AV-400-20211224-151846-12066.003.001.1r.esp
109876543210-1
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
2.9512.0911.982.023.984.003.981.91
CDCL3
7.33
7.21
7.20
3.53
3.08
2.33
1.40
1.34
0.25
Figure S2.1H {11B} NMR spectrum of 1
AV-500-20211108-104433-12065.002.001.1r.esp
180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
CDCL3
144.34
141.92
128.21
124.09
77.32
77.00
76.68
49.25
28.73
25.25
23.51
20.50
Figure S3.13C NMR spectrum of 1.
N
N
BH3
Dipp
Dipp
Figure S4.11B NMR spectrum of 1.
Aj-1 #258 RT: 1.44 AV: 1NL: 1.27E7
T: FTMS + p ESI Full ms [100.0000-1500.0000]
417.5 418.0 418.5 419.0 419.5 420.0 420.5 421.0 421.5
m/z
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Relative Abundance
419.3409
R=55207
C28 H44 N2B = 419.3592
421.3202
R=55602
420.3452
R=53202
418.3177
R=53600
C28 H43 N2B = 418.3514
Figure S5. ESI-MS spectrum of 1.
N
N
BH3
Dipp
Dipp
N
N
BH3
Dipp
Dipp
2: 0.5 equivalent of Iodine (I2) (0.061 g, 0.24 mmol) and 1 (0.2 g, 0.48 mmol) were taken in a
Schlenk flask and 5 ml of toluene was added to the reaction mixture. The reaction was run for 1 h
at room temperature. The toluene solution was concentrated and filtered through cannula.
Colorless crystals of 6 were isolated after keeping the solution at 4 ˚C for a day with a yield of
0.22 g (85 %).
1H {11B} NMR (400 MHz, 298 K, CDCl3): δ = 1.28 (d, J = 6.88 Hz, 12 H, CH(CH3)2), 1.47 (d, J
= 6.63 Hz, 12 H, CH(CH3)2), 1.60 (s, 2 H, BH2I), 2.30 (quintet, J = 5.40 Hz, 2 H, NCH2CH2CH2N),
3.14 (sept, J = 6.16 Hz, 4 H, CH(CH3)2), 3.64 ( t, J = 5.67 Hz, 4 H, NCH2CH2CH2N), 7.19 (m, 4H,
Ar-H), 7.33 (t, J = 7.75 Hz, 2H, Ar-H) ppm.
13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 19.5, 24.0, 26.1, 28.6, 50.9, 124.4, 128.8, 140.8,
144.5 ppm.
11B{1H} NMR (127 MHz, 298 K, CDCl3): δ = -30.2 (bs, 1B, BH2I) ppm.
ESI-MS (CH3CN): m/z Calcd. for C28H42 N2BI [M+H ]+ 545. 2558, found 545. 3156.
Elemental Analysis: Calcd. C, 61.78; H, 7.78; N, 5.15; found C, 61.72; H, 7.68; N, 5.13.
AV-400-20211025-153514-11867_BH2I.001.001.1r.esp
11 10 9 8 7 6 5 4 3 2 1 0 -1
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
12.5112.162.093.984.004.021.97
CDCL3
7.33
7.21
7.19
3.64
3.14
2.30
1.47
1.28
1.26
Figure S6.1H NMR spectrum of 2.
AV-400-20211224-151640-12079.002.001.1r.esp
109876543210-1
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
12.2911.791.982.023.844.003.971.95
CDCL3
7.33
7.27 7.21
7.19
3.64
3.14
2.30
1.60 1.47
1.46 1.28
1.27
Figure S7.1H {11B} NMR spectrum of 2.
N
N
BH
Dipp
Dipp
I
H
AV-400-20211025-153514-11867_BH2I.003.001.1r.esp
180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
CDCL3
144.47
140.80
128.78
124.44
77.32
77.00
76.68
50.93
28.64
26.10
24.00
19.53
Figure S8. 13C NMR spectrum of 2.
AV-400-20210908-113358-12065.003.001.1r.esp
100 80 60 40 20 0 -20 -40 -60 -80 -100
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
-30.20
Figure S9. 13B NMR spectrum of 2.
N
N
BH
Dipp
Dipp
I
H
N
N
BH
Dipp
Dipp
I
H
Figure S10. ESI-MS spectrum of 2.
3: 1.0 equivalent of iodine (I2) (0.12 g, 0.48 mmol) and 1 (0.2 g, 0.48 mmol) were taken in a
Schlenk flask and 5 ml of benzene was added to the reaction mixture. The reaction was run for an
hour at room temperature. The benzene solution was concentrated and filtered through cannula.
Colorless crystals of 7 were isolated after storing the solution at 4 ˚C for a day with a yield of 0.3
g (88 %).
1H {11B} NMR (400 MHz, 298 K, CDCl3): δ = 1.29 (d, J = 6.88 Hz, 12H, CH(CH3)2), 1.51 (d, J
= 6.65 Hz, 12 H, CH(CH3)2), 2.38 (s, 1H, BHI2), 2.40 (quintet, J =5.63 Hz, 2H, NCH2CH2CH2N),
3.25 (sept, J = 6.75 Hz, 4H, CH(CH3)2), 3.72 (t, J = 5.62 Hz, 4H, NCH2CH2CH2N), 7.22 (m, 4H,
Ar-H), 7.37 (t, J = 7.75 Hz, 2H, Ar-H) ppm.
13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 20.2, 24.5, 26.3, 28.9, 52.6, 125.1, 129.4, 140.8,
145.0 ppm.
11B{1H} NMR (128 MHz, 298 K, CDCl3): δ = -39.4 (bs, 1B, BHI2) ppm.
ESI-MS (CH3CN): m/z Calcd. for C28H41 N2BI2 [M+H ]+ 671.1525, found 670.8353.
Elemental Analysis: Calcd. C, 50.18; H, 6.17; N, 4.18; found C, 50.15; H, 6.12; N, 4.24.
N
N
BH
Dipp
Dipp
I
H
AV-400-20211101-154013-11701.001.001.1r.esp
11 10 9 8 7 6 5 4 3 2 1 0 -1
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
12.2111.722.093.964.004.151.96
CDCL3
7.38
7.24
7.22
3.72
3.26
2.41
1.52
1.28
1.27
0.09
Figure S11. 1H NMR spectrum of 3.
AV-400-20211224-151432-12060.001.001.1r.esp
10 9 8 7 6 5 4 3 2 1 0 -1 -2
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
12.1411.921.221.893.953.974.141.96
CDCL3
7.37 7.27
7.24
7.22
3.72
3.25
2.40 2.38
1.51
1.29
1.27
Figure S12. 1H{11B} NMR spectrum of 3.
N
N
BI
Dipp
Dipp
I
H
AV-400-20211101-154013-11701.003.001.1r.esp
180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
144.97
140.79
129.37
125.06
77.00
52.63
28.87
24.47
20.19
Figure S13. 13C NMR spectrum of 3.
AV-400-20211101-154013-11701.002.001.1r.esp
300 250 200 150 100 50 0 -50 -100 -150 -200 -250 -300
Chemical Shift (ppm)
0
0.5
1.0
Normalized Intensity
-39.40
N
N
BI
Dipp
Dipp
I
H
N
N
BI
Dipp
Dipp
I
H
Figure S14. 11B NMR spectrum of 3.
Aj-9 #181 RT: 1.03 AV: 1NL: 4.08E3
T: FTMS + p ESI Full ms [100.0000-1500.0000]
668 669 670 671 672 673 674 675 676
m/z
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Relative Abundance
670.8353
R=23600
C28 H42 N2B I2= 671.1525
Figure S15. ESI-MS spectrum of 3.
4: One equivalent of AgOSO2CF3 (0.10 g, 0.37 mmol) and 2 (0.2 g, 0.37 mmol) were taken in a
Schlenk flask and 5 ml of toluene was added to the reaction mixture. The reaction was run for 4 h
at room temperature. The yellow precipitate of AgI was filtered through frit and the reaction
mixture was concentrated. Colorless crystals of 4 were isolated after keeping the solution at room
temperature for a day with a yield of 0.12 g (55 %).
1H{11B} NMR (400 MHz, 298 K, CDCl3): δ = 1.31 (d, J = 6.88 Hz, 12H, CH(CH3)2), 1.36 (d, J =
6.63 Hz, 12H, CH(CH3)2), 2.34 (quintet, J = 5.50 Hz, 2H, NCH2CH2CH2N), 2.37 (bs, 2H,
BH2OSO2CF3), 2.98 (sept, J = 6.75 Hz, 4H, CH(CH3)2), 3.56 ( t, J = 5.75 Hz, 4H,
NCH2CH2CH2N), 7.18 (m, 4H, Ar-H), 7.35 (t, J = 7.75 Hz, 2H, Ar-H) ppm.
13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 23.6, 26.2, 26.1, 29.0, 51.9, 124.3, 129.1, 140.1,
144.9 ppm.
N
N
BI
Dipp
Dipp
I
H
11B{1H} NMR (128 MHz, 298 K, CDCl3): δ = -7.1 ( bs, 1B, BH2OSO2CF3) ppm.
19F{1H} NMR (377 MHz, 298 K, CDCl3): δ = -78.2 (s, 3F, BH2OSO2CF3) ppm.
ESI-MS (CH3CN): m/z Calcd. for C29H42N2BF3SO3 [M+Na ]+ 579.2839, found 597.2588.
Elemental Analysis: Calcd. C, 61.48; H, 7.47; N, 4.94; found C, 61.32; H, 7.62; N, 4.88.
.
AV-400-20211221-214522-12028.001.001.1r.esp
11 10 9 8 7 6 5 4 3 2 1 0 -1 -2
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
11.9712.361.954.434.044.162.19
grease
CDCL3
7.36 7.28
7.22
7.20
3.57
2.99
2.38
2.36
1.37 1.35
1.32
1.30
0.10
Figure S16. 1H NMR spectrum of 4.
N
N
BH
Dipp
Dipp
OSO2CF3
H
AV-400-20211221-214522-12028.003.001.1r.esp
109876543210-1
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
24.082.072.014.034.014.192.02
grease
CDCL3
7.35 7.27 7.20
7.18
3.56
2.98
2.37 2.34
1.36 1.34
1.31
1.29
0.09
Figure S17. 1H {11B} NMR spectrum of 4.
AV-500-20211019-114230-11867_BH2OTf.002.001.1r.esp
150 140 130 120 110 100 90 80 70 60 50 40 30 20 10
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
CDCL3
144.87
140.12
129.05
124.30
51.86
28.96
26.16
23.57
Figure S18. 13C NMR spectrum of 4.
N
N
BH
Dipp
Dipp
OSO2CF3
H
AV-400-20210908-112754-11867.002.001.1r.esp
350 300 250 200 150 100 50 0 -50 -100 -150 -200 -250 -300 -350
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
-7.08
Figure S19. 11B NMR spectrum of 4.
AV-400-20210913-162342-11867.001.001.1r.esp
-16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112 -120 -128 -136 -144
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
-78.19
Figure S20. 19F NMR spectrum of 4.
N
N
BH
Dipp
Dipp
OSO2CF3
H
N
N
BH
Dipp
Dipp
OSO2CF3
H
GK-6 #1119 RT: 7.57 AV: 1NL: 3.12E3
T: FTMS + p ESI Full ms [100.0000-1500.0000]
555 560 565 570 575 580 585 590 595
m/z
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Relative Abundance
568.8376
R=43704
579.2588
R=42000
C29 H43 O3N2F3Na S = 579.2839
593.3297
R=29400
575.3605
R=28700
Figure S21. ESI-MS spectrum of 4.
5: One equivalent of AgNO3 (0.07 g, 0.38 mmol) and 2 (0.2 g, 0.37 mmol) were taken in a Schlenk
flask and 5 ml of toluene was added to the reaction mixture. The reaction was run for 4 h at room
temperature. The yellow precipitate of AgI was filtered through frit and the reaction mixture was
concentrated. Colorless crystals of 5 were isolated after keeping the solution at room temperature
for a day with a yield of 0.085 g (48 %).
1H{11B} NMR (400 MHz, 298 K, CDCl3): δ = 1.28 (d, J = 6.88 Hz, 12H, CH(CH3)2), 1.38 (d, J =
6.75 Hz, 12H, CH(CH3)2)), 2.32 (s, 2H, BH2ONO2), 2.37 (m, 2H, NCH2CH2CH2N), 3.04 (sept, J
= 6.88 Hz, 4H, CH(CH3)2), 3.59 ( t, J = 5.88 Hz, 4H, NCH2CH2CH2N), 7.19 (m, 4H, Ar-H), 7.33
(t, J = 7.75 Hz, 2H, Ar-H) ppm.
13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 19.8, 23.2, 25.9, 28.9, 50.2, 124.3, 125.2, 129.0,
139.9, 144.4 ppm.
N
N
BH
Dipp
Dipp
OSO2CF3
H
ESI-MS (CH3CN): m/z Calcd. for C28H42N2BN3O3 [M+Na ]+ 507.3375, found 507.3315.
Elemental Analysis: Calcd. C, 70.14; H, 8.83; N, 8.76; found C, 70.24; H, 8.79; N, 8.71.
AV-400-20211003-215123-11867_ BH2NO3.001.001.1r.esp
11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
11.8212.202.124.003.744.142.02
7.33 7.27 7.20
7.19
3.59
3.04
2.37
1.38
1.30
1.28
0.08
Figure S22.1H {11B} NMR spectrum of 5.
N
N
BH
Dipp
Dipp
ONO2
H
AV-500-20211227-115009-11867.003.001.1r.esp
2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10
Chemical Shift (ppm)
0.05
0.10
0.15
0.20
Normalized Int ensity
2.32
2.36
Figure S123. 13C NMR spectrum of 5.
AV-400-20211003-215123-11867_ BH2NO3.002.001.1r.esp
100 80 60 40 20 0 -20 -40 -60 -80 -100
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
-8.44
Figure S24. 11B NMR spectrum of 5.
N
N
BH
Dipp
Dipp
ONO2
H
N
N
BH
Dipp
Dipp
ONO2
H
Aj-8 #471 RT: 2.55 AV: 1NL: 1.48E5
T: FTMS + p ESI Full ms [100.0000-1500.0000]
505.8 506.0 506.2 506.4 506.6 506.8 507.0 507.2 507.4 507.6 507.8 508.0 508.2 508.4 508.6
m/z
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Relative Abundance
506.8016
R=47106
506.3019
R=42102
C28 H41 O3N5B = 506.3297
-54.8817 ppm
507.3315
R=44402
C28 H42 O3N5B = 507.3375
-11.9660 ppm
Figure S25. ESI-MS spectrum of 5.
6: Two equivalents of AgOSO2CF3 (0.23 g, 0.90 mmol) and 3 (0.3 g, 0.45 mmol) were taken in a
Schlenk flask and 5 ml of toluene was added to the reaction mixture. The reaction was run for 4 h
at room temperature. The yellow precipitate of AgI was filtered through frit and the reaction
mixture was concentrated. Colorless crystals of 6 were isolated after keeping the solution at -36
˚C temperature for 3 days with a yield of 0.17 g (54 %).
