Article

Altered Expression and In Vivo Activity of mGlu5 Variant a Receptors in the Striatum of BTBR Mice: Novel Insights Into the Pathophysiology of Adult Idiopathic Forms of Autism Spectrum Disorders

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Background mGlu5 metabotropic glutamate receptors are considered as candidate drug targets in the treatment of “monogenic” forms of autism spectrum disorders (ASD), such as Fragile- X syndrome (FXS). However, despite promising preclinical data, clinical trials using mGlu5 receptor antagonists to treat FXS showed no beneficial effects. Objective Here, we studied the expression and function of mGlu5 receptors in the striatum of adult BTBR mice, which model idiopathic forms of ASD, and behavioral phenotype. Methods Behavioral tests were associated with biochemistry analysis including qPCR and western blot for mRNA and protein expression. In vivo analysis of polyphosphoinositides hydrolysis was performed to study the mGlu5-mediated intracellular signaling in the striatum of adult BTBR mice under basal conditions and after MTEP exposure. Results Expression of mGlu5 receptors and mGlu5 receptor-mediated polyphosphoinositides hydrolysis were considerably high in the striatum of BTBR mice, sensitive to MTEP treatment. Changes in the expression of genes encoding for proteins involved in excitatory and inhibitory neurotransmission and synaptic plasticity, including Fmr1, Dlg4, Shank3, Brd4, bdnf-exon IX, Mef2c, and Arc, GriA2, Glun1, Nr2A, and Grm1, Grm2, GriA1, and Gad1 were also found. Behaviorally, BTBR mice showed high repetitive stereotypical behaviors, including self-grooming and deficits in social interactions. Acute or repeated injections with MTEP reversed the stereotyped behavior and the social interaction deficit. Similar effects were observed with the NMDA receptor blockers MK-801 or ketamine. Conclusion These findings support a pivotal role of mGlu5 receptor abnormal expression and function in idiopathic ASD adult forms and unveil novel potential targets for therapy.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Unlike mGlu1 receptor, the involvement of mGlu5 receptor in ASD has been extensively studied, and changes in mGlu5 receptor expression have been reported in ASD patients (Boer et al. 2008;Fatemi et al. 2011Fatemi et al. , 2018Lohith et al. 2013;Brašić et al. 2021;Mody et al. 2021;Carey et al. 2022;Galineau et al. 2023) and in different animal models of autism (Giuffrida et al. 2005, Verpelli et al. 2011, D'Antoni et al. 2014Pignatelli et al. 2014, Gogliotti et al. 2016Lee et al. 2019;Carey et al. 2022;Matrisciano et al. 2022;Di Menna et al. 2023). Nevertheless, the expression of mGlu5 receptors has not been systematically and longitudinally studied in VPA-exposed rats. ...
... It is known that the modulation of mGlu5 receptors improves the pathological phenotypes in several mouse models of autism (reviewed in D' Antoni et al. 2014;Aguilar-Valles et al. 2015;Gogliotti et al. 2016;Vicidomini et al. 2017). Pharmacological inhibition (or genetic deletion) of mGlu5 receptors rescues cognitive and social deficits in models of fragile X syndrome (FXS), the leading monogenic cause of ASD (Michalon et al. 2012(Michalon et al. , 2014Gantois et al. 2013), and is also effective in other models of autism (Silverman et al. 2010(Silverman et al. , 2012Tian et al. 2015;Aguilar-Valles et al. 2015;Matrisciano et al. 2022). Despite initial positive results and extensive preclinical research, clinical trials have failed to confirm beneficial effects in FXS patients (Jacquemont et al. 2011;Berry-Kravis et al. 2016;reviewed by Scharf et al. 2015;Emmitte 2017;Witkin et al. 2022). ...
Article
Full-text available
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and restricted/stereotyped behavior. Prenatal exposure to valproic acid (VPA) is associated with an increased risk of developing ASD in humans and autistic-like behaviors in rodents. Increasing evidence indicates that dysfunctions of glutamate receptors at synapses are associated with ASD. In the VPA rat model, an involvement of glutamate receptors in autism-like phenotypes has been suggested; however, few studies were carried out on metabotropic glutamate (mGlu) receptors. We examined the protein expression levels of group I (mGlu1 and mGlu5) and group II (mGlu2/3) mGlu receptors in rats prenatally exposed to VPA and evaluated the effect of mGlu receptor modulation on an early autism-like phenotype in these animals. We used western blotting analysis on synaptosomes obtained from forebrain of control and VPA rats at different ages (postnatal day P13, 35, 90) and carried out ultrasonic vocalization (USV) emission test in infant control and VPA rats. The expression levels of all these receptors were significantly increased in infant VPA rats. No changes were detected in adolescent and adult rats. An acute treatment with the preferential mGlu2/3 antagonist, LY341495, attenuated the impairment in the USV emission in VPA rats. No effect was observed after a treatment with the mGlu5 selective antagonist, MTEP. Our findings demonstrate that the expression of group I and group II mGlu receptors is upregulated at synapses of infant VPA rats and suggest that mGlu2/3 receptor modulation may have a therapeutic potential in ASD.
... Two reports showing the potential involvement of MEF2C in ASD have been recently released (2022). Matrisciano and coworkers demonstrated changes in the expression of genes involved in excitatory and inhibitory neurotransmission including MEF2C in a mouse model of idiopathic autism [157]. DNA binding-deficient global MEF2C heterozygous mice (MEF2C-Het), which is a commonly used model of ASD, exhibited functional impairments of peripheral auditory nerve and a modest reduction in hearing sensitivity [158]. ...
Article
Full-text available
The family of myocyte enhancer factor 2 (MEF2) transcription factors comprises four highly conserved members that play an important role in the nervous system. They appear in precisely defined time frames in the developing brain to turn on and turn off genes affecting growth, pruning and survival of neurons. MEF2s are known to dictate neuronal development, synaptic plasticity and restrict the number of synapses in the hippocampus, thus affecting learning and memory formation. In primary neurons, negative regulation of MEF2 activity by external stimuli or stress conditions is known to induce apoptosis, albeit the pro or antiapoptotic action of MEF2 depends on the neuronal maturation stage. By contrast, enhancement of MEF2 transcriptional activity protects neurons from apoptotic death both in vitro and in preclinical models of neurodegenerative diseases. A growing body of evidence places this transcription factor in the center of many neuropathologies associated with age-dependent neuronal dysfunctions or gradual but irreversible neuron loss. In this work, we discuss how the altered function of MEF2s during development and in adulthood affecting neuronal survival may be linked to neuropsychiatric disorders.
Article
Autism spectrum disorder (ASD) is a set of heterogeneous neurodevelopmental disorders, characterized by social interaction deficit, stereotyped or repetitive behaviors. Apart from these core symptoms, a great number of individuals with ASD exhibit higher levels of anxiety and memory deficits. Previous studies demonstrate pronounced decrease of γ-aminobutyric acid B1 receptor (GABAB1R) protein level of frontal lobe in both ASD patients and animal models. The aim of the present study was to determine the role of GABAB1R in ASD-related behavioral aberrations. Herein, the protein and mRNA levels of GABAB1R in the prefrontal cortex (PFC) of sodium valproic acid (VPA)-induced mouse ASD model were determined by Western blot and qRT-PCR analysis, respectively. Moreover, the behavioral abnormalities in naive mice with GABAB1R knockdown mediated by recombinant adeno-associated virus (rAAV) were assessed in a comprehensive test battery consisted of social interaction, marble burying, self-grooming, open-field, Y-maze and novel object recognition tests. Furthermore, the action potential changes induced by GABAB1R deficiency were examined in neurons within the PFC of mouse. The results show that the mRNA and protein levels of GABAB1R in the PFC of prenatal VPA-induced mouse ASD model were decreased. Concomitantly, naive mice with GABAB1R knockdown exhibited ASD-like behaviors, such as impaired social interaction and communication, elevated stereotypes, anxiety and memory deficits. Patch-clamp recordings also revealed that GABAB1R knockdown provoked enhanced neuronal excitability by increasing action potential discharge frequencies. Overall, these findings support a notion that GABAB1R deficiency might contribute to ASD-like phenotypes, with the pathogenesis most likely resulting from enhanced neuronal excitability. SUBHEADINGS: GABAB1 Knockdown Induces Behavioral Aberrations with ASD.
