ArticlePDF AvailableLiterature Review

Effective Parameters on Fabrication and Modification of Braid Hollow Fiber Membranes: A Review

Authors:

Abstract

Hollow fiber membranes (HFMs) possess desired properties such as high surface area, desirable filtration efficiency, high packing density relative to other configurations. Nevertheless, they are often possible to break or damage during the high-pressure cleaning and aeration process. Recently, using the braid reinforcing as support is recommended to improve the mechanical strength of HFMs. The braid hollow fiber membrane (BHFM) is capable apply under higher pressure conditions. This review investigates the fabrication parameters and the methods for the improvement of BHFM performance.
Membranes2021,11,884.https://doi.org/10.3390/membranes11110884www.mdpi.com/journal/membranes
Review
EffectiveParametersonFabricationandModificationofBraid
HollowFiberMembranes:AReview
AzadehNazif
1
,HamedKarkhanechi
1,
*,EhsanSaljoughi
1
,SeyedMahmoudMousavi
1
andHidetoMatsuyama
2,
*
1
DepartmentofChemicalEngineering,FacultyofEngineering,FerdowsiUniversityofMashhad,
Mashhad9177948974,Iran;azadehnazif@gmail.com(A.N.);saljoughi@um.ac.ir(E.S.);
mmousavi@um.ac.ir(S.M.M.)
2
ResearchCenterforMembraneandFilmTechnology,DepartmentofChemicalScienceandEngineering,
KobeUniversity,11Rokkodai,Nadaku,Kobe6578501,Japan
*Correspondence:karkhanechi@um.ac.ir(H.K.);matuyama@kobeu.ac.jp(H.M.)
Abstract:Hollowfibermembranes(HFMs)possessdesiredpropertiessuchashighsurfacearea,
desirablefiltrationefficiency,highpackingdensityrelativetootherconfigurations.Nevertheless,
theyareoftenpossibletobreakordamageduringthehighpressurecleaningandaerationprocess.
Recently,usingthebraidreinforcingassupportisrecommendedtoimprovethemechanical
strengthofHFMs.Thebraidhollowfibermembrane(BHFM)iscapableapplyunderhigherpres
sureconditions.Thisreviewinvestigatesthefabricationparametersandthemethodsfortheim
provementofBHFMperformance.
Keywords:braidhollowfibermembrane;fabricationparameters;mechanicalstrength;braid
reinforcing
1.Introduction
Membranetechnology,includingpolymericmembranes,isoneofthebestadvanced
separationandtreatmentsystemsthathavebeenwidelyusedindifferentapplications
suchasdesalination,wastewatertreatment,oil/waterseparation,andwaterreuseappli
cations[1,2].Hollowfibermembranes(HFMs)possessdesiredandcompetitivead
vantagesrelativetoflatsheetmembranesformanymembraneseparationapplications
duetohighmembranesurfaceareapervolumeofamodule(e.g.,theratioofareaper
volumeisreported40m
2
/m
3
forflatsheetand170m
2
/m
3
forHFMs[3]).Theyalsohave
highpermeabilityandporosity,desirablefiltrationefficiency,propermechanicalproper
ties,selfsupportedstructureandcharacteristics,smallfootprint,highpackingdensity
relativetootherconfigurations,easeofhandlingandmaintenance[4–12].Duealsotothe
spacerfreemodule,theassemblycostwillbereduced.Hollowfibermembraneshadbeen
widelyusedformicrofiltrationandultrafiltrationaloneorasthepretreatmentofnanofil
trationandreverseosmosisinseawaterdesalination,forwardosmosis,andmembrane
bioreactortothetreatmentofindustrialwastewater(suchasmedicine,food,andtextiles)
andgenerationofdrinkingwater.Hollowfibermembranesareoftenpossibletobreakor
damageduringhighpressurecleaning,modulepreparation,aerationprocess.Itisdueto
spongelikeandasymmetricfingerlikemorphologythatledtomakingbrittleandporous
structures.Hence,theirlifetimemayreducedespitetheirmanyadvantages[4,11,13].
Inordertodesignmembranestructure,lifetimepredictionandreliability,under
standing,andanalysisisimportanttoevaluatethemechanicalbehaviorunderactualop
eratingconditions.Mechanicalabrasionofmembranesarisingfromphysicalandchemi
caldamagebyharshfeedwater,fouling,chemicalcleaning,andbackwashingbring
aboutthereductioninmembranestrength[4,14].Generally,themechanicalpropertiesof
Citation:Nazif,A.;Karkhanechi,H.;
Saljoughi,E.;Mousavi,S.M.;
Matsuyama,H.EffectiveParameters
onFabricationandModificationof
BraidHollowFiberMembranes:A
Review.Membranes2021,11,884.
https://doi.org/10.3390/
membranes11110884
AcademicEditor:MariaGraziaDe
Angelis
Received:12October2021
Accepted:12November2021
Published:17November2021
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu
tionalaffiliations.
Copyright:©2021bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(https://cre
ativecommons.org/licenses/by/4.0/).
Membranes2021,11,8842of31
polymericflatsheetmembranesareimprovedbyapolyestersupportlayer.Thenonwo
venpolyesterpossessesstrongmechanicalstrengthcantoleratevigoroushydraulicim
pact[15–19].Hosseinietal.[15]utilizedpolyestersupportinordertoimprovetheme
chanicalstrengthinhighpressure.Recently,usingtubularbraid(orthreads/fabric)asre
inforcedsupportisproposedtoimprovethemechanicalstrengthofhollowfibermem
branes.Braidreinforcedhollowfibermembraneshaveattractedattentionandinterest
duetotheirlowcost,efficientseparation,relativelysimplepreparation,andhighmechan
icalproperties[6,7,11,20,21].Thistypeofhollowfibermembranepossessesasupreme
tensilestrength(contributestothelonglifetimeofthemembranes),andthustheycould
applyunderhigherpressureconditionsrelativetocommonhollowfibermembranes.A
braidhollowfibermembrane(BHFM)isfabricatedbycoatingathinfilmonthesurface
oftubularbraid(i.e.,reinforcedfiber).Thepresenceofbraidsupportincreasesthefluxof
ultrafiltration/microfiltrationduetothethinnerthicknessoftheselectivelayer,thanksto
toleratingrelativelyhigherpressurecomparedwiththetypicalHFM[4,21–24].Thefirst
studiesinreinforcedHFMsarerelatedtothepatents.Cooperetal.[25]introducedthe
conceptofbraidedmembraneforthefirsttime.Theycastthemembraneonasupporting
surfacesuchasfabriclikematerialconsistingofmonofilamentmaterial(e.g.,polyesters,
nylon,rayon,polyolefin,Teflon,acrylic)withasmalldiameter.ZenonEnvironmentalInc.
producedatypeofhollowfibermembraneconsistingoftubularmacroporoussupport
andatubularsemipermeablethinfilmofthepolymer.Thepreparedbraidhollowfiber
membranecouldendureto10.3MPainhydrauliccompactionforces[26].
Thepeelingofthesurfacelayerfromthetubularbraidisthedrawbackofthebraid
hollowfibermembranesduetothermodynamicincompatibilitybetweenthesetwolayers
[21].Thebraidhollowfibermembranecansignificantlyenhancetheeffectiveareadueto
fewerstickingfiberstogetherintheassembledmodule[27].Thebraidsupportabsorbs
themoleculesofwaterduetotheporousstructure.ThethinseparationlayeroftheBHFM
alsocontributedtothewaterfluxenhancementbecauseoflowerthicknesscomparedto
selfsupportHFMs[24].Chenetal.[28]reportedthatthefluxofbraidPMIA‐BHFMswas
higherthanthePMIAHFMs.ItisduetothePMIABHFMscontaininganinnerlayerwith
arelativelyporousstructurethatleadstoareductioninmembraneresistanceforwater
transfer.TheBHFMswiththedenseoutersurfacecanpreventtheadsorptionoffoulants
andtheporeblockageintheinnerporesofthemembrane.Therefore,theoccurredfouling
isformingthecakelayertype,caneasilyremovebywashing,whiletheopenporesofthe
HFMeasilyadsorbedthemoleculesofprotein.Inthiscase,theporesofthemembrane
willbeblocked.Thistypeoffoulingisirreversibleandhardlyeliminatedthroughwater
washing.Therefore,thecaseofirreversiblefoulingrequiredacombinationofchemical
cleaningandbackwashing[29].
BHFMsarefabricatedbytwospinningmethods:electrospinningmethodandnon–
solventinducedphaseinversion(NIPS)basedonthedrywetspinning.Basedonthelit
erature,membranespreparedbytheNIPSmethodbasedonthedrywetspinningprocess
aremorecommonandhavehigherwaterfluxduetothinseparationlayers[24].Asshown
inFigure1,thetubebraid(liketheborefluidinjectioninthefabricationofcommon
HFMs)isinsertedthroughthemiddleofthespinneret.Thenthepolymersolutionisuni
formlycoatedonthebraidtube.Thepreparedbraidhollowfibermembraneisimmersed
intoacoagulationbath,anditisfinallywounduponthedrum[4,30].
Membranes2021,11,8843of31
Figure1.Schematicillustrationofthefabricationofbraidreinforcedhollowfibermembranes(BHFM).
Recently,theelectrospinningmethodhasbeenattractedmuchattentiontogenerat
ingpolymerfibersintherangeofseveralmicronstonanometerdiameter(50nmand10
μm).Desirableproperties(functionality,porosity,weight,andstrength)canbeachieved
bythetypeofpolymerandefficientcontrolofoperatingconditions.Alargespecificarea,
ahighratiooflengthtodiameter,anduniformporesizedistributioncanbeachievedby
theelectrospinningmethod.Thebaseofthismethodisahighvoltageelectricfieldforthe
productionofnanofibersfromapolymericstreamthatisreleasedbyanozzlesystem.This
techniquecontributestoproducingofultrathinlayersfromdifferentfibers,particles,and
polymers.Thegeneratedfibersfromthismethodareaffectedbypolymericsolutionprop
erties(concentrationandthemolecularweightofpolymer),environmentalconditions
(humidityandroomtemperature),andoperationparameters(solutionflowrate,applied
voltage,andtipcollectordistance).Intheelectrospinningmethod,thesyringefillswitha
polymericsolution,thenpumpstothenozzleataspecifiedflowrate.Thebraidlayeris
locatedonathincylindricalthatisjoinedtotherotatingshaft.Thefiberswillbegenerated
bycoatingthepolymersolutiononthebraidlayerbyapplyingtheelectricpowertothe
nozzle(Figure2)[31,32].Aslanetal.[31]fabricatedtubularelectrospunnanofibermem
branesasmicrofiltrationmembranes.Polyacrylonitrile(PAN)nanofiberscoatedonthe
braidedrope.Themorphologyandfiltrationcharacterizationshowedexcellentproperties
intermsofcrosssectionthickness,waterflux,turbidity,porosity,hydrophilicity,anduni
formdistributionofporesize.
Membranes2021,11,8844of31
Figure2.Schematicdiagramofanelectrospinningsetup[31].
Kimetal.[5]introducedpatternedmorphology(prismandpyramid)tothesurface
ofBHFM,asshowninFigure3,byaimingtodeclinethefoulinginMBRforwastewater
treatment.Theinjectionrateofthenon–solventmainlyaffectedthemorphologyofthe
membranes.Uniformdistributionofmacrovoidsobservedforthehighinjectionrateon
thetotalcrosssectionsurface.Inalowinjectionrate,adenseandthickpolymerfilmwas
formedinwardandoutwardofthebraid,andlargemacrovoidswerecreatedexternal
sideofthepolymerfilminthevicinityofthebraid.Thisobservationcanbeexplained
basedontheinfiltrationofthenonsolvent.Inalowinjectionrate,thenonsolventwould
inducephaseinversioninsideandnearthebraidrelativetoinfiltrationfurthertothe
braid.Hence,thebulkofthepresentpolymeroutsidethebraiddiffusestowardthebraid
thatleadingtocoagulation.Therefore,adenseandthickpolymerfilmwasformedinside
ornearthebraid,andlargemacrovoidswerecreatedoutsidethebraidbecauseofan
insufficientcontentofthepolymer.Inahighinjectionrate,thenonsolventdiffuses
quicklyinthetotalareaofthepolymericsolution.Hence,phaseinversionwouldhappen
withmorespeedalloverthepolymersolutionrelativetothemigrationofthepolymerto
thebraid.Therefore,amoreuniformdistributionofmacrovoidsiscreated.
Figure3.TheschematicofpatternedBHFM(b)lowinjectionrateofnonsolvent(c)highinjection
rateofnonsolvent[5].
ThereisalimitedamountofpapersthatreviewedtheBHFMs[33,34].Wespecially
reviewedtheeffectivefabricationparameters,modification,andperformanceofbraid
hollowfibermembranesinthedifferentapplications.Hence,thetypeandcontentofpol
ymer,additive,themethodsforincreasinginterfacialbondingbetweenthebraidandsep
arationlayer,andotherefficientparametersarediscussed.
Membranes2021,11,8845of31
2.EffectiveFabricationParameters
Dopeandbraidcompositionsuchastypeandconcentrationofpolymerandadditive,
fabricationparameters,andoperationalconditionsplayvitalrolesinthesuccessofthe
BHFMfordifferentapplications.Accordingly,theresearchersinvestigatedthevarious
aspectstoenhancetheperformanceofBHFMsfordifferentapplications.
2.1.TypeofPolymerinaDopeSolution
Theselectionofmaterialisanessentialfactorintheachievementofdesiredperfor
manceinmembraneapplication.Polymericmembranesarethemostusedmembranesfor
differentapplicationswithhighdesignflexibility[35].Severalpolymershavebeenem
ployedforthepreparationofBHFM,suchaspolyacrylonitrile(PAN),poly(vinylchlo
ride)(PVC),celluloseacetate(CA),polysulfone(PSf),andpolyvinylidenedifluoride
(PVDF).Table1providesthepropertiesofpolymersusedforthepreparationofBHFM.
Table1presenttheusedpolymersforBHFMandtheirproperties.