1H NMR (400 MHz, 298 K, CDCl3): δ = 1.28 (d, J = 6.88 Hz, 12H, CH(CH3)2), 1.31 (d, J = 6.63
Hz, 12H, CH(CH3)2), 2.34 (s, 1H, BH(OSO2CF3)2), 2.46 (quintet, J = 5.25 Hz, 2H,
NCH2CH2CH2N), 2.96 (sept, J = 6.75 Hz, 4H, CH(CH3)2), 3.68 ( t, J = 5.75 Hz, 4H,
NCH2CH2CH2N), 7.20 (m, 4H, Ar-H), 7.42 (t, J = 7.75 Hz, 2H, Ar-H) ppm.
13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 22.4, 26.3, 29.1, 48.2, 124.9, 130.1, 136.0, 146.1
ppm.
11B{1H} NMR (128 MHz, 298 K, CDCl3): δ = -3.24 ( bs, 1B, BH(OSO2CF3)2) ppm.
N
N
BH
Dipp
Dipp
ONO2
H
19F{1H} NMR (377 MHz, 298 K, CDCl3): δ = -78.9 (s, 2*3F, BH(OSO2CF3)2) ppm.
ESI-MS (CH3CN): m/z Calcd. for C30H41N2BF6S2O6 [M+Na ]+ 715.2476, found 715.2108.
Elemental Analysis: Calcd. C, 50.42; H, 5.78; N, 3.92; found C, 50.32; H, 5.65; N, 3.88.
AV-400-20211027-185749-11701_BH(OTf)2.001.001.1r.esp
11109876543210-1
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
12.1612.332.044.154.004.012.15
7.42
7.22
7.20
3.68
2.96
2.46
1.31
1.30
1.28
1.26
0.10
Figure S26.1H {11B} NMR spectrum of 6.
N
N
BOSO2CF3
Dipp
Dipp
OSO2CF3
H
AV-400-20211027-185749-11701.001.001.1r.esp
4.0 3.5 3.0 2.5
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalize d Intens ity
2.37
2.46
2.96
3.68
AV-400-20211030-235610-12056_BH(OTf)2.003.001.1r.esp
180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
146.11
136.00
131.10
124.86
77.31
77.00
76.68
48.22
29.14
26.30
22.44
Figure S27.13C NMR spectrum of 6.
AV-400-20211030-235610-12056_BH(OTf)2.002.001.1r.esp
120 100 80 60 40 20 0 -20 -40 -60 -80
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
-3.24
Figure S28. 11B NMR spectrum of 6.
N
N
BOSO2CF3
Dipp
Dipp
OSO2CF3
H
N
N
BOSO2CF3
Dipp
Dipp
OSO2CF3
H
AV-400-20211027-185749-11701_BH(OTf)2.002.001.1r.esp
200 150 100 50 0 -50 -100 -150 -200 -250 -300 -350 -400
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
-78.93
Figure S29.19F NMR spectrum of 6.
Aj-10 #14 RT: 0.08 AV: 1NL: 4.20E3
T: FTMS + p ESI Full ms [100.0000-1500.0000]
680 685 690 695 700 705 710 715 720 725 730 735 740 745 750
m/z
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Relative Abundance
715.2108
R=26500
C30 H42 O6N2B F6S2= 715.2476
Figure S30. ESI-MS spectrum of 6.
N
N
BOSO2CF3
Dipp
Dipp
OSO2CF3
H
7: Two equivalents of AgNO3 (0.152 g, 0.90 mmol) and 3 (0.3 g, 0.45 mmol) were taken in a
Schlenk flask and 5 ml of toluene was added to the reaction mixture. The reaction was run for 12
h at room temperature. The yellow precipitate of AgI was filtered through frit and the reaction
mixture was concentrated. Colorless crystals of 7 were isolated after keeping the solution at 4 ˚C
temperature for a day with a yield of 0.11 g (46 %).
1H{11B}NMR (400 MHz, 298 K, CDCl3): δ = 1.27 (d, J = 6.88 Hz, 12H, CH(CH3)2), 1.39 (d, J =
6.75 Hz, 12H, CH(CH3)2), 2.37, (s, 1H, BH(NO3)2), 2.39 (m, 2 H, NCH2CH2CH2N), 3.06 (sept, J
= 6.88 Hz, 4H, CH(CH3)2), 3.67 ( t, J = 5.75 Hz, 4H, NCH2CH2CH2N), 7.23 (m, 4H, Ar-H), 7.38
(t, J = 7.75 Hz, 2 H, Ar-H) ppm.
13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 14.1, 22.6, 26.5, 29.0, 31.6, 51.3, 124.4, 124.6,
129.7, 144.7 ppm.
11B{1H} NMR (128 MHz, 298 K, CDCl3): δ = -0.98 ( bd, 1B, BH(NO3)2 ppm.
ESI-MS (CH3CN): m/z Calcd. for C28H41N4BO6 [M] 540.3114, found 540.3331.
Elemental Analysis: Calcd. C, 62.23; H, 7.65; N, 10.37; found C, 60.24; H, 7.29; N, 9.89.
AV-400-20211022-122403-11701_BH(NO3)2.001.001.1r.esp
12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
Normalized Intensity
23.461.923.903.734.211.98
grease
grease
CDCL3
7.38 7.27
7.25
7.23
3.67
3.04
2.37
1.40
1.39 1.29 1.27
0.90
0.08
Figure S31.1H{11B} NMR spectrum of 7.
AV-400-20211022-122403-11701_BH(NO3)2.003.001.1r.esp
180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
Normalized Intensity
CDCL3
144.70
129.69
124.59
124.35
51.25
31.57
29.00
26.51 22.64
14.10
1.00
Figure S32. 13C NMR spectrum of 7.
N
N
BONO2
Dipp
Dipp
ONO2
H
N
N
BONO2
Dipp
Dipp
ONO2
H
AV-400-20211022-122403-11701.001.001.1r.esp
3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3
Chemical Shift (ppm)
0.05
0.10
0.15
0.20
0.25
Normalized Intensity
2.37
2.39
3.04
3.06
3.08
AV-400-20211113-103619-12060.001.001.1r.esp
350 300 250 200 150 100 50 0 -50 -100 -150 -200 -250 -300 -350
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
-0.08
-0.98
Figure S33.11B NMR spectrum of 7.
Aj-11 #133 RT: 0.72 AV: 1NL: 1.23E4
T: FTMS + p ESI Full ms [100.0000-1500.0000]
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
m/z
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Relative Abundance
537.2979
R=37400
C28 H38 O6N4B = 537.2879
18.5367 ppm
540.3331
R=37300
C28 H41 O6N4B = 540.3114
40.2769 ppm
Figure S34. ESI-MS spectrum of 7.
N
N
BONO2
Dipp
Dipp
ONO2
H
8 and 9: 1.2 equivalent of bromine-water (Br2/H2O) (0.05 uL, 0.58 mmol) was added to the toluene
solution (5 ml) of 1 (0.2 g, 0.48 mmol) at low temperature. The reaction was run for 3 h at room
temperature. The toluene solution was concentrated and filtered through cannula. Colorless
crystals of 8 were isolated after keeping the solution at 4 ˚C for a day with a yield of 0.14 g (55%).
The remaining solution was again further kept for recrystallization and colorless crystal of 9 were
isolated with 7% (16 mg) yield.
Analytical data for 8:
1H NMR (400 MHz, 298 K, CDCl3): δ = 1.26 (d, J = 5.88 Hz, 12H, CH(CH3)2), 1.32 (d, J = 6.38
Hz, 12 H, CH(CH3)2), 2.48 (bs, 2H, NCH2CH2CH2N), 2.95 (sept, J = 5.88 Hz, 4H, CH(CH3)2),
3.71 (bs, 4H, NCH2CH2CH2N), 4.50 (s, 2H, B-(OH)2), 7.19 (m, 4H, Ar-H), 7.38 (t, J = 7.58 Hz,
2H, Ar-H) ppm.
13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 19.2, 22.9, 26.8, 29.3, 33.8, 49.1, 125.1, 129.0,
129.2, 131.3, 136.3, 137.9, 146.3 ppm.
11B{1H} NMR (127 MHz, 298 K, CDCl3): δ = 25.4 ( bs, 1B, B(OH)2 ) ppm.
ESI-MS (CH3CN): m/z Calcd. for C28H42BO2N2 [M+H ]+ 449.3334, found 449.3254.
Elemental Analysis: Calcd. C, 63.53; H, 8.00; N, 5.29; found C, 63.42; H, 8.31; N, 5.38.
CHLOROFORM-d
Figure S35. 1H{11B} NMR spectrum of 8.
AV-400-20210925-164132-11867.003.001.1r.esp
180 160 140 120 100 80 60 40 20
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
CHLOROFORM-d
146.25
137.94
136.32
131.30 129.21 128.97
125.12
49.08
33.80
29.34
26.75
22.87
19.21
Figure S36. 13C NMR spectrum of 8.
N
N
B
O
Dipp
Dipp
O
H
H
Br
N
N
B
O
Dipp
Dipp
O
H
H
Br
AV-400-20210925-164132-11867.002.001.1r.esp
350 300 250 200 150 100 50 0 -50 -100 -150 -200 -250 -300 -350
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
25.36
Figure S37. 11B NMR spectrum of 8.
GK-3 #597 RT: 3.95 AV: 1NL: 2.79E3
T: FTMS + p ESI Full ms [100.0000-1500.0000]
444 445 446 447 448 449 450 451 452 453 454 455
m/z
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Relative Abundance
449.3254
R=42600
C28 H42 O2N2B = 449.3334
-17.7524 ppm
Figure S38. HRMS spectrum of 8.
N
N
B
O
Dipp
Dipp
O
H
H
Br
N
N
B
O
Dipp
Dipp
O
H
H
Br
Analytical data for 9:
1H {11B}NMR (400 MHz, 298 K, CDCl3): δ = 1.27 (d, J = 6.85 Hz, 12H, CH(CH3)2), 1.42 (d, J =
6.72 Hz, 12H, CH(CH3)2), 2.36 (quintet, J = 4.75 Hz, 2H, NCH2CH2CH2N), 3.16 (sept, J = 6.75
Hz, 4H, CH(CH3)2), 3.63 ( t, J = 5.62 Hz, 4H, NCH2CH2CH2N), 7.19 (m, 4H, Ar-H), 7.34 (t, J =
7.5, 2H, Ar-H) ppm.
13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 19.6, 23.5, 26.1, 28.9, 51.9, 124.2, 125.1, 129.0,
131.2, 140.1, 144.8 ppm.
11B{1H} NMR (127 MHz, 298 K, CDCl3): δ = -5.2 ( s, 1B, B(OH)3) ppm.
AV-400-20211021-204906-11867.001.001.1r.esp
11 10 9 8 7 6 5 4 3 2 1 0 -1 -2
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
12.4112.222.083.904.014.072.20
grease
CDCL3
7.34 7.21
7.19
3.65
3.16
2.36
1.44
1.42
1.28
1.27
0.08
Figure S39. 1H{11B} NMR spectrum of 9.
N
N
B
OH
Dipp
Dipp
OH
OH
AV-400-20211021-204906-11867_B(OH)3.002.001.1r.esp
350 300 250 200 150 100 50 0 -50 -100 -150 -200 -250 -300 -350
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
-5.24
Figure S40. 11B NMR spectrum of 9.
AV-500-20211116-184845-11701.002.001.1r.esp
180 160 140 120 100 80 60 40 20 0 -20
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
CDCL3
144.83
140.07
131.24 128.98
125.11 124.24
77.00
51.88
28.91
26.13
23.53
19.59
Figure S41. 13C NMR spectrum of 9.
N
N
B
OH
Dipp
Dipp
OH
OH
N
N
B
OH
Dipp
Dipp
OH
OH
Aj-15 #398 RT: 2.16 AV: 1NL: 3.64E4
T: FTMS + p ESI Full ms [100.0000-1500.0000]
466.0 466.5 467.0 467.5 468.0 468.5 469.0
m/z
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Relative Abundance
467.3020
R=42100
C28 H44 O3N2B = 467.3440
Figure S42. ESI-MS spectrum of 9.
S3 Synthetic procedure and spectroscopic characterization of 5-IDipp·BH3 reactivity with
1 and 1.2 equivalent of iodine
With 1 equivalent of iodine: 1 equivalent of Iodine (I2) (0.13 g, 0.50 mmol) and IPr-BH3 (0.2 g,
0.50 mmol) were taken in a Schlenk flask and 5 ml of toluene was added to the reaction mixture.
The reaction was run for 1 h at room temperature. The toluene solution was concentrated and
filtered through cannula. Yellow mixture crystals of 6 were isolated after keeping the solution at
4 ˚C for a day. From the NMR It can be said that in case of IDipp carbene double iodination is not
selective. It gives all the three iodine substituted products (IDipp-BH2I, IDipp-BHI2, IDipp-BI3);
which can be clearly seen from the 1H and 11B NMRs.
1H{11B} NMR (400 MHz, 298 K, CDCl3): δ = 1.13 (d, J = 6.85 Hz, 12 H, CH(CH3)2), 1.14 (d, 12
H, J = 6.85 Hz, CH(CH3)2), 1.24 (d, J = 6.85 Hz, 12 H, CH(CH3)2), 1.30 (d, J= 6.72 Hz, 12 H,
N
N
B
OH
Dipp
Dipp
OH
OH
CH(CH3)2), 1.35 (d, J = 6.72 Hz, 12 H, CH(CH3)2), 1.41 (d, J = 6.60 Hz, 12 H, CH(CH3)2), 2.42
(sept, J = 6.85 Hz, 4 H, CH(CH3)2), 2.60 (sept, J = 6.72 Hz, 4 H, CH(CH3)2), 2.69 ( sept, J = 6.85
Hz, 4 H, NCH2CH2CH2N), 7.15- 7.60 ( m, Ar-H) 7.13 ( s, 2 H, CH=CH ), 7.92 ( s, 2 H, CH=CH
), 9.35 ( s, 2 H, CH=CH ) ppm.
13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 19.18, 22.66, 23.29, 24.12, 25.82, 28.17, 28.61,
47.79, 53.42, 124.11, 126.09, 128.65, 131.20, 134.87, 141.09, 143.49, 143.85, 144.87 ppm.
11B{1H} NMR (127 MHz, 298 K, CDCl3): δ = -33.4 (bs, 1B, BH2I), -44.2 (bs, 1B, BHI2), 19.7 (bs,
1B, BI3) ppm.
BH3+1 equiv I2.001.001.1r.esp
12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
CDCL3
grease
0.08
1.13 1.16
1.37
1.43
2.36
2.60
2.69
7.13 7.27
7.32
7.37
7.49
7.60
7.92
9.35
Figure S43. 1H{11B} NMR spectrum.
AV-500-20220210-180400-12065.002.001.1r.esp
160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10
Chemical Shift (ppm)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
CDCL3
144.87 143.85
143.49
141.09
134.87
131.20 128.65
126.09 124.11
53.42
47.79
28.61
28.17
25.82
24.12
23.29
22.86
19.18
Figure S44. 13C NMR spectrum.
BH3+1 equiv I2.002.001.1r.esp
70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
19.72
-33.36
-44.15
Figure S45. 11B NMR spectrum.
