PreprintPDF Available

Extended Unified Mittag-Leffler Function and Its Properties

Authors:
Preprints and early-stage research may not have been peer reviewed yet.
Extended Unified Mittag-Leffler Function and Its Properties
Umar Muhammad ABUBAKAR1,*, Salim Rabi’u KABARA2, Ameer Abdullahi HASSAN3,
Faisal Adamu IDRIS4
1Kano University of Science and Technology, Wudil, Faculty of Computing and Mathematical
Sciences, Department of Mathematics, Kano State, Nigeria
uabubakar@kustwudil.edu.ng, ORCID:0000-0003-3935-4529
2KanoUniversity of Science and Technology, Wudil, Faculty of Computing and Mathematical
Sciences, Department of Mathematics, Kano State, Nigeria
srkabara@gmail.com, ORCID:0000-0002-7188-673X
3Kano University of Science and Technology, Wudil, Faculty of Computing and Mathematical
Sciences, Department of Mathematics, Kano State, Nigeria
ameernigeria@gmail.com, ORCID:0000-0002-8828-5332
4Sa’adatu Rimi College of Education, Kumbotso, Kano State, Nigeria
faisaladamidris@yahoo.com, ORCID: 0000-0003-3703-4936
Abstract
Special functions are an integral part of fractional calculus. In recent years, various extensions of
special functions such as gamma, beta, hypergeometric, Mittag-Leffler have been considered. In
this paper, an extended unified Mittag-Leffler function was introduced and some of its properties
were invistigated using a newly defined extended beta function. In addition, integral transforms
such as Laplace, Euler beta, Mellin, complex Fourier, Fourier sine and cosine, fractional Fourier,
Whittaker, Kemp-MacDonald, Fourier-Bessel and Varma transforms of the extended unified
Mittag-Leffler function are obtained. The convergence, recurrence relation and differential
formulas for this extended unified Mittag-Leffler function ware also discussed. However, Most
of the extended Q-functions and generalized Mittag-Leffler functions in the literature can be
deduced as special cases of this newly introduced extended unified Mittag-Leffler function.
Keywords: Q-function; Mittag-Leffler function, Integral transform, Recurence relation; Beta
function.
1. Introduction
The Andric eta al., [1] introduced the following generalization of Mittag-Leffler function:

󰇛󰇜󰇛󰇜
󰇛󰇜
 󰇛󰇜
󰇛󰇜
󰇛󰇜 (1)
where 󰇝󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜󰇞 with
󰇛󰇜 󰇛󰇜 is pochhamer symbol and 󰇛󰇜 is the extended bata
function defined in [2-3].
Bhatnagar and Pandey [4] investigated the following generalized Q-function:

 
 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜 (2)
󰇛󰇜󰇛󰇜
󰇝󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜󰇞 with 󰇛󰇜
and 󰇛󰇜 is classical bata function (see, [5]).
Hang et al., [6] conbined the idea in (1) and (2) to proposed the following unified Mittag-Leffler
function:

 󰇡󰇢
 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜 (3)
󰇛󰇜 󰇛󰇜 󰇛󰇜 
󰇝󰇛󰇜󰇛󰇜󰇛󰇜󰇞 󰇝󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜󰇞 󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
Definition 1: For integrable function f on 󰇟󰇜 the Laplace transform is defined as [7]
󰇝󰇛󰇜󰇞󰇛󰇜󰇛󰇜
where is the variable of transform.
Definition 2: The Euler beta transform is given by the following [8]:
󰇝󰇛󰇜󰇞󰇛󰇜󰇛󰇜
for 󰇝󰇞
Definition 3: The Mellin transform of integral function 󰇛󰇜 with index is defined by [9]
󰇝󰇛󰇜󰇞󰇛󰇜󰇛󰇜
Definition 4: The complex Fourier transfrom is defined as follows [10]
󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜

Definition 5: The fractional Fourier transform is given [11-13]:
󰇛󰇜󰇛󰇜󰇡
󰇢󰇛󰇜
 for 
Definition 6: The cosine and sine Fourier transfroms are defined as [10]
󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜

and
󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜

Definition 7: The Hankel transform is expressed by the following [14, 15]
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
where and 󰇛󰇜 is Bessel-Maitland function (refer to, [7]).
Definition 8: For a complex parameter  K-transform is defined by [14, 15]
󰇝󰇛󰇜󰇞󰇛󰇜
󰇛󰇜󰇛󰇜
and 󰇛󰇜 is MacDonald function or Modified Bessel function (see for example, [16]).
2. Main result
In this work, the following extended unified Mittag-Leffler function is introduced and
investigated:


 󰇡󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜 (4)
if 󰇛󰇜 󰇛󰇜 󰇛󰇜 
󰇝󰇛󰇜󰇛󰇜󰇛󰇜󰇞 󰇝󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜󰇞 󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜 and 
󰇛󰇜 is the extended beta function defined by [17]

󰇛󰇜󰇛󰇜
󰇛󰇜
for 󰇛󰇜 󰇛󰇜 󰇛󰇜 󰇛󰇜 󰇛󰇜 󰇛󰇜
󰇛󰇜󰇝󰇞
3. Integral transforms
Throughout this section the following notation and assumption are adopted unless otherwise
stated: 󰇛󰇜 󰇛󰇜 󰇛󰇜 
 󰇝󰇛󰇜󰇛󰇜󰇛󰇜󰇞 󰇝󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜󰇞 󰇛󰇜󰇛󰇜󰇛
󰇜󰇛󰇜󰇛󰇜
Theorem 1: (Laplace transform)
󰇥


 󰇡󰇢󰇦󰇛󰇜



 󰇡󰇢
Proof: By definition of Laplace transform, gives
󰇥


 󰇡󰇢󰇦󰇛󰇜
󰇛󰇜


 󰇡󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜



 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜



 󰇡󰇢
Theorem 2: (Beta transform)
󰇥


 󰇡󰇢󰇦


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
Proof: From the definition of beta transform,
󰇥


 󰇡󰇢󰇦
󰇛󰇜


 󰇡󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
Theorem 3: (Mellin transform)
󰇥


 󰇡󰇢󰇦


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜

Proof: Using definition of Mellin transform, yields
󰇥


 󰇡󰇢󰇦󰇛󰇜



 󰇡󰇢
Using the relation in [18]
󰇛󰇜󰇛󰇜󰇟󰇛󰇛󰇜󰇜󰇠󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇛󰇜󰇜

gives
󰇥


 󰇡󰇢󰇦󰇛󰇜
󰇛󰇜󰇫

 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇬


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜

Theorem 4: (Complex Fourier)
󰇥


 󰇡󰇢󰇦


 󰇡󰇢
Proof: Applying the definition of complex Fourier transform, gives
󰇥


 󰇡󰇢󰇦
󰇛󰇜


 󰇡󰇢



 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜

On setting  leads to
󰇥


 󰇡󰇢󰇦


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜



 󰇡󰇢
Theorem 5: (The Fourier cosine and sine transforms)
󰇥


 󰇡󰇢󰇦
󰇥



 󰇡󰇢󰇦
and
󰇥


 󰇡󰇢󰇦
󰇥



 󰇡󰇢󰇦
Proof By the definitions of Fourier cosine and sine transforms, yields
󰇥


 󰇡󰇢󰇦
󰇛󰇜


 󰇡󰇢



 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜

similarly,
󰇥


 󰇡󰇢󰇦


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜

Using the fact that
󰇛󰇜󰇛󰇜󰇛󰇜
yields
󰇥


 󰇡󰇢󰇦


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜

On putting  yields
󰇥


 󰇡󰇢󰇦


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜



 󰇡󰇢
hence
󰇥


 󰇡󰇢󰇦
󰇥



 󰇡󰇢󰇦
and
󰇥


 󰇡󰇢󰇦
󰇥



 󰇡󰇢󰇦
Theorem 6: (The fractional Fourier transform)
󰇥


 󰇡󰇢󰇦



 󰇧
󰇨
Proof: Applying the definition of fractional Fourier transform, gives
󰇥


 󰇡󰇢󰇦
󰇡
󰇢


 󰇡󰇢



 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇡
󰇢

On setting 
 leads to
󰇥


 󰇡󰇢󰇦


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜
󰇩
󰇪
󰇛󰇜



 󰇧
󰇨
Theorem 7: (Whittaker transform)
󰇡
󰇢
󰇛󰇜


 󰇡󰇢
󰇛󰇜
󰇛󰇜


 󰇡󰇢
where
and 
Proof: Considering the improper integral
󰇡
󰇢
󰇛󰇜


 󰇡󰇢
setting  leads to


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜
󰇡
󰇢
󰇛󰇜
Applying the result [19]
󰇡
󰇢
󰇛󰇜󰇡
󰇢
󰇛󰇜, where 󰇛󰇜