PVCisoneoftheusualandpromisingpolymersformembraneapplication.How
ever,foulingproblemscanrestrictthePVCmembranesinwaterapplicationowingto
theirhydrophobicnature.TheblendingofanamphiphiliccopolymerandPVCinthedope
solutionisoneofthemethodsthatcanovercometheantifoulingproperties.Thehydro
philicpartoftheamphiphiliccopolymerisconnectedtothemembranesurface,which
leadstoamembranewithgoodantifoulingproperties.Thehydrophobicsectioncreates
goodcompatibilitywiththemembranematrixandincreasesthemaintenanceofcopoly
merinthemembranematrix.Zhouetal.[36]preparedtheBHFMpurePVCandblended
BHFMwithdifferentblendratiosofPVC/copolymer.Theburstingstrengthandtensile
strengthofBHFMwerehigherthan2.1and170MPa,respectively,whichwerelargerthan
thoseoftheselfsupportingHFMs.
Copolymers,includingpoly(ethyleneoxide)(PEO)orpoly(ethyleneglycol)(PEG)
chains,cancreateahydrationlayer,preventingthebindingofthefoulantsmoleculesto
thesurfaceofthemembrane.However,PEGbasedcopolymerissuggestedtoimprove
theantifoulingpropertiesandhydrophilicityofPVCmembranes.SincePEGiscatego
rizedinsoftpolymers,increasingthePEGcontentinthedopesolutioncanreducethe
mechanicalstrength.Henceitcanlimitthemembraneapplicationinpracticalwastewater
treatmentduetodamagingthemembranestructureduringthebackflushprocessoraer
ation[36].Therefore,theoptimizationofPEGcontentisessentialinordertoobtainanti
foulingpropertiesanddesirablemechanicalstrengthforpracticalapplication.Zhouetal.
[36]usedamphiphiliccopolymerpoly(vinylchloridecopoly(ethyleneglycol)methyl
ethermethacrylate)(poly(VCcoPEGMA))toendowhydrophilicitytoPVCbraidhollow
fibermembrane.Considerableimprovementwasobservedinantifoulingpropertiesand
hydrophilicitywhenthecopolymer/PVCblendingratiointhecoatingsolutionwasused
inoptimumcontent.
PANhollowfibermembraneshavebeenwidelyutilizedinpervaporation,thetreat
mentofindustrialwastewater,andenzymeimmobilizationapplications.Fabricationof
thesubstrateforcompositemembranesisanotherPANapplicationduetofavorableprop
erties.LowmechanicalstabilitylimitsPANapplicationinmicro/ultrafiltrationandMBR
systems[7].Quanetal.[7]preparedthePANBHFMbycoatingPANsolutionsonthe
PET(Polyethyleneterephthalate)andPANtwodimensionalbraidsurface.ThePAN
BHFMbasedonthePANbraidhadexcellentmechanicalpropertiesduetogoodinterfa
cialbondingbetweenthepolymerandthebraid.Itwaspossessedatensilestrengthhigher
than80MPa.
Theexcellentmechanicalstrengthandotheradvantages(asshowninTable1)ofPSf
membranesuggestthisisagoodcandidateforwastewatertreatmentsystems,textiledye
ing,anddesalination.PSfmembranesrequiresurfacemodificationinordertoenhance
hydrophilicityandwaterpermeation[24].Theincorporationofhydrophilicnanoparticles
Membranes2021,11,8846of31
inthePSfmembranecanimproveantifoulingpropertiesandincreasethefluxrate.Peech
manietal.[24]fabricatedhybridPSf/zincoxide(ZnO)BHFMstoincreasefluxandim
provehydrophilicity.TheBHFMswerepreparedwithdifferentconcentrationsofZnO
nanoparticles.TheZnOnanoparticlesleadtoanincreaseintheoverallfluxandabsorp
tionofwatermoleculesontothemembranesurfaceduetohydrophilicnatureandwater
lovingproperties(absorptionofhydroxylgroups).Increasingthehydrophilicityofthe
membranesurfaceleadstodecreasingtheinteractionsbetweenorganicmattersandthe
membranesurface.Hence,lessfoulingbyorganicfoulantshappensonthehydrophilic
membranes.
CAmembranesareanothertypeofpolymermembranethatplaysasignificantrole
inmembraneseparationduetofavorablepropertiesbasedonTable1.Despitethegood
propertiesofCAhollowfibermembranes,theweakmechanicalstrengthlimitedtheirus
ageinpracticalapplicationssuchasmembranebioreactors.TheHFMinthesubmerged
MBRcaneasilybebrokenordamagedduringthebackwashingprocessoraeratedair
flow.Hence,itisrequiredthistypeofmembranepreparedwithhighmechanicalproper
ties.CAmembraneasahydrophilicmembraneshowedthehighperformanceforanti
foulingpropertieswhenfacedwithBSAsolution.ThedenseoutersurfaceofBHFMcould
avoidorlimittheblockingoftheinnerpore.Hence,thecreatedfoulingismainlydueto
adsorptionand/ordepositionofpollutantsonthemembranesurface,whichiseasilyelim
inatedbywaterwashing[21].
OneofthemainaromaticpolyamidesisPoly(mphenyleneisophthalamide)(PMIA)
withhydrophilicproperties,goodmechanicalproperties,excellentthermalstabilitydue
tothehydrogenbondnetwork,andaramidgroups.Thispolymeriswidelyusedfornan
ofibersproductionandinwatertreatmentapplications.Chenetal.,preparedPMIAhol
lowfibermembranescontainingseparationlayersandreinforcedbraids.ThePMIA
BHFMexhibitedgreatantifoulingpropertyrelativetoPVDFmembranes.ThePMIA
membranesexhibitedahighernegativitychargerelativetothePVDFmembranesdueto
thestrongpolaramidegroups(–NH–CO–)inthemacromolecularchainofPMIA.These
groupsleadtocreatingstrongelectronegativityandsuperiorhydrophilicityPMIAmem
branes.Thesepropertiesarethemaingoaltoimprovetheantifoulingproperty[28].
Membranes2021,11,8847of31
Table1.UsedpolymersforBHFMandtheirproperties.
PolymerChemicalStructure.Advantages Disadvantages/ImprovementApproachApplication Ref.
PAN
- Lowprice
- Excellent ag
ingresistance
- Highhydro
philicity
- Goodstability
- Goodsolvent
resistance
- Lowmechanicalstability
Water,municipal,
andindustrial
wastewatertreat
ment
[7,31]
PVC
- Excellentme
chanicalstrength
- Highcorrosion
resistance
- Lowcost
- Hydrophobicnature/Usingam
phiphiliccopolymer
UltrafiltrationBHFM
forwastewatertreat
ment
[36]
PSf
- Excellentme
chanicalstrength
- StabilityatpH
levelsfrom2to13
- Excellentre
sistancetocaustic
- Goodre
sistancetomoder
atechlorine
- Operatingat
hightemperature
andpressure
- Hydrophobicnature/Incorporationof
zincoxide(ZnO)
Wastewater
treatment[24]
Membranes2021,11,8848of31
CA
- Goodfilm
forming
- Relativelylow
cost
- Highflux
- Goodtough
ness
- Biocompatibil
ity
- Poormechanicalproperty/Usinghomo
geneousbraidreinforced
Wastewater
treatment[21,37]
PVDF
- Goodhydro
phobicproperty
[38]
- Semicrystal
linepolymer
- Goodmechani
calstrength
- Stability
againstvigorous
chemicals
- Goodthermal
stability
- dramaticallydecreasingofhydrophobi
cityincontinuoususe/blendingmethod
forimprovingthehydrophobicity(Gra
phene)[38]
- hydrophobicproperty[30]
oil/waterseparation
[38]
wastewater
treatment[30]
[38–42]
PMIA
- Highthermal
stability
- Excellentme
chanicalproper
ties
- Hydrophilic
property
NAwastewater
treatment[28]
Membranes2021,11,8849of31
PU
- Biodegradabil
ity
- Biocompatibil
ity
- Lowcost
NAoil/waterseparation[43]
PAN:Polyacrylonitrile;PVC:Polyvinylchloride;PSf:Polysoulfone;CA:Celluloseacetate;PVDF:Polyvinylidenefluoride;PMIA:Poly(mphenyleneisophthalamide);Pu:
polyurethane;NA:notapplicable.
Membranes2021,11,88410of31
2.2.TheEffectofPolymerConcentration
Generally,thepolymerconcentrationhasasignificanteffectonmembraneperfor
manceandstructure.Asthepolymerconcentrationisincreasedinthedopesolutions,the
fingerlikeporestructureisgraduallyconvertedtoaspongelikeporestructure,andthe
porediameterbecomessmaller.AscanalsobeseeninFigure4,thehigherpolymercon
centrationcausestheformationofthedenserandthickerskinlayer.Incontrast,thelooser
structureisreportedforthemembranecontaininglowpolymerconcentration.Thehigh
polymerconcentrationleadstoincreasingtheviscosityofpolymersolution.Therefore,
therateofdiffusionisreducedbetweensolventandinthephaseinversionprocess.In
stantaneousdemixingcreatesmembraneswithaporouslayerandafingerlikestructure,
whereasdelayeddemixingresultsinmembraneswithdensestructuresandspongelike
pores.Thedensandsmoothstructureandsmallporesizeofthemembranesurfacecause
animprovementtotheantifoulingabilityandseparationpropertyofthemembrane,
thoughthefluxwillbereduced.Therejectionismoredependentonthedensityofthe
separationlayercomparedtothestructureofthecrosssection[28,37,44].Fanetal.[21]
reportedthattherejectionofmembranewiththelowconcentrationofCAhadminimum
rejectionduetobigsizepores.Theyalsoobservedanincreaseinpolymerconcentration
indopesolutionleadtothecreationofasurfacewithsmoothanddenseproperties.The
burstingandtensilestrengthsalsoincreasedduetointerfacialbondingbetweentubular
braidandseparationlayer.Zhangetal.[45]observedtheBSArejectionforBHFMwas
higherthantheHFM.ItwasduetothedenserskinlayerandsmallerporesizeinBHFM
relativetoHFM.Theporesizeisanessentialfactorthataffectsmembranepermeability.
AsshowninFigure5,theincreaseinpolymerconcentrationindopesolutionleadsto
decreasingofpurewaterfluxandincreasingtherejectionduetolowerporosityandpore
sizeofthemembrane[7,40,46].
Thecontactanglebetweenthebraidandthecoatingsolutionincreasedwhenthe
polymerconcentrationincreased.Itisduetotheviscosityofpolymersolutionenhanced
withtheincreaseinpolymerconcentration;hence,thesolutionfluiditywillbereduced
[7,40,46].
BasedontheinvestigationofChenetal.[28],theantifoulingproperties(performance
andfluxrecoveryratio)forPMIABHFMwerebetterinahigherconcentrationofpolymer.
Itmaybeduetothepresenceofstrongpolargroups(NH−CO)inthemacromolecular
chainofpolymerthatleadstocreatingexcellenthydrophilicityandstrongelectronegativ
ity.Theotherreasonisthedenseoutersurfaceandsmallporesizeinthehighconcentra
tionofpolymerthatavoidstheporeblockageofinnerpores.Hence,thefoulingandform
ingofthecakelayermainlycreateonthemembranesurfacethatiseasilyremovedinthe
cleaningprocess.
Figure4.TheeffectofpolymerconcentrationonBHFMstructure(b1)5%,(b2)8%,(b3)10%,and(b4)15%[28].
Membranes2021,11,88411of31
Figure5.Effectsofpolymerconcentrationonthe(a)purewaterfluxand(b)proteinrejection[28].
Asmentioned,thepresenceofthebraidreinforcementleadstonotableenhancement
ofmechanicalproperties.Forexample,Liuetal.[46]observedthatthetensilestrengthfor
amembranewiththreethreadswasmorethansixtimesrelativetothemembranewithout
thread.Thereisthephysicalandchemicalforcebetweentheinterfaceofpolymerand
braidlayer.Thephysicalforceconsistsofconglutinationandwedge,andchemicalforce
createdbythechemicalbonds.Thewettabilityofbraidbypolymersolutionisthemain
factorthataffectstheinteractionforcebetweentwolayers.Thecontactanglebetweenpol
ymersolutionandbraidmustbesmalltoobtainsufficientcontactingandwettingbetween
them.Withanincreaseinthepolymerconcentration,theviscosityandsurfacetensionis
increased.TheburstpressureofHFMisaresistingcapabilityinaradialdirectionmainly
determinedbyforcebetweenthemoleculechainsofpolymers.Thisparameter,asacritical
parameterinthecleaningprocess,representstheinterfacialbondingstateofBHFMtoa
certainextent.Inthepracticalapplication,theoperatingpressureisrestrictedbytheburst
pressureduetothesmalleffectofbraidthreadontheradialdirectionpersistence[21,28].
ThehighburstingstrengthwouldrestricttheharmofBHFMSinthebackwashingpro
cess.Itisenhancedwiththeincreaseinpolymerconcentrationinthedopesolutiondue
tothesuperiormechanicalstrengthoftheseparationlayerinhigherpolymerconcentra
tions.Thereisatighterstackofmoleculechainsinthemembranewithhigherpolymer
concentration.Hence,theyhaveahigherburstpressure.Thereisastrikingcorrelation
betweentheburstpressureandoperationforthenormalHFM.However,addingbraid
threadsleadstoanisotropyinthetransversalandlongitudinaldirections,sotherelation
shipissmallforBHFM.Themembranematerialandstructureeffectonburstpressure
andtensilestrengthisinfluencedbybraidthread.
Fanetal.[37]observedthatanincreaseinthepolymerconcentration(from6to14
wt.%)inthedopesolutionwascontributedtotheenhancementofthetensilestrengthof
CABHFM(from11to14MPa).BasedonastudybyChenetal.[28],themechanical
strengthisdominantlygovernedthroughthereinforcedbraids.Thebreakingelongation
andtensilestrengthwereapproximatelysimilartothetensilestrengthofthebraids.The
burstingstrengthandinitialmodulusenhancedwiththeincreaseinthepolymerconcen
trationbecausetheseparationlayerwasfirmlybondedwiththebraidlayerthathindered
thedeformationofthebraidlayer.Theseparationlayeralsohadabettermechanical
strengthinhigherpolymerconcentrations.