Article
Full-text available
The BTBR T+ Itpr3tf/J (BTBR) mouse displays elevated repetitive motor behaviors. Treatment with the partial M1 muscarinic receptor agonist, CDD-0102A, attenuates stereotyped motor behaviors in BTBR mice. The present experiment investigated whether CDD-0102A modifies changes in striatal glutamate concentrations during stereotyped motor behavior in BTBR and B6 mice. Using glutamate biosensors, change in striatal glutamate efflux was measured during bouts of digging and grooming behavior with a 1 s time resolution. Mice displayed both decreases and increases in glutamate efflux during such behaviors. Magnitude of changes in glutamate efflux (decreases and increases) from dorsomedial and dorsolateral striatum were significantly greater in BTBR mice compared to those of B6 mice. In BTBR mice, CDD-0102A (1.2 mg/kg) administered 30 min prior to testing significantly reduced the magnitude change in glutamate decreases and increases from the dorsolateral striatum and decreased grooming behavior. Conversely, CDD-0102A treatment in B6 mice potentiated glutamate decreases and increases in the dorsolateral striatum and elevated grooming behavior. The findings suggest that activation of M1 muscarinic receptors modifies glutamate transmission in the dorsolateral striatum and self-grooming behavior.
Article
Pharmacological modulation of glutamate has long been considered to be of immense therapeutic utility. The metabotropic glutamate receptors (mGluRs) are a potential target for safely altering glutamate-driven excitation. Data support the potential therapeutic use of mGluR modulators in the treatment of anxiety, depression, schizophrenia, and other psychiatric disorders, pain, epilepsy, as well as neurodegenerative and neurodevelopmental disorders. For each of the three mGluR groups, compounds have been constructed that produce either potentiation or functional blockade. PET ligands for mGlu5Rs have been studied in a range of patient populations and several mGlu5R antagonists have been tested for potential efficacy in patients including mavoglurant, diploglurant, basimglurant, GET 73, and ADX10059. Efficacy with mGlu5R antagonists has been reported in trials with patients with gastroesophageal reflux disease; data from patients with Parkinson's disease or Fragile X syndrome have not been as robust as hoped. Fenobam was approved for use as an anxiolytic prior to its recognition as an mGlu5R antagonist. mGlu2/3R agonists (pomaglumated methionil) and mGlu2R agonists (JNJ-40411813, AZD 8529, and LY2979165) have been studied in patients with schizophrenia with promising but mixed results. Antagonists of mGlu2/3Rs (decoglurant and TS-161) have been studied in depression where TS-161 has advanced into a planned Phase 2 study in treatment-resistant depression. The Group III mGluRs are the least developed of the mGluR receptor targets. The mGlu4R potentiator, foliglurax, did not meet its primary endpoint in patients with Parkinson's disease. Ongoing efforts to develop mGluR-targeted compounds continue to promise these glutamate modulators as medicines for psychiatric and neurological disorders.
Article
Full-text available
Corticostriatal connections play a central role in developing appropriate goal-directed behaviors, including the motivation and cognition to develop appropriate actions to obtain a specific outcome. The cortex projects to the striatum topographically. Thus, different regions of the striatum have been associated with these different functions: the ventral striatum with reward; the caudate nucleus with cognition; and the putamen with motor control. However, corticostriatal connections are more complex, and interactions between functional territories are extensive. These interactions occur in specific regions in which convergence of terminal fields from different functional cortical regions are found. This article provides an overview of the connections of the cortex to the striatum and their role in integrating information across reward, cognitive, and motor functions. Emphasis is placed on the interface between functional domains within the striatum.
Article
Full-text available
Autism spectrum disorder (ASD) encompasses wide-ranging neuropsychiatric symptoms with unclear etiology. Although the cerebellum is a key region implicated in ASD, it remains elusive how the cerebellar circuitry is altered and whether the cerebellum can serve as a therapeutic target to rectify the phenotype of idiopathic ASD with polygenic abnormalities. Using a syndromic ASD model, e.g., Black and Tan BRachyury T+Itpr3tf/J (BTBR) mice, we revealed that increased excitability of presynaptic interneurons (INs) and decreased intrinsic excitability of postsynaptic Purkinje neurons (PNs) resulted in low PN firing rates in the cerebellum. Knowing that downregulation of Kv1.2 potassium channel in the IN nerve terminals likely augmented their excitability and GABA release, we applied a positive Kv1.2 modulator to mitigate the presynaptic over-inhibition and social impairment of BTBR mice. Selective restoration of the PN activity by a new chemogenetic approach alleviated core ASD-like behaviors of the BTBR strain. These findings highlight complex mechanisms converging onto the cerebellar dysfunction in the phenotypic model and provide effective strategies for potential therapies of ASD.
Article
Full-text available
Rationale The sensorimotor cortex and the striatum are interconnected by the corticostriatal pathway, suggesting that cortical injury alters the striatal function, which may be modulated by dopamine. Objectives We studied whether the activation of dopamine D1 receptors (D1Rs) modulates the γ-aminobutyric acid (GABA) and glutamate levels in the striatum of recovered rats at 192 h after cortical injury. Methods The D1R agonist SKF-38393 (0, 2, 3, or 4 mg/kg) was administered at 24, 48, 96, and 192 h post-injury, and then rats were decapitated to determine GABA and glutamate levels and the levels of D1R mRNA on both sides of the striatum. Results GABAergic imbalance in the striatum contralateral to the injury site was normalized by the administration of the D1R agonist, but this treatment did not produce a significant effect on glutamate levels, suggesting that glutamate was metabolized into GABA. The administration of SKF-38393 (2 mg/kg) decreased the levels of D1R mRNA in the striatum contralateral to the injury, and this effect was blocked by the coadministration of the D1R antagonist SCH-23390 (2 mg/kg). In the striatum ipsilateral to the injury, the D1R agonist increased the D1R mRNA levels, an effect that was blocked by SCH-23390. Conclusion The reversal of the GABAergic imbalance in the striatum contralateral to the cortical injury can be modulated by extrastriatal D1R activation, and the D1R agonist-induced increases in the D1R mRNA levels in the striatum ipsilateral to the injury suggest that the striatum may be necessary to achieve functional recovery.
Article
Full-text available
Amongst the many neurotransmitter systems causally linked to the expression of social behavior, glutamate appears to play a pivotal role. In particular, metabotropic glutamate 5 (mGlu5) receptors have received much attention as its altered function has been reported in several mouse models of autism spectrum disorders and mental retardation. Inhibition of the activity of mGlu5 receptors by means of genetic or pharmacological manipulations improved social deficits in some of these animal models. However, in normal wild-type (WT) mice, pharmacological blockade of mGlu5 receptors yielded inconsistent results. The aim of our study was to investigate the actual contribution of decreased or absent mGlu5 receptor function in sociability and anxiety-like behavior as well as to explore the impact of mGlu5 receptor ablation on the pattern of brain activation upon social exposure. Here we show that Grm5-/- mice display higher social preference indexes compared to age-matched WT mice in the three-chambered social task. However, this effect was accompanied by a decreased exploratory activity during the test and increased anxiety-like behavior. Contrary to mGlu5 receptor ablation, the mGlu5 receptor negative allosteric modulator 3-((2-methyl-1,4-thiazolyl)ethynyl)pyridine (MTEP) induced anxiolytic effects without affecting social preference in WT mice. By mapping c-Fos expression in 21 different brain regions known to be involved in social interaction, we detected a specific activation of the prefrontal cortex and dorsolateral septum in Grm5-/- mice following social interaction. C-Fos expression correlation-based network and graph theoretical analyses further suggested dysfunctional connectivity and disruption of the functional brain network generated during social interaction in Grm5-/- mice. The lack of mGlu5 receptors resulted in profound rearrangements of the functional impact of prefrontal and hippocampal regions in the social interaction network. In conclusion, this work reveals a complex contribution of mGlu5 receptors in sociability and anxiety and points to the importance of these receptors in regulating brain functional connectivity during social interaction.