gives


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇡
󰇢
󰇛󰇜
󰇛󰇜
󰇛󰇜

 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜 
󰇛󰇜
󰇛󰇜
󰇛󰇜


 󰇡󰇢
where
and 
Theorem 8: (Hankel transform)
󰇛󰇜


 󰇡󰇢
󰇡
󰇢󰇛󰇜
󰇛󰇜


 󰇡󰇛󰇜󰇢
where 



Proof: Considering the integral
󰇛󰇜


 󰇡󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜
Applying [19]
󰇛󰇜󰇡
󰇢
󰇡
󰇢
󰇛󰇜󰇛󰇛󰇜

gives
󰇛󰇜


 󰇡󰇢
󰇡
󰇢

 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇣󰇤
󰇛󰇜󰇡
󰇢
󰇡
󰇢
󰇡
󰇢󰇛󰇜
󰇛󰇜

 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇣󰇤
󰇛󰇜
󰇡
󰇢󰇛󰇜
󰇛󰇜


 󰇡󰇛󰇜󰇢
where 



Theorem 9: (Kemp-MacDonald transform)
󰇛󰇜


 󰇡󰇢
󰇡
󰇢󰇛󰇜


 󰇡󰇛󰇜󰇢
where 


Proof: By applying the integral
󰇛󰇜


 󰇡󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜
Using the result [19]
󰇛󰇜󰇡
󰇢
leads to
󰇛󰇜


 󰇡󰇢
󰇡
󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇣󰇤
󰇛󰇜󰇡
󰇢
󰇡
󰇢󰇛󰇜


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜󰇣󰇤
󰇛󰇜
󰇡
󰇢󰇛󰇜


 󰇡󰇢
where 


Theorem 10: (Kemp-MacDonald)
󰇛󰇜󰇛󰇜


 󰇡󰇢
󰇛󰇜󰇛󰇜
󰇛󰇜


 󰇡󰇛󰇜󰇢
where 


Proof: Using the improper integral
󰇛󰇜󰇛󰇜


 󰇡󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜
Considering the equation [19]
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇡
󰇢

gives
󰇛󰇜󰇛󰇜


 󰇡󰇢
󰇛󰇜

 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇡
󰇢
󰇛󰇜󰇛󰇜
󰇛󰇜

 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜


 󰇡󰇛󰇜󰇢
where 


Theorem 11: (The Verma transform)
󰇡
󰇢
󰇛󰇜


 󰇡󰇢
󰇛󰇜
󰇡
󰇢󰇛󰇜󰇛󰇜
󰇛󰇜


 󰇡󰇢
where 

Proof:
󰇡
󰇢
󰇛󰇜


 󰇡󰇢
setting  leads to
󰇡
󰇢󰇡
󰇢
󰇛󰇜


 󰇡
󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜
󰇡
󰇢
󰇛󰇜
Using the result [19]
󰇡
󰇢
󰇛󰇜󰇛󰇜󰇛󰇜󰇡
󰇢
󰇡
󰇢󰇡
󰇢, where 󰇛󰇜

gives
󰇡
󰇢
󰇛󰇜


 󰇡󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜󰇡
󰇢
󰇡
󰇢󰇡
󰇢
 󰇛󰇜
󰇡
󰇢󰇛󰇜󰇛󰇜
󰇛󰇜

 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜
󰇛󰇜
󰇡
󰇢󰇛󰇜󰇛󰇜
󰇛󰇜


 󰇡󰇢
where 

Theorem 12: (The Verma transform)
󰇡
󰇢
󰇛󰇜


 󰇡󰇢
󰇛󰇜󰇛󰇜
󰇡
󰇢


 󰇡󰇢
where

Proof:
󰇡
󰇢
󰇛󰇜


 󰇡󰇢
setting  leads to
󰇡
󰇢󰇡
󰇢
󰇛󰇜


 󰇡
󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜
󰇡
󰇢
󰇛󰇜
Using the result [19]
󰇡
󰇢
󰇛󰇜󰇡
󰇢󰇛󰇜
󰇡
󰇢, where 󰇛󰇜