Membranes2021,11,88412of31
2.3.EffectofAdditives
Thepresenceofadditivesinbulkoronthesurfacemembraneisoneoftheeffective
approachestoimprovemembraneperformancethroughthemodificationofroughness,
hydrophilicity,poresize,andsurfacecharge[15].Zhouetal.[36]fabricatedtheBHFMby
blendingPVCanddifferentblendratiosofpoly(VCcoPEGMA)copolymer.Therewasa
highinterfacialbondingstrengthbetweenthePETbraidandpolymersolution.Although,
thecopolymerscontainedPEGdemonstratethestrongabilityofporeforming,which
leadstocreatinglargeporesandporosityenhancement.Thepreparedmembraneexhib
itedantifoulingresistanceandhighmechanicalproperties.ThetensilestrengthofPVC
BHFMwassignificantlyhigherthanPVCHFM.Themembranehydrophilicityincreased
withincreasingthecopolymerconcentrationofthedopesolution.Highhydrophilicity
bringsaboutafasterdemixingprocessanddiffusionofwaterintothepolymersolution
duringthemembraneformation.Hence,alargerporesizewillcreateintheselectivelayer
comparedwithlowhydrophilicity.Theoptimizationofcopolymercontentisnecessary
becauseanincreaseincopolymercontentbasedonPEGinpolymersolutionleadstoa
reductioninmechanicalstrengthofmembraneduetothePEGsoftness.
Peechmanietal.[24]showedthatthepresenceofZnOnanoparticlesindopesolution
causeddelaydemixingbetweennon–solventandsolventduetoviscosityenhancement.
Thus,theformationofmacrovoidswasconsequentlyincreased.Byincreasingtheconcen
trationofnanoparticles,themacrovoidsanddensespongestructureandconsequently
higherpermeationincreasednearthebraidlayer.Itisduetothehydrophilicnanoparticles
thatcontributetothefastermovingofwatermoleculesintothemembranematrixrelative
tothedemixingratebetweennon–solventandsolventduringthephaseinversionprocess.
TheBSArejectionandwaterfluxwerehighercontentsinthehighestcontentofZnOcom
paredtoothermembranes.ItisoccurredbecauseofthehydroxylgroupofZnOnanopar
ticlesintheselectivelayerthatreceivesmorewatermolecules.Thestrongelectronegativ
ityofnanoparticlesalsoresultsinavoidingthedepositionofBSAproteinsintheselective
layer.
Lanetal.[47]fabricatedaBHFMconsistingofPVDFasabasepolymerandPETa
woventubalasasupportlayer.TheyusedTiO2nanoparticlesfortheimprovementof
hydrophilicity.Thepreparedmembraneshaddesirablepropertiesintermsofthefiltra
tionareaandmechanicalstrengthrelativetoconventionalHFM.TheBHFMcontaining
1%TiO2hadthebestantifoulingproperty,thehighestflux,andthelowestfluxdecline
rate.
Haoetal.[38]preparedaPETbraidreinforcedPVDFhollowfibermembranewith
differentconcentrationsofgraphenetoincreasethemembranehydrophobicityinoilwa
terseparationapplication.ThePETtubularbraidswerecoatedwithaPVDF/graphene
solution.Theviscositiesofpolymersolutionsfirstincreasedandthenreducedwithan
increaseingraphenecontents.Theviscosityofpolymersolutionvariedwhentheshear
rateincreasedandshowedthepropertiesofapseudoplasticfluid.Thepolymersolution
withoutgraphenehadalowviscositythatrepresentednoconsiderablechangewiththe
enhancementofshearrate.Theviscosityofthepolymersolutionchangedclearlyforthe
membranewiththehighestamountofgraphene.Itisduetographenebeingalaminated
andrigidsubstancewithahighYoung’smodulus.Inalowshearrate,thepresenceof
toughgrapheneincreasedtheflowresistanceofpolymersolution.Withtheincreasein
shearrateandexceedingfromaspecifiedamount,theeffectofflowresistanceforgra
pheneslowlyweakened,andtheviscosityofthepolymersolutionwasconsequentlyde
creased.Haoetal.observedsmallmeanporesizeandthefluctuationinthicknessofthe
selectivelayerinthemaximumconcentrationofgrapheneduetothehighviscosityand
lowfluidityofpolymersolution.Therandomdistributionofgraphenesheetsintheselec
tivelayersofBHFMsresultedincreatingamembranewithastableporestructuredueto
therigidnatureofthegraphenesheets.Wuetal.[43]fabricatedaPU/grapheneBHFM
basedonPETbraidedforoil/waterseparation.Thepreparedmembranesshowedgood
Membranes2021,11,88413of31
lipophilicpropertiesbasedoncontactangleresults.Goodselectivityforoilwatersepara
tionwasalsoachieved.
Liuetal.[29]investigatedtheeffectofmolecularweightsofpolyethyleneglycolon
thestructureandperformanceofhomogenousreinforcedPVCBHFMs.Thepresenceof
PEGwithhighmolecularweightleadstoincreasingthethicknessoftheseparationlayer
becauseoftheenhancementofsolutionviscosity.Thehighviscosityrestrictstheexchange
ofthesolventandnon–solvent.ThehighmolecularweightofPEGcreatedabiggerfinger
like,smoothoutersurfaceandcompactskinlayerrelativetothelowmolecularweightof
PEG.TherejectionofBSAproteinincreased,andtheporosityreducedwhenthemolecular
weightofPEGwasenhanced.Itisduetoincreasingthethicknessoftheseparationlayer
andformingthedenseouterlayerwiththeincreaseinthemolecularweightoftheaddi
tive.ItisnotablethatthemolecularweightofPEGdidnotinfluencethemechanicalprop
ertiesofpreparedmembranes.
2.4.EffectofBraidComposition
Tworeinforcingmethodsarereportedintheliteratureinordertoimprovetheim
provementofmechanicalpropertiesofHFMs:fibersreinforcedandporousmatrixmem
branereinforcedassupport.Thefibersreinforcedmethodislowcostandstraightfor
ward.Itcouldbedonebythetubularbraidreinforcedbasedonthereinforcementshape
andthecontinuousfiberreinforcedmethod.Leeetal.[48,49]fabricatedabraidreinforced
compositeHFMconsistingofatubularbraidwithmultifilament.Themultifilamentis
formedfrommonofilamentswithafinenessof0.01to0.4denier.Thesurfaceareabetween
thepolymerthinfilmandtubularbraidisincreasedbecausethefinenessofthemonofil
amentsissmall.Hence,thepeelingstrengthofthepolymerthinfilmandtubularbraidis
excellent,aswellasthemembranewettabilityisexcellentbecauseofthecapillarytube
phenomenon.
Inthesecondmethod,theporousmatrixmembraneasthereinforcementisfirstly
preparedbymeltspinningcoldstretchingorthermallyinducedphaseseparation;then,
thesurfacecoatingiscarried.Thismethodisapproximatelyhighcostandcomplex[6].
Liuetal.[46]fabricatedcontinuouspolyesterthreadsPVDFHFMbyincorporatingPET
threadsinthesupportlayerintheaxialdirection.Theyfoundthatthetensilestrengthof
theBHFMsimprovedupto10MPabytheincreasingofPETthreadsnumber.ThePET
threadshadloweffectsontheseparationpropertiesofthemembrane,butthetensile
strengthofthemembranewasincreased.
Bothpureandhybridcompositionforthebraidisreportedintheliterature.Fanet
al.[37]preparedahomogeneousBHFMwhichconsistedofaCAforthebraidandsepa
rationlayer.Thepreparedmembraneindicatedagoodinterfacialbondingstate,butthe
CAfibersinthebraidtendtobeswollenandsicktogether,whichdecreasesthepermea
bilityandfluxofthemembrane.Hybridbraidleadstochangingporousstructure,en
hancesthemembraneseparationproperties,andreducesthedrawbackofthehomoge
nousmethod.Fanetal.[21]preparedaBHFMbasedonahybridbraid.Thehybridbraid
consistsofCAandPAN.ThepresenceofPANfiberinhybridcompositionovercamethe
CAfiber’sswellingandreductioninpermeability.Thetensilestrengthofprepared
BHFMsincreasedfrom16.0MPato62.9MPabyoptimizingtheCA/PANratiointhebraid
composition.TheburstingstrengthwasenhancedwhenCAfiberproportionincreasedin
thebraid.Liuetal.[6]fabricatedaheterogeneousBHFMconsistingofahybridbraid(PET
andPAN)andacoatinglayerofPVC.Thepreparedmembranehadadesirableinterfacial
bondingstateandtensilestrengthrelativetothemembranecontainingpurePANorPET
braid.ItwasalsoobservedthatthetensilestrengthdecreasedwhenPANfilamentsin
creasedinthecompositionofthehybridtubularbraid.
Quanetal.[7]investigatedtheeffectoftwotypesofbraid(PANandPET)onmem
braneperformance.ThemembranewaspreparedbasedonPANbraidasahomogenous
membraneandPETbraidasaheterogeneousmembrane.Theirresultsshowedthatthe
interfacialbondingstateofthePANmembranewasbetterthanthePETmembrane.The
Membranes2021,11,88414of31
contactanglebetweenthebraidandthecoatingsolutionwaslowerforthePANmem
brane.ThetensilestrengthandpurewaterfluxofthePETmembranewerehighercom
paredtothePANmembrane.
Table2summarizesthestudiesforBHFMsbasedonhybridcompositionandpure
compositionbraid.ThePETbraidisusedinmostoftheBHFMinthepurecomposition
braid.PVP(Polyvinylpyrrolidone)orPEGisgenerallypresentindopesolutionaspore
former.Thepresenceofadditivesimprovestheseparationpropertyandwaterfluxinop
timumcontent.
2.5.ThinFilmComposite:BraidHollowFiberMembranes(TFCBHFM)
SomestudieshaveconcernedforimprovingpropertiesandperformanceofTFC
BHFMbyoptimizationoffabricationparameterssuchassoakingtime,monomerratios,
reactiontime,andmonomerconcentrationinorganicoraqueoussolution.
2.5.1.TheEffectofMonomerConcentrationonTFCBHFM
Thesurfaceproperties(e.g.,hydrophilicity,functionalgroups,crosslinkingofmon
omers)andstructure(e.g.,thickness,poredimension,androughness)oftheselective
layerdirectlyaffectonthemembraneperformance.Thus,itisnecessarythefundamental
understandingoftheinfluenceofdifferentmonomersforthepreparationofhighperfor
mancemembraneswithdesirablestructures[50].
Xiaetal.[10]investigatedtheTFCBHFMswithdifferentmonomerconcentrations
(PIP(piperazine)andTMC(trimesoylchloride)).TheyfabricatedtheNFmembranethat
exhibitedhighstrengthatpressuresupto70psiwithoutfractureandcreatedtheintegrity
intheBHFMatpressurestypicallynotutilizedforfibersofthissizebyusingbraidrein
forcedandoptimizationofmonomerconcentration.ThepreparedTFCBHFMcouldbe
usedforprocessesthatsaltselectivityisrequired.Itwasreportedthatthewaterpermea
tioninthelowconcentrationofTMCwashigherincomparisonwiththelowconcentra
tionforbothmonomers(i.e.,PIPandTMC).Itcanbeexplainedthatthemembranedefects
arereduced,oritmaybeduetotheincreasingofthethicknessordensityoftheselective
layerinahighermonomerconcentration.Thedifferentresultsobservedfromthistrend
inthepreparedmembraneswiththehighestcontentofPIPandminimumcontentofTMC.
ItisprobablyduetocreatingathickbarrierfilminthelowestTMCconcentrationinorder
tostopthereactionrapidly.ThehighTMCconcentrationshadapositiveeffectonMgSO4
rejection.Thedifferentconcentrationsofaminegroupstypicallycausethevariousperme
ation,whichislikelyduetoreducingtheporesizeofthemembrane.Figure6showsthe
reactionbetweenTMCandPIPtoformpolyamideasaselectivelayer.
Figure6.ThereactionbetweenPIPandTMCforpolyamideformation[51].
2.5.2.EffectofSoakingandReactionTimeinTFCBHFMPreparation
ThesoakingofthesupportlayerisastepofTFCBHFMfabricationthatimpactsig
nificantlyontheperformanceofpreparedTFCBHFM.Ununiformedwettingmayleadto
thedecreasingofmembraneselectivity.UsingthePVDFsupportinthefabricationofthe
TFCmembraneisamainchallengeduetoitshydrophobicnatureandwettingdifficulty
[10,52].Xiaetal.[10]preparedtheTFCBHFMswithdifferentsoakingtimes.Thevisual
propertieswerenotchangedbasedonthevariationofsoakingtime.Anincreaseinthe
Membranes2021,11,88415of31
soakingtimeleadstodecreasinginpurewaterpermeability,whilethesaltrejectionfirstly
increasesandthendecreases.Theseresultsareduetoformingauniformselectivelayer
withfewerdefectsafterentirelywettingbythePIPsolutionatthelongersoakingtime.
Themodificationofsupportsurfacethroughplasma,coatingwithhydrophilicpoly
mers(e.g.,PANandPVA),wettingofmembranebyinvertthesequencesoakinginthe
organicphaseandthenimmersionintheaqueousaminephasearethemethodsforwet
tabilityimprovementoftheofPVDFsupportthatinvestigatedbyresearchers[10].
Reactiontimeisacrucialfactorininterfacialpolymerizationthataffectsthestructure
ofthecoatinglayerandspecifiestheextentofpolymerizationbetweenthemonomers[53].
Turkenetal.[51]fabricatedreinforcedTFCHFNFmembranes.Theyselectedtherein
forcedPSfultrafiltrationasasupportandpolyamidelayerasaselectivelayerthatwas
preparedfromtrimesoylchloride(organicphases)andpiperazine(aqueousphases)mon
omers.TheimmersiontimeofTMCwasoptimizedinfixedconcentrationsofTMCand
PIPtoachievethehighestmembraneperformance.Thehydrophilicityofthemembrane
increasedbyenhancementofthecrosslinkingdegreeofthepolyamidelayerandtheTMC
reactiontime.Turkenetal.[51]reportedthehigherspecificpermeatefluxinhigherTMC
reactiontimesforreinforcedTFCNFmembranes.Thehydrophilicityofthemembrane
enhancedwhenthereactiontimeofTMCincreased.Itisknownthatwhenthecrosslink
ingdegreeofthepolyamidelayerisincreased,theformationofthemembranewitha
highlyhydrophilicnatureisenhanced.Thepresenceofthepolyamidelayeronthesurface
ofthemembraneleadstothecreatingofaTFCsurfacewithmorenegativelycharged.The
negativechargeofthemembranesurfacewasdecreasedwhenthereactiontimeofTMC
increased.Theformationof−COOHgroupsismoreinshortreactiontimeofTMC.Since
thetimeofTMCreactionisoneoftheeffectiveparametersincrosslinkingdegreeofinter
facialpolymerization;hence,itinfluencedthesaltrejectionandwaterflux.Theformation
oftheamidegroupisavitalsignforthecrosslinkingdegreeofmonomer,thehydrolyzing
ofacylchloride,andfilmformationandgrowth.DuringthecontinuousreactionofTMC
andPIP,itisexpectedthattheamountof−C=Ogroupsincreasedinthemembranes.The
presenceofthemore−C=Ogroupindicatedmorereactionbetweenthemonomers.The
existenceofthe−OHgroupisasignofthehydrolysisofTMC.Atthebeginningofthe
reaction,thewaterdiffusionintothemembranematrixfacilitatesthehydrolysisofTMC.