With 1.2 equivalent of iodine: 1.2 equivalent of Iodine (I2) (0.150 g, 0.60 mmol) and IPr-BH3
(0.2 g, 0.50 mmol) were taken in a Schlenk flask and 5 ml of toluene was added to the reaction
mixture. The reaction was run for 1 h at room temperature. The toluene solution was concentrated
and filtered through cannula. Yellow mixture crystals of 6 were isolated after keeping the solution
at 4 ˚C for a day. Similar mixture of all the three iodo substituted IDipp-boranes are seen in the 1H
and the 11B NMRs
1H {11B} NMR (400 MHz, 298 K, CDCl3): δ = 1.14 (d, J = 6.72 Hz, 12 H, CH(CH3)2), 1.15 (d, 12
H, J = 6.85 Hz, CH(CH3)2), 1.23 (d, J = 6.85 Hz, 12 H, CH(CH3)2), 1.28 (d, J = 6.72 Hz, 12 H,
CH(CH3)2), 1.35 (d, J = 6.72 Hz, 12 H, CH(CH3)2), 1.41 (d, J = 6.72 Hz, 12 H, CH(CH3)2), 2.41
(sept, J = 6.72 Hz, 4 H, CH(CH3)2), 2.60 (sept, J = 6.85 Hz, 4 H, CH(CH3)2), 2.69 ( sept, J = 6.85
Hz, 4 H, NCH2CH2CH2N), 7.17- 7.59 ( m, Ar-H) 7.15 ( s, 2 H, CH=CH ), 7.92 ( s, 2 H, CH=CH
), 9.46 ( s, 2 H, CH=CH ) ppm.
13C{1H} NMR (101 MHz, 298 K, CDCl3): δ = 22.97, 25.94, 29.13, 123.16, 124.03, 124.40, 130.58,
130.98, 133.24, 144.54, 145.51 ppm.
11B{1H} NMR (127 MHz, 298 K, CDCl3): δ = -33.0 (bs, 1B, BH2I), -44.2 (bs, 1B, BHI2), 19.1 (bs,
1B, BI3) ppm.
20220201-MG-GK-12-E.001.001.1r.esp
12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
CDCL3
grease
9.46
7.92
7.59
7.52 7.36 7.33
7.32
7.31
7.17
7.15
2.69
2.60
2.37
1.43
1.15
1.14
0.10
Figure S46. 1H{11B} NMR spectrum.
Figure S47. 13C NMR spectrum.
AV-400-20220131-105645-11933+ 1.2 equiv_filtrate.002.001.1r.esp
100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160
Chemical Shift (ppm)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Normalized Intensity
19.08
-33.01
-44.19
Figure S48. 11B NMR spectrum.
S4. Crystal picture and bond lengths (Å), bond angles (degree) of 9
Figure S49. The molecular structures of 9. Selected bond lengths [Å], angles [deg]: N1-C33
1.3338(17), C33-B2 1.683(4), B2-O1 1.326(5), B2–O2 1.282(4), B2-O3 1.381(4); N1–C33–N1’,
118.74(19), C33-B2-O1 110.6(3), O1-B2-O2 115.1(4).
S5. The cyclic voltammogram of 8
All experiments were carried out under an atmosphere of argon in degassed and anhydrous
acetonitrile solution containing n-Bu4NPF6 (0.1 M) at a scan rate of 0.70 Vs-1. The set up consisted
of a glassy carbon working electrode (surface area = 0.04 cm2), Pt counter electrode, Ag/AgCl
reference electrode and 0.1 M n-Bu4NPF6 solution in acetonitrile as the electrolyte.
Figure S50. The cyclic voltammogram of 8 were recorded at 0.7 V s-1.
S6. Crystallographic data for the structural analysis of compounds 1-4 and 6-9
Single crystals of 1-4 and 6-9 were mounted on a Bruker SMART APEX II single crystal X-ray
CCD diffractometer having graphite monochromatised (Mo-Kα = 0.71073 Å) radiation at low
temperature 100 K and 298 K. The X-ray generator was operated at 50 kV and 30 mA. The X-ray
data acquisition was monitored by APEX2 program suit. The data were corrected for Lorentz-
polarization and absorption effects using SAINT and SADABS programs which are an integral
part of APEX2 package.2 The structures were solved by direct methods and refined by full matrix
least squares, based on F2, using SHELXL Crystal structures were refined using Olex2-1.0
software. Anisotropic refinement was performed for all non-H atom. The C-H hydrogen atoms
were calculated using the riding model.3 The structures were examined using the ADSYM
subroutine of PLATON to assure that no additional symmetry could be applied to the models. The
molecular weight of each structure mentioned herein has been calculated considering the solvent
molecules trapped in the crystal. Crystallographic information is available at
www.ccdc.cam.ac.uk/data or as part of Supporting Information.
1. (C28H43BN2), colorless, 0.12 × 0.12 × 0.07 mm3, orthorhombic, space group 'P bcn', a =
19.167(2) Å, b = 14.1542(17) Å, c = 39.176(5) Å, α =
=γ = 90, V = 10628(2) Å3, Z = 16, T =
100(2) K, 2
max = 48.22°, Dcalc (g cm–3) = 1.046, F(000) = 3680,
(mm-1) = 0.059, 465420
reflections collected, 10905 unique reflections (Rint = 0.1436), 8657 observed (I > 2 (I))
reflections, multi-scan absorption correction, Tmin = 0.6275, Tmax = 0.7454, 599 refined parameters,
S = 1.145, R1 = 0.0644, wR2 = 0.1465 (all data R = 0.0902, wR2 = 0.1612), maximum and
minimum residual electron densities; Δ
max = 0.295, Δ
min= -0.483 (eÅ-3). CCDC: 2102132
2. (C28H42BIN2 * C7H7), colorless, 0.25 × 0.15 × 0.12 mm3, monoclinic, space group 'C 2/c', a =
30.7004(15) Å, b = 13.6937(5) Å, c = 18.6768(8) Å, α = γ = 90,
= 118.551(3), V = 6896.9(5)
Å3, Z = 8, T = 100 (2) K, 2
max = 66.64°, Dcalc (g cm–3) = 1.224, F(000) = 2648,
(mm-1) = 0.952,
325196 reflections collected, 16717 unique reflections (Rint = 0.0516), 14908 observed (I > 2 (I))
reflections, multi-scan absorption correction, Tmin = 0.6797, Tmax = 0.7471, 379 refined parameters,
S = 1.124, R1 = 0.0345, wR2 = 0.0929 (all data R = 0.0409, wR2 = 0.1005), maximum and
minimum residual electron densities; Δ
max = 3.047, Δ
min= -2.301 (eÅ-3). CCDC: 2125724.
3. (C28H41BI2N2), colorless, 0.1 × 0.06 × 0.05 mm3, monoclinic, space group 'P21/n’, a = 9.5036(4)
Å, b = 19.9724(6) Å, c = 16.0540(6) Å, α = γ = 90,
= 103.2450(10), V = 2966.15(19) Å3, Z = 4,
T = 100.(2) K, 2
max = 68.59 °, Dcalc (g cm–3) = 1.501, F(000) = 1336,
(mm-1) = 2.43, 119156
reflections collected, 10349 unique reflections (Rint = 0.0482), 9558 observed (I > 2 (I))
reflections, multi-scan absorption correction, Tmin = 0.5564, Tmax = 0.7467, 306 refined parameters,
S = 1.222, R1 = 0.0350, wR2 = 0.1352 (all data R = 0.0431, wR2 = 0.1510), maximum and
minimum residual electron densities; Δ
max = 2.177, Δ
min= -3.068 (eÅ-3). CCDC: 2123602.
4. (C29H42BF3N2O3S), colorless, 0.24 × 0.12 × 0.1 mm3, triclinic, space group 'P -1', a = 9.601(6)
Å, b = 9.604(6) Å, c = 18.081(11) Å, α =97.88(2),
= 90.02(2), γ = 108.16(3), V = 1567.4(17)
Å3, Z = 2, T = 100.(2) K, 2
max = 60.42 °, Dcalc (g cm–3) = 1.200, F(000) = 604,
(mm-1) = 0.152,
102707 reflections collected, 11185 unique reflections (Rint = 0.0811), 7314 observed (I > 2 (I))
reflections, multi-scan absorption correction, Tmin = 0.6558, Tmax = 0.7465, 360 refined parameters,
S = 1.076, R1 = 0.0579, wR2 = 0.1627 (all data R = 0.1096, wR2 = 0.1912), maximum and
minimum residual electron densities; Δ
max = 0.719, Δ
min= -1.218 (eÅ-3). CCDC: 2123596
6. (C30H41BF6N2O6S2), colorless, 0.22 × 0.12 × 0.09 mm3, monoclinic, space group 'P21/c’, a =
17.311(3) Å, b = 11.1748(15) Å, c = 17.490(3) Å, α = γ = 90,
= 96.691(7), V = 3360.5(9) Å3, Z
= 4, T = 100.(2) K, 2
max = 50.48°, Dcalc (g cm–3) = 1.412, F(000) = 1496,
(mm-1) = 0.236,
113806 reflections collected, 12070 unique reflections (Rint = 0.0487), 9829 observed (I > 2 (I))
reflections, multi-scan absorption correction, Tmin = 0.6731, Tmax = 0.7467, 432 refined parameters,
S = 1.129, R1 = 0.0361, wR2 = 0.1029 (all data R = 0.0537, wR2 = 0.1211), maximum and
minimum residual electron densities; Δ
max = 0.918, Δ
min= -0.884 (eÅ-3). CCDC: 2123605
7. (C28H41BN4O6), colorless, 0.22 × 0.11 × 0.08 mm3, monoclinic, space group 'P21/c’, a =
18.736(3) Å, b = 8.3227(19) Å, c = 18.866(3) Å, α = γ = 90,
= 96.145(5), V = 2925.0(10) Å3, Z
= 4, T = 100.(2) K, 2
max = 62.78 °, Dcalc (g cm–3) = 1.227, F(000) = 1160,
(mm-1) = 0.086,
90856 reflections collected, 9543 unique reflections (Rint = 0.0487), 7541 observed (I > 2 (I))
reflections, multi-scan absorption correction, Tmin = 0.6465, Tmax = 0.7462, 432 refined parameters,
S = 1.152, R1 = 0.0637, wR2 = 0.1651 (all data R = 0.0875, wR2 = 0.1820), maximum and
minimum residual electron densities; Δ
max = 0.683, Δ
min= -0.476 (eÅ-3). CCDC: 2123606
8. (C28H42BBrN2O2), colorless, 0.15 × 0.12 × 0.06 mm3, orthorhombic, space group 'P nma’, a =
16.517(10) Å, b = 20.453(9) Å, c = 8.264(3) Å, α =
= γ = 90, V = 2792(2) Å3, Z = 4, T = 100.(2)
K, 2
max = 42.30 °, Dcalc (g cm–3) = 1.259, F(000) = 1120,
(mm-1) = 1.499, 64957 reflections
collected, 2527 unique reflections (Rint = 0.194), 1755 observed (I > 2 (I)) reflections, multi-scan
absorption correction, Tmin = 0.6212, Tmax = 0.7457, 173 refined parameters, S = 1.071, R1 =
0.0412, wR2 = 0.0855 (all data R = 0.0795, wR2 = 0.1063), maximum and minimum residual
electron densities; Δ
max = 0.558, Δ
min= -0.659 (eÅ-3). CCDC: 2123612
9. (C28H40BN2O4), colorless, 0.15 × 0.10 × 0.08 mm3, orthorhombic, space group 'P nma’, a =
12.325(3) Å, b = 20.525(5) Å, c = 10.920(3) Å, α =
= γ = 90, V = 2762.4(12) Å3, Z = 4, T =
293(2) K, 2
max = 59.66 °, Dcalc (g cm–3) = 1.153, F(000) = 1036,
(mm-1) = 0.076, 215531
reflections collected, 4981 unique reflections (Rint = 0.100), 3797 observed (I > 2 (I)) reflections,
multi-scan absorption correction, Tmin = 0.6965, Tmax = 0.7463, 176 refined parameters, S = 1.110,
R1 = 0.0979, wR2 = 0.2878 (all data R = 0.1463, wR2 = 0.3238), maximum and minimum residual
electron densities; Δ
max = 0.720, Δ
min= -1.319 (eÅ-3). CCDC: 2123642
S7. Details of theoretical calculations for the fromation of 3
All the calculations in this study have been performed with density functional theory
(DFT), with the aid of the Turbomole 7.5 suite of programs,4 using the PBE functional,5 along
with dispersion correction (DFT-D3).6 The def-TZVP basis set7 has been employed. The resolution
of identity (RI),8 along with the multipole accelerated resolution of identity (marij)9
approximations have been employed for an accurate and efficient treatment of the electronic
Coulomb term in the DFT calculations. Solvent correction was incorporated with optimization
calculations using the COSMO model,10 with toluene = 2.374) as the solvent. The values
reported are ΔG values, with zero-point energy corrections, internal energy and entropic
contributions were included through frequency calculations on the optimized minima, with the
temperature taken to be 298.15 K. The translational entropy term in the calculated structures was
corrected through a free volume correction introduced by Mammen et al.11 This volume correction
is to account for the unreasonable enhancement in translational entropy that is generally observed
in computational software. Harmonic frequency calculations were performed for all stationary
points to confirm them as local minima or transition state structures.
Energy profile for the disubstitution reaction of 5-IDipp·BH3:
0.0
9.0
-0.1
9.9
-22.7
0.5
-11.0
-1.1
-29.0
9.0 10.0
23.2 9.9
TS_1
Int_1
TS_2
Int_2
TS_3
Int_3
TS_4
Product
N
N
Dipp
Dipp
B
H
H
H
I I
Reactants
+
N
N
Dipp
Dipp
B
H
H
H
I
I
HI
N
N
Dipp
Dipp
BH
H
I
N
N
Dipp
Dipp
B
H
H
I
N
N
Dipp
Dipp
B
H
H
I
N
N
Dipp
Dipp
B
H
I
H
H
I
HI H2
N
N
Dipp
Dipp
B
H
I
I
N
N
Dipp
Dipp
B
H
I
I
N
N
Dipp
Dipp
BH
I
I
Figure S51. The free energy profile for the disubstitution reaction of 5-IDipp·BH3 by the iodine
molecule. Values are in kcal/mol.
S8. References
1. M. Iglesias, D. J. Beetstra, J. C. Knight, L.-L. Ooi, A. Stasch, S. Coles, L. Male, M. B.
Hursthouse, K. J. Cavell, A. Dervisi and I. A. Fallis, Organometallics., 2008, 27, 3279–3289.
2. APEX3, SAINT-Plus and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2006. (b) Apex
CCD and SAINT v8.30C; Bruker AXS Inc.: Madison, WI, USA, 2013.
3. (a) G. M. Sheldrick, A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr.,
2008, 64, 112–122; (b) L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, J. Appl.
Crystallogr., 2015, 48, 3–10; (c) L. Krause, R. Herbst-Irmer and D. Stalke, J. Appl. Crystallogr.,
2015, 48, 1907–1913.
4. TURBOMOLE V7.5 2020, a development of University of Karlsruhe and Forschungszentrum
Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from
http://www.turbomole.org.
5. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865‒3868.
6. S. Grimme, J. Antony, S. Ehrlich and H. A. Krieg, J. Chem. Phys., 2010, 132, 154104 (1-19).
7. K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, Theor Chem Acta., 1997, 97, 119‒124.
8. K. Eichkorn, O. Treutler, H. Öhm, M. Haser and R. Ahlrichs, Chem. Phys. Lett., 1995, 240,
283‒289.