Article
Full-text available
Using bacterial artificial chromosome–double transgenic mice expressing tdTomato in D1 receptor-medium spiny neurons (MSNs) and enhanced green fluorescent protein in D2 receptor-MSNs, we have studied changes in spine density and perisomatic GABAergic boutons density in MSNs of both the D1R and D2R pathways, in an experimental model of parkinsonism (mouse injected with 6-hydroxydopamine in the medial forebrain bundle), both in the parkinsonian and dyskinetic condition induced by l-DOPA treatment. To assess changes in perisomatic GABAergic connectivity onto MSNs, we measured the number of contacts originated from parvalbumin (PV)-containing striatal “fast-spiking” interneurons (FSIs), the major component of a feed-forward inhibition mechanism that regulates spike timing in MSNs, in both cell types as well as the number of vesicular GABA transporter (VGAT) contacts. Furthermore, we determined changes in PV-immunoreactive cell density by PV immunolabeling combined with Wisteria floribunda agglutinin (WFA) labeling to detect FSI in a PV-independent manner. We also explored the differential expression of striatal activity–regulated cytoskeleton-associated protein (Arc) and c-Fos in both types of MSNs as a measure of neuronal activation. Our results confirm previous findings of major structural changes in dendritic spine density after nigrostriatal denervation, which are further modified in the dyskinetic condition. Moreover, the finding of differential modifications in perisomatic GABAergic connectivity and neuronal activation in MSNs suggests an attempt by the system to regain homeostasis after denervation and an imbalance between excitation and inhibition leading to the development of dyskinesia after exposure to l-DOPA.
Article
Full-text available
mGlu5 receptor-mediated polyphosphoinositide (PI) hydrolysis is classically measured by determining the amount of radioactivity incorporated in inositolmonophosphate (InsP) after labeling of membrane phospholipids with radioactive inositol. Although this method is historically linked to the study of mGlu receptors, it is inappropriate for the assessment of mGlu5 receptor signaling in vivo. Using a new ELISA kit we showed that systemic treatment with the selective positive allosteric modulator (PAM) of mGlu5 receptors VU0360172 enhanced InsP formation in different brain regions of CD1 or C57Black mice. The action of VU0360172 was sensitive to the mGlu5 receptor, negative allosteric modulator (NAM), MTEP, and was abolished in mice lacking mGlu5 receptors. In addition, we could demonstrate that endogenous activation of mGlu5 receptors largely accounted for the basal PI hydrolysis particularly in the prefrontal cortex. This method offers opportunity for investigation of mGlu5 receptor signaling in physiology and pathology, and could be used for the functional screening of mGlu5 receptor PAMs in living animals.
Article
Full-text available
We studied group-I metabotropic glutamate (mGlu) receptors in Pahenu2 (ENU2) mice, which mimic the genetics and neurobiology of human phenylketonuria (PKU), a metabolic disorder characterized, if untreated, by autism, and intellectual disability (ID). Male ENU2 mice showed increased mGlu5 receptor protein levels in the hippocampus and corpus striatum (but not in the prefrontal cortex) whereas the transcript of the mGlu5 receptor was unchanged. No changes in mGlu1 receptor mRNA and protein levels were found in any of the three brain regions of ENU2 mice. We extended the analysis to Homer proteins, which act as scaffolds by linking mGlu1 and mGlu5 receptors to effector proteins. Expression of the long isoforms of Homer was significantly reduced in the hippocampus of ENU2 mice, whereas levels of the short Homer isoform (Homer 1a) were unchanged. mGlu5 receptors were less associated to immunoprecipitated Homer in the hippocampus of ENU2 mice. The lack of mGlu5 receptor-mediated long-term depression (LTD) in wild-type mice (of BTBR strain) precluded the analysis of hippocampal synaptic plasticity in ENU2 mice. We therefore performed a behavioral analysis to examine whether pharmacological blockade of mGlu5 receptors could correct behavioral abnormalities in ENU2 mice. Using the same apparatus we sequentially assessed locomotor activity, object exploration, and spatial object recognition (spatial novelty test) after displacing some of the objects from their original position in the arena. Systemic treatment with the mGlu5 receptor antagonist, MPEP (20 mg/kg, i.p.), had a striking effect in the spatial novelty test by substantially increasing the time spent in exploring the displaced objects in ENU2 mice (but not in wild-type mice). These suggest a role for mGlu5 receptors in the pathophysiology of ID in PKU and suggest that, also in adult untreated animals, cognitive dysfunction may be improved by targeting these receptors with an appropriate therapy.
Article
Full-text available
Long-term levodopa (l-dopa) treatment in patients with Parkinson´s disease (PD) is associated with the development of motor complications (ie, motor fluctuations and dyskinesias). The principal etiopathogenic factors are the degree of nigro-striatal dopaminergic loss and the duration and dose of l-dopa treatment. In this review article we concentrate on analysis of the mechanisms underlying l-dopa–induced dyskinesias, a phenomenon that causes disability in a proportion of patients and that has not benefited from major therapeutic advances. Thus, we discuss the main neurotransmitters, receptors, and pathways that have been thought to play a role in l-dopa–induced dyskinesias from the perspective of basic neuroscience studies. Some important advances in deciphering the molecular pathways involved in these abnormal movements have occurred in recent years to reveal potential targets that could be used for therapeutic purposes. However, it has not been an easy road because there have been a plethora of components involved in the generation of these undesired movements, even bypassing the traditional and well-accepted dopamine receptor activation, as recently revealed by optogenetics. Here, we attempt to unify the available data with the hope of guiding and fostering future research in the field of striatal activation and abnormal movement generation. © 2017 International Parkinson and Movement Disorder Society
Article
Full-text available
Preclinical data suggests that inhibition of the mGluR5 receptor might hold therapeutic benefits in Fragile X syndrome (FXS). Treatment of Fmr1 knockout mice with mGluR5-negative allosteric modulators (NAMs) has been reported to correct a broad range of phenotypes related to FXS. The early short-term clinical trials with mGluR5 NAMs, including basimglurant, assessing the effects in individuals with FXS, were supportive of further exploration in larger, well-controlled trials. We evaluated basimglurant, a potent and selective mGluR5 NAM, in a 12-week, double-blind, parallel-group study of 183 adults and adolescents (aged 14-50, mean 23.4 years) with FXS. Individuals with an FMR1 full mutation were randomized to placebo or one of two doses of basimglurant. The primary efficacy endpoint was the change from baseline in behavioral symptoms using the Anxiety Depression and Mood Scale (ADAMS) total score. All treatment arms showed marked behavioral improvements from baseline to week 12 with less improvement in the basimglurant 1.5 mg arm than placebo; however, basimglurant 0.5 mg was inferior to placebo in the ADAMs total score. Treatment with basimglurant was overall well-tolerated. A higher incidence of adverse events classified as psychiatric disorders were reported in patients treated with basimglurant, including three patients with hallucinations or psychosis. In this phase 2 clinical trial, basimglurant did not demonstrate improvement over placebo. Evaluation of the overall risk-benefit in younger patient populations is an important consideration for the design of potential further investigations of efficacy with this class of medications.Neuropsychopharmacology accepted article preview online, 17 August 2017. doi:10.1038/npp.2017.177.
Article
Full-text available
Significance statement: Altered regulation of synaptic protein synthesis has been hypothesized to contribute to the pathophysiology that underlies multiple forms of intellectual disability and autism spectrum disorder. Here, we show in a mouse model of Rett syndrome (Mecp2 KO) that metabotropic glutamate receptor 5 (mGluR5)- and protein-synthesis-dependent synaptic plasticity are abnormal in the hippocampus. We found that a subset of ribosome-bound mRNAs was aberrantly upregulated in hippocampal CA1 neurons of Mecp2 KO mice, that these significantly overlapped with FMRP direct targets and/or SFARI human autism genes, and that chronic treatment of Mecp2 KO mice with an mGluR5-negative allosteric modulator tunes down upregulated ribosome-bound mRNAs and partially improves mutant mice phenotypes.
Article
Full-text available
Imbalances between excitation and inhibition in synaptic transmission and neural circuits have been implicated in autism spectrum disorders. Excitation and inhibition imbalances are frequently observed in animal models of autism spectrum disorders, and their correction normalizes key autistic-like phenotypes in these animals. These results suggest that excitation and inhibition imbalances may contribute to the development and maintenance of autism spectrum disorders and represent an important therapeutic target.
