ArticlePDF Available

On involutive division on monoids

Authors:

Abstract

We consider an arbitrary monoid MM, on which an involutive division is introduced, and the set of all its finite subsets SetMM. Division is considered as a mapping d:SetMM{d:SetM \times M}, whose image d(U,m){d(U,m)} is the set of divisors of mm in UU. The properties of division and involutive division are defined axiomatically. Involutive division was introduced in accordance with the definition of involutive monomial division, introduced by V.P. Gerdt and Yu.A. Blinkov. New notation is proposed that provides brief but explicit allowance for the dependence of division on the SetMM element. The theory of involutive completion (closures) of sets is presented for arbitrary monoids, necessary and sufficient conditions for completeness (closedness) - for monoids generated by a finite set XX. The analogy between this theory and the theory of completely continuous operators is emphasized. In the last section, we discuss the possibility of solving the problem of replenishing a given set by successively expanding the original domain and its connection with the axioms used in the definition of division. All results are illustrated with examples of Thomas monomial division.
Discrete &Continuous Models
&Applied Computational Science
    
2021, 29 (4) 387–398
http://journals.rudn.ru/miph
Research article
 
   
 
On involutive division on monoids
Oleg K. Kroytor, Mikhail D. Malykh,
Peoples’ Friendship University of Russia (RUDN University)
6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation
Meshcheryakov Laboratory of Information Technologies
Joint Institute for Nuclear Research, Dubna, Russia
6, Joliot-Curie St., Dubna, Moscow Region, 141980, Russian Federation
       
   
      
       

    

 

     

 
         
          
            
          


           
        
    
       
            
           
             
          
Key words and phrases:     
1. Introduction
            
            
          
         
          
           
            
           
            
           
      
          
http://creativecommons.org/licenses/by/4.0/
 &    
          
       
           
            
          
            
          
             
            
            
            
        
           
             
          
    
2. Divisions on monoids
Denition 1.
       
          
 
 
        
   


     
Denition 2.         
 
   
 
 
          
     
   
  



   

    


    
 
Remark 1.
         
           
       
ℒ(𝑈)
  
    
Example 1.

   

       
           
   

      
 
       
    
     
       
  

          
     
Denition 3.
 

    

   
      
 
   
𝑑
Theorem 1.
If
1𝑠
are multiplicative elements of
for
with respect
to , then 𝑗1
1𝑗𝑠
𝑠.
Proof.        
       
   
 𝑑
Theorem 2.
Suppose that a nite set
generates a monoid
and some
mapping is given 𝑑  .
Let us dene the function
 
as follows:

if and only if
and there exists a product of
elements from
𝑑
such that
. The function
denes division by
if and only if the
embedding implies
𝑑𝑑 
Remark 2.
         
         
           
         
𝑥∈𝑋𝑗𝑥
            
         
𝑥∈𝑋𝑗𝑥
Proof.
        



 
    

  
   
  
 
       
 



    


 
𝑑
 
 


 
 
 

     
𝑑

 &    
      



    
  
𝑑
 
    

   
𝑑 𝑑
     
Example 2.
  
     
 1𝑛      󰄪𝑖𝑗1
1𝑗𝑛
𝑛𝑖
      
𝑖𝑑󰄪𝑖
𝑣∈𝑈 󰄪𝑖
    



𝑖𝑑
 
  󰄪𝑖     

𝑣∈𝑈󰄪𝑖
𝑣∈𝑈 󰄪𝑖
      
   


3. Involutive divisions on monoids
Denition 4.

      

   
  
    

       

  
     
        

 
           
Remark 3.
   


            

 


    
     
 

            
             
       

        


 
       
    
Denition 5.

      

        

           
Example 3.
         
     
𝑛
   
  
  𝑖
𝑤∈𝑈 󰄪𝑖
    


   
   𝑑    󰄪𝑖󰄪𝑖󰄪𝑖
 𝑖𝑑  󰄪𝑖  󰄪𝑖𝑖  󰄪𝑖󰄪𝑖𝑖
 𝑖𝑑  󰄪𝑖  󰄪𝑖𝑖  𝑖󰄪𝑖󰄪𝑖
   
󰄪𝑖
󰄪𝑖𝑖󰄪𝑖𝑖
󰄪𝑖𝑖

󰄪𝑖󰄪𝑖
𝑖󰄪𝑖𝑖
󰄪𝑖 󰄪𝑖𝑖󰄪𝑖𝑖

    

  
            
         


󰄪𝑖󰄪𝑖𝑖
  



 
         


 
4. Complete sets and completely involutive divisions
  
Denition 6.
     