9. M. Sierka, A. Hogekamp and R. Ahlrichs, J. Chem. Phys., 2003, 118, 9136‒9148.
10. A. Klamt and G. Schuurmann, J. Chem. Soc., Perkin Trans., 1993, 2, 799–805.
11. M. Mammen, E. I.Shakhnovich, J. M.; Deutch and G. M. Whitesides, J. Org. Chem., 1998, 63,
3821‒3830.
S9. PBE-D3/def-TZVP optimized geometries for the structures shown in Figure 3 and S51.
(1) I2
2
I 0.090450 0.000000 -0.453342
I 0.090450 0.000000 -3.176822
(2) 1
74
N 1.195545 -0.059297 -0.621936
N 0.028123 -0.144512 1.373210
C 0.005885 -0.126709 0.020648
C 1.257414 -0.070023 -2.065164
C -1.181067 -0.314017 2.146885
C 1.275144 1.160509 -2.755133
C 1.151859 2.494469 -2.032265
H 0.886488 2.279855 -0.986314
C -2.957934 0.648876 3.452893
H -3.486164 1.519517 3.847274
C 1.524689 -1.286383 -4.126595
H 1.617612 -2.229423 -4.669491
C 1.379810 -1.306208 -2.732398
C -1.816954 0.833854 2.661561
C -1.630671 -1.617757 2.432731
C 1.373530 -2.634346 -1.988522
H 1.113253 -2.427864 -0.939413
C 1.422284 1.127310 -4.148432
H 1.433533 2.064208 -4.709204
C -2.774827 -1.751111 3.232326
H -3.157888 -2.748747 3.458396
C 2.500537 -0.014882 0.062351
H 3.196099 0.534061 -0.585749
H 2.894420 -1.040329 0.173502
C 2.354763 0.653465 1.418488
H 2.101003 1.717081 1.285357
H 3.300465 0.600295 1.974685
C 1.548531 -0.082965 -4.830127
H 1.662199 -0.088249 -5.916208
C 0.026550 3.366145 -2.611219
H 0.248661 3.682362 -3.641952
H -0.096754 4.275872 -2.004095
H -0.926836 2.820393 -2.611696
C -1.330666 2.235892 2.323483
H -0.348986 2.140501 1.835299
C -3.434704 -0.631471 3.737213
H -4.326634 -0.756555 4.354766
C 2.491591 3.253928 -2.040172
H 3.302348 2.657768 -1.595165
H 2.406894 4.193045 -1.472301
H 2.791304 3.506461 -3.068978
C 1.253190 -0.050924 2.190485
H 1.567556 -1.065104 2.493616
H 0.994596 0.497276 3.107542
C 2.768607 -3.285498 -2.016418
H 3.060163 -3.539127 -3.047276
H 2.774368 -4.214078 -1.425479
H 3.537772 -2.612292 -1.609784
C 0.307960 -3.597587 -2.534638
H -0.685580 -3.129472 -2.515380
H 0.272386 -4.510237 -1.920745
H 0.530106 -3.901285 -3.569003
C -0.946788 -2.855006 1.868561
H -0.050844 -2.524297 1.321386
C -1.142966 3.105872 3.575555
H -2.100836 3.297079 4.082215
H -0.714509 4.081545 3.300827
H -0.469602 2.626689 4.302456
C -2.271058 2.905271 1.304424
H -2.363259 2.289935 0.398993
H -1.883785 3.895228 1.017320
H -3.275823 3.043372 1.733134
C -1.854918 -3.570230 0.853169
H -2.768649 -3.947149 1.338189
H -1.328936 -4.429204 0.408718
H -2.146324 -2.884882 0.045803
C -0.485610 -3.812074 2.980160
H 0.179989 -3.306583 3.696029
H 0.058146 -4.666049 2.547991
H -1.341364 -4.213463 3.543432
B -1.359452 -0.166939 -0.818966
H -2.330675 -0.202002 -0.090013
H -1.373856 0.830481 -1.531949
H -1.321125 -1.146218 -1.554561
(3) TS_1
76
N 0.279304 2.057901 2.622848
N -1.455908 0.832390 3.566205
C -0.788252 1.253779 2.495143
C 0.956630 2.440781 1.400842
C -2.560018 -0.099644 3.463261
C 0.578284 3.648702 0.766387
C -0.524540 4.542235 1.313199
H -1.036787 3.993820 2.118308
C -4.922328 -0.499963 3.349849
H -5.948615 -0.138747 3.258908
C 2.661288 2.031694 -0.244894
H 3.468921 1.419905 -0.650746
C 2.004191 1.618750 0.920748
C -3.867210 0.421053 3.378287
C -2.283504 -1.479260 3.551680
C 2.434449 0.348398 1.638136
H 1.676679 0.114253 2.401636
C 1.271885 4.009035 -0.394739
H 1.001700 4.928107 -0.918327
C -3.376825 -2.354112 3.515969
H -3.208552 -3.431805 3.521368
C 0.788213 2.533135 3.919145
H 1.235861 3.522131 3.754277
H 1.586019 1.855761 4.266186
C -0.359328 2.589550 4.917344
H -1.057940 3.392637 4.637226
H 0.024534 2.815730 5.920692
C 2.301635 3.211741 -0.894228
H 2.828415 3.512996 -1.801885
C -1.583134 4.884537 0.251366
H -1.162690 5.506491 -0.552801
H -2.406985 5.449794 0.711223
H -2.003424 3.977261 -0.203873
C -4.148565 1.916493 3.314764
H -3.186155 2.448736 3.374430
C -4.680167 -1.871109 3.415275
H -5.510007 -2.576745 3.355161
C 0.068740 5.826171 1.923973
H 0.807816 5.603928 2.707646
H -0.727683 6.442175 2.367271
H 0.572806 6.427203 1.152099
C -1.086249 1.252233 4.935551
H -0.463449 0.462670 5.387723
H -2.018272 1.308907 5.512321
C 3.775328 0.572181 2.363645
H 4.578112 0.781570 1.641066
H 4.055971 -0.326032 2.933427
H 3.724842 1.421385 3.061499
C 2.516628 -0.862475 0.695849
H 1.571450 -1.021029 0.158979
H 2.734990 -1.772326 1.273337
H 3.317290 -0.741905 -0.048634
C -0.868844 -2.031080 3.659790
H -0.168288 -1.180790 3.685855
C -5.002395 2.376924 4.508811
H -5.997545 1.909265 4.487518
H -5.142824 3.468029 4.483140
H -4.530744 2.112608 5.467279
C -4.801098 2.314321 1.980059
H -4.179423 2.011282 1.125970
H -4.945946 3.404318 1.933859
H -5.784372 1.835576 1.861030
C -0.499440 -2.887118 2.436281
H -1.177860 -3.745194 2.323983
H 0.528372 -3.268094 2.537112
H -0.566627 -2.304269 1.507711
C -0.682473 -2.819951 4.968065
H -0.931828 -2.207742 5.848134
H 0.360076 -3.158530 5.065069
H -1.326925 -3.710757 4.985093
B -1.075763 0.944899 0.952320
H -0.468002 0.070777 0.417706
H -2.941958 0.334961 -0.123916
I -3.964771 -4.599525 0.295000
H -1.648087 1.793395 0.332071
I -3.246884 -1.333066 -0.048076
(4) HI
2
H -0.118281 0.000000 -1.731613
I -0.118281 0.000000 -3.361156
(5) Int_1
74
N 0.807102 -0.179181 -1.502288
N 0.777941 -1.336163 0.528092
C 0.169405 -0.834554 -0.536968
C -0.088732 0.216398 -2.573640
C -0.034794 -2.080031 1.469517
C -0.682513 1.505972 -2.527619
C -0.350618 2.511217 -1.444056
H 0.239519 2.020354 -0.655075
C -1.393616 -2.137826 3.450211
H -1.847740 -1.636692 4.307050
C -1.218432 -0.305367 -4.639043
H -1.431366 -0.983441 -5.466546
C -0.326715 -0.700368 -3.635652
C -0.595595 -1.392866 2.569097
C -0.227864 -3.464038 1.249264
C 0.398251 -2.033532 -3.725476
H 0.813503 -2.261991 -2.731418
C -1.568354 1.838880 -3.561387
H -2.050002 2.817980 -3.552212
C -1.028178 -4.156767 2.166988
H -1.199001 -5.226268 2.030865
C 2.253851 0.083518 -1.474530
H 2.424799 1.072175 -1.922121
H 2.763278 -0.669708 -2.098074
C 2.736897 0.056430 -0.026167
H 2.392157 0.969313 0.492465
H 3.834683 0.066412 -0.006913
C -1.832096 0.948007 -4.600634
H -2.522516 1.234685 -5.396605
C -1.597902 3.092850 -0.761518
H -2.177444 3.734059 -1.443291
H -1.275089 3.699565 0.096577
H -2.260257 2.298744 -0.387797
C -0.342923 0.080871 2.827086
H 0.292521 0.490241 2.026825
C -1.607968 -3.500591 3.253471
H -2.230085 -4.059980 3.955213
C 0.529117 3.638460 -2.019288
H 1.421761 3.240110 -2.525112
H 0.866550 4.281207 -1.193671
H -0.031934 4.244955 -2.747154
C 2.233341 -1.175376 0.723810
H 2.732353 -2.100164 0.389245
H 2.408354 -1.065403 1.802453
C 1.580425 -1.923002 -4.709030
H 1.216386 -1.721961 -5.727837
H 2.150360 -2.863687 -4.728610
H 2.266156 -1.109235 -4.432925
C -0.526963 -3.196182 -4.113852
H -1.396685 -3.258152 -3.445489
H 0.021427 -4.147465 -4.051950
H -0.894292 -3.096452 -5.145743
C 0.431601 -4.206913 0.096515
H 0.854347 -3.460040 -0.593767
C 0.424416 0.285679 4.144838
H -0.188096 0.000575 5.014591
H 0.703329 1.345260 4.235130
H 1.348741 -0.310566 4.167968
C -1.641689 0.903441 2.817108
H -2.206398 0.751828 1.885569
H -1.387433 1.970556 2.891855
H -2.295804 0.636827 3.661382
C -0.569388 -5.052920 -0.706175
H -0.978334 -5.876516 -0.102551
H -0.072372 -5.499012 -1.580086
H -1.411609 -4.444043 -1.064046
C 1.596463 -5.073794 0.610659
H 2.332957 -4.473620 1.164770
H 2.111446 -5.564102 -0.229015
H 1.227684 -5.857960 1.289157
B -1.380008 -0.971550 -0.828201
H -2.127555 -0.131338 -0.422334
H -1.784734 -1.960127 -1.368338
I 1.653046 3.337382 1.817757
(6) TS_2
74
N 0.748766 -1.103661 -0.655231
N -0.533762 -0.956834 1.300907
C -0.433471 -1.226173 -0.022598
C 0.949450 -1.618703 -1.994640
C -1.595304 -1.504015 2.139544
C 1.283202 -0.717547 -3.034400
C 1.282480 0.789702 -2.855902
H 0.857083 1.028494 -1.868357
C -3.756127 -1.343893 3.193104
H -4.695889 -0.809620 3.346523
C 1.202868 -3.493437 -3.495440
H 1.174006 -4.568133 -3.684979
C 0.910598 -3.018964 -2.207492
C -2.793034 -0.787492 2.337693
C -1.328410 -2.715537 2.821617
C 0.611628 -4.044391 -1.122491
H 0.411632 -3.515170 -0.179784
C 1.587003 -1.253843 -4.291870
H 1.843642 -0.575212 -5.106850
C -2.322884 -3.219139 3.672158
H -2.143573 -4.153551 4.207451
C 1.935524 -0.658470 0.093824
H 2.670440 -0.296496 -0.633418
H 2.377493 -1.530700 0.609178
C 1.516639 0.424012 1.077648
H 1.101539 1.281090 0.523059
H 2.382184 0.770786 1.657463
C 1.547438 -2.626573 -4.527199
H 1.780489 -3.020226 -5.518490
C 0.363499 1.468340 -3.885589
H 0.752990 1.361729 -4.909776
H 0.279546 2.538170 -3.651414
H -0.650240 1.046795 -3.847001
C -3.060068 0.550855 1.684733
H -2.205167 0.811779 1.044043
C -3.530640 -2.548376 3.852536
H -4.292110 -2.962203 4.516746
C 2.701876 1.378723 -2.936378
H 3.390136 0.919543 -2.210416
H 2.667132 2.459096 -2.734280
H 3.135562 1.233954 -3.938546
C 0.462816 -0.132204 2.021201
H 0.912671 -0.752726 2.811108
H -0.094990 0.681161 2.510337
C 1.824806 -4.958835 -0.877573
H 2.069992 -5.546242 -1.774697
H 1.612259 -5.665582 -0.062767
H 2.715212 -4.373568 -0.604880
C -0.645766 -4.861792 -1.466725
H -1.529483 -4.214447 -1.580879
H -0.861081 -5.595449 -0.676973
H -0.517443 -5.413726 -2.409258
C -0.008611 -3.469444 2.718648
H 0.589271 -3.011861 1.914505
C -3.179466 1.670864 2.731374
H -4.073657 1.544551 3.361293
H -3.245595 2.640857 2.217852
H -2.299705 1.699128 3.392396
C -4.296573 0.517054 0.773976
H -4.221283 -0.281968 0.020643
H -4.379179 1.473956 0.239145
H -5.221906 0.354217 1.348671
C -0.217395 -4.948497 2.356661
H -0.721100 -5.490775 3.169907
H 0.751177 -5.440177 2.184111
H -0.830862 -5.057798 1.452659
C 0.798553 -3.350906 4.025907
H 0.964991 -2.302885 4.314272
H 1.778891 -3.838853 3.918268
H 0.265274 -3.839896 4.854981
B -1.718461 -1.586817 -0.857131
H -1.747800 -1.249871 -2.001747
H -2.623452 -2.167868 -0.337850
I -1.249861 2.687828 -0.711949
(7) Int_2
74
N 0.522329 -1.305415 -0.539541
N 0.587795 0.086794 1.317048
C -0.138027 -0.653866 0.444995
C -0.135138 -2.132862 -1.533892
C 0.036831 0.593850 2.560671
C -0.315753 -1.616870 -2.837749
C 0.071933 -0.194663 -3.227183
H 0.135371 0.395956 -2.299974
C -0.727827 2.429823 3.917055
H -1.001733 3.480846 4.026623
C -0.965420 -4.289581 -2.220857
H -1.216875 -5.327383 -1.994015
C -0.441893 -3.473159 -1.209400
C -0.293758 1.961981 2.667859
C -0.018117 -0.279503 3.669502
C -0.192746 -4.060386 0.172485
H 0.023952 -3.228800 0.858298
C -0.841823 -2.479454 -3.810773
H -1.002249 -2.106253 -4.823299
C -0.466464 0.238234 4.891684
H -0.535823 -0.421091 5.759487
C 1.996931 -1.344350 -0.591562
H 2.287168 -1.623770 -1.609394
H 2.358015 -2.140387 0.083525
C 2.557566 0.001854 -0.174610
H 2.229254 0.779404 -0.881741
H 3.655870 -0.016703 -0.176456
C -1.164757 -3.800775 -3.510426
H -1.573831 -4.452914 -4.284898
C -0.975225 0.480941 -4.126845
H -0.994398 0.033414 -5.132190
H -0.728607 1.546434 -4.246843
H -1.978364 0.410988 -3.687860
C -0.178676 2.934448 1.501780
H -0.036910 2.342268 0.584052
C -0.820140 1.580537 5.017897
H -1.166846 1.966822 5.978594
C 1.442876 -0.158761 -3.934137
H 2.253167 -0.576919 -3.321068
H 1.713009 0.878225 -4.185620
H 1.405878 -0.735734 -4.870770