Article
Full-text available
We have recently reported that mice born from dams stressed during pregnancy (PRS mice), in adulthood, have behavioral deficits reminiscent of behaviors observed in schizophrenia (SZ) and bipolar (BP) disorder patients. Furthermore, we have shown that the frontal cortex (FC) and hippocampus of adult PRS mice, like that of postmortem chronic SZ patients, are characterized by increases in DNA-methyltransferase 1 (DNMT1), ten-eleven methylcytosine dioxygenase 1 (TET1) and exhibit an enrichment of 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC) at neocortical GABAergic and glutamatergic gene promoters. Here, we show that the behavioral deficits and the increased 5MC and 5HMC at glutamic acid decarboxylase 67 (Gad1), reelin (Reln) and brain-derived neurotrophic factor (Bdnf) promoters and the reduced expression of the messenger RNAs (mRNAs) and proteins corresponding to these genes in FC of adult PRS mice is reversed by treatment with clozapine (5 mg kg(-1) twice a day for 5 days) but not by haloperidol (1 mg kg(-1) twice a day for 5 days). Interestingly, clozapine had no effect on either the behavior, promoter methylation or the expression of these mRNAs and proteins when administered to offspring of nonstressed pregnant mice. Clozapine, but not haloperidol, reduced the elevated levels of DNMT1 and TET1, as well as the elevated levels of DNMT1 binding to Gad1, Reln and Bdnf promoters in PRS mice suggesting that clozapine, unlike haloperidol, may limit DNA methylation by interfering with DNA methylation dynamics. We conclude that the PRS mouse model may be useful preclinically in screening for the potential efficacy of antipsychotic drugs acting on altered epigenetic mechanisms. Furthermore, PRS mice may be invaluable for understanding the etiopathogenesis of SZ and BP disorder and for predicting treatment responses at early stages of the illness allowing for early detection and remedial intervention.
Article
Full-text available
Autism Spectrum Disorders (ASD) and Schizophrenia (SCZ) are cognitive disorders with complex genetic architectures but overlapping behavioral phenotypes, which suggests common pathway perturbations. Multiple lines of evidence implicate imbalances in excitatory and inhibitory activity (E/I imbalance) as a shared pathophysiological mechanism. Thus, understanding the molecular underpinnings of E/I imbalance may provide essential insight into the etiology of these disorders and may uncover novel targets for future drug discovery. Here, we review key genetic, physiological, neuropathological, functional, and pathway studies that suggest alterations to excitatory/inhibitory circuits are keys to ASD and SCZ pathogenesis.
Article
Full-text available
Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by pronounced social and communication deficits and stereotyped behaviours. Recent psychosocial and neuroimaging studies have highlighted reward-processing deficits and reduced dopamine (DA) mesolimbic circuit reactivity in ASD patients. However, the neurobiological and molecular determinants of these deficits remain undetermined. Mouse models recapitulating ASD-like phenotypes could help generate hypotheses about the origin and neurophysiological underpinnings of clinically relevant traits. Here we used functional magnetic resonance imaging (fMRI), behavioural and molecular readouts to probe dopamine neurotransmission responsivity in BTBR T+ Itpr3tf/J mice (BTBR), an inbred mouse line widely used to model ASD-like symptoms owing to its robust social and communication deficits, and high level of repetitive stereotyped behaviours. C57BL/6J (B6) mice were used as normosocial reference comparators. DA reuptake inhibition with GBR 12909 produced significant striatal DA release in both strains, but failed to elicit fMRI activation in widespread forebrain areas of BTBR mice, including mesolimbic reward and striatal terminals. In addition, BTBR mice exhibited no appreciable motor responses to GBR 12909. DA D1 receptor-dependent behavioural and signalling responses were found to be unaltered in BTBR mice, whereas dramatic reductions in pre- and postsynaptic DA D2 and adenosine A2A receptor function was observed in these animals. Overall these results document profoundly compromised DA D2-mediated neurotransmission in BTBR mice, a finding that is likely to have a role in the distinctive social and behavioural deficits exhibited by these mice. Our results call for a deeper investigation of the role of dopaminergic dysfunction in mouse lines exhibiting ASD-like phenotypes, and possibly in ASD patient populations.
Article
Full-text available
Experience refines synaptic connectivity through neural activity-dependent regulation of transcription factors. Although activity-dependent regulation of transcription factors has been well described, it is unknown whether synaptic activity and local, dendritic regulation of the induced transcripts are necessary for mammalian synaptic plasticity in response to transcription factor activation. Neuronal depolarization activates the myocyte enhancer factor 2 (MEF2) family of transcription factors that suppresses excitatory synapse number. We report that activation of metabotropic glutamate receptor 5 (mGluR5) on the dendrites, but not cell soma, of hippocampal CA1 neurons is required for MEF2-induced functional and structural synapse elimination. We present evidence that mGluR5 is necessary for synapse elimination to stimulate dendritic translation of the MEF2 target gene Arc/Arg3.1. Activity-regulated cytoskeletal-associated protein (Arc) is required for MEF2-induced synapse elimination, where it plays an acute, cell-autonomous, and postsynaptic role. This work reveals a role for dendritic activity in local translation of specific transcripts in synapse refinement.
Article
Full-text available
Angelman syndrome (AS) is caused by the loss of Ube3A, an ubiquitin ligase that commits specific proteins to proteasomal degradation. How this defect causes autism and other pathological phenotypes associated with AS is unknown. Long-term depression (LTD) of excitatory synaptic transmission mediated by type 5 metabotropic glutamate (mGlu5) receptors was enhanced in hippocampal slices of Ube3A(m-/p+) mice, which model AS. No changes were found in NMDA-dependent LTD induced by low-frequency stimulation. mGlu5 receptor-dependent LTD in AS mice was sensitive to the protein synthesis inhibitor anisomycin, and relied on the same signaling pathways as in wild-type mice, e.g., the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycine pathway, and protein tyrosine phosphatase. Neither the stimulation of MAPK and PI3K nor the increase in Arc (activity-regulated cytoskeleton-associated protein) levels in response to mGlu5 receptor activation were abnormal in hippocampal slices from AS mice compared with wild-type mice. mGlu5 receptor expression and mGlu1/5 receptor-mediated polyphosphoinositide hydrolysis were also unchanged in the hippocampus of AS mice. In contrast, AS mice showed a reduced expression of the short Homer protein isoform Homer 1a, and an increased coupling of mGlu5 receptors to Homer 1b/c proteins in the hippocampus. These findings support the link between Homer proteins and monogenic autism, and lay the groundwork for the use of mGlu5 receptor antagonists in AS.
Article
Full-text available
A significant proportion of patients with autism exhibit some degree of intellectual disability. The BTBR T(+) Itpr3(tf)/J mouse strain exhibits behaviors that align with the major diagnostic criteria of autism. To further evaluate the BTBR strain's cognitive impairments, we quantified hippocampus-dependent object location memory (OLM) and found that one-third of the BTBR mice exhibited robust memory while the remainder did not. Fluorescence deconvolution tomography was used to test if synaptic levels of activated extracellular signal-regulated kinase 1/2 (ERK1/2), a protein that contributes importantly to plasticity, correlate with OLM scores in individual mice. In hippocampal field CA1, the BTBRs had fewer post-synaptic densities associated with high levels of phosphorylated (p-) ERK1/2 as compared to C57BL/6 mice. Although counts of p-ERK1/2 immunoreactive synapses did not correlate with OLM performance, the intensity of synaptic p-ERK1/2 immunolabeling was negatively correlated with OLM scores across BTBRs. Metabotropic glutamate receptor (mGluR) 5 signaling activates ERK1/2. Therefore, we tested if treatment with the mGluR5 antagonist MPEP normalizes synaptic and learning measures in BTBR mice: MPEP facilitated OLM and decreased synaptic p-ERK1/2 immunolabeling intensity without affecting numbers of p-ERK1/2+ synapses. In contrast, semi-chronic ampakine treatment, which facilitates memory in other models of cognitive impairment, had no effect on OLM in BTBRs. These results suggest that intellectual disabilities associated with different neurodevelopmental disorders on the autism spectrum require distinct therapeutic strategies based on underlying synaptic pathology.Neuropsychopharmacology accepted article preview online, 22 January 2014. doi:10.1038/npp.2014.13.
Article
Full-text available
Tuberous sclerosis complex (TSC) is a multisystem genetic disease that manifests with mental retardation, tumor formation, autism, and epilepsy. Heightened signaling through the mammalian target of rapamycin (mTOR) pathway is involved in TSC pathology, however it remains unclear how other signaling pathways are perturbed and contribute to disease symptoms. Reduced long-term depression (LTD) was recently reported in TSC mutant mice. We find that although reduced LTD is a feature of the juvenile mutant hippocampus, heightened expression of metabotropic glutamate receptor 5 and constitutively activated Erk signaling in the adult hippocampus drives wild-type levels of LTD. Increased mGluR5 and Erk results in a novel mTOR-independent LTD in CA1 hippocampus of adult mice, and contributes to the development of epileptiform bursting activity in the TSC2(+/-) CA3 region of the hippocampus. Inhibition of mGluR5 or Erk signaling restores appropriate mTOR-dependence to LTD, and significantly reduces epileptiform bursting in TSC2(+/-) hippocampal slices. We also report that adult TSC2(+/-) mice exhibit a subtle perseverative behavioral phenotype that is eliminated by mGluR5 antagonism. These findings highlight the potential of modulating the mGluR5-Erk pathway in a developmental stage-specific manner to treat TSC.