gives
󰇡
󰇢
󰇛󰇜


 󰇡󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇡
󰇢
󰇛󰇜
 󰇛󰇜
󰇛󰇜

 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜
 󰇛󰇜
󰇛󰇜


 󰇡󰇢
where

Theorem 13: (The Verma transform)
󰇡
󰇢
󰇛󰇜


 󰇡󰇢
󰇛󰇜󰇛󰇜󰇛󰇜
󰇡
󰇢󰇛󰇜


 󰇡󰇢
where


Proof:
󰇡
󰇢
󰇛󰇜


 󰇡󰇢
setting  leads to
󰇡
󰇢󰇡
󰇢
󰇛󰇜


 󰇡
󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜
󰇡
󰇢
󰇛󰇜
Using the result [19]
󰇡
󰇢
󰇛󰇜󰇛󰇜󰇡
󰇢󰇛󰇜
󰇡
󰇢󰇡
󰇢, where 󰇛󰇜

gives


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜󰇡
󰇢󰇛󰇜
󰇡
󰇢󰇡
󰇢
󰇛󰇜󰇛󰇜󰇛󰇜
󰇡
󰇢󰇛󰇜

 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜󰇛󰇜
󰇡
󰇢󰇛󰇜


 󰇡󰇢
where


4. Convergence of the unified extended Mittag-Leffler function
Theorem 14: the unified etended Mittag-Leffler function


 converges
absolutely for all values of if 󰇛󰇜󰇛󰇜󰇛󰇜󰇛
󰇜
Proof: Using equation (4)


 󰇡󰇢

 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜
 ,
where


 󰇛󰇜
 󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜
implies
 

 󰇛󰇜
 󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜
and
󰇻
󰇻󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
applying the limit on both sides, yields

󰇻
󰇻 
󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜 (5)
Considering the asymtotic behaviour for gamma function in [12]
󰇛󰇜
󰇛󰇜 󰇩󰇛󰇜󰇛󰇜

󰇪
One can obtain the following:
󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇣
 󰇡
󰇛󰇜󰇢󰇤 (6)
󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇣
 󰇡
󰇛󰇜󰇢󰇤 (7)
󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇣
 󰇡
󰇛󰇜󰇢󰇤 (8)
󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇣
 󰇡
󰇛󰇜󰇢󰇤 (9)
and
󰇛󰇜
󰇛󰇜󰇛󰇜󰇣
 󰇡
󰇛󰇜󰇢󰇤 (10)
Applying equations (6)-(10), (5) can now be rewritten as

󰇻
󰇻 
󰇻󰇛󰇜󰇣
 󰇡
󰇛󰇜󰇢󰇤
󰇛󰇜󰇣
 󰇡
󰇛󰇜󰇢󰇤󰇛󰇜󰇣
 󰇡
󰇛󰇜󰇢󰇤
󰇛󰇜󰇣
 󰇡
󰇛󰇜󰇢󰇤󰇛󰇜󰇣
 󰇡
󰇛󰇜󰇢󰇤󰇻
On simplifying, yields

󰇻
󰇻
The formula for the radius of convergence of a series is

󰇻
󰇻.
Hence, the unified etended Mittag-Leffler function


 converges
absolutely for all values of if 󰇛󰇜󰇛󰇜󰇛󰇜󰇛
󰇜
5. Recurrence relations and differential formulas
Theorem 15:


 󰇡󰇢


 󰇡󰇢




 󰇡󰇢
Proof:


 󰇡󰇢


 󰇡󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇥
󰇦
󰇛󰇜


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜




 󰇡󰇢
Theorem 16:
󰇡
󰇢


 󰇡󰇢
󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜

 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇛󰇜󰇜
Proof
󰇡
󰇢


 󰇡󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇡
󰇢
Applying the result [20]
󰇡
󰇢󰇛󰇜
󰇛󰇜
leads to
󰇡
󰇢


 󰇡󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜
Using  gives
󰇡
󰇢


 󰇡󰇢


 󰇛󰇜
 󰇛󰇜
 󰇛󰇜󰇛
󰇛󰇜󰇛󰇜 󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇛󰇜󰇜󰇛󰇜
󰇛󰇜
Considering the properties of pochhammer symbol [21]
󰇛󰇜󰇛󰇜󰇛󰇜󰇛󰇜
one can obtain
󰇡
󰇢