C 2.048507 0.297948 1.221843
H 2.544161 -0.349672 1.965576
H 2.249975 1.336226 1.512899
C 1.033314 -4.992264 0.157228
H 0.852479 -5.864244 -0.490028
H 1.248425 -5.361933 1.171572
H 1.930968 -4.480243 -0.219792
C -1.423915 -4.791976 0.728455
H -2.299007 -4.128360 0.749102
H -1.228063 -5.134820 1.755064
H -1.675062 -5.678530 0.126904
C 0.379536 -1.746701 3.583543
H 0.721282 -1.949091 2.557405
C 1.031888 3.872839 1.677988
H 0.897101 4.513349 2.562972
H 1.138810 4.527448 0.799696
H 1.976851 3.325593 1.809771
C -1.456612 3.768651 1.313158
H -2.338650 3.123693 1.213148
H -1.375630 4.373248 0.397527
H -1.614153 4.459845 2.155284
C -0.820008 -2.670681 3.851810
H -1.202979 -2.535178 4.874640
H -0.522728 -3.724813 3.742446
H -1.639226 -2.465892 3.149101
C 1.551504 -2.068962 4.526408
H 2.416352 -1.417157 4.332039
H 1.870779 -3.114037 4.395535
H 1.263933 -1.937023 5.580321
B -1.730618 -0.804434 0.626284
H -2.130797 -1.867111 0.229059
H -2.088439 -0.515774 1.737574
I -2.750016 0.765426 -0.747112
(8) TS_3
76
N 0.393490 0.383267 2.410094
N -1.659879 -0.188700 3.359527
C -0.918657 0.126049 2.292555
C 1.162640 0.795755 1.250295
C -2.984074 -0.759688 3.179531
C 1.343852 2.180629 1.013187
C 0.725082 3.253322 1.900445
H -0.146638 2.809389 2.407122
C -5.373830 -0.565395 3.260489
H -6.278801 0.022566 3.421433
C 2.577987 0.227148 -0.610972
H 3.062088 -0.515319 -1.247359
C 1.779298 -0.200490 0.458334
C -4.121715 0.039498 3.431379
C -3.067703 -2.132162 2.848777
C 1.626761 -1.687229 0.742985
H 0.797829 -1.816750 1.455672
C 2.153636 2.545254 -0.069905
H 2.308536 3.602049 -0.291209
C -4.347371 -2.677982 2.686076
H -4.457232 -3.715343 2.368729
C 1.100460 0.199161 3.692418
H 2.002497 0.819481 3.664886
H 1.419155 -0.853529 3.772430
C 0.171230 0.572542 4.837360
H -0.060639 1.647415 4.795392
H 0.656611 0.370925 5.801515
C 2.766399 1.582431 -0.871462
H 3.394570 1.892844 -1.708707
C 0.222439 4.470296 1.107506
H 1.057010 5.068554 0.712644
H -0.365993 5.125053 1.766181
H -0.415167 4.171032 0.265551
C -4.029136 1.483044 3.907982
H -3.007010 1.842927 3.703354
C -5.486445 -1.901067 2.876611
H -6.470331 -2.342378 2.710327
C 1.721035 3.721324 2.980989
H 2.075242 2.897980 3.615557
H 1.249332 4.471725 3.632969
H 2.603011 4.183504 2.512857
C -1.101062 -0.251725 4.725876
H -0.913589 -1.309611 4.971799
H -1.878226 0.110521 5.409370
C 2.903497 -2.243785 1.402819
H 3.758066 -2.172687 0.712996
H 2.766465 -3.303075 1.665782
H 3.168313 -1.692544 2.317311
C 1.272278 -2.493378 -0.515713
H 0.378264 -2.093870 -1.014001
H 1.070567 -3.540011 -0.247895
H 2.097613 -2.492347 -1.243063
C -1.849195 -3.038110 2.723496
H -0.940315 -2.424415 2.833915
C -4.281170 1.573143 5.427718
H -5.309062 1.257433 5.661905
H -4.155092 2.608809 5.777987
H -3.604084 0.931569 6.009935
C -5.005614 2.419665 3.177795
H -4.916464 2.329635 2.087609
H -4.803570 3.464616 3.455896
H -6.048469 2.202534 3.452732
C -1.765560 -3.736333 1.357558
H -2.654749 -4.350243 1.157115
H -0.879988 -4.388623 1.322745
H -1.694527 -3.009908 0.537966
C -1.840184 -4.069238 3.868333
H -1.893970 -3.583768 4.854692
H -0.922790 -4.675839 3.829429
H -2.699672 -4.750049 3.783631
B -1.507514 0.176566 0.810949
H -1.165930 -0.625605 0.002956
H -3.343664 -1.149015 0.149486
I -2.558240 1.903629 0.145764
H -3.804493 -1.718238 -0.108163
I -5.301688 -3.830849 -0.801215
(9) H2
2
H 0.493997 0.000000 0.444397
H 0.493997 0.000000 -0.307726
(10) Int_3
74
N 1.313624 0.257587 -1.481868
N 1.512054 -0.660688 0.659093
C 0.793463 -0.348456 -0.416629
C 0.423120 0.421091 -2.615969
C 0.830812 -1.435629 1.679570
C -0.432985 1.546741 -2.658143
C -0.316459 2.698605 -1.679211
H 0.294887 2.391420 -0.816036
C -0.660181 -1.555637 3.560220
H -1.271682 -1.069491 4.321992
C -0.494871 -0.455587 -4.654746
H -0.527269 -1.211476 -5.441242
C 0.434109 -0.579376 -3.617155
C 0.066804 -0.759590 2.659416
C 0.943047 -2.845707 1.626348
C 1.438057 -1.724098 -3.606152
H 1.855506 -1.798377 -2.589411
C -1.353777 1.604363 -3.717259
H -2.040888 2.450097 -3.775951
C 0.208662 -3.582723 2.561004
H 0.259906 -4.672688 2.546791
C 2.715165 0.720688 -1.507436
H 2.739615 1.650450 -2.090451
H 3.326949 -0.030306 -2.033075
C 3.202827 0.956805 -0.082322
H 2.703333 1.847566 0.340573
H 4.281930 1.158967 -0.094420
C -1.390333 0.616058 -4.695891
H -2.115631 0.683923 -5.509418
C -1.664189 3.177554 -1.121794
H -2.277144 3.669283 -1.892750
H -1.472282 3.905224 -0.320395
H -2.248484 2.347720 -0.697695
C 0.090435 0.748687 2.817245
H 0.542952 1.207913 1.924467
C -0.597409 -2.944958 3.507736
H -1.171412 -3.541887 4.219432
C 0.430835 3.868879 -2.350159
H 1.399268 3.549263 -2.763420
H 0.625620 4.646434 -1.597952
H -0.164952 4.295467 -3.172473
C 2.924606 -0.255158 0.799298
H 3.567026 -1.111804 0.537789
H 3.089230 -0.015230 1.858361
C 2.598774 -1.412851 -4.572116
H 2.232399 -1.369615 -5.608941
H 3.368818 -2.197047 -4.514640
H 3.072549 -0.446362 -4.347352
C 0.816570 -3.088952 -3.937342
H -0.026414 -3.317824 -3.271851
H 1.571398 -3.880345 -3.818670
H 0.457157 -3.131357 -4.976082
C 1.858203 -3.548930 0.632657
H 2.110720 -2.830073 -0.162509
C 0.992657 1.126538 4.009180
H 0.555067 0.779792 4.958347
H 1.108885 2.219352 4.037555
H 1.995856 0.683890 3.916269
C -1.300701 1.375685 2.982855
H -1.987246 1.064123 2.182198
H -1.199312 2.469450 2.940091
H -1.759034 1.110862 3.948335
C 1.207616 -4.762036 -0.048998
H 1.001558 -5.569477 0.668577
H 1.886088 -5.167351 -0.814276
H 0.263538 -4.488023 -0.538731
C 3.170009 -3.961571 1.330140
H 3.662743 -3.106828 1.815376
H 3.871278 -4.399015 0.603651
H 2.969905 -4.714313 2.107378
B -0.782569 -0.538470 -0.357503
H -1.414001 0.369517 0.087175
I 1.504203 4.144186 1.471816
I -1.890157 -2.237976 -0.975720
(11) TS_4
74
N 0.554590 -0.995065 -0.629915
N -0.748980 -0.561404 1.273879
C -0.632163 -1.022223 0.010042
C 0.745109 -1.723922 -1.872986
C -1.812745 -0.943171 2.200162
C 1.049903 -1.008758 -3.058029
C 1.067146 0.506885 -3.148041
H 0.648828 0.924564 -2.219042
C -3.899466 -0.500303 3.324500
H -4.791764 0.114892 3.451780
C 1.005637 -3.824300 -3.042572
H 1.001093 -4.914136 -3.049590
C 0.737540 -3.146380 -1.845015
C -2.948437 -0.121145 2.365275
C -1.588583 -2.072544 3.024605
C 0.582119 -3.966969 -0.570432
H -0.002961 -3.385885 0.155486
C 1.334138 -1.747801 -4.214022
H 1.567337 -1.213950 -5.136522
C -2.567605 -2.398258 3.972994
H -2.419803 -3.269525 4.613398
C 1.731303 -0.361877 -0.005770
H 2.405693 -0.054439 -0.812191
H 2.262277 -1.109165 0.608191
C 1.261716 0.815473 0.832119
H 0.765538 1.556724 0.183713
H 2.114835 1.297620 1.327092
C 1.306675 -3.138738 -4.215616
H 1.521687 -3.691521 -5.132304
C 0.160529 1.009389 -4.284453
H 0.546121 0.713730 -5.272326
H 0.100367 2.105292 -4.247101
H -0.862409 0.626080 -4.172170
C -3.163046 1.150090 1.573965
H -2.385517 1.224156 0.799000
C -3.719902 -1.629121 4.118292
H -4.471902 -1.904816 4.860452
C 2.497986 1.043663 -3.340034
H 3.190200 0.699257 -2.556315
H 2.488119 2.143347 -3.324836
H 2.913049 0.721127 -4.307621
C 0.284593 0.312536 1.878869
H 0.796641 -0.253972 2.672629
H -0.252033 1.145587 2.355053
C 1.968704 -4.232323 0.048572
H 2.588221 -4.824468 -0.641669
H 1.873198 -4.794934 0.988984
H 2.508240 -3.298700 0.262273
C -0.169860 -5.287713 -0.789878
H -1.134833 -5.124482 -1.290155
H -0.364346 -5.771007 0.176952
H 0.414957 -5.997075 -1.392959
C -0.335155 -2.934467 2.955648
H 0.256489 -2.618310 2.083747
C -3.020189 2.390701 2.473476
H -3.825699 2.437876 3.223779
H -3.066368 3.297522 1.853198
H -2.060376 2.397383 3.012287
C -4.514164 1.169219 0.843259
H -4.647058 0.273446 0.219907
H -4.552999 2.046587 0.182262
H -5.359330 1.226897 1.547180
C -0.684547 -4.420187 2.770182
H -1.191182 -4.823048 3.658967
H 0.227947 -5.014413 2.616614
H -1.350095 -4.568525 1.908963
C 0.543195 -2.741055 4.205994
H 0.809999 -1.685411 4.360133
H 1.473365 -3.321868 4.114976
H 0.016205 -3.084145 5.108955
B -1.844567 -1.482152 -0.898766
H -1.885807 -1.064979 -2.011383
I -1.620248 2.582721 -1.424996
I -3.380703 -2.830456 -0.319785
(12) Product
74
N 1.035292 -1.113269 -1.012936
N 1.296433 0.368792 0.750741
C 0.473412 -0.397542 -0.007493
C 0.320133 -2.022018 -1.895885
C 1.022211 0.773839 2.122572
C 0.118908 -1.650071 -3.244409
C 0.503604 -0.283951 -3.799746
H 0.660352 0.391295 -2.944288
C 0.511348 2.470647 3.752078
H 0.195841 3.486658 3.996154
C -0.555268 -4.226964 -2.327262
H -0.819952 -5.227598 -1.981409
C -0.005541 -3.313010 -1.419337
C 0.640645 2.101144 2.405780
C 1.346983 -0.144563 3.150238
C 0.231185 -3.743325 0.020297
H 0.457996 -2.845556 0.611803
C -0.436104 -2.606303 -4.108230
H -0.608785 -2.342800 -5.152808
C 1.196547 0.277337 4.476690
H 1.418704 -0.419957 5.286901
C 2.500551 -1.137849 -1.186626
H 2.710458 -1.566881 -2.170909
H 2.939894 -1.810613 -0.428721
C 3.040440 0.270174 -1.026245
H 2.588122 0.930027 -1.781334
H 4.129925 0.294239 -1.163849
C -0.768410 -3.882290 -3.660802
H -1.196945 -4.610398 -4.352420
C -0.610969 0.331464 -4.661585
H -0.742790 -0.219354 -5.605142
H -0.352044 1.369025 -4.919768
H -1.567772 0.343246 -4.124297
C 0.366231 3.134538 1.325313
H 0.370186 2.618438 0.353116
C 0.774895 1.569793 4.779968
H 0.660056 1.877871 5.821256
C 1.804761 -0.357532 -4.623952
H 2.656044 -0.744792 -4.046661
H 2.076825 0.641789 -4.995824
H 1.670449 -1.016988 -5.495199
C 2.690649 0.718071 0.377212
H 3.365669 0.252739 1.112252
H 2.786550 1.806891 0.492288
C 1.445601 -4.685433 0.114355
H 1.263244 -5.616068 -0.444851
H 1.643952 -4.954311 1.162927
H 2.353526 -4.221465 -0.298997
C -1.015353 -4.381930 0.652226
H -1.877726 -3.703756 0.594091
H -0.827021 -4.599896 1.713564
H -1.282209 -5.329566 0.160903
C 1.868057 -1.551534 2.886004
H 1.858059 -1.724479 1.800057
C 1.454837 4.224428 1.304899
H 1.459591 4.791424 2.248490
H 1.266567 4.934087 0.485368
H 2.463065 3.805053 1.167681
C -1.022331 3.773128 1.495575
H -1.803185 3.005333 1.572323
H -1.254455 4.407554 0.627767
H -1.062849 4.404661 2.396331
C 0.977794 -2.628861 3.527216
H 0.985080 -2.548490 4.624222
H 1.347026 -3.631757 3.265241
H -0.062419 -2.535368 3.187891
C 3.324829 -1.702141 3.362514
H 3.985238 -0.947296 2.910519
H 3.711562 -2.698685 3.100189
H 3.393849 -1.590953 4.455242
B -1.146475 -0.466457 0.104326
H -1.578046 -1.428125 -0.450650
I -1.888491 1.296626 -1.185471
I -2.156760 -0.485650 2.131385
(13) 5-NHC
69
N 0.125994 -0.205447 0.207493
N 1.524274 -0.289205 1.845585
C 0.185240 -0.263590 1.572774
C -1.097789 -0.154778 -0.550341
C 2.091696 -0.354581 3.169195
C -1.647380 1.105839 -0.850443
C -1.008104 2.402789 -0.376206
H -0.198292 2.145124 0.321891
C 2.895272 0.759632 5.134413
H 3.113645 1.672400 5.691904
C -2.845613 -1.288379 -1.738648
H -3.324521 -2.207458 -2.082217
C -1.678861 -1.367761 -0.965726
C 2.369507 0.852419 3.838037
C 2.338212 -1.622720 3.728297
C -1.073377 -2.718645 -0.614801
H -0.257347 -2.546725 0.102203
C -2.814431 1.128602 -1.626391
H -3.268718 2.087547 -1.883563
C 2.863389 -1.658717 5.027744
H 3.056660 -2.622394 5.502636
C 1.396984 -0.195743 -0.356501
H 1.546921 -0.152049 -1.428577