Article
Full-text available
Autism spectrum disorder (ASD) is a group of developmental disabilities characterized by impairments in social interaction and communication and restricted and repetitive interests/behaviors. Advances in human genomics have identified a large number of genetic variations associated with ASD. These associations are being rapidly verified by a growing number of studies using a variety of approaches, including mouse genetics. These studies have also identified key mechanisms underlying the pathogenesis of ASD, many of which involve synaptic dysfunctions, and have investigated novel, mechanism-based therapeutic strategies. This review will try to integrate these three key aspects of ASD research: human genetics, animal models, and potential treatments. Continued efforts in this direction should ultimately reveal core mechanisms that account for a larger fraction of ASD cases and identify neural mechanisms associated with specific ASD symptoms, providing important clues to efficient ASD treatment.
Article
Full-text available
The autism spectrum disorders (ASD) are characterized by impairments in social interaction and stereotyped behaviors. For the majority of individuals with ASD, the causes of the disorder remain unknown; however, in up to 25% of cases, a genetic cause can be identified. Chromosomal rearrangements as well as rare and de novo copy-number variants are present in ∼10-20% of individuals with ASD, compared with 1-2% in the general population and/or unaffected siblings. Rare and de novo coding-sequence mutations affecting neuronal genes have been also identified in ∼5-10% of individuals with ASD. Common variants such as single-nucleotide polymorphisms seem to contribute to ASD susceptibility, but their effects appear to be small. Despite a heterogeneous genetic landscape, the genes implicated thus far-which are involved in chromatin remodeling, metabolism, mRNA translation, and synaptic function-seem to converge in common pathways affecting neuronal and synaptic homeostasis. Animal models developed to study these genes should lead to a better understanding of the diversity of the genetic landscapes of ASD. Expected final online publication date for the Annual Review of Genomics and Human Genetics Volume 14 is August 31, 2013. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
Article
Full-text available
AUTISM IS A NEURODEVELOPMENTAL DISORDER WHOSE DIAGNOSIS IS BASED ON THREE BEHAVIORAL CRITERIA: unusual reciprocal social interactions, deficits in communication, and stereotyped repetitive behaviors with restricted interests. A large number of de novo single gene mutations and chromosomal deletions are associated with autism spectrum disorders. Based on the strong genetic evidence, mice with targeted mutations in homologous genes have been generated as translational research tools. Mouse models of autism have revealed behavioral and biological outcomes of mutations in risk genes. The field is now poised to employ the most robust phenotypes in the most replicable mouse models for preclinical screening of novel therapeutics.
Article
Full-text available
Neurodevelopmental disorders such as autism and fragile X syndrome were long thought to be medically untreatable, on the assumption that brain dysfunctions were immutably hardwired before diagnosis. Recent revelations that many cases of autism are caused by mutations in genes that control the ongoing formation and maturation of synapses have challenged this dogma. Antagonists of metabotropic glutamate receptor subtype 5 (mGluR5), which modulate excitatory neurotransmission, are in clinical trials for fragile X syndrome, a major genetic cause of intellectual disabilities. About 30% of patients with fragile X syndrome meet the diagnostic criteria for autism. Reasoning by analogy, we considered the mGluR5 receptor as a potential target for intervention in autism. We used BTBR T+tf/J (BTBR) mice, an established model with robust behavioral phenotypes relevant to the three diagnostic behavioral symptoms of autism--unusual social interactions, impaired communication, and repetitive behaviors--to probe the efficacy of a selective negative allosteric modulator of the mGluR5 receptor, GRN-529. GRN-529 reduced repetitive behaviors in three cohorts of BTBR mice at doses that did not induce sedation in control assays of open field locomotion. In addition, the same nonsedating doses reduced the spontaneous stereotyped jumping that characterizes a second inbred strain of mice, C58/J. Further, GRN-529 partially reversed the striking lack of sociability in BTBR mice on some parameters of social approach and reciprocal social interactions. These findings raise the possibility that a single targeted pharmacological intervention may alleviate multiple diagnostic behavioral symptoms of autism.
Article
Full-text available
Autism spectrum disorders (ASDs) are neurodevelopmental disorders whose prevalence has risen over the past two decades. Current drug treatments for ASDs and the related disorders--fragile X syndrome (FXS) and Rett syndrome--target specific symptoms but do not address the basic underlying etiologies. However, based partly on an improved understanding of the neurochemical underpinnings of FXS, pharmacotherapy for this syndrome has progressed to the point of clinical trials of several novel drug treatments. By contrast, our overall understanding of the neuropathophysiology of ASDs is still rudimentary. There is hope in the field that knowledge and experience gained in the study of fragile X and Rett syndromes may be applicable to the larger autism patient population. In this review, we discuss how recent advances in our understanding of the biochemistry and neuropathology of these disorders could lead to new more effective treatments for ASDs.
Article
Full-text available
Tuberous sclerosis complex and fragile X syndrome are genetic diseases characterized by intellectual disability and autism. Because both syndromes are caused by mutations in genes that regulate protein synthesis in neurons, it has been hypothesized that excessive protein synthesis is one core pathophysiological mechanism of intellectual disability and autism. Using electrophysiological and biochemical assays of neuronal protein synthesis in the hippocampus of Tsc2(+/-) and Fmr1(-/y) mice, here we show that synaptic dysfunction caused by these mutations actually falls at opposite ends of a physiological spectrum. Synaptic, biochemical and cognitive defects in these mutants are corrected by treatments that modulate metabotropic glutamate receptor 5 in opposite directions, and deficits in the mutants disappear when the mice are bred to carry both mutations. Thus, normal synaptic plasticity and cognition occur within an optimal range of metabotropic glutamate-receptor-mediated protein synthesis, and deviations in either direction can lead to shared behavioural impairments.
Article
Full-text available
There is a long-standing paradox that NMDA (N-methyl-D-aspartate) receptors (NMDARs) can both promote neuronal health and kill neurons. Recent studies show that NMDAR-induced responses depend on the receptor location: stimulation of synaptic NMDARs, acting primarily through nuclear Ca(2+) signalling, leads to the build-up of a neuroprotective 'shield', whereas stimulation of extrasynaptic NMDARs promotes cell death. These differences result from the activation of distinct genomic programmes and from opposing actions on intracellular signalling pathways. Perturbations in the balance between synaptic and extrasynaptic NMDAR activity contribute to neuronal dysfunction in acute ischaemia and Huntington's disease, and could be a common theme in the aetiology of neurodegenerative diseases. Neuroprotective therapies should aim to both enhance the effect of synaptic activity and disrupt extrasynaptic NMDAR-dependent death signalling.
Article
Full-text available
Autism is a heterogeneous neurodevelopmental disorder of unknown aetiology that affects 1 in 100-150 individuals. Diagnosis is based on three categories of behavioural criteria: abnormal social interactions, communication deficits and repetitive behaviours. Strong evidence for a genetic basis has prompted the development of mouse models with targeted mutations in candidate genes for autism. As the diagnostic criteria for autism are behavioural, phenotyping these mouse models requires behavioural assays with high relevance to each category of the diagnostic symptoms. Behavioural neuroscientists are generating a comprehensive set of assays for social interaction, communication and repetitive behaviours to test hypotheses about the causes of autism. Robust phenotypes in mouse models hold great promise as translational tools for discovering effective treatments for components of autism spectrum disorders.
Article
Full-text available
Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. BTBR T+tf/J (BTBR) is an inbred mouse strain that shows robust behavioral phenotypes with analogies to all three of the diagnostic symptoms of autism, including well-replicated deficits in reciprocal social interactions and social approach, unusual patterns of ultrasonic vocalization, and high levels of repetitive self-grooming. These phenotypes offer straightforward behavioral assays for translational investigations of pharmacological compounds. Two suggested treatments for autism were evaluated in the BTBR mouse model. Methyl-6-phenylethynyl-pyridine (MPEP), an antagonist of the mGluR5 metabotropic glutamate receptor, blocks aberrant phenotypes in the Fmr1 mouse model of Fragile X, a comorbid neurodevelopmental disorder with autistic features. Risperidone has been approved by the United States Food and Drug Administration for the treatment of irritability, tantrums, and self-injurious behavior in autistic individuals. We evaluated the actions of MPEP and risperidone on two BTBR phenotypes, low sociability and high repetitive self-grooming. Open field activity served as an independent control for non-social exploratory activity and motor functions. C57BL/6J (B6), an inbred strain with high sociability and low self-grooming, served as the strain control. MPEP significantly reduced repetitive self-grooming in BTBR, at doses that had no sedating effects on open field activity. Risperidone reduced repetitive self-grooming in BTBR, but only at doses that induced sedation in both strains. No overall improvements in sociability were detected in BTBR after treatment with either MPEP or risperidone. Our findings suggest that antagonists of mGluR5 receptors may have selective therapeutic efficacy in treating repetitive behaviors in autism.