 󰇡󰇢
󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜

 󰇛󰇜
 󰇛󰇜
 󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜
󰇛󰇛󰇜󰇜
6. Conclusions
A new extended unified Mittag-Leffler function is proposed and some of its properties pertaing
integral transforms such as Euler beta, Laplace, Kemp-MacDonald, Hankel, Verma and
Whittaker transfroms are studied. This newly introduced extended unified Mittag-Leffler
function reduces to some well know generalized Mittag-Leffler and Q-function that exist in the
literature (see for example, Adric et al., [1], Bhatnagar and Pandey, [4], Hang et al., [6],
Sontakke et al., [18], Mazhar-Ul-Haque and Holambe, [20], Andric et al., [22] and Mazhar-Ul-
Haque and Holambe, [23]).
References
[1] Adric, M., G. Farid, Pecaric, J., A further extension of Mittag-Leffler function, Journal
of Fractional Calculus and Applications, 21 (5), 1377-1395, 2018.
[2] Chaudhry, M.A., Qadir, A., Rafique, M., Zubair, S.M., Extension of Euler’s beta
function, Journal of Computation and Applied Mathematics, 78: 19-32, 1997.
[3] Chaudhry, M.A., Qadir, A., Srivastava, H.M., Paris, R.B., Extended hypergeometric
and confluent hypergeometric functions, Applied Mathematics and Computation, 159, 589-604,
2004.
[4] Bhatnagar, D., Pandey, R.M., A study of some integral transforms on Q-function, South
East Asian Journal of Mathematics and Mathematical Sciences, 16 (1), 99-110, 2020.
[5] Abubakar U.M., Kabara S.R., Lawan M.A., Idris F.A., A new extension of modified
gamma and beta functions, Cankaya University Journal of Science and Engineering, 18 (1), 9-
23, 2021.
[6] Hang, Y.Z., Farid G., Salleh, Z., Ahmad A., On a unified Mittag-Leffler function and
associated fractional integral operator, Mathematical Problems in Engineering, Aricle ID
6043769, 1-9, 2021.
[7] Goyal, S.P., Goyal, A.K., Integral transforms. Jaipur: Jaipur Publising House, 2014.
[8] Sneddon, I.N., The use of integral transform. New Delhi: Tata Mc Graw-Hill, 1979.
[9] Abubakar, U.M., Kaurangini, M.L., New extension of beta, Gauss and confluent
hypergeometric function, Cumhiyet Science Journal, 42 (3), 663-676, 2021.
[10] Debnath, L., Bhatta, D., Integral transforms and their applications. Baca Raton:
Capman and Hall/CRC, 2 ed., 2007.
[11] Romero L., Cerutti, R., Luque, L., A new fractional Fourier transform and
convolutions products, International Journal of Pure and Applied Mathematics, 66, 397-408,
2011.
[12] Sachan, D. S., Jaloree, S., Integral transforms of generalızed M-serıes, Journal of
Fractional Calculus and Applications, 12 (1), 213-222, 2021.
[13] Luchko, Y.F., Matrinez, H., Trujillo, J.J., Fractional Fourier transform and some of
its apllications, Fractional Calculus and Applied Analysis, 11 (4), 457-470, 2008.
[14] Nadir, A., Khan, A., Kali, M., Integral transforms of the generalized Mittag-Leffler
function, Applied Mathematical Sciences, 8 (3), 5145-5154, 2014.
[15] Mathai, A.M., Saxena, R.K., Haubald, H.J., The H-function: theory and applications.
New York: Springer Science, 2010.
[16] Abubakar U.M., Kabara S.R., Some results on the extension of the extended beta
function, IOSR Journal of Mathematics, 15 (5), 7-12, 2019.
[17] Abubakar, U.M., A comparative analysis of modified extended fractional derivative
and integral operators via modified extended beta function with applications to generating
functions, sent.
[18] Sontakke, B.R., Kamble, G.P., Mazhar Ul-Haque, M., Some integral transform of
generalized Mittag-Leffler functions, Internaional Journal of Pure and Applied Mathematics, 108
(2), 327-339, 2016.
[19] Mathai, A.M., Saxena, R.K., Generalized hypergeometric functions with applications
in statistics and physical science. New York: Springer, 1973.
[20] Mu’lla, M.A.M., Fractional Calculus, Fractional Differential Equations and
Applications, Open Access Library Journal, 7, Article ID e6244, 2020.
[21] Saxena, R.K., Gokhroo, D.C., Special functions. Jaipur: Jaipur Publishing House, 8
eds., 2013.
[22] Andric, M., Farid, G., Pecaric, J., A further extension of Mittag-Leffler functin, Journal
of Fractional Calculus and Applications, 21 (5), 1377-1395, 2018.
[23] Mazhar-Ul-Haque, M., Holambe, T.L., A Q function in fractional calculus, Journal of
Basic and Applied Research International, 6 (4), 248-252, 2015.
Article
Full-text available
The main objective of this paper is to study the newly introduced extended gamma function and present some properties of the existing extended beta and hypergeometric functions with their properties such as integral formulas, functional relations, differential formulas, summation formulas, recurrence relations and the Mellin transform. In addition, applications of the extended beta function to statistical distributions have been discussed by providing mean, variance, coefficient of variance, moment generating function, cumulative distribution and reliability function of the new extended beta distribution.