           
Denition 7.
   

 

 
           𝑑
       𝑑
Denition 8.


      
  
        
    𝑑
Remark 4.
           
           
    
Example 4.

𝑛
 

    

 
󰄪𝑖󰄪𝑖 
   
 &    


  
   

󰄪𝑖󰄪𝑖𝑖
        
𝑖󰄪𝑖𝑖
 1𝑛   
󰄪𝑖󰄪𝑖𝑖
 
𝑖󰄪𝑖󰄪𝑖𝑖𝑖

  
       
Denition 9.


     

    
     

       
 
𝑑
 
Denition 10.
  
    
         
Remark 5.
        
          
    
Example 5.
        
   
  
 𝑛
   
        
󰄪𝑖󰄪𝑖𝑖
    
   
            
  
      

   

 
𝑛
 

󰄪𝑖󰄪𝑖
   
   
   
 
󰄪𝑖󰄪𝑖
     
 

     

󰄪𝑖󰄪𝑖𝑖
 
       󰄪𝑖󰄪𝑖𝑖𝑖
  
𝑇
 
     
 
Remark 6.
        
           
            

           
5. Necessary and sucient conditions
for the completeness of a set
Theorem 3 (necessary completeness condition).
Let the monoid
be
generated by elements of a nite set
. For the set
to be complete with
respect to the division of , it is necessary that
  
         
Denition 11.

01
    
 
         𝑖 
 𝑖𝑖𝑖
 𝑖+1 𝑖𝑖
Denition 12.
 
  
    
    
Remark 7.
         
             
           
             
           
 
Remark 8.
          
         
           
        
Theorem 4. If is a nite involutive division on the monoid generated
by elements of the nite set
, then for the set
to be complete it is necessary
and sucient that condition  be satised.
Proof.
 

    


          
  
   
0
    

0
      
0
 
 

 
0
 
000
  
        1   100

1
         
 1   111
   

   
2
 
211
       01 
         
        
   
          
  
          
 &    
Example 6.
       
𝑖𝑘𝑖

   𝑖+1  󰄪𝑗𝑖+1 󰄪𝑗𝑖𝑘𝑖𝑗
 𝑖󰄪𝑗𝑖+1 󰄪𝑗𝑖𝑗󰄪𝑗𝑖
 𝑖  𝑖
󰄪𝑘𝑖𝑖+1 󰄪𝑘𝑖𝑖𝑘𝑖󰄪𝑘𝑖𝑖
    
󰄪𝑘𝑖𝑖 𝑘𝑖
 
𝑖
 𝑖+1 𝑖𝑘𝑖
            
          

    
6. Set completion
Problem. 

     
          
          
           
           
   
 
           
   
        
   
              

      
   
1
 
    
       

      
      
          
  
      
    
            
 
          
     
𝑛

 
𝑛

   𝑛  
             
              
      
     

       

  


 


      

      
  
   
         
 





1
  
    
         
           
Theorem 5. If , then  is not empty.
Proof.


  
1

1

 11

1

1
   
1
 111
  
1 
 
    
  1 
           1

11 
     
111
    
   1  111
 
11
    
2
   
12
   2  112  
1122 21
1

1
  
1

1
     
12
     1122
        
22
  
2
       
         𝑛 
 
            
     
           
     
Example 7.
     
  

       
   
   󰄪𝑖󰄪𝑖𝑖
    

       

     
󰄪𝑖󰄪𝑖𝑖
  

  

     
󰄪𝑖󰄪𝑖
 
    
7. Discussion
           
          
           
          
               
           
      
 &    
             
          

  
        
   



     
             
         
           
        
Acknowledgments
           

References

  Les Systèmes d’Equations aux Dérivées Partielles 
 

       Journals de
mathématiques, 8e série     

  Dierential systems    
 

         Preprint
JINR E5-94-224  

          
  Preprint JINR E5-94-318  

         
  Progress in Mathematics     
   10.1007/978-3-0348-9104-2_20

          
  Mathematics and Computers in Simulation  
    10.1016/S0378-4754(96)00006-7

          
Mathematics and Computers in Simulation      
   10.1016/s0378-4754(97)00127-4

         
  Mathematical and computer modelling  
      10.1016/S0895-7177(97)00060-5

         
Programming and Computer Software       

          
     Izvestija
Saratovskogo universiteta         

       
 https://events.rudn.ru/event/102
           

          
       
     
      
   

        Journal of Symbolic
Computation        
10.1006/jsco.
1995.1026

           
     Proceedings of the 1993 International
IMACS Symposium on Symbolic Computation  
       
For citation:
            
         
 
Information about the authors
Kroytor, Oleg K.       
        