Thehydrolysisofthemembranebytheaqueousphaseattheinitialstage(orshorterTMC
reactiontime)isowingtotheloosestructureofthecoatinglayer.Asthereactiontime
increased,the−OHand−C=Owouldbeenhanced,andbondingbetweentheOHandC–
Ogroupswouldreduce.Therefore,amembranewithadenselayerwouldbecreated
[51,53].
3.ImprovementofInterfacialBonding
Generally,thetubularbraidsandseparationlayersareincompatible.Thethermody
namicalincompatibilityofthesetwolayermaycauseanapparentchangeininterface
structurebetweenthesupportedmatrixandseparationlayer.Therefore,theinterfacial
bondingstrengthbetweenthebraidandtheseparationlayerisacrucialissueinthebraid
reinforcedhollowfibermembrane.Thepeelingoftwolayersduringthemembraneoper
ationprocessreducesitslifetimeandrestrictsitsapplication.Hence,theaffinity(compat
ibility)betweentwolayersplaysavitalroleinthestrengthofinterfacialbonding.The
highinterfacialbondingstrengthisfavorableinhighpressurehydrauliccleaning.The
infiltrationpropertyofBHFMsisinvestigatedbythecontactanglebetweenthebraidand
polymersolution[44,45,54].
3.1.HybridBraidHollowFiberMembranes
Theselectionofmaterialforpolymerandtubularbraidaffectstheinterfacialbonding
performance.RelativetoheterogeneousBHFM(braidsandseparationlayeraremade
fromdifferentmaterials),homogeneousBHFMthatcontainedthesamematerialsinthe
Membranes2021,11,88416of31
tubularbraidandtheseparationlayerhasdesirableinterfacialbondingstrength.Thein
terfacialbondingofthehomogenousandheterogeneousmembranedifferedfromeach
other.Theinterfacialbondingbetweenthebraidandtheseparationlayerispoorinhet
erogeneousBHFMduetoincompatibility,whereastheseparationlayerisstrongly
bondedwiththebraidinhomogenousBHFM.WhentheheterogeneousBHFMsaresub
jectedtopressingorstretchingeffect,thedeformationratewillbedifferentbetweenthe
braidlayerandtheseparationlayer.Therefore,theinterfaceoflayerswouldbehurt
throughtheinterlaminarshearbetweenthebraidlayerandtheseparationlayer.Hence,
theinterfacialbondingoftheheterogeneousBHFMisthemainparameterrestrictingits
application[6,7,21,28,36,44].Thereisaphysicalforcebetweentubularbraidsandthepol
ymercastingsolutioninthepreparationprocessofBHFM.Thisphysicalforceconsistsof
adhesivecuring(whentwosurfacescombinebythephysicalorchemicalinteraction)and
mechanicalwedgingthatisrelatedtothediffusiondegreeofthepolymersolutionstothe
hybridtubularbraidandthesurfaceroughnessofthehybridtubularbraids.Poorinfiltra
tionbetweenthehybridtubularbraidsandthepolymersolutionsresultsindefects,and
theinterfacialbondingstrengthwouldbeconsequentlyreduced.Thusadesirableinfil
trationperformancecanconsiderablyimprovetheinterfacialbondingstrength.Gener
ally,thecontactangleisusedinordertocharacterizetheinfiltrationability.Thesmaller
contactanglebetweenthepolymersolutionsandtubularbraidrevealsthebetterthein
filtrationperformance[6,7].Oneofthemethodstoenhanceinterfacialbondingisutilizing
thesamematerialbetweenthecoatinglayerandthereinforcedmatrix.Fanetal.prepared
anovelbraidhollowfibermembraneconsistingofahybridbraid(containingcellulose
acetateandpolyacrylonitrile)andaseparationlayer.Theresultedmembraneprovideda
wellinterfacialbondingstateandreducedthenegativeeffectofCAfiberswellingon
membranepermeability.Fanetal.alsoinvestigatedtheeffectofbraidcompositionand
CAconcentrationonBHFMperformance.Theyresultedthatthebestratioofthefibersin
thebraidphaseis2/1(CA/PAN)byconsideringthemembranepermeabilityandinterfa
cialbondingstate[21].Theinfiltrationofthepolymersolutionmayreducethepurewater
permeability(PWP).ItwasreportedthatPWPofthehomogeneouslyBHFMislowerthan
heterogeneousBHFMbecauseinfiltratedpolymerscanbetightlyincorporatedinthepo
rousbraidandthusreducethePWP[11].
Zhouetal.[36]preparedabraidhollowfibermembranewithdesirableantifouling
propertiesandmechanicalstrengthforwastewatertreatment.TheblendingPVCwith
PVCcoPEGmethylethermethacrylate)(poly(VCcoPEGMA))copolymercoatedon
PETbraid.Thehighinterfacialbondingandtensilestrengthindicatedthegoodcompati
bilitybetweenthePETbraidandcoatinglayer.Excellentantifoulingproperties,higher
hydrophilicity,andBSArepulsionresultedduetothesegregationofPEGMAonthemem
branesurface.Chenetal.[28]fabricatedthreeBHFMswithPMIAasapolymeranddif
ferentbraidcompositions(differentratiosofPMIA/PET).AsshowninFigure7,thecoat
inglayerofpurePMIAforthebraidindicatedahomogeneousstructurewithgoodcom
patibilityandfirmlybondingbetweenthereinforcedbraidandseparationlayer;whereas,
poorinterfacialbodingandheterogeneousseparationlayerswereobservedforbraidwith
purePET.ForthebraidcontainedbothPMIAandPET,thetightlybondedforseparation
layerwiththePMIAfibersandthePETfibersobserved;whereas,therewasthepoorin
terfacialbondingbetweenthePETfibers.
Membranes2021,11,88417of31
Figure7.Thecrosssectionmorphologiesof(M1)PurePMIAforthebraid(M2)equalcomposition
ofPMIA/PETforthebraids,and(M3)PurePETforthebraids[28].
Itseemsthehybridbraidisaneffectivemethodwithhighperformance,butitishard
toapplyonalargescale.ItischallengingtofabricateBHFMconsistingofhybridbraids
(withhydrophilicpolymeric)andthesamematerialonthecoatinglayer.Therefore,itis
necessarytodevelopaneasy,effective,andlowcostproceduretocontroltheproperties
ofthecommercialbraids[11].
3.2.AlkalinePretreatment
Alkalinepretreatmentofthebraidsurfaceisasimplemethodforincreasingandfa
cilitatingpolymeradhesion.Italsoleadstoincreasebraidhydrophilicity.Thismethod
providesgoodsupportforthecoatinglayerwithoutreducingthequalityofthebraid.El
Badawyetal.[4]investigatedtheeffectofthealkalinepretreatmentofthebraidonBHFM
morphologyandperformance.Themembraneistreatedbytwoalkalinesolutions(KOH
andNaOH).ThetreatedmembraneinKOHhadthehighestwaterflux.Theinvestigation
ofthesurfacemorphologyofthebraidsrevealedthattheexpansionofthebraidinter
spacesandwashingeffectcontributetomoreporosityandpermeability.
Zhouetal.[11]preparedaBHFMbycoatingablendedpolymer(amphiphiliccopol
ymer/PVC)solutiononamodified(alkalinetreated)PETbraid.Themodificationbyal
kalineleadstoendowmorepolargroupstoPETbraidandconsequentlymorehydro
philicity.BasedontheresultsofZhouetal.[11],thebondingstrengthbetweenthecoating
layerandalkalinetreatedPETbraidwasabouttwotimeshigherthanthenontreatedPET
braid.ThetensilestrengthofthePETbraidswasreducedafterthealkalinetreatment.The
basicPETbraidhadmoretensilestrengthrelativetotreatedPET.Thedecreasingmechan
icalstrengthindicatedthatthePETbraidswereweakenedbythehydrolysisofPETchains
duringthealkalinetreatment.Thehydrolysisprocessreducesthecrystallinityandthe
molecularweightofPET.Thedefectscreatedonthebraidsalsoleadtodecreasingthe
mechanicalstrength.Hence,thetreatmentconditions(alkalineconcentration,reaction
time)shouldbeoptimizedforobtainingastrongbraidmembrane.Thewaterabsorption
ratioofthePETfibersincreaseswithincreasingKOHconcentrationandtreatmenttime,
indicatingthehydrophilicityofthePETbraidsisimproved.Theincreaseinwateradsorp
tionisattributedtothehydrolysisofPETduringthealkalinetreatmentwhentheester
groupsexcitinginPETarehydrolyzedtohydroxylandcarboxylategroups.Longtreat
menttimeandhighalkalineconcentrationcausespeedupthehydrolysis,bindingmore
hydrophilicgroupsandimprovingthehydrophilicityofthebraids.Thehighestwater
adsorptionandthebesthydrophilicityareattributedtothemostporousstructureofthe
PETbraids.Therefore,thehydrophilicpolymersolutioncanquicklyinfiltrateintothe
braidandfillthebraidedchannelduringthefabricationprocess.Thenthebraidedchannel
isblockedduringthepolymersolidificationinthecoagulationbath.Thebraidwithhigher
hydrophilicityincreasestheinfiltrationofthehydrophiliccoatingsolutions,whichre
ducestheporosityandporesizeonthebraid.Thus,PWPwassignificantlydecreased.
However,thebraid’shydrophilicitycanbeincreasedbyhydrolysis,butthehydrolysis
processshouldbeoptimizedtoavoidPWPreduction.Theinterfacialbondingstrength
Membranes2021,11,88418of31
betweenthehydrophilicPETbraidandcoatinglayerwasmorethantheseparationlayer
andthehydrophobicbraid.Afteralkalinemodification,carboxylatesandhydroxyl
groups,asthenewlypolargroups,resultinincreasingthesurfaceenergyonthebraids
tube.Consequently,highinfiltrationleadstoincreasingthebondingstrength.
3.3.ModificationoftheBraidSurface
Anotherapproachforoptimizingtheinterfacialbondingabilityisthemodification
ofthesurfacebycoatingmethods.Liuetal.[55]modifiedtheoutersurfacesofthebraided
tubeswithsilanecouplingagentKH570andacrylateadhesivebeforefabricationofthe
fibertubereinforcedHFM.BasedonFigure8,coatingtheoutersurfaceofthefibertubes
byacrylateadhesiveandsilanecouplingageleadstofillingthegapoftheloopsandthe
groovesbetweenthefibers.Asignificantimprovementintensilestrengthwasreported
byLiuetal.intheoptimumamountofmodifiersdosages.Whenthedosageoftheacrylate
adhesiveexceededtheoptimum,theroleofvoidsblockingwasmorethantheadhesion
onthemembrane.Hence,thefluxofthemembranedecreased,andmembraneresistance
increased.Itisalsoreportedthatanincreaseinsilanecouplingagentamounthasaposi
tiveeffectonfiberwettabilityandporosityduetocreatingspongierporesinthemem
branestructure.Figure8showsthediagramofamodificationofthebraidsurfacewith
thesilanecouplingagent.Anotherfeasibleapproachwastomodifythefibertubebyphys
icalorchemicalmethods,suchascoatingwithmodifiersonthesurfaceofthefibertube
orintroducingchemicalgroupsthathelpincreasetheaffinityofthefibertubetothemem
brane[55].Figure9indicatestheeffectofmodificationofthebraidsurfaceontheinterface
ofpolymerandbraid.
Figure8.SurfacemodificationforthebraidedtubeswithsilanecouplingagentKH570[55].
Membranes2021,11,88419of31
Figure9.Schematicdiagramoftheinterface[55].
3.4.ThePresenceofAdditive
Peechmanietal.[24]reportedthattheintroductionoftheZnOnanoparticlesinPSf
dopesolutionpromotedtheinfiltrationofthedopesolution.Itisbecauseofthehydro
philicpropertyofZnOthatfacilitatestheinfiltrationofthecoatingsolutionintothe
braidedsupportandaccumulatesbetweenthebraidchannelsduringthepreparationpro
cess.Moreinfiltrationofcoatingsolutionintothebraidedsupportwillenhancetheme
chanicalstabilityoftheBHFMduetothetightbondingbetweentheselectivelayerwith
thebraidlayerthatpreventsthepeelingoftheselectivelayerfromthebraidedsupport.
ZnOnanoparticlesalsoinfluencedthethicknessoftheseparationlayer.Themembrane
withoutnanoparticleshadathickerseparationlayerrelativetotheothermembranesbe
causeofthelowerinfiltrationrateandtheunevencircularshapeofthebraidlayerduring
thespinningprocess(becauseofmechanicalstressthathandledtopullthebraidlayerout
fromthespinneret).
Membranes2021,11,88420of31
Table2.SummaryofBHFMstudies.
