ArticlePDF Available

Silica Nanoparticles Inhibit Responses to ATP in Human Airway Epithelial 16HBE Cells

Authors:

Abstract and Figures

Because of their low cost and easy production, silica nanoparticles (SiNPs) are widely used in multiple manufacturing applications as anti-caking, densifying and hydrophobic agents. However, this has increased the exposure levels of the general population and has raised concerns about the toxicity of this nanomaterial. SiNPs affect the function of the airway epithelium, but the biochemical pathways targeted by these particles remain largely unknown. Here we investigated the effects of SiNPs on the responses of 16HBE14o- cultured human bronchial epithelial (16HBE) cells to the damage-associated molecular pattern ATP, using fluorometric measurements of intracellular Ca2+ concentration. Upon stimulation with extracellular ATP, these cells displayed a concentration-dependent increase in intracellular Ca2+, which was mediated by release from intracellular stores. SiNPs inhibited the Ca2+ responses to ATP within minutes of application and at low micromolar concentrations, which are significantly faster and more potent than those previously reported for the induction of cellular toxicity and pro-inflammatory responses. SiNPs-induced inhibition is independent from the increase in intracellular Ca2+ they produce, is largely irreversible and occurs via a non-competitive mechanism. These findings suggest that SiNPs reduce the ability of airway epithelial cells to mount ATP-dependent protective responses.
Content may be subject to copyright.
Int.J.Mol.Sci.2021,22,10173.https://doi.org/10.3390/ijms221810173www.mdpi.com/journal/ijms
Article
SilicaNanoparticlesInhibitResponsestoATPinHuman
AirwayEpithelial16HBECells
AlinaMilici,AliciaSanchezandKarelTalavera*
LaboratoryofIonChannelResearch,DepartmentofCellularandMolecularMedicine,VIBCenterfor
Brain&DiseaseResearch,Herestraat49,3000Leuven,Belgium;alina.milici@kuleuven.be(A.M.);
alyciasl@gmail.com(A.S.)
*Correspondence:karel.talavera@kuleuven.be;Tel.:+3216330469
Abstract:Becauseoftheirlowcostandeasyproduction,silicananoparticles(SiNPs)arewidelyused
inmultiplemanufacturingapplicationsasanticaking,densifyingandhydrophobicagents.How
ever,thishasincreasedtheexposurelevelsofthegeneralpopulationandhasraisedconcernsabout
thetoxicityofthisnanomaterial.SiNPsaffectthefunctionoftheairwayepithelium,butthebio
chemicalpathwaystargetedbytheseparticlesremainlargelyunknown.Hereweinvestigatedthe
effectsofSiNPsontheresponsesof16HBE14o‐culturedhumanbronchialepithelial(16HBE)cells
tothedamageassociatedmolecularpatternATP,usingfluorometricmeasurementsofintracellular
Ca
2+
concentration.UponstimulationwithextracellularATP,thesecellsdisplayedaconcentration
dependentincreaseinintracellularCa
2+
,whichwasmediatedbyreleasefromintracellularstores.
SiNPsinhibitedtheCa
2+
responsestoATPwithinminutesofapplicationandatlowmicromolar
concentrations,whicharesignificantlyfasterandmorepotentthanthosepreviouslyreportedfor
theinductionofcellulartoxicityandproinflammatoryresponses.SiNPsinducedinhibitionisin
dependentfromtheincreaseinintracellularCa
2+
theyproduce,islargelyirreversibleandoccursvia
anoncompetitivemechanism.ThesefindingssuggestthatSiNPsreducetheabilityofairwayepi
thelialcellstomountATPdependentprotectiveresponses.
Keywords:silica;nanoparticles;ATP;purinergicreceptor;airway;epithelialcell;intracellularCa
2+
1.Introduction
Nanoparticles(NPs)designatesmallsizednaturalorengineeredparticulatematter
withdimensionsoflessthan100nminatleastonedimensionandphysicalandchemical
propertiesthatdifferfromthoseofthebulkmaterial.Theyarecomposedofawiderange
ofmaterials,suchasmetals,inorganiccarbon,andorganiccompounds.Inthelastdec
ades,NPshavegainedpopularityinmanyindustries,astheiruniquepropertiesmake
themsuitableforuseincosmetics,biotechnology,food,pharmaceuticalandchemicalin
dustries[1–7].