Article
Full-text available
Abstract: This article object is to introduce new extension of the extended beta, Gauss hypergeometric, Appell hypergeometric and Lauricella hypergeometric functions. The new extension of the extended Riemann-Liouville, Caputo and Kober-Erdelyi fractional derivative and integral operators are also examined with their applications to generating functions by considering the extended hypergeometric functions. The Mellin of certain new extension of the extended fractional derivative and integral operators ware obtained. Keywords :Beta function, Fractional calculus, Gamma function, Mellin transform.
Article
Full-text available
The aim of this paper is to unify the extended Mittag-Leffler function and generalized Q function and define a unified Mittag-Leffler function. Both the extended Mittag-Leffler function and generalized Q function can be obtained from the unified Mittag-Leffler function. The Laplace, Euler beta, and Whittaker transformations are applied for this function, and generalized formulas are obtained. These formulas reproduce integral transformations of various deduced Mittag-Leffler functions and Q function. Also, the convergence of this unified Mittag-Leffler function is proved, and an associated fractional integral operator is constructed.
Article
Full-text available
There are many extensions and generalizations of Gamma and Beta functions in the literature. However, a new extension of the extended Beta function B_(ζ〖, α〗_1)^(α_2;〖 m〗_1,〖 m〗_2 ) (a_1,a_2 ) was introduced and presented here because of its important properties. The new extended Beta function has symmetric property, integral representations, Mellin transform, inverse Mellin transform and statistical properties like Beta distribution, mean, variance, moment and cumulative distribution which ware also presented. Finally, the new extended Gauss and Confluent Hypergeometric functions with their propertied were introduced and presented.
Article
Full-text available
In this research paper, a new extension of modified Gamma and Beta functions is presented and various functional, symmetric, first and second summation relations, Mellin transforms and integral representations are obtained. Furthermore, mean, variance and moment generating function for the beta distribution of the new extension of the modified beta function are also obtained.
Article
Full-text available
Integral transforms provide powerful operational methods for solving initial value problems and initial-boundary value problems for linear differential and integral equations. Keeping these features in mind, in this paper we have provided certain integral transforms of generalized M-series. The results are provided in terms of hypergeometric function and generalized Wright function.
Article
Full-text available
In this paper, we describe two approaches to the definition of fractional derivatives. We investigate the accuracy of the analysis method for solving the fractional order problem. We also give some improvements for the proof of the existence and uniqueness of the solution in fractional differential equations. Treatment of a fractional derivative operator has been made associated with the extended Appell hypergeometric functions of two or three variables and Lauricella hypergeometric function of three variables.
Article
Full-text available
The aim of this research work is to study the extension of the extended beta function
Article
Full-text available
In this paper an extended generalized Mittag-Leffler function $\begin{array}{} \displaystyle E_{\rho,\sigma,\tau}^{\delta,r,q,c}(z;p) \end{array}$ and the corresponding fractional integral operator $\begin{array}{} \displaystyle \varepsilon_{a^{+},\rho,\sigma,\tau}^{w,\delta,q,r,c}f \end{array}$ are defined and used to obtain generalizations of Opial-type inequalities due to Mitrinović and Pečarić. Also, some interesting properties of this function and its integral operator are discussed. Several known results are deduced.
Article
Full-text available
This paper presents a Q function using Generalized Mittag-Leffler function in Fractional Calculus and also some relations and results related to this new special function. The Mittag-Leffler function arises usually in the solution of fractional order differential equation and fractional order integral equations.
Article
Full-text available
This paper presents integral transform of Generalized Mittag-Leffler function which plays an important role to solve the differential equations and also some relations and results related to this generalized Mittag-Leffler function. The generalized Mittag-Leffler function arises in the solution of fractional order differential equations and fractional order integral equations.