PolymerCoating
Solution/wt.(%)
AdditiveinCoating
Solution/wt.(%)
Braid(Threads/Fil
ament)Composi
tion
TypeofSpinning
Methods/
SpinningConditions
InvestigatedParameters
Opera
tional
Condi
tion
Impurities/Ap
plicationResultsComparison
withHFMRef
Hybridbraid  
Polymer:CA;
10,12,14(wt.%)
Additive:PEG:20
wt.%
CA/PAN
Dry–wetspinning/
- coagulationbath:
water(25°C)
- airgapdistance:
10cm
- takeupspeed:100
cm/min
- Theeffectofbraidcom
position
- Theeffectofpolymer
(CA)concentrationonthe
structureandperformance
Pres
sure:0.1
MPa
BSAsolution
Milksolution
MaxTensilestrength
(MPa):33.8forCA14
and
62.9MPaforpurePAN
inthebraid
MaxBSARejection:
CA10:90%
CA12:98%
CA14:99%
MaxPWF:300L/m2hr
for1/2(CA/PAN)
Maxburstingstrength
(MPa):0.75forpureCA
inthebraid
Minburstingstrength
(MPa):0.22forpure
PANinthebraid
NA[21]
Polymer:PVC:
12wt.%
Additive:PVP
10wt.%
PET/PAN
Dry–wetspinning
/
- coagulationbath:
water(28°C)
- airgapdistance:
12cm
Takeupspeed:66
cm/min
- Theeffectofbraidcom
positiononthestructure
andperformance
Pres
sure:0.1
MPa
BSAsolution
MaxTensilestrength
(MPa):106forpurePET
MaxBSARejection:
70%for1/1:PET/PAN
‐Highertensile
strengthrela
tivetoHFM
[6]
Polymer:PMIA
5,8,10,15(wt.%)
Additive:PVP
PMIA/PET
Dry–wetspinning
/
- Coagulationbath:
water(25°C)
- Theeffectsofpolymer
concentration
Pres
sure:0.1
MPa
skimmilksolu
tion
MaxPWF:296.85
L/m2hrforPMIA5
MaxBSARejection:
NA[28]
Membranes2021,11,88421of31
2wt.%,PEG:8,
CaCl2:3.5,LiCl:2.5
wt.%
- Airgapdistance:
15cm
Takeupspeed:50
cm/min
- Theeffectsofbraid
composition
97.9%forPMIA15
MaxTensilestrength
(MPa):179.15for
PMIA15
Maxburstingstrength
(MPa):0.98PMIA15
Polymer:PVDF:18
wt.%
Additive:PEG:3
wt.%
PVDF‐
PET
NIPS:Dry–wetspin
ning/
- CoagulationBath:
water(25°C)
- Airgapdistance:
10cm
Takeupspeed:2RPM
- Theeffectofpretreat
mentstepbyalkaline
methodonperformance
Pres
sure:0.1
MPa
NA
MaxPWF:1388L/m2hr
formembranetreatby
KOH
MaxTensilestrength
(MPa):113formem
branetreatbyKOH
NA[4]
Polymer:PVC
6,8,10,12,14(wt.%)
Additive:PEG
5
Dry–wetspinning/
- Coagulationbath:
water(20°C)
- Airgapdistance:
8cm
Takeupspeed:220
cm/min
Dopesolutiontempera
ture:70°C
- ‐Theeffectofpolymer
Concentration
- Theeffectofadditive
molecularweight
NA
MaxPWF:10.1L/m2hr
for
PVC10
MaxBSARejection:
76.12%forPVC10and
PEG6000
‐Higherrejec
tion
‐Higherflux
recoveryrate
[29]
Purebraid  
Polymer:CA
6,8,10,12,14(wt.%)
Additive:PEG6000:6
PEG400:10
CA
Dry–wetspinning/
- Coagulationbath:
water(20°C)
- Airgapdistance:
10cm
Takeupspeed:66
cm/min
Dopesolutiontempera
ture:70°C
- Theeffectsofpolymer
concentration
Pres
sure:0.1
MPa
NA
MaxTensilestrength
(MPa):14.2forCA14
Maxburstingstrength
(MPa):0.51forCA14
MaxPWF:220L/m2hr
for
CA6
MaxBSARejection:
90%forCA14
NA[37]
Membranes2021,11,88422of31
Polymer:PAN
8,10,12,14,16(wt.%)
Additive:PVP
(7wt.%)and
Tw80(2wt.%)
PAN
Dry–wetspinning/
- coagulationbath:
water(25°C)
- airgapdistance:
15cm
Takeupspeed:20
cm/min
Dopesolutiontempera
ture:70°C
- Theeffectofpolymer
(PAN)concentrationin
coatingsolution
- Theeffectoftwotype
ofbraidcomposition
Pres
sure:0.1
MPa
BSAsolution
Tensilestrength(MPa):
86.3
MaxPWF:345L/m2hr
forPAN10
MaxBSARejection:
91%forPAN18
NA[7]
Polymer:PAN
8,10,12,14,16(wt.%)
Additive:PVP
(7wt.%)and
Tw80(2wt.%)
PET
Dry–wetspinning/
- coagulationbath:
water(25°C)
- airgapdistance:
15cm
Takeupspeed:20
cm/min
Dopesolutiontempera
ture:70°C
- Theeffectofpolymer
(PAN)concentrationinthe
coatingsolution
- Theeffectoftwotypes
ofbraidcomposition
Pres
sure:0.1
MPa
BSAsolution
Tensilestrength(MPa):
188
MaxPWF:470L/m2hr
forPAN10
MaxBSARejection:
91%forPAN18
NA[7]
Polymer:PVC
Additive:poly(VC
coPEGMA)
PET
Dry–wetspinning
/
- coagulationbath:
water(24°C)
- Airgapdistance:
0.5cm
Takeupspeed:500
cm/min
Dopesolutiontempera
ture:45°C

UFBHFMfor
wastewater
treatment
‐Highertensile
strength
‐Higherburst
ingstrength
‐Lowerthick
nessforthe
coatinglayer
[36]
Polymer:PSf:16
wt.%
Additive:ZnO
0,0.5,1,1.5(wt.%)
Dry–wetspinning
/
- coagulationbath:
water(25°C)
- Airgapdistance:
10cm
- Takeupspeed:200
cm/min
Pres
sure:0.1
MPa
1000ppmBSA
solution
MaxPWF:920L/m2hr
forZnO:1.5
MaxBSARejection:
96.5%forZnO:1.5
‐Higherwater
flux
‐higherrejec
tion
[24]
Membranes2021,11,88423of31
Polymer:PVDF
15,20,25,30(wt.%)
Additive:PVP
20wt.%PVDF
PETDry–wetspinning/
- Effectofpolymercon
centrationindopesolution
- NumbersofPET
threads(n)
Pres
sure:0.1
MPa
Purewater
Maxtensilestrength
(MPa):11.15for
PVDF20and3PET
threads
MaxPWF:160L/m2hr
forPVDF18
Maxburstingstrength
(MPa):0.45PVDF30
‐Highertensile
strength
‐similarsepa
rationproper
ties
[46]
Polymer:PVDF13
(wt.%)
Additive:Ge
0,0.1,0.3,0.5,0.7
(wt.%)
SiO2:4,DOP:10
PET
Dry–wetspinning
/
- coagulationbath:
water(30°C)
- Airgapdistance:
20cm
Takeupspeed:120
cm/min
Dopesolutiontempera
ture:70°C
‐Theeffectofadditive
concentration0.1MPa
keroseneand
watermixture
(1:1,
v/v)/oil/water
separation
MaxRejection:
99.7%forGe:0.5
PWF:65L/m2hrfor
GE:0.5
NA[38]
Polymer:PU
16wt.%
Additive:Ge
0.0.1,0.3,0.5(wt.%)
SA:4,NaCl:0.2
PET
Electrospinning
method/
- Positivepressureof
thespinneret:25.5kV
- Negativepressure
ofthereceivingdevice:
5.5kV
- Receivingdistance:
10cm
- Receivingdevice
speed:1500rpm
- Spinningsolution
injectionspeed:2.1mL/
h
- Spinningtempera
ture:25°C
‐Theeffectofadditive
concentration0.1MPa
keroseneand
watermixture
(1:1,
v/v)/oil/water
separation
MaxRejection:
99%forGe:0.3
PWF:1443L/m2hrfor
GE:0.3
NA[43]
Membranes2021,11,88424of31
- Relativehumidity:
5%
Polymer:PVDF
8,10,12,14,16(wt.%)
Additive:PVP:8
(wt.%)
Tw80:2(wt.%)
PAN
Dry–wetspinning/
- coagulationbath:
water(25°C)
- Airgapdistance:
15cm
Takeupspeed:15
cm/min
Dopesolutiontempera
ture:70°C
Theeffectofpolymercon
centrationincoatingsolu
tions
Pres
sure:0.1
MPa
1g/L
BSA
Maxtensilestrength
(MPa):75
MaxPWF:550L/m2hr
forPVDF8
MaxBSARejection:
95%forPVDF16
NA[40]
Polymer:PVDF
6,8,10,14,18(wt.%)
Additive:PVP:7
(wt.%)
Tw80:3(wt.%)
PVDF
Dry–wetspinning
/
- coagulationbath:
water(20°C)
- Airgapdistance:
10cm
Takeupspeed:15
cm/min
Dopesolutiontempera
ture:60°C
- Theeffectofpolymer
concentrationincoating
solutions
Pres
sure:0.1
MPa
2g/L
Eggalbumen
Maxtensilestrength
(MPa):11forPVDF10
MaxPWF:900L/m2hr
forPVDF6
MaxBSARejection:
81%forPVDF18
‐Highertensile
strength
‐HigherBSA
rejection
[45]
Polymer:CA
Additive:Ge‐ ‐
- TheeffectofGecon
centrationincoatingsolu
tions
‐ ‐
Maxtensilestrength
(MPa):30
MaxPWF:158.1L/m2hr
forGe:1%
NA[56]
Polymer:PA
PIP:2.0%w/vTMC:
0.13%v/v
Polymer:PSf:16
(wt.%)
Additive:PVP10
(wt.%)
Interfacialpolymeriza
tionofPIPandTMCon
UFsupportmembrane
- TheeffectofTMCreac
tiontime
Pres
sure:0.6
MPa
MgSO4
NaCl
TOC/
TFCNF
MaxPWF:5.1L/m2hr
MgSO4Rejection:65%
NaClRejection:26%
TOCremoval:65%
NA[51]
Polymer:PA
PIP:1.0%w/w
TMC:0.1,0.15,0.2%
w/v
PVDFandpolyes
ter
Interfacialpolymeriza
tionofPIPandTMCon
UFsupportmembrane
- Theeffectofmonomer
concentration
Pres
sure:0.1
MPa
MgSO4
NaCl/
TFCNF
MaxPWF:22L/m2hr
MaxMgSO4Rejection:
92%
NaClRejection:˂30%
NA[10]
Membranes2021,11,88425of31
PMIA:Poly(mphenyleneisophthalamide);PVDF:Polyvinylidenefluoride;poly(VCcoPEGMA):amphiphiliccopolymerpoly(vinylchloridecopoly(ethyleneglycol)
methylethermethacrylate);NIPS:nonsolventinducedphaseinversion;PA:polyamide;PET:Polyethyleneterephthalate(PET);Ge:Graphene;DOP:Dioctylphthalate;
PU:polyurethane;SA:Stearicacid;BSA:bovineserumalbumin;PIP:piperazine;TMC:trimesoylchloride;PWF:purewaterflux;PVP;Polyvinylpyrrolidone;NA:not
applicable.
Polymer:PVDFFiberglassmaterial‐
- Estimationoftheten
silestrengthofMFandUF
hollowfiberbraidmem
brane
‐ ‐
Maxtensilestrength
(MPa):10formembrane
with0.355Thickness
NA[57]
Membranes2021,11,88426of31
4.OperationParameters
AnincreaseinoperatingpressureleadstotheenhancementofPWF.Thisincreaseis
slowedinhigheroperationpressurethatisclearinalowerconcentrationofpolymer.Itis
probablyduetomorecompressionoftheporousmembraneinhighpressureandmore
resistancetothecompactionforlessporousmembrane[46].Peechmanietal.[24]indi
catedtheBSArejectionwasapproximatelyconstant,andthefluxincreasedwhentheop
eratingpressureincreased.Xiaetal.[10]testedtheperformanceofTFCBHFMunder
pressureuntilfailureintermsofMgSO4rejectionandwaterflux.Aslightenhancingof
MgSO4rejectionandalinearincreasewasobservedforwaterfluxbytheenhancementof
pressureupto0.5MPa.Thedropinsaltrejectionandasharpincreaseinwaterfluxupto
0.5MPaindicatesmembranedelaminationortearingoftheselectivelayer.
Chenetal.[28]reportedthattheincreaseintheoperatingtemperaturefrom25°Cto
90°Cleadstoanincreaseinwaterfluxbecauseofareductioninwatersolutionviscosity.
TheyinvestigatedtheperformanceoftailoringPMIABHFMandcommercialPVDF‐
BHFMatdifferenttemperatures.AccordingtoFigure10,theinksolutionrejectionwas
stableforPMIAbraidhollowfibermembranes,whereasitwasdecreaseddramaticallyfor
thePVDFBHFM.ThePMIAbraidhollowfibermembranesexhibitedthermalstability,
whilethePVDFmembranefacedacrucialcracking.Itisthemainreasonforthereduction
intherejectionoftheinksolution.Thepresenceofintermolecularhydrogenbondingand
largebenzeneringsinmacromolecularchainsofPMIAleadstoahighglasstransition
temperature(morethan270°C).Hence,theporestructureismaintained,anddeformation
hasnothappenedindifferentthermalconditions.ThePMIAbraidhollowfibermem
branesarethusintroducedforapplicationinseparationprocesseswithhightempera
tures.
Figure10.Theeffectoftemperatureonrejectionandfluxof(a)PMIABHFMand(b)PVDFBHFM.
5.Applications
Hollowfibermembranesaredesirablefornumerousmembraneapplications.They
arefavoredforuseinwatertreatmentprocessesduetothedesirablepropertiesmentioned
above[9].Submergedmembranebioreactorisusuallyutilizedtoremovecommonpollu
tantsfrommunicipalandindustrialwastewaterbecauseofmanyadvantagessuchas
highqualityeffluent,lowsludgeproduction,andreducedfootprint.Themodulecanbe
preparedbytheflatsheetorhollowfibermembranes,buttheHFMshavebeenmore
widelyusedduetoeasyassemblingandhighpermeabilityperinstallationarea.However,
HFMinthesubmergedMBRisrequiredhighmechanicalpropertiesbecauseofeasilybro
kenduringthehighpressurebackwashingandcleaningprocessoraeratedairflow
Membranes2021,11,88427of31
[37,40,58].Fanetal.[37]investigatedtheBHFMintheMBRprocess.Thetensilestrength
ofpreparedBHFMswashigherthan11MPa,whichthiscontentincreasedwiththein
creaseinpolymerconcentrationindopesolution.