HumanexposuretoNPshasincreasedconsiderablysincethenanotechnological
revolution.Theirsmalldimensionsanduniquephysicochemicalpropertiesfacilitatethe
abilityofnanoparticlestocrossdifferentbarriersandtoreachdistalorgans[8–12].They
canpenetratetheplasmamembraneanddepositintosubcellularstructuressuchasmito
chondria,endoplasmicreticulumandlysosomes,therebyposingpotentialhealththreats
[13–17].This,togetherwiththeirextensiveuseinconsumerproducts,hasraisedconcerns
aboutthesafetyofNPs[8,18].Agrowingbodyofevidencepointstowardsthedeleterious
effectsofNPs[19–22].However,notallNPsareharmful,andsomeofthemareengi
neeredtobeusedinmedicineasdrugnanocarriersduetotheirspecificinteractionwith
targetorgans[6,23].NPscanenterourbodiesbyinhalation,ingestion,injectionor
throughtheskin,butthemainentryrouteistheairwayepithelium[8,24].
Besidesitsroleingasexchange,theairwayepitheliumprotectsthebodyfromforeign
substances.Thecellsliningtherespiratorytracthavekeyrolesinmucociliaryclearance
Citation:Milici,A.;Sanchez,A.;
Talavera,K.SilicaNanoparticles
InhibitResponsestoATPinHuman
AirwayEpithelial16HBECells.Int.
J
.Mol.Sci.2021,22,10173.https://
doi.org/10.3390/ijms221810173
AcademicEditors:UdayKishore
andGiorgioPelosi
Received:31August2021
Accepted:16September2021
Published:21September2021
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu
tionalaffiliations.
Copyright:©2021bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(http://crea
tivecommons.org/licenses/by/4.0/).
Int.J.Mol.Sci.2021,22,101732of18
andcontributetotheinitiationofairwayinflammation[25–28].Intheairways,NPsmay
interactwithepithelialcellsandaltertheirexocrineandparacrinefunctions,andwith
sensoryneurons,whichinitiatethecoughreflexandneurogenicinflammation[29].Ithas
beenshownthatuponinhalation,NPsimpairthenormalfunctioningoftheairwaysby
inducinginflammation,increasingthesecretionofmucusandinhibitingtheciliarybeat
frequency[30–34].
Silicaparticles(SiNPs),thesubjectofthisstudy,areamongthemostproducedsyn
theticnanomaterialsworldwideduetotheirtunablephysicochemicalproperties,stabil
ity,lowcostandeasyproduction[7,35,36].SiNPshavebeenshowntoinducelunginflam
mation,cytotoxicresponsessuchasapoptosis,DNAdamageandendoplasmicreticulum
stress;theyincreasethereactiveoxygenspecies(ROS)productionbyalteringCa2+home
ostasis,disrupttheplasmamembraneuponuptakeandaltermembranefluidityandin
tegrity[7,10,15,20,21,37,38].PreviousstudiesindicatethattheeffectsinducedbySiNPs
aresize‐andconcentrationdependentanddifferacrosscelltypes.Morepronouncedtoxic
effectshavebeenreportedforsmallerparticles,increaseddosesandprolongedexposure
times[7,15,39].Veryrecentstudiesusingthreedimensionalmodelairwayandlungprep
arationshaveshownthatSiNPsinducegenotoxicity[40],asymmetricchangesinproin
flammatorycytokineandchemokineexpressionacrosstheairwaybarrierandtheincrease
inadhesionmoleculesintheapicalcompartment[41].
DespitetheextensiveresearchonthetoxicityofSiNPs,themechanismsunderlying
theirdeleteriouseffectsarepoorlyunderstood.Forinstance,mostofthestudiesrelatedto
SiNPsarefocusedonchroniceffectsforinvitroexposuretimesrangingfromseveral
hoursuptodays[42].Ontheotherhand,recentresearchhasillustratedtheimportance
ofstudyingalsotheacuteinteractionofSiNPswithspecificcellularstructuresandsignal
ingpathways.Forinstance,SiNPinducedmodulationinthetimescalesofsecondsand
minuteshavebeenreportedforcationpermeablechannelsthatplaycrucialrolesincell
signaling[30,37,39,43,44].Inthissense,ATPmediatedsignalingisconsideredtobein
volvedininflammatoryresponsestoSiNPsinmultiplecelltypes[45–50].