Article
Dopamine receptor D1 modulates glutamatergic transmission in cortico-basal ganglia circuits and represents a major target of L-DOPA therapy in Parkinson's disease. Here we show that D1 and metabotropic glutamate type 5 (mGlu5) receptors can form previously unknown heteromeric entities with distinctive functional properties. Interacting with Gq proteins, cell-surface D1-mGlu5 heteromers exacerbated PLC signaling and intracellular calcium release in response to either glutamate or dopamine. In rodent models of Parkinson's disease, D1-mGlu5 nanocomplexes were strongly upregulated in the dopamine-denervated striatum, resulting in a synergistic activation of PLC signaling by D1 and mGlu5 receptor agonists. In turn, D1-mGlu5-dependent PLC signaling was causally linked with excessive activation of extracellular signal-regulated kinases in striatal neurons, leading to dyskinesia in animals treated with L-DOPA or D1 receptor agonists. The discovery of D1-mGlu5 functional heteromers mediating maladaptive molecular and motor responses in the dopamine-denervated striatum may prompt the development of new therapeutic principles for Parkinson's disease.
Article
Levodopa remains to be the mainstay for treatment of Parkinson disease (PD). Long-term levodopa treatment bears a risk for developing levodopa-induced dyskinesia (LID). LID significantly overshadows patients' quality of life and therapeutic efficacy of levodopa. Pre- and post-synaptic changes in dopamine secretion and signaling, along with altered glutamate receptor expression and glutamatergic signaling in striatal neurons, and the resulting disinhibition-like changes in the corticostriatal circuitry, lead to aberrant activity of motor cortex and formation of LID. Research has highlighted the role of group I metabotropic glutamate receptors especially the metabotropic glutamate receptor 5 (mGlu5)in formation of LID through potentiating of ionotropic glutamate NMDA receptors and dopamine D 1 /D 5 receptors in direct pathway. Accordingly, MTEP and MPEP were the first mGlu5 receptor antagonists which were shown to attenuate LID in animal models through suppression of downstream signaling cascades involving mitogen-activated protein kinase (MAPK)and FosB/delta FosB activation, as well as modulation of prodynorphinegic, preproenkephalinergic, and GABA-ergic neurotransmission systems. Beneficial effects of other mGlu5 receptor antagonists such as AFQ056/mavoglurant and ADX48621/dipraglurant in amelioration of LID has been shown not only in animal models but also in clinical trials. Considering the presence of mGlu receptor dysregulation in rapid eye movement (REM)sleep behavior disorder and depression, which are prodromal signs of PD, along with the neuroprotective effects of mGlu receptor antagonists, and their cognitive benefits, potential effectiveness of mGlu receptor antagonists in early prevention of PD remains to be investigated.
Article
Background: Adolescent intermittent ethanol (AIE) exposure is an emerging risk factor for adult psychopathology, such as anxiety disorders. Enhancer RNAs (eRNAs) are short noncoding RNAs transcribed from enhancer regions that regulate synaptic plasticity-associated gene expression, including Arc, but their role in AIE-induced susceptibility to anxiety in adulthood is unknown. Methods: Rats were exposed to AIE (ethanol exposure 2 days on/off) or intermittent normal saline during postnatal days 28 to 41 and allowed to grow to adulthood for analysis of behavior and biochemical measures. Some AIE rats and rats with intermittent normal saline exposure were exposed to an acute challenge with ethanol in adulthood. Cohorts of alcohol-naïve adult rats were cannulated in the central nucleus of amygdala and infused with either Kdm6b small interfering RNA or an antisense locked nucleic acid oligonucleotide specific to Arc eRNA before behavioral and biochemical analysis. Results: AIE adult rats displayed heightened anxiety and decreased Arc eRNA expression, which is regulated epigenetically through decreased Kdm6b expression. This triggered condensed chromatin at the synaptic activity response element site and promoter of the Arc gene, facilitating increased negative elongation factor binding to the Arc promoter and decreasing Arc expression in the amygdala. Knockdown of Kdm6b or Arc eRNA expression in the central nucleus of amygdala provoked anxiety in alcohol-naïve adult rats and recapitulated the molecular and epigenetic phenotypes of AIE. Conclusions: These data suggest that eRNA regulation via epigenetic reprogramming in the amygdala, particularly at the Arc synaptic activity response element site, contributes to adult anxiety after adolescent alcohol exposure.
Article
Abstract Diminished dopamine D1 stimulation may contribute to cognitive impairment in Alzheimer’s and Parkinson’s diseases, schizophrenia, and other neuropsychiatric disorders. However, orthosteric D1 receptor (D1R) agonists produce receptor desensitization and an inverted U-shaped dose-response curve, but positive allosteric modulators (PAMs) do not. We examined the cognitive effects of DETQ, a D1R PAM, in mice genetically modified to express the human D1 receptor (“hD1 mice”). Phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate receptor antagonist, dosed seven days (subchronic), followed by withdrawal, produced a prolonged deficit in novel object recognition (NOR) memory, which was reversed by acute treatment with DETQ, with no evidence for an inverted U-shaped response. This was blocked by the D1R antagonist, SCH391660. Single doses of D1R agonists, SKF38393 and SKF82958, and the acetylcholinesterase inhibitor, rivastigmine, alone and the combination of subeffective doses of both, also restored NOR in both subchronic PCP-treated in hD1 mice. DETQ increased cortical and hippocampal acetylcholine efflux after both acute and subchronic dosing in hD1 mice. Subchronic but not acute DETQ, inhibited glutamate and GABA efflux. DETQ-induced acetylcholine efflux was absent in subchronic PCP-treated mice, indicating that restoration of NOR in subchronic PCP-treated mice does not require cortical acetylcholine efflux. This is additional evidence that DETQ stimulates D1R without producing an inverted-U-shaped response curve and increases neurotransmitter release in the mPFC and HIP without causing tolerance. The ability of D1 PAMs to improve cognition in humans with neuropsychiatric disorders without evidence of tolerance or an inverted-U-shaped response curve needs to be established clinically.
Article
Epidemiologic evidence suggests that individuals during their prenatal development may be especially vulnerable to the effects of environmental factors such as stress that predisposes them to psychiatric disorders including alcohol use disorder (AUD) later in life. Currently, the epigenetic mechanisms of anxiety comorbid with AUD induced by prenatal stress (PRS) remain to be elucidated. Here, we examined anxiety-like and alcohol drinking behaviors in adult offspring of prenatally stressed dam (PRS-mice) using elevated plus maze, light/dark box and two-bottle free-choice paradigm. It was found that PRS-mice exhibit heightened anxiety-like behaviors and increased alcohol intake in adulthood and these behavioral deficits were associated with a significant decrease in dendritic spine density (DSD) in medial prefrontal cortex (mPFC) relative to non-stressed mice (NS mice). To determine the mechanisms by which PRS reduces DSD, we examined the expressions of key genes associated with synaptic plasticity, including activity regulated cytoskeleton associated protein (Arc), spinophilin (Spn), postsynaptic density 95 (Psd95), tropomyosin receptor kinase B (TrkB), protein kinase B (Akt), mammalian target of rapamycin (mTOR) and period 2 (Per2) in mPFC of PRS and NS mice. The mRNA levels of these genes were significantly decreased in PRS mice. Methylated DNA and chromatin immunoprecipitation studies revealed hyper DNA methylation or reduced histone H3K14 acetylation on promoters of above genes suggesting that epigenetic dysregulation may be responsible for the deficits in their expression. Findings from this study suggest that prenatal stress induced abnormal epigenetic mechanisms and synaptic plasticity-related events may be associated with anxiety-like and alcohol drinking behaviors in adulthood.