Generally,thehollowfibermembranesarenotapplicableinhighpressureapplica
tionssuchasNFandROprocessesbecauseoftheirpoormechanicalstrength.Whereas
theyaregoodcandidatesforwastewatertreatment,removalofheavymetals,anddrink
ingwaterpurification[10,15,51].Thinfilmcomposite(TFC)membranesareexcellentcan
didatesforROandNFprocessesinwaterandwastewatertreatmentapplicationsdueto
theultrathinselectivelayer.TheTFCdesignpossessesdesiredperformanceintermsof
saltrejectionandpermeabilitywhenunitedwithasymmetricmembranes.Thecross
linkedaromaticpolyamideasaselectivelayerontheultrafiltrationmembraneporousor
othersupportingsubstratesfabricatedbyinterfacialpolymerizationofpropermonomer
(e.g.,trimesoylchloride(TMC))isthemostsuccessfulandfamouscommercialproductin
thelastdecades[10,50,59].Asmentioned,TFCmembranesconsistofasupportlayerand
selectivelayer.Theselectivelayerthattypicallycrosslinkedpolyamideisathin,dense,
andpoormechanicalfilmwithhighselectivity.Thesecondlayerisaporousfilmthat
playstheroleofthesubstratewithhighmechanicalstrengthunderpressure.Thislayer
generallyisformedfrompolyethersulfoneandpolysulfone.Figure11illustratestheshell
andlumensideofHFM.Generally,itisdifficulttoapplyathinfilmontheshellorlumen
sideoftheHFMduringfibermanufacturing.TheHFMsdesignedforliquidfiltrationhave
largelumensduetoreducingresistanceinmasstransferandpressuredropliquidstream.
Inhighpressureapplications,thewallsofHFMsmustbethicker,butitisnotdesirable
forliquidflowapplications.ItisreportedseveralstudiesonthefabricationofHFMwith
highpressuretoleranceandimprovementofmechanicalstability.Thesestudiespropose
usingapolymer/additivewithintrinsichighmechanicalstrength,optimizationofspin
ningparameters,andbraidreinforcedcomposition[10,60].Xiaetal.[10]fabricatedaTFC
HFMthatusesabraidreinforcedultrafiltrationHFMsasasubstrate,consistingofaPVDF
coatinglayerandpolyesterbraid.Theselectivelayerisformedusinginterfacialpolymer
izationofTMCandpiperazine(PIP).Thepresenceofthereinforcedsupportdevoted
highpressureenduranceproprietiestotheHFM.Thepreparedmembranescouldtolerate
pressureupto0.5MPawhilepossessinghighselectivityfordivalent/monovalentions.
Turkenetal.[51]fabricatedreinforcedTFCHFNFbasedonPSfultrafiltrationmem
branesandpolyamidelayerpreparedfromPPandTMCmonomers.Themembraneswere
investigatedinsolutionswithdifferentorganicmatterandsalts.Theirresultsevidenced
thepreparedmembranesareagoodcandidateforwatertreatmentapplications
Figure11.TheillustrationofshellandlumensideofanHFM[61].
AnotherapplicationofBHFMsistheoil/waterseparationprocess.Oilywastewater
isproducedbydifferentindustriessuchasmetalfinishingindustries,leather,food,pet
rochemical,oilexploration,refining,andtransportationofoilproducts.Thistypeof
Membranes2021,11,88428of31
wastewaterisaseverethreattohumanhealthandtheenvironment.Membranetechnol
ogyisaproperoptionforoilywastewaterstreatmentowingtoadvantagessuchaslow
costs,nosecondarypollution,highenergyefficiency,sustainability,andnoadditives.
Twoparametersareessentialfortheoil/waterseparationprocess:theselectivewettability
foroilorwater(lipophilicity/hydrophobicity)thatprovidetherequireddrivingforceand
theconnectedporeswithasuitableporesizeforfiltration.Bothhydrophobicandhydro
philicmembranescouldbeutilizedfortheseparationofoil/water.Hydrophilicmem
branesincreasethewaterpermeationrelativetooilpermeationleadingtohigherwater
fluxandgoodantifoulingproperties.Nevertheless,thehydrophilicmembranesmustpro
videalargevolumeofwaterpermeatefluxesinseparationsofoil/water.Theyrequired
highenergyconsumptionandlargemembraneareas.Generally,thepresentpollutantsin
oilywastewateraremainlyduetotheoilphase,buttheircontentsarerelativelylow.
Therefore,hydrophobicmembranesarebettercandidatesforoilywastewatertreatment
basedonworkload[38,43].Haoetal.[38]prepared(PET)braidreinforcedPVDF/gra
phenehollowfibermembranes.PVDFBHFMshowsappropriatehydrophobicproperties
foroil/waterseparationandgoodmechanicalstrength.Graphenewasalsousedtoen
hancethehydrophobicityofthemembrane.Theirresultsshowedthatthepreparedhy
drophobicBHFMsultimatelyrejectedwaterduringtheseparationprocess.
6.Conclusions
Hollowfibermembranes(HFMs)areagoodcandidateforthemembraneseparation
processduetodesirablepropertiessuchashighpermeabilityandsurfacearea,goodfil
trationefficiency,smallfootprint,etc.However,theyareoftenpossibletobreakduring
thehighpressurecleaningandaerationprocess.Tubularbraidsasupportedisproposed
toimprovethemechanicalstrengthofHFMsduetohightensilestrength.Thepeelingof
thesurfacelayerfromthetubularbraidisthedrawbackoftheBHFMduetothermody
namicincompatibility.Dependingonthetypeofapplication,thekindofpolymer/addi
tiveandtheircontentaretheessentialparametersthataffecttheperformanceofBHFMs.
PAN,PVC,CA,PSf,andPVDFarethecommonpolymersusedinBHFMpreparation.The
interfacialbondingstrengthbetweenthebraidandtheseparationlayerisanessential
issueinBHFMs.Becausetheseparationoftwolayersreducesitslifetimeandlimitsits
application;hence,theaffinitybetweenthetwolayerswillbeimproved.Theinterfacial
bondingstrengthbetweenthebraidandtheseparationlayerisanessentialissuein
BHFMs.Hence,theaffinitybetweenthetwolayerswillbeimprovedbyhybridbraids,
alkalinepretreatment,andtheuseofadditives.Recently,theBHFMshavebeenusedin
ROandNFapplications.Althoughitisrequiredacomprehensiveinvestigationthatopti
mizesthemembraneperformanceintermsofflux,mechanicalproperties,rejection,and
fouling;itisexpectedthattheapplicationsofthesetypesofthemembranewillbeen
hancedindifferentaspectsandthegapbetweenstudiesandapplyinlargescaleswould
bereduced.
AuthorContributions:Conceptualization,A.N.,H.K.,E.S.,S.M.M.andH.M.,Datacuration,A.N.,
Formalanalysis,A.N.,H.K.,E.S.,S.M.M.andH.M.,Investigation,A.N.,H.K.,E.S.,S.M.M.andH.M.,
Methodology,A.N.,H.K.,E.S.,S.M.M.andH.M.,Visualization,A.N.,H.K.,E.S.,S.M.M.andH.M.,
Validation,A.N.,H.K.,E.S.,S.M.M.andH.M.,Writing,A.N.,H.K.,E.S.,S.M.M.andH.M.,Original
draft,A.N.,Authorship,A.N,H.K.,Projectadministration,H.K.,Supervision,H.K.,review&edit
ing,H.K.,Resources,E.S.,S.M.M.andH.M.,Fundingacquisition,H.M.Allauthorshavereadand
agreedtothepublishedversionofthemanuscript.
InstitutionalReviewBoardStatement:Notapplicable.
Funding:Thisresearchreceivednoexternalfunding.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Notapplicable.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest
Membranes2021,11,88429of31
Abbreviation
HFM:Hollowfibermembrane
BHFM:BraidHollowfibermembrane
PMIA:Poly(mphenyleneisophthalamide)
PVDF:Polyvinylidenefluoride
Poly(VCcoPEGMA):Poly(vinylchloridecopoly(ethyleneglycol)methylethermethacry
late)
NIPS:Nonsolventinducedphaseinversion
PA:Polyamide
PET:Polyethyleneterephthalate
Ge:Graphene
DOP:Dioctylphthalate
PU:Polyurethane
SA:Stearicacid
BSA:Bovineserumalbumin
PIP:Piperazine
TMC:Trimesoylchloride
PWF:Purewaterflux
References
1. AlMaas,M.;Hussain,A.;Matar,J.M.;Ponnamma,D.;Hassan,M.K.;AlMaadeed,M.A.A.;Alamgir,K.;Adham,S.Validation
andapplicationofamembranefiltrationevaluationprotocolforoilwaterseparation.J.WaterProcess.Eng.2021,43,102185.
2. Han,R.;Ma,X.;Xie,Y.;Teng,D.;Zhang,S.Preparationofanew2DMXene/PEScompositemembranewithexcellenthydro
philicityandhighflux.RSCAdv.2017,7,56204–56210.
3. Li,Q.;Omar,A.;ChaUmpong,W.;Liu,Q.;Li,X.;Wen,J.;Wang,Y.;Razmjou,A.;Guan,J.;Taylor,R.A.Thepotentialofhollow
fibervacuummultieffectmembranedistillationforbrinetreatment.Appl.Energy2020,276,115437.
4. Elbadawy,T.;Othman,M.H.D.;Adam,M.R.;Ismail,A.;Rahman,M.A.;Jaafar,J.;Usman,J.;Mamah,S.C.;Raji,Y.O.Theinflu
enceofpretreatmentsteponhollowbraidedPETfabricasapotentialmembranesubstrate.Mater.TodayProc.2021,46,1990–
1997.
5. Kim,I.;Choi,D.C.;Lee,J.;Chae,H.R.;Jang,J.H.;Lee,C.H.;Park,P.K.;Won,Y.J.Preparationandapplicationofpatterned
hollowfibermembranestomembranebioreactorforwastewatertreatment.J.Membr.Sci.2015,490,190–196.
6. Liu,H.;Wang,S.;Mao,J.;Xiao,C.;Huang,Q.Preparationandperformanceofbraidreinforcedpoly(vinylchloride)hollow
fibermembranes.J.Appl.Polym.Sci.2017,134,45068.
7. Quan,Q.;Xiao,C.;Liu,H.;Huang,Q.;Zhao,W.;Hu,X.;Huan,G.Preparationandcharacterizationofbraidedtubereinforced
polyacrylonitrilehollowfibermembranes.J.Appl.Polym.Sci.2015,132.https://doi.org/10.1002/app.41795.
8. Wan,C.F.;Yang,T.;Lipscomb,G.G.;Stookey,D.J.;Chung,T.S.Chapter11Designandfabricationofhollowfibermembrane
modules.HollowFiberMembr.2021,225–252.https://doi.org/10.1016/B9780128218761.00007X.
9. Xia,L.;McCutcheon,J.BraidedReinforcedThinFilmComposite(TFC)NanofiltrationHollowFiberMembranes.InProceed
ingsofthe2017AIChEAnnualMeeting,Minneapolis,MN,USA,1November2017.
10. Xia,L.;Ren,J.;McCutcheon,J.R.Braidreinforcedthinfilmcompositehollowfibernanofiltrationmembranes.J.Membr.Sci.
2019,585,109–114.
11. Zhou,Z.;Fang,L.F.;Wang,S.Y.;Matsuyama,H.Improvingbondingstrengthbetweenahydrophiliccoatinglayerandpoly
(ethyleneterephthalate)braidforpreparingmechanicallystablebraidreinforcedhollowfibermembranes.J.Appl.Polym.Sci.
2018,135,46104.
12. Jeon,S.;Karkhanechi,H.;Fang,L.F.;Cheng,L.;Ono,T.;Nakamura,R.;Matsuyama,H.Novelpreparationandfundamental
characterizationofpolyamide6selfsupportinghollowfibermembranesviathermallyinducedphaseseparation(TIPS).J.
Membr.Sci.2018,546,1–14.
13. Matsuyama,H.;Karkhanechi,H.;Rajabzadeh,S.;.Polymericmembranefabricationviathermallyinducedphaseseparation
(TIPS)method;Elsevier:Amsterdam,TheNetherlands,2021;Chapter3.
14. Wang,K.;Abdala,A.;Hilal,N.;Khraisheh,M.Mechanicalcharacterizationofmembranes.InMembraneCharacterization;Else
vier:Amsterdam,TheNetherlands,2017;pp.259–306.
15. Hosseini,S.S.;Nazif,A.;Shahmirzadi,M.A.A.;Ortiz,I.;Fabrication,tuningandoptimizationofpoly(acrilonitryle)nanofiltra
tionmembranesforeffectivenickelandchromiumremovalfromelectroplatingwastewater.Sep.Purif.Technol.2017,187,46–
59.
16. Hou,D.;Fan,H.;Jiang,Q.;Wang,J.;Zhang,X.PreparationandcharacterizationofPVDFflatsheetmembranesfordirectcontact
membranedistillation.Sep.Purif.Technol.2014,135,211–222.
17. Hou,D.;Dai,G.;Fan,H.;Wang,J.;Zhao,C.;Huang,H.Effectsofcalciumcarbonatenanoparticlesonthepropertiesof
PVDF/nonwovenfabricflatsheetcompositemembranesfordirectcontactmembranedistillation.Desalin.2014,347,25–33.
Membranes2021,11,88430of31
18. Wei,J.;Qiu,C.;Tang,C.Y.;Wang,R.;Fane,A.G.Synthesisandcharacterizationofflatsheetthinfilmcompositeforwardosmo
sismembranes.J.Membr.Sci.2011.372,292–302.
19. Huo,R.;Gu,Z.;Zuo,K.;Zhao,G.PreparationandpropertiesofPVDFfabriccompositemembraneformembranedistillation.
Desalination2009,249,910–913.
20. Dabiryan,H.;Johari,M.;Bakhtiyari,S.;Eskandari,E.Analysisofthetensilebehavioroftubularbraidsusingenergymethod,
PartII:Experimentalstudy.J.Text.Inst.2017,108,1899–1904.
21. Fan,Z.;Xiao,C.;Liu,H.;Huang,Q.;Zhao,J.Structuredesignandperformancestudyonbraidreinforcedcelluloseacetate
hollowfibermembranes.J.Membr.Sci.2015,486,248–256.