ATPreceptorsareligandgatedcationchannels(P2X,ionotropic)orGproteincou
pledreceptors(P2Y,metabotropic)[51–54].ActivationofP2Xreceptorsleadstoextracel
lularCa2+influx,resultinginplasmamembranedepolarizationanddirectincreaseinin
tracellular[Ca2+].Incontrast,activationofP2Yreceptorsactivatesinositoltriphosphate
(IP3)mediatedsignaling,whichopensIP3receptorCa2+channelsinthemembraneofen
doplasmicreticulum(ER),leadingtoCa2+releasefromthesestores[52,55].Intheairways,
extracellularATPsignalstissuedamageinducedbyparticulatesorpathogens,andis
thereforeconsideredasadamageassociatedmolecularpattern(DAMP)[56].ATPrecep
torsareexpressedalongtherespiratorytractinepithelialcellsandinsensorynervesin
upper(trigeminalganglia)andlowerairways(nodoseanddorsalrootganglia)[57–59].It
hasbeenreportedthatthesetypesofcellsexpressP2X,aswellasP2Yreceptors.However,
airwayinjuryinducedbyparticulatematterinhalationhasbeenpredominantlyassociated
withP2Ymediatedsignalinginepithelialcellsleadingtoenhancedmucociliaryclearance.
Ontheotherhand,P2Xreceptorshaveaprominentroleinsensorynerves,astheiracti
vationtriggersdefensiveresponsessuchascough[56,60–65].Mostofthestudiesaddress
ingATPmediatedsignalingarerelatedtoATPreleaseuponcelldamage[66].
ThepurposeofthisstudywastodeterminewhetherSiNPsaffecttheresponsesof
airwayepithelialcellstoATP.Usingculturedhumanbronchialepithelial(16HBE)cellsas
amodel,wefoundthatacuteextracellularapplicationofcommerciallyavailableSINPs
potentlyreducestheresponsestoATPinaconcentrationdependentmanner.Ourresults
unveiltheATPsignalingpathwayasadirectcellulartargetofSiNPs.Inthebroadcontext,
thissuggeststhatSiNPsaffecttheabilityofairwayepithelialcellstorespondtoenviron
mentalandendogenousstimulithatrequireATPmediatedsignaling.
Int.J.Mol.Sci.2021,22,101733of18
2.Results
2.1.IntracellularCa2+Responseof16HBECellstoExtracellularATP
Wefirstcharacterizedtheresponseof16HBEcellstoextracellularapplicationofATP,
underconstantperfusionofstandardKrebssolution(containing1.5mMCa2+,seeMateri
alsandMethods).WedeterminedtheamplitudeoftheincreaseinintracellularCa2+con
centrationsinducedbythreeconsecutiveapplicationsofATP,atvariousconcentrations
(from0.3to100μM;Figure1a–c).Theresponsesverycommonlyshowedasharpinitial
upstrokephase,followedbyaslowdecreasein[Ca2+],typicaloftheactivationofATP
receptors[67].Asexpected,theresponseinintracellular[Ca2+]wasconcentrationdepend
ent(Figure1d).
Figure1.ExtracellularATPinducesconcentrationdependentresponsesin16HBEcells.(ac)Exam
plesofintracellular[Ca2+]tracesshowingtheresponsestoextracellularATPappliedat1μM(a),10
μM(b)or100μM(c),usingastandardKrebssolution.(d)Concentrationdependenceoftheampli
tudeoftheresponsestothe1st(black),2nd(blue)and3rd(purple)applicationsofATP.Thedata
arerepresentedasmean±s.e.m.(n=179,59,75,96,278and128,forATP0.3,1,3,10,30and100
μM,respectively).
ThistypeofstimulationprotocolallowedustoevokeconsecutiveresponsestoATP
inareliablemanner,withnodesensitization.Thus,wecoulduseavariantofthisprotocol
todetermineifSiNPsaffecttheresponsestoATP,bycomparingtheamplitudesofthe
responsestoATPintheabsenceandinthepresenceofSiNPsinthesamecells.
2.2.TheCa2+ResponsestoATPAreMediatedbyReleasefromIntracellularStores
TheintracellularCa2+responsestoATPmaybemediatedbymetabotropic(P2Y)
and/orbyionotropic(P2X)receptors.TodeterminetheoriginoftheCa2+increaseupon
Int.J.Mol.Sci.2021,22,101734of18
ATPapplicationinourexperimentalconditions,weperformedmeasurementsintheab
senceofextracellularCa2+.Forthis,cellswereallowedtostabilizeinthestandardKrebs
solutionbeforetheexperimentsandthenperfusedwithaCa2+freeextracellularsolution
(seeMaterialsandMethods).Inthelattercondition,afirstapplicationof10μMATPelic
itedsizeableintracellularCa2+responses,whoseamplitudeswerenotsignificantlydiffer
entfromtheamplitudesoftheresponsesrecordedinthepresenceofextracellularCa2+
(Figure2a,b,columnsATP1st).Incontrast,thesecondATPapplicationinducedatransi
entincreaseinintracellular[Ca2+]onlyinaverylimitednumberofcells(Figure2a,b,col
umnsATP2nd),andathirdapplicationfailedtotriggeranyresponse(Figure2a,b,col
umnsATP3rd).