C -3.406143 -0.054452 -2.068800
H -4.316298 -0.014838 -2.670929
C -2.002557 3.281821 0.398829
H -2.823951 3.630638 -0.245537
H -1.489717 4.170993 0.795665
H -2.433921 2.727842 1.243988
C 2.073306 2.208205 3.212074
H 1.879217 2.049292 2.140262
C 3.134942 -0.481378 5.724905
H 3.538918 -0.531466 6.738166
C -0.382713 3.168659 -1.555846
H 0.363365 2.554794 -2.082189
H 0.115459 4.082824 -1.198996
H -1.151834 3.463442 -2.285799
C 2.281091 -0.248748 0.677407
H 3.364161 -0.262195 0.698062
C -0.467612 -3.387939 -1.861712
H -1.244249 -3.596863 -2.613189
H 0.008769 -4.342519 -1.591481
H 0.292286 -2.746541 -2.332850
C -2.089678 -3.640681 0.077561
H -2.504765 -3.158366 0.973272
H -1.599989 -4.576635 0.386610
H -2.920931 -3.905077 -0.593592
C 2.011696 -2.909214 2.983475
H 1.817914 -2.649544 1.931435
C 3.264828 3.172664 3.317570
H 3.476145 3.444727 4.362603
H 3.044627 4.103672 2.773910
H 4.178251 2.733217 2.890307
C 0.798635 2.820664 3.820906
H -0.058659 2.143619 3.704090
H 0.559651 3.774236 3.324939
H 0.937987 3.020427 4.894605
C 0.726493 -3.549220 3.538575
H 0.863898 -3.851042 4.588370
H 0.466189 -4.447137 2.956718
H -0.116477 -2.846166 3.488908
C 3.184212 -3.901981 2.994355
H 4.104236 -3.442704 2.603603
H 2.943702 -4.775064 2.369442
H 3.394475 -4.271648 4.009196
B -1.040820 -0.292413 2.580538
H -0.629887 -0.367249 3.725776
H -1.697857 0.730013 2.405953
H -1.747630 -1.253051 2.289871
(14) TS_1
71
N -2.564780 2.864105 1.893961
N -1.867570 1.460464 3.397935
C -1.850179 1.707037 2.052639
C -2.761828 3.547794 0.633835
C -1.158955 0.381251 4.054728
C -3.981072 3.362358 -0.051394
C -5.105025 2.496710 0.502626
H -4.658990 1.763210 1.194632
C -1.149793 -1.810045 5.013503
H -1.655878 -2.741033 5.271103
C -1.940729 5.047731 -1.045037
H -1.163179 5.703295 -1.440866
C -1.725258 4.381505 0.168951
C -1.871619 -0.789545 4.379546
C 0.205028 0.573885 4.344599
C -0.437215 4.604853 0.949006
H -0.402989 3.876948 1.773350
C -4.137606 4.054360 -1.260960
H -5.061336 3.937209 -1.828512
C 0.873922 -0.482482 4.978177
H 1.934771 -0.379447 5.215010
C -3.001338 3.334759 3.116036
H -3.567734 4.253225 3.207377
C -3.130832 4.884845 -1.752488
H -3.275713 5.410020 -2.698532
C -5.846519 1.705401 -0.584784
H -6.452427 2.364855 -1.223955
H -6.529988 0.983115 -0.116447
H -5.154319 1.145080 -1.227472
C -3.360702 -0.935694 4.102417
H -3.617994 -0.253468 3.275298
C 0.205796 -1.660900 5.305999
H 0.747270 -2.474721 5.792136
C -6.104571 3.356837 1.302341
H -5.620230 3.898790 2.126296
H -6.894318 2.722108 1.730337
H -6.581390 4.100822 0.645943
C -2.561057 2.451991 4.062868
H -2.665249 2.452407 5.140803
C -0.426824 6.009572 1.579528
H -0.443279 6.788596 0.802096
H 0.481712 6.151320 2.183575
H -1.299962 6.165230 2.230300
C 0.815859 4.367575 0.091605
H 0.809292 3.362344 -0.351758
H 1.718820 4.462915 0.712489
H 0.895493 5.102299 -0.723265
C 0.947571 1.860466 4.012667
H 0.243922 2.549698 3.521114
C -4.178776 -0.514410 5.339677
H -3.956761 -1.178065 6.189158
H -5.255371 -0.584292 5.124637
H -3.960815 0.516489 5.653792
C -3.755670 -2.349884 3.659047
H -3.161524 -2.701351 2.804811
H -4.809468 -2.360969 3.347240
H -3.649278 -3.078061 4.477526
C 2.103174 1.614431 3.027992
H 2.868812 0.958005 3.467796
H 2.588000 2.566786 2.765531
H 1.743769 1.144041 2.102349
C 1.440210 2.559189 5.292064
H 0.608881 2.763390 5.982820
H 1.923523 3.515462 5.041743
H 2.176418 1.939459 5.825040
B -1.061273 0.914589 0.962649
H -0.348531 0.040034 1.356589
H -2.728711 0.791067 -0.357281
I -3.577036 -4.075852 -0.059025
H -0.772768 1.521517 -0.030123
I -2.859759 -0.890251 -0.051301
(15) Int_1
69
N 0.620228 -0.998933 -1.127522
N 0.585341 -1.090728 1.054754
C -0.245510 -1.112545 -0.052841
C 0.202834 -1.031975 -2.513719
C 0.122876 -1.238930 2.418728
C -0.039364 0.191034 -3.167299
C 0.096717 1.528135 -2.455845
H 0.714746 1.389377 -1.554154
C -0.623898 -0.259886 4.467791
H -0.858204 0.613583 5.078172
C -0.364493 -2.301451 -4.462778
H -0.492456 -3.255860 -4.977073
C 0.055029 -2.291098 -3.124955
C -0.158607 -0.075064 3.158122
C -0.028462 -2.544603 2.921417
C 0.323058 -3.598268 -2.392507
H 0.680862 -3.359303 -1.379123
C -0.457653 0.118075 -4.503813
H -0.658802 1.040716 -5.050021
C -0.494743 -2.666773 4.237848
H -0.627609 -3.660712 4.669423
C 1.905251 -0.882054 -0.703368
H 2.739432 -0.766269 -1.384219
C -0.620191 -1.111206 -5.143080
H -0.947280 -1.141587 -6.184293
C -1.282819 2.036848 -1.999221
H -1.937441 2.230989 -2.863008
H -1.170096 2.972774 -1.432553
H -1.791069 1.305908 -1.352213
C -0.012310 1.316984 2.563530
H 0.623878 1.254440 1.666398
C -0.791726 -1.538010 5.000854
H -1.155599 -1.655284 6.023629
C 0.818843 2.581107 -3.307288
H 1.792824 2.210611 -3.656333
H 1.004258 3.477194 -2.698684
H 0.224473 2.883235 -4.183526
C 1.883032 -0.939918 0.683181
H 2.694959 -0.882429 1.397593
C 1.429282 -4.414149 -3.081655
H 1.125164 -4.727765 -4.091259
H 1.650207 -5.322389 -2.501234
H 2.357082 -3.831004 -3.173932
C -0.967138 -4.420529 -2.235240
H -1.744774 -3.846014 -1.711161
H -0.769690 -5.336720 -1.658693
H -1.370321 -4.718412 -3.214816
C 0.281368 -3.785258 2.096582
H 0.671184 -3.461643 1.119289
C 0.691204 2.294361 3.515369
H 0.080007 2.518138 4.403230
H 0.884998 3.240090 2.989862
H 1.660088 1.896815 3.848295
C -1.383352 1.862057 2.124158
H -1.877298 1.188295 1.407655
H -1.261239 2.842666 1.641080
H -2.055542 1.983032 2.987813
C -0.992866 -4.603931 1.827888
H -1.426195 -4.983814 2.765370
H -0.764407 -5.468094 1.186452
H -1.758791 -3.995831 1.324719
C 1.372519 -4.644009 2.756960
H 2.290733 -4.062762 2.925842
H 1.622013 -5.502083 2.115144
H 1.038469 -5.037862 3.728256
B -1.750772 -1.249765 -0.082246
H -2.310607 -1.260001 -1.139490
H -2.341898 -1.354640 0.952641
I 3.137592 2.156161 0.146681
(16) TS_2
69
N 0.885537 -1.547969 -0.574525
N -0.249338 -1.542196 1.304638
C -0.395379 -1.508711 -0.065834
C 1.258559 -1.770883 -1.967401
C -1.315164 -1.809370 2.265276
C 1.804305 -0.703660 -2.704671
C 1.895585 0.707505 -2.161829
H 1.255314 0.792365 -1.269488
C -2.943866 -1.056653 3.852759
H -3.457625 -0.247632 4.373451
C 1.608319 -3.301345 -3.782869
H 1.533290 -4.299607 -4.216043
C 1.133921 -3.081667 -2.483174
C -1.945600 -0.736073 2.920502
C -1.626707 -3.161197 2.521967
C 0.569310 -4.245014 -1.681045
H -0.067897 -3.832614 -0.886094
C 2.266294 -0.990325 -3.998402
H 2.693395 -0.184125 -4.596313
C -2.634540 -3.418875 3.461892
H -2.907495 -4.452952 3.680616
C 1.791632 -1.537997 0.452276
H 2.860481 -1.557885 0.275432
C 2.178296 -2.272404 -4.530941
H 2.544321 -2.471871 -5.540090
C 1.370967 1.743645 -3.168053
H 2.037412 1.846626 -4.038113
H 1.297669 2.718689 -2.667040
H 0.366915 1.476807 -3.528066
C -1.551831 0.703913 2.676622
H -1.001122 0.771287 1.724739
C -3.288722 -2.379595 4.120198
H -4.071546 -2.603033 4.847741
C 3.330399 1.053160 -1.728377
H 3.721944 0.338552 -0.988336
H 3.339742 2.052414 -1.269589
H 4.015533 1.053948 -2.590515
C 1.079188 -1.531516 1.631014
H 1.418657 -1.547231 2.660024
C 1.703487 -5.037648 -1.004228
H 2.364631 -5.487444 -1.760320
H 1.291073 -5.849540 -0.385674
H 2.319331 -4.395671 -0.357473
C -0.325300 -5.169402 -2.520378
H -1.122070 -4.604663 -3.024633
H -0.796137 -5.922726 -1.873238
H 0.248197 -5.711703 -3.285808
C -0.932917 -4.328444 1.836527
H -0.141297 -3.932144 1.184145
C -0.594610 1.195534 3.777725
H -1.096706 1.216766 4.757722
H -0.249210 2.209091 3.528173
H 0.292269 0.549721 3.864070
C -2.760415 1.640614 2.548162
H -3.485917 1.262188 1.812938
H -2.408479 2.622405 2.201921
H -3.279892 1.779269 3.509108
C -1.917916 -5.108085 0.949391
H -2.735732 -5.535671 1.547628
H -1.404184 -5.938033 0.442595
H -2.368600 -4.459949 0.182880
C -0.243106 -5.253692 2.853201
H 0.470048 -4.697393 3.478450
H 0.306027 -6.050523 2.329643
H -0.973816 -5.734391 3.520476
B -1.694918 -1.332351 -0.852449
H -1.635006 -1.277616 -2.044926
H -2.724648 -1.274661 -0.248755
I 0.136538 2.936515 0.260816
(17) Int_2
69
N 0.508481 -0.686169 -1.236595
N 0.540405 -1.108056 0.886352
C -0.310196 -0.899200 -0.162855
C 0.073404 -0.514582 -2.605041
C 0.142231 -1.514020 2.215891
C 0.081937 0.779790 -3.159018
C 0.490217 2.006594 -2.356503
H 0.416363 1.747960 -1.288814
C -0.389985 -0.969614 4.487356
H -0.534652 -0.239019 5.284264
C -0.644438 -1.487309 -4.675928
H -0.933658 -2.353044 -5.273877
C -0.288725 -1.666440 -3.333009
C -0.024625 -0.528435 3.207747
C -0.028800 -2.891154 2.455414
C -0.259491 -3.059186 -2.720373
H -0.252611 -2.946667 -1.627248
C -0.278759 0.897598 -4.509365
H -0.286302 1.883430 -4.977063
C -0.400804 -3.274359 3.751404
H -0.553957 -4.332183 3.973803
C 1.842606 -0.767709 -0.862878
H 2.645090 -0.642357 -1.579014
C -0.635457 -0.220969 -5.260139
H -0.915980 -0.104669 -6.309086
C -0.445553 3.201472 -2.591225
H -0.363079 3.590562 -3.617440
H -0.180181 4.019733 -1.905710
H -1.490579 2.924176 -2.399158
C 0.221221 0.946507 2.925493
H 0.102173 1.103811 1.842105
C -0.579743 -2.325170 4.756293
H -0.871611 -2.643800 5.759049
C 1.949194 2.396298 -2.661404
H 2.648412 1.573098 -2.455640
H 2.250704 3.259153 -2.048441
H 2.062029 2.674547 -3.720635
C 1.863378 -1.031947 0.473118
H 2.686211 -1.187902 1.159911
C 1.030429 -3.799134 -3.120178
H 1.071449 -3.952894 -4.209430
H 1.072563 -4.785691 -2.634034
H 1.927192 -3.234470 -2.824734
C -1.506448 -3.885893 -3.065293
H -2.423332 -3.349647 -2.783519
H -1.484648 -4.838990 -2.516814
H -1.558756 -4.124262 -4.138166
C 0.168343 -3.944793 1.374077
H 0.508795 -3.437824 0.458776
C 1.661815 1.333982 3.312753
H 1.822842 1.199103 4.393601
H 1.852365 2.389667 3.067731
H 2.406364 0.722339 2.782808
C -0.793913 1.865157 3.618304
H -1.822897 1.578870 3.361774
H -0.641363 2.902060 3.284894
H -0.682382 1.851072 4.713250
C -1.152626 -4.656487 1.035598
H -1.540904 -5.207035 1.905792
H -0.996014 -5.380240 0.221270
H -1.918131 -3.935579 0.716887
C 1.266244 -4.949626 1.763114
H 2.216142 -4.439176 1.980610
H 1.438016 -5.661117 0.941656
H 0.982866 -5.529231 2.654473
B -1.893060 -0.957839 -0.145499
H -2.338500 -1.317554 -1.207585
H -2.304168 -1.550205 0.820907
I -2.636185 1.245493 0.114016
(18) TS_3
71
N -0.581550 -1.516679 2.645821
N 0.519943 -1.732006 0.766865
C -0.298871 -0.876389 1.461123
C -1.233930 -0.915727 3.799633
C 1.291759 -1.409159 -0.425490
C -2.506811 -1.382505 4.181623
C -3.279452 -2.418264 3.391133
H -2.746667 -2.636931 2.453622
C 1.570854 -1.392838 -2.801998
H 1.206292 -1.630762 -3.802713
C -1.133133 0.572009 5.681851
H -0.611076 1.327330 6.271297
C -0.523098 0.067721 4.525778
C 0.787437 -1.747820 -1.693565
C 2.547202 -0.795893 -0.227473
C 0.863853 0.566013 4.143429
H 1.100643 0.198450 3.136211
C -3.063780 -0.837737 5.348871
H -4.049909 -1.176962 5.669449
C 3.285102 -0.470256 -1.372095
H 4.259068 0.010048 -1.260708
C 0.012816 -2.753707 2.664113
H -0.088064 -3.426095 3.507376
C -2.387001 0.123618 6.094406
H -2.839598 0.531427 7.000335
C -4.670773 -1.904858 2.987835
H -5.328120 -1.774172 3.861353
H -5.135393 -2.632462 2.307361
H -4.603443 -0.942823 2.459524
C -0.515041 -2.493666 -1.891477