22. Karkhanechi,H.;Rajabzadeh,S.;DiNicolò,E.;Usuda,H.;Shaikh,A.R.;Matsuyama,H.Preparationandcharacterizationof
ECTFEhollowfibermembranesviathermallyinducedphaseseparation(TIPS).Polymer2016,97,515–524.
23. Mahendran,M.;Goodboy,K.P.;Fabbricino,L.HollowFiberMembraneandBraidedTubularSupportTherefor.U.S.Patent
6,354,444B1,11March2002.
24. Peechmani,P.;Othman,M.H.D.;Kamaludin,R.;Puteh,M.H.;Jaafar,J.;Rahman,M.A.;Ismail,A.F.;Kadir,S.H.S.A.;Illias,R.M.;
Gallagher,J.HighFluxPolysulfoneBraidedHollowFiberMembraneforWastewaterTreatmentRoleofZincOxideasHydro
philicEnhancer.J.Environ.Chem.Eng.2021,9,105873.
25. Cooper,W.W.;Shea,E.M.ProcessforCastingIntegrallySupportedTubularMembranes.U.S.Patent3,676,193,11July1972.
26. Mailvaganam,M.;Fabbricino,L.;Rodrigues,C.F.;Donnelly,A.R.HollowFiberSemipermeableMembraneofTubularBraid.
U.S.Patent5,472,607,5December1995.
27. Teoh,M.M.;Bonyadi,S.;Chung,T.S.Investigationofdifferenthollowfibermoduledesignsforfluxenhancementinthemem
branedistillationprocess.J.Membr.Sci.2008,311,371–379.
28. Chen,M.;Xiao,C.;Wang,C.;Liu,H.Studyonthestructuraldesignandperformanceofnovelbraidreinforcedandthermosta
blepoly(mphenyleneisophthalamide)hollowfibermembranes.RSCAdv.2017,7,20327–20335.
29. Liu,H.;Xiao,C.;Huang,Q.;Hu,X.Structuredesignandperformancestudyonhomogeneousreinforcedpolyvinylchloride
hollowfibermembranes.Desalination2013,331,35–45.
30. Song,L.;Huang,Q.;Huang,Y.;Bi,R.;Xiao,C.AnelectrothermalbraidreinforcedPVDFhollowfibermembraneforvacuum
membranedistillation.J.Membr.Sci.2019,591,117359.
31. Aslan,T.;Arslan,S.;Eyvaz,M.;Güçlü,S.;Yüksel,E.;Koyuncu,I.Anovelnanofibermicrofiltrationmembrane:Fabricationand
characterizationoftubularelectrospunnanofiber(TuEN)membrane.J.Membr.Sci.2016,520,616–629.
32. Frenot,A.;Chronakis,I.S.Polymernanofibersassembledbyelectrospinning.Curr.Opin.ColloidInterfaceSci.2003,8,64–75.
33. Moattari,R.M.;Mohammadi,T.;Rajabzadeh,S.;Dabiryan,H.;Matsuyama,H.Reinforcedhollowfibermembranes:Acompre
hensivereview.J.TaiwanInst.Chem.Eng.2021,122,284–310.
34. Turken,T.;SengurTasdemir,R.;AtesGenceli,E.;Tarabara,V.V.;Koyuncu,I.Progressonreinforcedbraidedhollowfiber
membranesinseparationtechnologies:Areview.J.WaterProcess.Eng.2019,32,100938.
35. Abba,M.U.;Man,H.C.;Azis,R.S.;Idris,A.I.;Hamzah,M.H.;Yunos,K.F.;Katibi,K.K.NovelPVDFPVPHollowFiberMem
braneAugmentedwithTiO2Nanoparticles:Preparation,CharacterizationandApplicationforCopperRemovalfromLeachate.
Nanomaterials2021,11,399.
36. Zhou,Z.;Rajabzadeh,S.;Fang,L.;Miyoshi,T.;Kakihana,Y.;Matsuyama,H.Preparationofrobustbraidreinforcedpoly(vinyl
chloride)ultrafiltrationhollowfibermembranewithantifoulingsurfaceandapplicationtofiltrationofactivatedsludgesolu
tion.Mater.Sci.Eng.C2017,77,662–671.
37. Fan,Z.;Xiao,C.;Liu,H.;Huang,Q.Preparationandperformanceofhomogeneousbraidreinforcedcelluloseacetatehollow
fibermembranes.Cellulose2015,22,695–707.
38. Hao,J.;Xiao,C.;Zhang,T.;Zhao,J.;Fan,Z.;Chen,L.PreparationandperformanceofPETbraidreinforcedpoly(vinylidene
fluoride)/graphenehollowfibermembranes.Ind.Eng.Chem.Res.2016,55,2174–2182.
39. Matsuyama,H.;Rajabzadeh,S.;Karkhanechi,H.;Jeon,S.1.7PVDFHollowFibersMembranes.InComprehensiveMembrane
ScienceandEngineering;Elsevier:Amsterdam,TheNetherlands,2017;pp.137–189.
40. Quan,Q.;Xiao,C.F.;Liu,H.L.;Zhao,W.;Hu,X.Y.;Huan,G.L.Preparationandpropertiesoftwodimensionalbraidheteroge
neousreinforcedpolyvinylidenefluoridehollowfibermembrane.InAdvancedMaterialsResearch;TransTechPublicationsLtd.:
Freinbach,Switzerland,2014.
41. Rajabzadeh,S.;Ogawa,D.;Ohmukai,Y.;Zhou,Z.;Ishigami,T.;Matsuyama,H.PreparationofaPVDFhollowfiberblend
membraneviathermallyinducedphaseseparation(TIPS)methodusingnewsynthesizedzwitterioniccopolymer.Desalin.Wa
terTreat2015,54,2911–2919.
42. Karkhanechi,H.;Vaselbehagh,M.;Jeon,S.;Shaikh,A.R.;Wang,D.M.;Matsuyama,H.Preparationandcharacterizationof
polyvinylidenedifluoridecochlorotrifluoroethylenehollowfibermembraneswithhighalkalineresistance.Polymer2018,145,
310–323.
43. Wu,Y.J.;Xiao,C.F.;Zhao,J.PreparationofanelectrospuntubularPU/GEnanofibermembraneforhighfluxoil/watersepa
ration.RSCAdv.2019,9,33722–33732.
44. Liu,H.;Xiao,C.;Huang,Q.;Hu,X.;Shu,W.Preparationandinterfacestructurestudyonduallayerpolyvinylchloridematrix
reinforcedhollowfibermembranes.J.Membr.Sci.2014,472,210–221.
45. Zhang,X.;Xiao,C.;Hu,X.;Bai,Q.Preparationandpropertiesofhomogeneousreinforcedpolyvinylidenefluoridehollowfiber
membrane.Appl.Surf.Sci.2013,264,801–810.
Membranes2021,11,88431of31
46. Liu,J.;Li,P.;Li,Y.;Xie,L.;Wang,S.;Wang,Z.PreparationofPETthreadsreinforcedPVDFhollowfibermembrane.Desalination
2009,249,453–457.
47. Lan,S.;Lei,W.;Xudong,W.;Chen,L.;Song,H.;Mingjiao,Y.HydrophilicmodificationandpropertiesofTiO2/PVDFwoven
tubalhollowfibercompositemembrane.Chin.J.Environ.Eng.2016,10,4796–4802.
48. Lee,M.S.;Lee,K.J.;Shin,Y.C.BraidReinforcedCompositeHollowFiberMembrane.U.S.Patent7,909,177,22March2011.
49. Lee,M.S.;Lee,K.J.;Shin,Y.C.BraidReinforcedCompositeHollowFiberMembrane.U.S.Patent8,147,938,3April2012.
50. Lau,W.;Ismail,A.;Misdan,N.;Kassim,M.Arecentprogressinthinfilmcompositemembrane:Areview.Desalination2012,
287,190–199.
51. Turken,T.;SengurTasdemir,R.;Sayinli,B.;UrperBayram,G.M.;AtesGenceli,E.;Tarabara,V.V.;Koyuncu,I.Reinforcedthin
filmcompositenanofiltrationmembranes:Fabrication,characterization,andperformancetesting.J.Appl.Polym.Sci.2019,136,
48001.
52. Zhang,H.;Zheng,J.;Zhao,Z.;Han,C.C.RoleofwettabilityininterfacialpolymerizationbasedonPVDFelectrospunnano
fibrousscaffolds.J.Membr.Sci.2013,442,124–130.
53. Ooi,B.;Sum,J.;Lai,S.Investigationonmembranemorphologicalandchemicalpropertieschangesatdifferentreactiontimes
anditseffectondyeremoval.Desalin.WaterTreat.2012,45,250–255.
54. Huang,Y.;Xiao,C.;Huang,Q.;Liu,H.;Zhao,J.Progressonpolymerichollowfibermembranepreparationtechniquefromthe
perspectiveofgreenandsustainabledevelopment.Chem.Eng.J.2021,403,126295.
55. Liu,L.;Shen,H.;Li,T.;Han,Y.Interfacetreatmentandperformancestudyonfibertubereinforcedpolyvinylidenefluoride
hollowfibermembranes.J.Text.Inst.2020,111,1054–1063.
56. Fan,Z.;Xiao,C.;Huang,Q.;Tang,B.Modificationofbraidreinforcedcelluloseacetatehollowfibermembranebydopinggra
pheneoxide.Desalin.WaterTreat.2017,68,345–352.
57. Park,M.J.;Kim,H.Indirectmeasurementoftensilestrengthofhollowfiberbraidmembranes.Desalination2008,234,107–115.
58. Corpuz,M.V.A.;Borea,L.;Senatore,V.;Castrogiovanni,F.;Buonerba,A.;Oliva,G.;Ballesteros,F.,Jr.;Zarra,T.;Belgiorno,V.;
Choo,K.H.Wastewatertreatmentandfoulingcontrolinanelectroalgaeactivatedsludgemembranebioreactor.Sci.Total
Environ.2021,786,147475.
59. Li,Q.M.;Ma,H.Y.;Hu,Y.N.;Guo,Y.F.;Zhu,L.J.;Zeng,Z.X.;Wang,G.Polyamidethinfilmcompositemembraneonpol
yethyleneporousmembrane:Fabrication,characterizationandapplicationinwatertreatment.Mater.Lett.2021,287,129270.
60. Davenport,D.M.;Ritt,C.L.;Verbeke,R.;Dickmann,M.;Egger,W.;Vankelecom,I.F.;Elimelech,M.Thinfilmcompositemem
branecompactioninhighpressurereverseosmosis.J.Membr.Sci.2020,610,118268.
61. Ecker,P.;Pekovits,M.;Yorov,T.;Haddadi,B.;Lukitsch,B.;Elenkov,M.;Janeczek,C.;Jordan,C.;Gfoehler,M.;Harasek,M.
MicrostructuredHollowFiberMembranes:PotentialFiberShapesforExtracorporealMembraneOxygenators.Membranes2021,
11,374.
... This occurs due to delamination of the outer layers from the braid structure under high pressure during the cleaning process, specifically in the backwashing process. The delamination phenomenon is intensified with increasing pressure [3,4]. Therefore, investigating the effects of the braid properties on the burst pressure resistance of braid-reinforced membranes is one of the important and exciting research areas that can lead to the preparation of the robust and long-lasting braid-supported hollow fiber membranes. ...
... In polymer composites reinforced by braids, the burst resistance critically depends on the adhesion between the polymer layer and the braid [3,4]. Adhesion is a phenomenon that results from interatomic and molecular interactions at the interface of two materials. ...
Article
Full-text available
This study investigated the effects of different braid materials (polyethylene terephthalate, nylon 6, and their hybrid), weaving frequencies of the braids (7, 9, 11, 13 Hz), and concentrations of polyether sulfone solution (15% and 18 wt%) on braid angles, braid thickness, and bursting resistance. The results showed that for all types of single and hybrid braids, the braid angle decreases with increasing spinning frequency. When spinning frequency was increased from 7 to 13 Hz, the average wall thickness of polyethylene terephthalate, nylon 6, and the hybrid braids increased by approximately 50%, 65%, and 60%, respectively. The bursting pressure results were obtained in the range of 9.3 to 20.2 bars. The Fourier transform infrared spectroscopy results revealed no chemical bond between the braids and the polyether sulfone layer. Optical and electron microscope analyses revealed formation of uniform thickness of the polyether sulfone layers on the surface of the braids, as well as the penetration of polyether sulfone into the gaps between the filaments. The analyses also showed macroscopic adhesion of polyether sulfone to the braids and provided information on the amount and size of the pores in the polymer layers. The results showed that the selection of appropriate weaving frequency, braid materials, and polyether sulfone layer concentration are important as controllable parameters for producing polymeric hollow fiber composites with excellent burst pressure resistance.
... 40 At the same time, N-methylpyrrolidone (NMP) was chosen as the solvent and methanol was chosen as the coagulating bath to prepare a stable PES dope. Different microstructures of the hollow fibers such as sponge-like, nodal and bicontinuous can be achieved through the adjustment of dope composition, additives, air gap, etc. 41 As a glassy polymer, PES normally has high mechanical stability and can be quite impermeable toward most gases. If the adsorbent particles are totally enclosed by PES, the gas adsorption abilities would be severely hampered. ...
Article
Full-text available
Separation and purification of light hydrocarbons have been the critical processes for producing basic chemicals and polymers in petrochemical industry. Adsorbents with high performance are highly demanded for the separation of light hydrocarbons. However, the adsorbents filling in the packed bed when evaluated will inevitably induce reduced performance and increased pressure drop that considerably impede their application. Herein, mixed‐matrix fiber adsorbents with anion‐pillared hybrid microporous materials (SIFSIX‐2‐Cu‐i) embedded within poly (ether sulfone) (PES) are constructed to enable an energy‐efficient propylene/propyne separation. Owing to the sufficient binding sites and abundant channels for selective gas transfer, the fiber adsorbents achieve high C3H4 uptake capacity of 0.963 mmol g⁻¹ in the propylene/propyne (99/1) mixture breakthrough experiments. Moreover, fiber adsorbents exhibit good tolerance toward high gas velocity and show distinctively low pressure drop, which will be advantageous in industrial applications. This work provides a strategy for fabricating high‐performance mixed‐matrix fiber adsorbents.