Article
Parkinson's disease (PD) is a neurodegenerative disorder characterized by typical motor features that result from dopamine (DA) depletion in the striatum. DA replacement therapy with L-DOPA is the most efficacious symptomatic treatment, but causes complications that limit its utility, in particular, L-DOPA-induced dyskinesia (LID). LID is primarily caused by pre-synaptic and post-synaptic changes in DA neurotransmission, although it also depends on altered glutamatergic transmission at several nodes of the cortico-basal ganglia-thalamocortical network. The important functional interplay between dopaminergic and glutamatergic systems has stimulated an interest in metabotropic glutamate receptors (mGluRs) as potential therapeutic targets in PD and LID. We here review the antiparkinsonian and antidyskinetic potential of modulating group I, II, and III mGluRs in several preclinical models of PD. We also provide an update on clinical trials evaluating mGluR5 or mGluR4 ligands in PD.
Article
Lay summary: The present experiments determined whether the drug, CGS 21680, that facilitates activation of adenosine A2A receptors in the brain, would reduce repetitive and inflexible behaviors in the BTBR mouse model of idiopathic autism. CGS 21680 treatment in BTBR mice reduced repetitive and inflexible behaviors. In the control C57BL/6J (B6) mouse strain, CGS 21680 did not affect performance. These findings suggest that stimulation of brain adenosine A2A receptors may be a promising therapeutic strategy in ASD.
Article
mGlu5 receptors are involved in mechanisms of activity-dependent synaptic plasticity, and are targeted by drugs developed for the treatment of CNS disorders. We report that mGlu3 receptors, which are traditionally linked to the control of neurotransmitter release, support mGlu5 receptor signaling in neurons and largely contribute to the robust mGlu5 receptor-mediated polyphosphoinositide hydrolysis in the early postnatal life. In cortical pyramidal neurons, mGlu3 receptor activation potentiated mGlu5 receptor-mediated somatic Ca(2+) mobilization, and mGlu3 receptor-mediated long-term depression in the prefrontal cortex required the endogenous activation of mGlu5 receptors. The interaction between mGlu3 and mGlu5 receptors was also relevant to mechanisms of neuronal toxicity, with mGlu3 receptors shaping the influence of mGlu5 receptors on excitotoxic neuronal death. These findings shed new light into the complex role played by mGlu receptors in physiology and pathology, and suggest reconsideration of some of the current dogmas in the mGlu receptor field.
Article
The Arc gene is robustly transcribed in specific neural ensembles in response to experience-driven activity. Upon induction, Arc mRNA is transported to dendrites, where it can be rapidly and locally translated by activation of metabotropic glutamate receptors (mGluR1/5). mGluR-induced dendritic synthesis of Arc is implicated in weakening or elimination of excitatory synapses by triggering endocytosis of postsynaptic AMPARs in both hippocampal CA1 and cerebellar Purkinje neurons. Importantly, CA1 neurons with experience-induced Arc mRNA are susceptible, or primed for mGluR-induced long-term synaptic depression (mGluR-LTD). Here we review mechanisms and function of Arc in mGluR-LTD and synapse elimination and propose roles for these forms of plasticity in Arc-dependent formation of sparse neural representations of learned experience. We also discuss accumulating evidence linking dysregulation of Arc and mGluR-LTD in human cognitive disorders such as intellectual disability, autism and Alzheimer's disease.
Article
Background: Development of treatments for obsessive-compulsive disorder (OCD) is hampered by a lack of mechanistic understanding about this prevalent neuropsychiatric condition. Although circuit changes such as elevated frontostriatal activity are linked to OCD, the underlying molecular signaling that drives OCD-related behaviors remains largely unknown. Here, we examine the significance of type 5 metabotropic glutamate receptors (mGluR5s) for behavioral and circuit abnormalities relevant to OCD. Methods: Sapap3 knockout (KO) mice treated acutely with an mGluR5 antagonist were evaluated for OCD-relevant phenotypes of self-grooming, anxiety-like behaviors, and increased striatal activity. The role of mGluR5 in the striatal circuit abnormalities of Sapap3 KO mice was further explored using two-photon calcium imaging to monitor striatal output from the direct and indirect pathways. A contribution of constitutive signaling to increased striatal mGluR5 activity in Sapap3 KO mice was investigated using pharmacologic and biochemical approaches. Finally, sufficiency of mGluR5 to drive OCD-like behavior in wild-type mice was tested by potentiating mGluR5 with a positive allosteric modulator. Results: Excessive mGluR5 signaling underlies OCD-like behaviors and striatal circuit abnormalities in Sapap3 KO mice. Accordingly, enhancing mGluR5 activity acutely recapitulates these behavioral phenotypes in wild-type mice. In Sapap3 KO mice, elevated mGluR5 signaling is associated with constitutively active receptors and increased and imbalanced striatal output that is acutely corrected by antagonizing striatal mGluR5. Conclusions: These findings demonstrate a causal role for increased mGluR5 signaling in driving striatal output abnormalities and behaviors with relevance to OCD and show the tractability of acute mGluR5 inhibition to remedy circuit and behavioral abnormalities.
Article
In this study, the functional role of individual striatal receptors for adenosine (A2 AR ), dopamine (D2R), and the metabotropic glutamate receptor mG lu5R in regulating rat basal ganglia activity was characterized in vivo using dual‐probe microdialysis in freely moving rats. In particular, intrastriatal perfusion with the D2R agonist quinpirole (10 μM, 60 min) decreased ipsilateral pallidal GABA and glutamate levels, whereas intrastriatal CGS 21680 (A2 AR agonist; 1 μM, 60 min) was ineffective on either pallidal GABA and glutamate levels or the quinpirole‐induced effects. Intrastriatal perfusion with the mGlu5R agonist (RS)‐2‐chloro‐5‐hydroxyphenylglycine (600 μM, 60 min), by itself ineffective on pallidal GABA and glutamate levels, partially counteracted the effects of quinpirole. When combined with CGS 21680 (1 μM, 60 min), (RS)‐2‐chloro‐5‐hydroxyphenylglycine (CHPG; 600 μM, 60 min) fully counteracted the quinpirole (10 μM, 60 min)‐induced reduction in ipsilateral pallidal GABA and glutamate levels. These effects were fully counteracted by local perfusion with the mGlu5R antagonist MPEP (300 μM) or the A2 AR antagonist ZM 241385 (100 nM ). These results suggest that A2 AR s and mG lu5Rs interact synergistically in modulating the D2R‐mediated control of striatopallidal GABA neurons. image Using dual‐probe microdialysis, we characterized the functional role of striatal adenosine A2A receptor (A2AR), dopamine D2 receptor (D2R), and metabotropic glutamate receptor 5 (mGluR5) interactions in regulating rat basal ganglia activity. The results suggest the possible usefulness of using an A2AR antagonist and mGluR5 antagonist combination in the treatment of Parkinson's disease to increase the inhibitory D2 signaling on striatopallidal GABA neurons.
Article
Autism spectrum disorders (ASDs) and related neurological disorders are associated with mutations in many genes affecting the ratio between neuronal excitation and inhibition. However, understanding the impact of these mutations on network activity is complicated by the plasticity of these networks, making it difficult in many cases to separate initial deficits from homeostatic compensation. Here we explore the contrasting evidence for primary defects in inhibition or excitation in ASDs and attempt to integrate the findings in terms of the brain's ability to maintain functional homeostasis. Copyright © 2015 Elsevier Inc. All rights reserved.
Article
Early work by Lex Cools suggested that the caudate nucleus (dorsal striatum) plays a role in programming social behaviour: enhanced activity in the caudate nucleus increased the extent to which ongoing behaviour is controlled by the individual's own behaviour (internal control) rather than by that of its partners (external control). Interestingly, later studies by others have indicated that the ventral striatum plays a role in external rather than internal control. Here, I discuss the role of these different striatal areas - and the emotional (ventral striatum) and cognitive control (dorsal striatum) system in which they are embedded - in the organization of social behaviour in the context of locus of control. Following on from this discussion, I will pay particular attention to individual differences in social behaviour (individuals with more internal or external control), focusing on the role of dopamine, serotonin and the effects of stress-related challenges in relation to their different position in a dominance hierarchy. I will subsequently allude to potential psychological and behavioural problems in the social domain following on from these differences in locus of control ['social obliviousness' (dorsal stratum) and 'social impulsivity' (ventral striatum)]. In doing so, I provide as a tribute a historical account of the early research by Lex Cools.