H -1.012142 -2.622611 -0.918544
C 2.798326 -0.753832 -2.647725
H 3.387789 -0.485094 -3.526639
C -3.387590 -3.744239 4.163081
H -2.397882 -4.127344 4.455525
H -3.866329 -4.498265 3.522105
H -3.987204 -3.626978 5.079430
C 0.696374 -2.891706 1.481908
H 1.295911 -3.709655 1.100502
C 1.931549 -0.001442 5.095185
H 1.768940 0.350537 6.124976
H 2.935480 0.321864 4.780608
H 1.913279 -1.101187 5.107469
C 0.926839 2.100429 4.074419
H 0.171360 2.499168 3.381967
H 1.917487 2.422244 3.722833
H 0.760225 2.560040 5.059630
C 3.128306 -0.505066 1.148744
H 2.380942 -0.777237 1.907250
C -0.242923 -3.907484 -2.435519
H 0.196414 -3.869412 -3.444657
H -1.187324 -4.467814 -2.476464
H 0.447962 -4.462227 -1.782805
C -1.496664 -1.736918 -2.798674
H -1.674750 -0.714839 -2.434310
H -2.458817 -2.268866 -2.807962
H -1.128102 -1.672889 -3.834217
C 3.443931 0.987781 1.333828
H 4.228666 1.320041 0.638426
H 3.803590 1.176993 2.356117
H 2.554061 1.608915 1.159031
C 4.367884 -1.376669 1.416184
H 4.132473 -2.447045 1.321902
H 4.748509 -1.196912 2.432896
H 5.175429 -1.145795 0.705765
B -0.970102 0.456346 1.079255
H -2.722643 -0.749351 0.228136
I -3.231783 -4.242889 0.097240
H -1.785848 0.897200 1.827199
H -2.915927 -1.499432 0.161755
I -0.406430 1.702845 -0.553192
(19) Int_3
69
N 1.015135 0.284703 -1.675294
N 1.314730 -0.827165 0.182895
C 0.346334 -0.505937 -0.750859
C 0.422894 0.806145 -2.889800
C 1.131522 -1.698002 1.325415
C -0.120011 2.104488 -2.863304
C -0.108745 2.956770 -1.603260
H 0.675939 2.577840 -0.928380
C 0.667780 -1.991470 3.650578
H 0.444009 -1.583781 4.637490
C -0.182804 0.486529 -5.183003
H -0.211720 -0.123396 -6.087820
C 0.420893 -0.024755 -4.025884
C 0.858210 -1.111923 2.574435
C 1.259496 -3.085537 1.115974
C 1.024706 -1.422613 -4.021892
H 1.525799 -1.578360 -3.054040
C -0.709789 2.562355 -4.050150
H -1.146207 3.561709 -4.077994
C 1.072738 -3.911818 2.230710
H 1.161956 -4.993453 2.118842
C 2.311890 0.465037 -1.310135
H 3.004517 1.064526 -1.887781
C -0.745389 1.762838 -5.193140
H -1.212440 2.141452 -6.104557
C -1.452371 2.846658 -0.859427
H -2.278268 3.232409 -1.477013
H -1.414119 3.428767 0.072869
H -1.690003 1.804207 -0.597718
C 0.749318 0.393180 2.766266
H 1.172483 0.896113 1.882486
C 0.769461 -3.371232 3.481213
H 0.619041 -4.034683 4.335254
C 0.246130 4.423540 -1.883317
H 1.187807 4.504880 -2.444064
H 0.380194 4.953213 -0.929709
H -0.544226 4.940318 -2.449072
C 2.501253 -0.239303 -0.133338
H 3.385217 -0.347673 0.482903
C 2.098255 -1.579709 -5.111340
H 1.666226 -1.483655 -6.118549
H 2.566034 -2.573074 -5.043080
H 2.886548 -0.820165 -5.006994
C -0.065976 -2.500300 -4.149148
H -0.811907 -2.413059 -3.345210
H 0.379903 -3.504715 -4.094536
H -0.596087 -2.415380 -5.109536
C 1.624415 -3.671595 -0.241308
H 1.427988 -2.906056 -1.007727
C 1.573299 0.881344 3.967291
H 1.160637 0.522529 4.922604
H 1.574441 1.980116 3.986281
H 2.619134 0.551369 3.893241
C -0.719440 0.835298 2.886798
H -1.306033 0.539601 2.005650
H -0.772279 1.930082 2.980517
H -1.195955 0.389203 3.773386
C 0.775513 -4.896059 -0.612441
H 0.980823 -5.750946 0.048700
H 1.006696 -5.212930 -1.640086
H -0.298305 -4.668949 -0.555885
C 3.127875 -4.002277 -0.293658
H 3.744434 -3.116850 -0.080133
H 3.404584 -4.379943 -1.289529
H 3.380847 -4.774546 0.448219
B -1.119498 -0.869124 -0.898594
H -1.710008 -0.434861 -1.838224
I 3.156248 2.971730 0.784298
I -2.266752 -2.116331 0.401164
(20) TS_4
69
N 0.820839 -1.549038 -0.514546
N -0.267784 -1.517853 1.392798
C -0.447255 -1.495641 0.028186
C 1.155060 -1.813076 -1.910244
C -1.283437 -1.770095 2.411219
C 1.736093 -0.785102 -2.675713
C 1.894910 0.631804 -2.164584
H 1.311375 0.748929 -1.237705
C -2.822459 -0.989691 4.072230
H -3.303972 -0.171892 4.609883
C 1.400624 -3.388063 -3.705471
H 1.272035 -4.389112 -4.119273
C 0.962064 -3.125917 -2.401254
C -1.871484 -0.685878 3.087387
C -1.578560 -3.117460 2.706724
C 0.366329 -4.252359 -1.569215
H -0.227626 -3.803326 -0.761202
C 2.161481 -1.114171 -3.972118
H 2.614550 -0.338280 -4.590900
C -2.541160 -3.358280 3.696321
H -2.801895 -4.388483 3.946215
C 1.754890 -1.532917 0.488537
H 2.818060 -1.566288 0.282313
C 2.003337 -2.398953 -4.481536
H 2.340137 -2.631728 -5.493691
C 1.330906 1.659518 -3.158429
H 1.936533 1.719376 -4.075736
H 1.319597 2.648259 -2.679492
H 0.296546 1.414507 -3.439728
C -1.487096 0.749149 2.803713
H -0.959050 0.798147 1.838083
C -3.161953 -2.307649 4.369211
H -3.910109 -2.518996 5.135855
C 3.361050 0.949880 -1.826312
H 3.780269 0.237802 -1.098788
H 3.422624 1.956220 -1.387440
H 3.992672 0.920286 -2.727640
C 1.073108 -1.506010 1.681358
H 1.434976 -1.506814 2.702774
C 1.483254 -5.087564 -0.916012
H 2.103628 -5.571643 -1.685296
H 1.053990 -5.875812 -0.278932
H 2.142700 -4.466606 -0.292220
C -0.596961 -5.142558 -2.368415
H -1.378326 -4.545891 -2.860033
H -1.087160 -5.860204 -1.695277
H -0.073433 -5.724845 -3.140331
C -0.900679 -4.295950 2.024736
H -0.197446 -3.908369 1.273864
C -0.506162 1.263957 3.872758
H -0.989127 1.310667 4.861608
H -0.162521 2.269819 3.591980
H 0.380121 0.617050 3.957709
C -2.698846 1.683443 2.685518
H -3.438556 1.291863 1.971936
H -2.355301 2.659639 2.315469
H -3.198128 1.837277 3.654745
C -1.917762 -5.183401 1.288639
H -2.637486 -5.630415 1.990162
H -1.403009 -6.006894 0.772170
H -2.486725 -4.607847 0.544869
C -0.069040 -5.113529 3.028863
H 0.677377 -4.484560 3.535536
H 0.460357 -5.927197 2.511135
H -0.709033 -5.565081 3.801285
B -1.695140 -1.328574 -0.849552
H -1.531564 -1.190719 -2.021847
I 0.224726 2.874127 0.310300
I -3.700080 -1.390712 -0.159687
(21) product
69
N 0.873584 -1.447713 -0.810152
N 1.275991 -0.074964 0.822961
C 0.254405 -0.654991 0.120782
C 0.227966 -2.408509 -1.682160
C 1.189348 0.639425 2.084874
C 0.146149 -2.133585 -3.059526
C 0.648792 -0.832964 -3.669573
H 0.788805 -0.108318 -2.852698
C 1.016152 2.678865 3.326717
H 0.907459 3.763469 3.367232
C -0.768038 -4.572202 -1.970560
H -1.132036 -5.516473 -1.563081
C -0.224942 -3.615454 -1.104742
C 1.067644 2.039862 2.079925
C 1.318241 -0.123715 3.265002
C -0.106404 -3.902462 0.385676
H -0.007810 -2.941334 0.909344
C -0.403997 -3.132065 -3.878094
H -0.485115 -2.957504 -4.952079
C 1.265253 0.569311 4.480886
H 1.347796 0.013434 5.416884
C 2.251609 -1.346869 -0.701895
H 2.916392 -1.908256 -1.346366
C -0.853052 -4.336976 -3.343186
H -1.280068 -5.098201 -3.999214
C -0.366175 -0.217723 -4.644998
H -0.506529 -0.845591 -5.537517
H -0.006899 0.764649 -4.984891
H -1.340347 -0.073006 -4.159016
C 1.057117 2.845472 0.791503
H 0.756779 2.173407 -0.026586
C 1.105259 1.953478 4.513600
H 1.056903 2.472706 5.473008
C 2.006132 -1.046736 -4.365819
H 2.763385 -1.452060 -3.679179
H 2.384544 -0.094758 -4.766675
H 1.905238 -1.752585 -5.204927
C 2.503716 -0.483281 0.318610
H 3.434051 -0.136969 0.751808
C 1.162775 -4.724490 0.678830
H 1.114296 -5.706203 0.184140
H 1.268816 -4.892042 1.761623
H 2.068605 -4.210821 0.323616
C -1.355980 -4.574969 0.969488
H -2.259047 -3.990055 0.746442
H -1.259794 -4.645757 2.062655
H -1.496143 -5.595896 0.583552
C 1.543639 -1.629984 3.260561
H 1.429218 -1.993641 2.229270
C 2.474611 3.364171 0.481667
H 2.820858 4.049091 1.271203
H 2.481445 3.910947 -0.473166
H 3.201776 2.541418 0.407659
C 0.042062 3.995746 0.813823
H -0.964149 3.628326 1.057573
H -0.003848 4.468801 -0.177993
H 0.319366 4.774342 1.540340
C 0.520516 -2.388762 4.119924
H 0.607735 -2.121906 5.183609
H 0.692156 -3.472921 4.035392
H -0.505402 -2.170967 3.793401
C 2.982014 -1.959716 3.702246
H 3.726502 -1.442218 3.079498
H 3.165063 -3.042424 3.629517
H 3.149562 -1.656654 4.747056
B -1.332163 -0.496272 0.162195
H -1.857757 -1.450666 -0.333031
I -1.849915 1.252862 -1.259300
I -2.269806 -0.213741 2.198783
... [1][2][3][4][5][6][7] Taking inspiration from their research, we have also investigated the substitution chemistry of 6-SIDipp · BH 3 (6-SIDipp = 1,3-di(2,6-diisopropylphenyl) tetrahydropyrimidine-2ylidene). [8][9][10] These research has resulted in a diverse array of NHC boryl compounds that contain various heteroatom nucleophiles, such as halides, isocyanate, azide, nitrite, and cyanide. Some of these compounds are very uncommon functionalized boron compounds. ...
... [7] We are proposing a mechanism, which is very similar to what we have shown for iodination of 6-SIDipp · BH 3 . [8] The straightforward replacement of a hydride with a À SePh group motivated us to pursue the exclusive preparation of the bis-selenide. Upon reaction with PhSeÀ SePh, a mixture of mono (2) and bis-selenides (3) were obtained. ...
... Å] is similar as 2. The BÀ C bond distance in 3 [1.619 (8), Å] is similar to that in 2 [1.615(4) Å]. ...
Article
Full-text available
Reactions of 5‐SIDipp ⋅ BH3 (5‐SIDipp=1,3‐bis(2,6‐diisopropylphenyl)‐imidazolin‐2‐ylidene) (1) with diphenyldiselenide provide access to 5‐SIDipp–boryl mono‐ (5‐SIDipp ⋅ BH2SePh) (2) and bis‐selenide (5‐SIDipp ⋅ BH(SePh)2) (3). The facile cleavage of the B−Se bond makes 2 a neutral source of selenium nucleophiles in substitutions reactions with benzyl bromides, and provide access to the corresponding selenoethers. The direct transformations of one of the C(sp²)−F bonds of C5F5N and C6F5CF3 to C−Se bonds have also been achieved by the use of 2 without employing transition‐metal catalysts. While it was previously established that C6F6 could undergo complete defluoroselenation under harsh conditions, we successfully achieved partial defluorination of C6F6 by employing 2 as a mild selenide transfer reagent. During the formation of C−Se bonds through the cleavage of C−F bonds, the potential by‐product NHC ⋅ BH2F undergoes ring expansion of the NHC, leading to the formation of the six‐membered diaazafluoroborinane (7).
... Six-membered N-heterocyclic carbenes have occasionally been used as ligands, [15][16][17][18][19][20] though their applications have steadily grown in recent times. [21][22][23][24] However, these examples mainly include carbenes with bulky groups at nitrogen protecting the ligated metal or main group element. For example, a complex of borane with a six-membered NHC having two 2,6diisopropylphenyl groups has recently been described. ...
... For example, a complex of borane with a six-membered NHC having two 2,6diisopropylphenyl groups has recently been described. [21,22] Notably, this complex was prepared from pre-formed free carbene. The costs associated with the synthesis of the precursors of these bulky NHC ligands complicate their widespread use as reagents in organic synthesis. ...
Article
Full-text available
Complexes of borane with six‐membered N‐heterocyclic carbenes derived from readily accessible 1,3,5‐triazinium salts are described. Similar to the widely used imidazolium‐type borane complex, the obtained complexes behave as agents for the hydrogen atom transfer in the Giese reaction and as sources of the boryl radicals in addition to imines. The amine nitrogen of these complexes does not undergo alkylation, but it can bind with another borane molecule.