... Compared with the flat membrane, the hollow fiber membrane has the advantages of high-packing density, compactness, and high efficiency, and has been widely concerned. [13,14]. Ghidossi et al. [15] developed a mass transfer model for membranes under laminar and turbulent flow conditions and analyzed the mass transfer behavior of membranes under different flow regimes. ...
Article
Full-text available
Hollow fiber membrane dehumidification is an effective and economical method of air dehumidification. The hollow fiber membrane module is the critical component of the dehumidification system, which is formed by an arrangement of several hollow fiber membranes. The air stream crosses over the fiber bundles when air dehumidification is performed. The fibers vibrate with the airflow. To investigate the characteristics of the fluid-induced vibration of the hollow fiber membrane, the two-way fluid-structure interaction model under the air-induced condition was established and verified by experiments. The effect of length and air velocity on the vibration and modal of a single hollow fiber membrane was studied, as well as the flow characteristics using the numerical simulation method. The results indicated that the hollow fiber membrane was mainly vibrated by fluid impact in the direction of the airflow. When the air velocity was 1.5 m/s~6 m/s and the membrane length was 100~400 mm, the natural frequency of the membrane was negatively correlated with length and positively correlated with air velocity. Natural frequencies were more sensitive to changes in length than changes in air velocity. The maximum equivalent stress and total deformation increased with air velocity and length. The maximum equivalent stress was concentrated at both ends, and the maximum deformation occurred in the middle. The research results provided a basis for the structural design of hollow fiber membranes under flow-induced vibration conditions.
Article
Hollow tubing and tubular filaments are highly relevant to membrane technologies, vascular tissue engineering, and others. In this context, we introduce hollow filaments (HF) produced through coaxial dry–jet wet spinning of cellulose dissolved in an ionic liquid ([emim][OAc]). The HF, developed upon regeneration in water (23 °C), displays superior mechanical performance (168 MPa stiffness and 60% stretchability) compared to biobased counterparts, such as those based on collagen. The results are rationalized by the effects of crystallinity, polymer orientation, and other factors associated with rheology, thermal stability, and dynamic vapor sorption. The tensile strength and strain of the HF (dry and wet) are enhanced by drying and wetting cycles (water vapor sorption and desorption experiments). Overall, we unveil the role of water molecules in the wet performance of HF produced by cellulose regeneration from [emim][OAc], which offers a basis for selecting suitable applications.
Article
Laser-induced graphene (LIG) materials have great potential in water treatment applications. Herein, we report the fabrication of a mechanically robust electroconductive LIG membrane with tailored separation properties for ultrafiltration (UF) applications. These LIG membranes are facilely fabricated by directly lasing poly(ether sulfone) (PES) membrane support. Control PES membranes were fabricated through a nonsolvent-induced phase separation (NIPS) technique. A major finding was that when PES UF membranes were treated with glycerol, the membrane porous structure remained almost unchanged upon drying, which also assisted with protecting the membrane's nanoscale features after lasing. Compared to the control PES membrane, the membrane fabricated with 8% laser power on the bottom layer of PES (PES (B)-LIG-HP) demonstrated 4 times higher flux (865 LMH) and 90.9% bovine serum albumin (BSA) rejection. Moreover, LIG membranes were found to be highly hydrophilic and exhibited excellent mechanical and chemical stability. Owing to their excellent permeance and separation efficiency, these highly robust electroconductive LIG membranes have a great potential to be used for designing functional membranes.
Article
Full-text available
Membrane filtration processes like microfiltration (MF) and ultrafiltration (UF) are proven to be effective in industrial wastewater treatment, including oil-water separation, as they generate suitable quality permeate for water reuse applications. Various research efforts have been conducted in areas of developing and/or modifying commercial MF/UF membrane materials through synthesizing new advanced polymers that promise improvement in oil-water separation performance. Although multiple MF/UF testing procedures were developed, there is still a gap in literature on having a comprehensive protocol that assesses the performance of the membranes in terms of flux, rejection, fouling, and cleanability. This paper delivers a robust bench scale testing procedure incorporating experiences and lessons learned from literature. The evaluation procedure includes three main testing steps: initial characterization, operating performance, and cleaning and recovery. The protocol was designed to mimic industrial conditions by using a representative synthetic produced water solution and operating multiple consecutives cycles of oil-water filtration followed by membrane chemical cleaning. The procedure was initially validated on multiple commercial MF/UF membranes having different pore sizes/MWCOs and chemistries obtained from various manufacturers and then applied to evaluate emerging membrane materials. The protocol was found to be reliable in evaluating the performance trends of various commercial membranes and effective in comparing the performance of emerging membranes. The developed procedure is proposed to be applied by researchers to assess the performance of new membrane materials as compared to relevant commercial products.
Article
Full-text available
Extracorporeal membrane oxygenators are essential medical devices for the treatment of patients with respiratory failure. A promising approach to improve oxygenator performance is the use of microstructured hollow fiber membranes that increase the available gas exchange surface area. However, by altering the traditional circular fiber shape, the risk of low flow, stagnating zones that obstruct mass transfer and encourage thrombus formation, may increase. Finding an optimal fiber shape is therefore a significant task. In this study, experimentally validated computational fluid dynamics simulations were used to investigate transverse flow within fiber packings of circular and microstructured fiber geometries. A numerical model was applied to calculate the local Sherwood number on the membrane surface, allowing for qualitative comparison of gas exchange capacities in low-velocity areas caused by the microstructured geometries. These adverse flow structures lead to a tradeoff between increased surface area and mass transfer. Based on our simulations, we suggest an optimal fiber shape for further investigations that increases potential mass transfer by up to 48% in comparison to the traditional, circular hollow fiber shape.
Article
Full-text available
High proportion of copper has become a global challenge owing to its negative impact on the environment and public health complications. The present study focuses on the fabrication of a polyvinylidene fluoride (PVDF)-polyvinyl pyrrolidone (PVP) fiber membrane incorporated with varying loading (0, 0.5, 1.0, 1.5, and 2.0 wt%) of titanium dioxide (TiO2) nanoparticles via phase inversion technique to achieve hydrophilicity along with high selectivity for copper removal. The developed fibers were characterized based on scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), permeability, porosity, zeta potential, and contact angle. The improved membrane (with 1.0 wt% TiO2) concentration recorded the maximum flux (223 L/m2·h) and copper rejection (98.18%). Similarly, 1.0 wt% concentration of TiO2 nanoparticles made the membrane matrix more hydrophilic with the least contact angle of 50.01°. The maximum copper adsorption capacity of 69.68 mg/g was attained at 1.0 wt% TiO2 concentration. The experimental data of adsorption capacity were best fitted to the Freundlich isotherm model with R2 value of 0.99573. The hybrid membrane developed in this study has considerably eliminated copper from leachate and the concentration of copper in the permeate was substantially reduced to 0.044 mg/L, which is below standard discharge threshold.
Article
Incorporation of zinc oxide (ZnO) nanoparticles has played an important role on the improvement of unique membrane characterization and performance, most notably the hydrophilic modification of the membrane for higher pure water permeability. Additionally, the permeability of the membrane can be improved via introduction of braid support by reducing the thickness of the membrane separation layer. Moreover, the braided hollow fiber membrane (BHFM) is able to perform under higher pressure conditions compared to hollow fiber membranes. In this paper, hybrid polysulfone (PSf)/ZnO BHFMs were fabricated via phase inversion method. Hydrophilic 10 ± 1.8 nm polycrystalline ZnO nanoparticles synthesized via sol-gel method were incorporated on BHFM to improve the hydrophilicity and increase flux with constant rejection under high pressure and the effect of the ZnO loading on the membrane properties and performance were thoroughly studied. The fabricated BHFMs with 0.0, 0.5, 1.0 and 1.5 wt.% of ZnO nanoparticles concentration were defined as BHFM1, BHFM2, BHFM3 and BHFM4 respectively. Scanning electron microscopy (SEM), contact angle, mechanical strength, flux performance, rejection with bovine serum albumin (BSA) and fouling of best performed membrane were conducted to achieve the target of this paper. The performance of these hybrid ZnO/PSf BHFMs were compared with neat PSf hollow fiber membrane (HFM) and previous studies. The findings from this research work shows that BHFM4 has the most desired properties for wastewater treatment application. The ZnO nanoparticles in BHFM4 have improved hydrophilicity from 108.79 to 71.02°, and thus BHFM4 has increased flux performance from 36.20 to 919.12 L/m²h at 1.0 bar pressure and 193.48 to 1909.11 L/m²h at 4.0 bar pressure when compared with BHFM1. Constant BSA rejection rates (>90%) were observed in all BHFMs. The improved hydrophilicity and pure flux performance with constant rejection rate in high pressure conditions illustrates the suitability of fabricated ZnO/PSf BHFMs in wastewater treatment applications.
Article
Reinforcing the HFMs provides appropriate mechanical and shear strengths and improves break at elongation. This comprehensive review paper first discusses the fundamental concept of HFMs fabrications, advantages and disadvantages of HFMs, fabrication methods and fabrication materials. Then, reinforcement methods are categorized into porous matrix membrane reinforced method, the fibers (use of threads or filament) reinforced method, and the use of tubular braids, and each one is discussed based on the concept of thermochemical compatibility of the supporting material and the base polymer. Such a compatibility leads to homogeneous- and heterogeneous-reinforcement method with different interfacial bonding state. A comparative study on the mentioned reinforcement methods is also presented based on the tabulated and charted tensile strength and elongation at break data. At the end, a brief look is taken into commercialized products and worldwide projects installed or under installation in the field of reinforced HFMs.
Article
The effect of addition of algae to activated sludge as active biomass in membrane bioreactors (MBRs) and electro-MBRs (e-MBRs) for wastewater remediation was examined in this study. The performances of Algae-Activated Sludge Membrane Bioreactor (AAS-MBR) and electro Algae-Activated Sludge Membrane Bioreactor (e-AAS-MBR) were compared to those observed in conventional MBR and e-MBR, which were previously reported and utilized activated sludge as biomass. The effect of application of electric field was also examined by the comparison of performances of e-AAS-MBR and AAS-MBR. Similar chemical oxygen demand (COD) reduction efficiencies of AAS-MBR, e-AAS-MBR, MBR, and e-MBR (98.35 ± 0.35%, 99.12 ± 0.08%, 97.70 ± 1.10%, and 98.10 ± 1.70%, respectively) were observed. The effect of the algae-activated sludge system was significantly higher in the nutrient removals. Ammoniacal nitrogen (NH3−N) removal efficiencies of AAS-MBR and e-AAS-MBR were higher by 43.89% and 26.61% than in the conventional MBR and e-MBR, respectively. Phosphate phosphorous (PO43−-P) removals were also higher in AAS-MBR and e-AAS-MBR by 6.43% and 2.66% than those in conventional MBR and e-MBR. Membrane fouling rates in AAS-MBR and e-AAS-MBR were lower by 57.30% and 61.95% than in MBR and e-MBR, respectively. Lower concentrations of fouling substances were also observed in the reactors containing algae-activated sludge biomass. Results revealed that addition of algae improved nutrient removal and membrane fouling mitigation. The study also highlighted that the application of electric field in the e-AAS-MBR enhanced organic contaminants and nutrients removal, and fouling rate reduction.
Chapter
Membrane technologies are widely used in separation processes because of their compact size, mild operating conditions, and ability to conduct separations that may not be technically or economically viable by other technologies. Relative to flat-sheet membranes, hollow fibers possess unique advantages including high membrane area, self-supporting structure, and ease of handling. However, they must be assembled as large modules for industrial application. Fluid hydrodynamics within these modules is as important as intrinsic membrane separation properties. Companies have explored myriad design strategies to improve fluid hydrodynamics and mass transfer inside modules as documented in the patent literature. This review summarizes the techniques taught to fabricate high performance hollow fiber bundles. More importantly, designs to (1) promote uniform shell flow, (2) enhance mixing, and (3) incorporate internal sweep within modules are discussed to inspire novel designs for next-generation hollow fiber modules.
Chapter
A review was done about the membrane preparation based on the thermally induced phase separation (TIPS) method. TIPS is an alternative to conventional nonsolvent-induced phase separation (NIPS) method that has been widely applied in commercial scale. After the evaluation of the thermodynamic of the TIPS process, the effect of the different parameters on the prepared hollow fiber membranes was clearly demonstrated. Finally, the mass transfer assisted TIPS process that potentially can make a big step in upgrading TIPS membranes performance was introduced.
Article
Self-supporting polymeric hollow fiber membranes prepared using non-solvent induced phase separation (NIPS) often suffer deterioration in mechanical properties due to asymmetric fingerlike and sponge-like morphology giving a porous and fragile structure. Hollow braided fibers of Polyethylene terephthalate (PET) have been used as substrate to increase the strength of hollow fiber membranes. However, problems arise from poor interfacial bonding between the braid and coating polymer resulting in peeling off or delamination at the interface. In this work, we report a method of braid treatment and selection with two alkali treatment steps (NaOH and KOH) to study their effect on pure water flux, water contact angle, tensile strength as well as braid morphology of three different braid samples (B1, B2 and B3). B2 sample treated in KOH demonstrated the highest water flux of 1388 L/m 2 h. Examination of surface morphology of the braids revealed a washing effect and enlargement of braid interspaces making them more porous and hence increased permeability, with a contact angle of 0°with water. The sample also exhibited zero weight loss as well as a remarkable tolerance for high temperature with negligible reduction in tensile strength of only about 0.9%. Membrane fabricated with B2-K was demonstrated to have better adhesion between polymer-braid interface in comparison to the control. The pre-treatment step provides a good braid selection basis for onward membrane development with KOH showing the most favorable outcome without losing braid quality.
Article
The ultrafiltration membranes fabricated by the non-solvent induced phase separation (NIPS) have been widely used as the supports of the polyamide thin film composite (PA TFC) membranes, although they are usually thick, low porosity, and poor chemical stability. Instead, thin polyethylene (PE) lithium battery microporous membrane with high surface porosity and connected pores is used as the support layer. PE membrane was pre-modified by the co-deposition of tannin and 3-aminopropyltriethoxysilane improving its hydrophilicity, and then a uniform and defect-free PA active layer was successfully fabricated by interfacial polymerization. The resultant membrane exhibited high filtration performances in the forward osmosis (FO) process (2 times higher water flux and 90 % lower specific salt flux than the commercial HTI-TFC membrane), and efficient separation of NaCl and dyes in nanofiltration (NF) process, outstanding chemical stability and mechanical strength.