Article
Fragile X syndrome (FXS) is the most common monogenic form of inherited mental retardation caused by a trinucleotid repeat expansion and transcriptional shutdown of the FMR1 gene. FXS patients present a complex and often severe neuropsychiatric phenotype yet have mild somatic symptoms, normal life expectancies, and no indications of neurodegeneration. The therapeutic potential of mGlu5 inhibitors was proposed in the 'mGluR theory of FXS' based on early insights into the molecular pathophysiology of FXS. Studies in Fragile X mental retardation 1 (Fmr1) knock-out mice, a widely used disease model, demonstrated that mGlu5 inhibitors can correct a broad range of disease-related phenotypes. Recent clinical trials, however, with two different mGlu5 inhibitors (basimglurant and mavoglurant) showed no therapeutic benefit in FXS patients for reasons as yet unclear. Copyright © 2014. Published by Elsevier Ltd.
Article
Seven decades have elapsed since Leo Kanner described the syndrome he termed early infantile autism. Over this time, and particularly over the past two decades, noteworthy changes have occurred in how the condition is conceptualized. Here we provide an overview of these changes, beginning with a brief discussion of the significance of classification in general before discussing Kanner's original paper and subsequent changes. We touch on relevant issues, such as comorbidity, dimensional aspects of diagnosis and screening, and the complex issue of diagnosis relative to eligibility for services. Approaches to diagnosis have tended to swing from emphasizing overarching groups (lumping) to focusing on potentially distinct subgroups (splitting). Autism raises particular problems given the broad range of syndrome expression over age and developmental level. The most recent revision of the American Psychiatric Association's diagnostic taxonomy marks a significant departure from its predecessor and has been the focus of much debate. It remains unclear which of the currently existing categorical approaches will ultimately be most widely applied. We hope to convey a sense of areas in which consensus has been achieved and areas of continued controversy. Expected final online publication date for the Annual Review of Clinical Psychology Volume 10 is March 20, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
Article
Metabotropic glutamate receptor (mGluR) agonists induce extensive phosphoinositide (PI) hydrolysis in astrocytes grown in a chemically defined medium with select growth factors. These astrocytes express mGluR5 transcripts, but none of the splice variants of mGluR1, thus permitting the characterization of mGluR5 in a native CNS cell without interference from mGluR1 activity. mGluR5 activation (1) was not associated with stimulation of cyclic AMP formation, (2) showed high sensitivity to the removal of extracellular versus intracellular Ca2+, (3) displayed high coupling efficiency relative to receptor density, and (4) induced PI hydrolysis that was suppressed by phorbol esters with low potency. The rank order of agonist potency was similar to that observed in mGluR1 and mGluR5 transfected cells. The phenylglycine antagonists tested were effective in blocking responses to 1-aminocyclopentane-1S,3R-dicarboxylic acid, but not to glutamate. Prolonged exposure to agonists induced a two-phase desensitization of mGluR5 function, an initial phase (completed by 1 h and plateaus for another 3 h) and a late phase (progressive decrease to ∼30% of control levels by 24 h). Only the latter phase was associated with receptor down-regulation. Desensitization of mGluR5 function did not involve receptor internalization or phosphorylation mediated by protein kinase C or A; it was purely homologous, and reversible. Resensitization after short agonist treatment did not require prior receptor sequestration. Recovery after prolonged agonist exposure required new protein synthesis, but the restoration of function was more rapid than normalization of receptor protein levels, indicating that regulation also involves other components of the transduction system. The protracted desensitization of mGluR5 in astrocytes suggests that the functions mediated by this receptor are maintained under a variety of conditions ranging from repetitive stimulation to injury responses.
Article
Autism is a neurodevelopmental disorder in which the first diagnostic symptom is unusual reciprocal social interactions. Approximately half of the children diagnosed with an autism spectrum disorder also have intellectual impairments. General cognitive abilities may be fundamental to many aspects of social cognition. Cognitive enhancers could conceivably be of significant benefit to children and adults with autism. AMPAKINE compounds are a novel class of pharmacological agents that act as positive modulators of AMPA receptors to enhance excitatory glutamatergic neurotransmission. This class of compounds was reported to improve learning and memory in several rodent and non-human primate tasks, and to normalize respiratory abnormalities in a mouse model of Rett syndrome. Here we evaluate the actions of AMPA compounds in adult male and female BTBR mice, a well characterized mouse model of autism. Acute treatment with CX1837 and CX1739 reversed the deficit in sociability in BTBR mice on the most sensitive parameter, time spent sniffing a novel mouse as compared to time spent sniffing a novel object. The less sensitive parameter, time in the chamber containing the novel mouse versus time in the chamber containing the novel object, was not rescued by CX1837 or CX1739 treatment. Preliminary data with CX546, in which β-cyclodextrin was the vehicle, revealed behavioral effects of the acute intraperitoneal and oral administration of vehicle alone. To circumvent the artifacts introduced by the vehicle administration, we employed a novel treatment regimen using pellets of peanut butter for drug delivery. Absence of vehicle treatment effects when CX1837 and CX1739 were given in the peanut butter pellets, to multiple cohorts of BTBR and B6 control mice, confirmed that the pharmacologically-induced improvements in sociability in BTBR were not confounded by the administration procedures. The highest dose of CX1837 improved the cognitive deficit in novel object recognition in BTBR. No drug effects were detected on the high levels of repetitive self-grooming in BTBR. In open field tests, CX1837 and CX1739 did not induce hyperactivity or sedation in either strain. It is interesting to speculate that the ability of CX1837 and CX1739 to restore aspects of sociability in BTBR mice could utilize synaptic mechanisms regulating social cognition, suggesting a potential pharmacological target for interventions to treat symptoms of autism. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Article
There is strong evidence that metabotropic and ionotropic glutamate receptors are affected in autism spectrum disorders (ASD), but there are few candidate genes indicating involvement of these receptors. This suggests that glutamate receptor dysregulation may primarily be involved in the expression of ASD, but is an uncommon etiology. Directly implicated in models of fragile-X with ASD phenotypes is metabotropic glutamate receptor type 5 (mGluR5), which appears to be an effective pharmacologic target in a number of models of ASD. The review of other ASD models demonstrates that there is also evidence of a role for kainate, NMDA, and AMPA receptors in the neuropathophysiology of ASD, though the relationship between dysfunction in those receptors and ASD-associated phenotypes is not well understood. Current models indicate a way forward to delineate the role of glutamate receptors in ASD. Further development of preclinical models focusing on glutamate receptors may provide tools to target a clinically important subset of ASD symptoms.
Article
Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson's disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophageal reflux disorder. Prof. Erminio Costa was linked to the early times of the mGlu receptor history, when a few research groups challenged the general belief that glutamate could only activate ionotropic receptors and all metabolic responses to glutamate were secondary to calcium entry. This review moves from those nostalgic times to the most recent advances in the physiology and pharmacology of mGlu receptors, and highlights the role of individual mGlu receptor subtypes in the pathophysiology of human disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Article
Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. BTBR T+tf/J (BTBR) is an inbred mouse strain that displays robust behavioral phenotypes with analogies to all three of the diagnostic symptoms of autism, including low social interactions, reduced vocalizations in social settings, and high levels of repetitive self-grooming. Autism-relevant phenotypes in BTBR offer translational tools to discover neurochemical mechanisms underlying unusual mouse behaviors relevant to symptoms of autism. Because repetitive self-grooming in mice may be a displacement behavior elevated by stressors, we investigated neuroendocrine markers of stress and behavioral reactivity to stressors in BTBR mice, as compared to C57BL/6J (B6), a standard inbred strain with high sociability. Radioimmunoassays replicated previous findings that circulating corticosterone is higher in BTBR than in B6. Higher basal glucocorticoid receptor mRNA and higher oxytocin peptide levels were detected in the brains of BTBR as compared to B6. No significant differences were detected in corticotrophin releasing factor (CRF) peptide or CRF mRNA. In response to behavioral stressors, BTBR and B6 were generally similar on behavioral tasks including stress-induced hyperthermia, elevated plus-maze, light ↔ dark exploration, tail flick, acoustic startle and prepulse inhibition. BTBR displayed less reactivity than B6 to a noxious thermal stimulus in the hot plate, and less immobility than B6 in both the forced swim and tail suspension depression-related tasks. BTBR, therefore, exhibited lower depression-like scores than B6 on two standard tests sensitive to antidepressants, did not differ from B6 on two well-validated anxiety-like behaviors, and did not exhibit unusual stress reactivity to sensory stimuli. Our findings support the interpretation that autism-relevant social deficits, vocalizations, and repetitive behaviors are not the result of abnormal stress reactivity in the BTBR mouse model of autism.