... Moreover, a close look to the full gamut of NHC·Zn complexes reveal that while NHC·ZnR 2 (R = alkyl) type complexes are both dimeric and monomeric, NHC·ZnX 2 or Bis(cAAC)X 2 type complexes are mostly dimeric in nature. [11] Due to our recent success in the chemistry of six-membered saturated NHCs [12][13][14][15] and to expand the family of 6-NHC·Zn complexes, in the present work we report on the synthesis and characterization of several novel zinc complexes coordinated to saturated 6-SIDipp ligand (6-SIDipp = 1,3-di(2,6-diisopropylphenyl) tetrahydropyrimidine-2-ylidene). Unlike 5-NHCs all the complexes are monomeric in nature, reflecting the greater σdonation of 6-NHC than the formers. ...
... C3À Zn1À C1 109.17(11), C30À Zn1À C1 135.29(12).Scheme 5.Thermodynamics for the base-exchange process, all the values are in kcal/mol. ...
Article
Full-text available
This paper describes the rare use of a 6‐membered saturated N‐heterocyclic carbene (NHC) known as 1,3‐di(2,6‐diisopropylphenyl) tetrahydropyrimidine‐2‐ylidene (abbreviated as 6‐SIDipp) as a ligand in zinc chemistry. We report on the investigation of the reactions between 6‐SIDipp and ZnX2, which resulted in a range of new monomeric 6‐SIDipp⋅ZnX2 complexes (X=Et (1), Cl (2), Br (3), and I (4)). We also prepared a new NHC zinc complex where the two substituents of the zinc atom are different, 6‐SIDipp⋅Zn(Et)Br (7) through the reaction of the proligand [6‐SIDippH]Br with ZnEt2. We have observed that the reactions of complex 1 with sulfur and HBpin led to the removal of the ZnEt2 moiety, resulting in the formation of a C=S double bond and a B−H activation product, respectively. Lastly, the reaction of 1 with five‐membered NHCs led to the exchange of carbene and the formation of either 5‐IDipp⋅ZnEt2 (8) or 5‐SIDipp⋅ZnEt2 (9).
... We demonstrated substitution reactions of 6-SIDipp$BH 3 , ring expansion with 6-SIDipp$9BBN, and activation of the B-H bond of HBpin with 6-SIDipp. [17][18][19] These studies have indicated that 6-SNHC has a notably higher donating capacity than 5-NHC. Our hypothesis was that by incorporating the 6-SNHC framework, along with bulky Dipp groups, and using a Lewis acid, we could potentially achieve the isolation of a single, parent oxoborane molecule. ...
... However, such hydride-bridged dimer was reported by the Vedejs group by the treatment of R 3 N-BH 3 with [Ph 3 C][B(C 6 F 5 ) 4 ] 21 and by Alcarazo and coworkers upon reaction with 5-IDipp$BH 3 with B(C 6 F 5 ) 3 . 22 The reaction of 6-SIDipp$BH 3 with 1.2 equivalent of gallium trichloride in toluene at room temperature resulted in complete disappearance of the 11 B{ 1 H} NMR quartet of 6-SIDipp$BH 3 at −31.3 ppm (J B-H = 84.1 Hz) 17 and the appearance of a new multiplet at −27.4 ppm (J B-H = 72.1 Hz), which is in good agreement with several NHC supported boronium cations. 22,23 Single crystal X-ray studies conrm the constitution of 1 (Fig. 1). ...
Article
Full-text available
Despite recent advancements in the chemistry of multiply bound boron compounds, the laboratory isolation of the parent oxoborane moiety, HBO has long remained an unsolved and well-recognized challenge. The reaction of 6-SIDipp·BH3 [6-SIDipp = 1,3-di(2,6-diisopropylphenyl)tetrahydropyrimidine-2-ylidene] with GaCl3 afforded an unusual boron-gallium 3c-2e compound (1). The addition of water to 1 resulted in the release of H2 and the formation of a rare acid stabilized neutral parent oxoborane, LB(H)[double bond, length as m-dash]O (2). Crystallographic and density functional theory (DFT) analyses support the presence of a terminal B[double bond, length as m-dash]O double bond. Subsequent addition of another equivalent of water molecule led to hydrolysis of the B-H bond to the B-OH bond, but the 'B[double bond, length as m-dash]O' moiety remained intact, resulting in the formation of the hydroxy oxoborane compound (3), which can be classified as a monomeric form of metaboric acid.
Article
Full-text available
Doubly electrophilic pyrazabole derivatives (pyrazabole = [H2B(μ-C3N2H3)]2) combined with one equiv. of base effect the ortho-borylation of N-alkyl anilines. Initial studies found that the bis(trifluoromethane)sulfonimide ([NTf2]⁻) pyrazabole derivative, [H(NTf2)B(μ-C3N2H3)]2, is highly effective for ortho-borylation, with this process proceeding through N–H borylation and then ortho C–H borylation. The activation of pyrazabole by I2 was developed as a cheaper and simpler alternative to using HNTf2 as the activator. The addition of I2 forms mono or ditopic pyrazabole electrophiles dependent on stoichiometry. The ditopic electrophile [H(I)B(μ-C3N2H3)]2 was also effective for the ortho-borylation of N-alkyl-anilines, with the primary C–H borylation products readily transformed into pinacol boronate esters (BPin) derivatives. Comparison of borylation reactions using the di-NTf2-and the diiodo-pyrazabole congeners revealed that more forcing conditions are required with the latter. Furthermore, the presence of iodide leads to competitive formation of side products, including [HB(μ-C3N2H3)3BH]⁺, which are not active for C–H borylation. Using [H(I)B(μ-C3N2H3)]2 and 0.2 equiv. of [Et3NH][NTf2] combines the higher yields of the NTf2 system with the ease of handling and lower cost of the iodide system generating an attractive process applicable to a range of N-alkyl-anilines. This methodology represents a metal free and transiently directed C–H borylation approach to form N-alkyl-2-BPin-aniline derivatives.
Article
Phosphinoborenium cations stabilized by N-heterocyclic carbenes (NHCs) were synthesized via the reaction of bromo(phosphino)boranes with NHCs. Their structures were investigated by heteronuclear magnetic resonance spectroscopy, X-ray diffraction, and density functional theory calculations. They possess a planar trigonal boron center directly bonded with the pyramidal phosphanyl group (PR2) and can be treated as cationic phosphinoboranes. The reactivity of the selected NHC-phosphinoborenium cation was tested toward AuCl·SMe2 and Ph2PCl. In both reactions, the titled compound acted as a phosphido group donor under heterolytic cleavage of the P-B bond. Control experiments with parent phosphinoborane emphasized differences between the reactivity of low-coordinate neutral and cationic species with P-B functionality.
Article
Full-text available
The combination of 6-SIDipp•AlH3 (1) and 5-IDipp resulted in the ring expansion of 6-NHC, while the five-membered NHC remained unchanged; which was subsequently explained by DFT studies. Besides, the substitution...
Article
Two ferrocene‐based NHCs of the type fc[(NR)2C:] (1R; fc = 1,1’‐ferrocenylene) containing benzylic N‐substituents were synthesised from the corresponding formamidinium compounds 1RH[BF4] by reaction with LiN(SiMe3)2. In the case of R = CH2Ph (Bn), the carbene was characterised through trapping reactions with sulfur and selenium, which afforded fc[(NBn)2CS] (1BnS) and fc[(NBn)2CSe] (1BnSe), respectively. A thermally stable carbene was obtained with R = CH2Mes (Bn*). Its reaction with sulfur and selenium afforded fc[(NBn*)2CS] (1Bn*S) and fc[(NBn*)2CSe] (1Bn*Se), respectively. Its reaction with [Rh(μ‐Cl)(COD)]2 (COD = cycloocta‐1,5‐diene), followed by substitution of the COD ligand by CO, furnished cis‐[RhCl(CO)2(1Bn*)]. In combination with IR data of cis‐[RhCl(CO)2(1Bn*)], NMR data of 1Bn*H[BF4], 1Bn* and 1Bn*Se indicate that 1Bn* is substantially more nucleophilic and more electrophilic than conventional Arduengo carbenes, exhibiting an ambiphilicity similar to that of CAACs. The crystal structures of the formamidinium salts 1RHX (X = [BF4], R = Bn, Bn*; X = Cl, R = Bn*), of the carbene 1Bn* and its AuI complex [AuCl(1Bn*)] as well as of the sulfur and selenium derivatives 1RE (E = S, Se; R = Bn, Bn*), the RhI complexes cis‐[RhCl(CO)2(1R)] (R = Bn, Bn*) and the CuI complex [CuBr(1Bn)] were determined by single‐crystal X‐ray diffraction (XRD). In addition, the crystals structures of the diimine fc(N=CHMes)2 and the diamine fc(NHBn*)2 were also determined by XRD.
Article
Full-text available
The addition of HBpin to PhC(NtBu)2SiN(SiMe3)2 (1) results in the cleavage of the B‒H bond in a cooperative fashion across the Si and amidinate-C sites. The reactions of 1 with...
Article
Full-text available
The reaction of [(cAACMe)BH3] (cAACMe = 1-(2,6-iPr2C6H3)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) with a range of organolithium compounds led to the exclusive formation of the corresponding (dihydro)organoborates, Li⁺[(cAACMeH)BH2R]– (R = sp³-, sp²-, or sp-hybridised organic substituent), by migration of one boron-bound hydrogen atom to the adjacent carbene carbon of the cAAC ligand. A subsequent deprotonation/salt metathesis reaction with Me3SiCl or spontaneous LiH elimination yielded the neutral cAAC-supported mono(organo)boranes, [(cAACMe)BH2R]. Similarly the reaction of [(cAACMe)BH3] with a neutral donor base L resulted in adduct formation by shuttling one boron-bound hydrogen to the cAAC ligand, to generate [(cAACMeH)BH2L], either irreversibly (L = cAACMe) or reversibly (L = pyridine). Variable-temperature NMR data and DFT calculations on [(cAACMeH)BH2(cAACMe)] show that the hydrogen on the former carbene carbon atom exchanges rapidly with the boron-bound hydrides.
Article
The recently reported hypersilylsilylene PhC(NtBu)2SiSi(SiMe3)3 (1) reacts with BH3, 9-BBN, and PhBCl2 to yield the respective Lewis acid base adducts 2–4, respectively. Compound 4 undergoes isomerization to form a ring expansion product 5. The same silylene was found to initially form an adduct with HBpin (6) and subsequently isomerized to 7 via the rupture of the B–H bond of HBpin (7), where the hydride was bound to the carbon atom of the amidinate ligand and the Bpin unit was attached to the silicon center. Surprisingly, the reaction of 1 with HBcat results in PhC(NtBu)2Bcat (8). Subsequently, we have shown that HBcat forms the same product when it reacts with related silylene PhC(NtBu)2SiN(SiMe3)3 (1′). With all of these reactions in hand, we ponder if silylene can activate two small molecules at one time. In this work, we delineate the three-component reactions of silylenes 1 and 1′ with 4-fluorobenzaldehyde and HBpin, which afforded unusual coupling products, 9 and 10, respectively. Note that 9 and 10 were prepared from the cleavage of the B–H and C═O bonds by silylene in a single reaction and are the first structurally attested Si–C–O–B coupled products.
Article
N-Heterocyclic carbene boranes (NHC-boranes) react with 5-diazo-2,2-dimethyl-1,3-dioxane-4,6-dione at 40 degrees C in dichloromethane to provide NHC-boryl hydrazone derivatives of 2,2-dimethyl-1,3-dioxane-4,6-dione. These hydrazones disproportionate to bis-hydrazones on treatment with diiodine in dichloromethane at room temperature. The mono- and bis-hydrazones are yellow solids that are stable to chromatography and storage.
Article
This tutorial explores the diversity and characteristics of C-donor ligands. Particular emphasis is put on the conceptual design of the electronic properties for applications in coordination chemistry. More specifically, the implications of both σ and π effects are discussed. Cyclic (alkyl)(amino)carbenes as well as methanediides and carbones are brought in perspective to “conventional” N-heterocylic carbenes, mesoionic carbenes, and Fischer as well as Schrock carbene ligands.
Article
Reactions of the expanded ring N-heterocyclic carbene, 6-Dip (:C{N(Dip)CH2}2CH2, Dip = 2,6-diisopropylphenyl), with group 15 element trichlorides have yielded the monomeric complexes, [(6-Dip)ECl3] (E = P, As or Sb), two examples of which (E = P and Sb) have been crystallographically characterised. Reduction of [(6-Dip)PCl3] with KC8 yielded the unusual tetraphosphorus dicationic complex, [(6-Dip)2(μ-P4)]Cl2, the X-ray crystal structure of which shows it to be an ion-separate salt. The compound can also be prepared from the direct reaction of excess 6-Dip with PCl3. Treatment of the cyclic amidinium salt, [6-MesH]Br (6-MesH = [HC{N(Mes)CH2}2CH2](+), Mes = mesityl) with KC8, leads to reductive coupling of the heterocycle and formation of the hindered bis(hexahydropyrimidine), (6-MesH)2. An X-ray crystallographic analysis of (6-MesH)2 shows the compound to have a long central C-C bond, while an electrochemical analysis reveals it to undergo an irreversible two-electron oxidation in dichloromethane solutions.
Article
The synthetic viability of several N-heterocyclic carbene stabilized dichloroborenium cations [NHC center dot BCl2](+) (NHC = (RC)(2)(NR')(2)C; 1, R = R' = Me; 2, R = H, R' = Pr-i; 3, R = Me, R' = Pr-i; 4, R = H, R' = Bu-t; 5, R = H, R' = 2,6-Pr-i(2)-C6H3) in the presence of Cr-, AlCl4-, OTf- (Tf = O2SCF3), NTf2-, and [BAr4Cl](-) (Ar-Cl = 3,5-Cl-2-C6H3) was investigated. None of the target borocations could be synthesized in the presence of Cl-, as only neutral NHC center dot BCl3 compounds were observed. On the other hand, it was not surprising that all targeted cations were synthetically viable in the presence of AlCl4- but a different degree of interion interaction was evident from B-11 NMR experiments. This was confirmed by X-ray analyses of [1 center dot BCl2], [2 center dot BCl2](+), and [3 center dot BCl2](+) in the presence of AlCl4- counterions, as the degree of cation-anion interaction was dependent on the steric encumbrance of the corresponding NHCs. Apart from [4 center dot BCl2](+), no borocation was synthetically viable when OTf- and NTf2- were used as the counterions. Finally, we were able to show that only [4 center dot BCl2](+) could be synthetically viable without the counterion stabilization effect(s) as the preparation of [4 center dot BCl2][BAr4Cl] was achieved. Even though the presence of [3 center dot BCl2] [BAr4Cl] was detected, this compound appeared not to be thermally stable, as it decomposed in solution after 48 h. The thermal stability of [4 center dot BCl2](+) and instability of [3 center dot BCl2](+) in the presence of [BAr4Cl](-) was attributed to the presence and absence, respectively, of very weak intraion (agostic) interactions in these two borocations.
Article
The reaction of the N-heterocyclic dicarbene (NHDC) [:C{[N(2,6-Pri2C6H3)]2CHCLi(THF)}]n with iodomethane, in a hexane/THF mixture, affords the ylidic N-heterocyclic olefin NHC═CH2 (1; NHC = :C{N(2,6-Pri2C6H3)CH}2) in high yield. The reaction of 1 with BBr3 in hexane gives the neutral compound NHC–CH2:BBr3 (2), which in THF unexpectedly converts to the borenium salt [NHC–CH2:B{O(CH2)4Br}2]+[Br]− (3) through ring opening of THF.