 

kroytor_ok@pfur.ru
 
 
Malykh, Mikhail D.      
        
        
      
     

malykh_md@pfur.ru
 
 
     
 &    
 
   
 
Об инволютивном делении на моноидах
О. К. Кройтор, М. Д. Малых,
Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия
Лаборатория информационных технологий им. М. Г. Мещерякова
Объединённый институт ядерных исследований
ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия
  
   
      


  

 

      
      
       
        
       

 
      
      
   
  
        
       
       
     
   
Ключевые слова:     
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
In this paper, we consider and illustrate by examples some recently developed computer algebra methods for analyzing and solving nonlinear algebraic and differential equations. The foundation of these methods is either the transformation of the initial equations to an equivalent, often called standard, form or their reduction to a finite set of subsystems in standard form. As a standard form we consider various Gröbner bases with special emphasis on its involutive extension. Applications to the symmetry and integrability analysis of partial differential equations as well as to solving systems of polynomial equations are discussed.
Article
Full-text available
Recently, Zharkov and Blinkov introduced the notion of involutive bases of polynomial ideals. This involutive approach has its origin in the theory of partial differential equations and is a translation of results of Janet and Pommaret. In this paper we present a pure algebraic foundation of involutive bases of Pommaret type. In fact, they turn out to be generalized left Gröbner bases of ideals in the commutative polynomial ring with respect to a non-commutative grading. The introduced theory will allow not only the verification of the results of Zharkov and Blinkov but it will also provide some new facts.
Article
Basic properties of involutive division of monomials that underlies the most general algorithms for construction of involutive bases of polynomial ideals are presented. Examples of various involutive divisions are given.
Article
In our recent paper [1], the notion of involutive bases of polynomial ideals was introduced and an algorithm for computing involutive bases was presented. The improved form of this algorithm together with the proof of its correctness in the zero-dimensional case is given in [2]. In the positive-dimensional case, a linear change of variables is generally required for constructing involutive bases defined in our sense. It turns out that when the involutive basis exists (without change of variables), it can be computed considerably faster by our algorithm than the minimal standard basis by Buchberger’s algorithm [3]. On the other hand, an involutive basis computed in the total-degree term ordering often looks more complicated than the corresponding minimal standard basis. The reason is that the involutive basis of a zero-dimensional ideal is nothing but a standard basis enlarged to an “overdetermined” linear algebraic system in monomials irreducible modulo this ideal. From this fact, some interesting properties of involutive bases may be deduced, and a simple method for solving zero-dimensional systems may be constructed.
Article
In this paper we consider an algorithmic technique more general than that proposed by Zharkov and Blinkov for the involutive analysis of polynomial ideals. It is based on a new concept of involutive monomial division which is defined for a monomial set. Such a division provides for each monomial the self-consistent separation of the whole set of variables into two disjoint subsets. They are called multiplicative and non-multiplicative. Given an admissible ordering, this separation is applied to polynomials in terms of their leading monomials. As special cases of the separation we consider those introduced by Janet, Thomas and Pommaret for the purpose of algebraic analysis of partial differential equations. Given involutive division, we define an involutive reduction and an involutive normal form. Then we introduce, in terms of the latter, the concept of involutivity for polynomial systems. We prove that an involutive system is a special, generally redundant, form of a Gröbner basis. An algorithm for construction of involutive bases is proposed. It is shown that involutive divisions satisfying certain conditions, for example, those of Janet and Thomas, provide an algorithmic construction of an involutive basis for any polynomial ideal. Some optimization in computation of involutive bases is also analyzed. In particular, we incorporate Buchberger’s chain criterion to avoid unnecessary reductions. The implementation for Pommaret division has been done in Reduce.
Differential systems
  • J Thomas
J. Thomas, Differential systems. New York: American Mathematical Society, 1937.
Involution approach to investigating polynomial systems
  • A Y Zharkov
  • Y A Blinkov
A. Y. Zharkov and Y. A. Blinkov, "Involution approach to investigating polynomial systems," Mathematics and Computers in Simulation, vol. 42, pp. 323-332, 1996. DOI: 10.1016/S0378-4754(96)00006-7.