Figure2.ATPmobilizesCa2+fromintracellularstores.(a)Examplesoftracesof[Ca2+]recordedin
16HBEcellsshowingtheeffectsofrepetitiveextracellularapplicationof10μMATPintheabsence
ofextracellularCa2+.(b)Amplitudeoftheresponsestothe1st,2ndand3rdATPapplicationsinthe
presenceandintheabsenceofextracellularCa2+.Thedataarerepresentedasmean±s.e.m.(n=207,
482,97,249,97and247forthecolumnsfromlefttoright).Theasterisks(**)denotestatistically
significantdifferenceofthedataobtainedintheCa2+freecondition(Ca2+)withrespecttothecor
respondingcontroldata(+Ca2+)(p<0.01;Kolmogorov–Smirnovtest).
Theseresultsshowthat16HBEcellscansupportfullsizedresponsesatleasttoafirst
applicationofATPintheabsenceofextracellularCa2+.Thisdemonstratesthatthere
sponsesaremediatedbyreleasefromintracellularstores.
2.3.ConcentrationDependentInhibitionofResponsestoATPbySiNPs
TodetermineifSiNPsaltertheresponsestoATP,weusedthesameprotocolde
scribedforFigure1,butapplyingSiNPs7minpriorandduringthesecondstimulation
with10μMATP,allduringperfusionofthestandardKrebssolution(Figure3a–c).Nota
bly,SiNPsincreasedthebaseline[Ca2+]priortothesecondATPapplication,inaccordance
withourpreviousstudy[30].Thisincreasein[Ca2+]appearednottobereversibleafter
washoutofthenanoparticlesforatleastthenext9minofdurationoftheexperiment
(Figure3a–c).The7minpreapplicationofSiNPswasrequiredtoassesstheeffectsofATP
withoutinterferingwiththeincreaseinintracellular[Ca2+]elicitedbytheparticles.SiNPs
wereappliedatseveralconcentrations(1,3,10,or100μg/mL).Toquantifytheeffectsof
SiNPs,wedeterminedtheratiobetweentheamplitudesoftheresponsestothesecondor
thirdapplicationofATPandtheamplitudeoftheresponsestothefirstapplicationof
ATP.SiNPsreducedtheamplitudeofresponsestoATPinaconcentrationdependent
manner.TheamplitudeofthesecondresponsetoATPwasnotsignificantlyaffecteddur
ingtheapplicationof1μg/mLSiNPs(Figure3a,d),butwasreducedathigherconcentra
tions(Figure3b–d).TheinhibitoryeffectofSiNPswasmorepronouncedonthethirdATP
application,aftertheremovaloftheparticlesfromtheextracellularsolution(Figure3d).
Int.J.Mol.Sci.2021,22,101735of18
Figure3.SiNPsinduceaconcentrationdependentinhibitionoftheresponsetoATP.(ac)Examples
ofintracellular[Ca2+]tracesshowingtheeffectsofSiNPswhenappliedat1μg/mL(a),3μg/mL(b)
or10μg/mL(c),beforeandduringthe2ndapplicationof10μMATP.Thearrowspointtothe
increaseinintracellular[Ca2+]inducedbytheapplicationoftheSiNPs.(d)Ratiobetweentheampli
tudesoftheresponsestothe2ndand3rdapplicationsofATPandtheamplitudeoftheresponseto
the1stapplicationofATP,asafunctionoftheconcentrationofSiNPs.Thedataarerepresentedas
mean±s.e.m.(n=135,135,52and92forSiNPsat1,3,10and100μg/mL,respectively.Theasterisks
(**)denotestatisticallysignificantdifferencewithrespecttothecorrespondingcontroldata[SiNPs]
=0μg/mL(p<0.01;Kolmogorov–Smirnovtest).
Viabilitytestsusingfluorescenceactivatedcellsortingwithpropidiumiodideasa
markerofdeadcellsshowedonlyamarginalincreaseinthenumberofnonviablecells
after10minexposureto100μg/mLSiNPs(3.2%abovethecontrollevel;FigureS1).
2.4.ProlongedInhibitoryEffectsofSiNPsontheResponsestoATP
TheaboveresultsshowthatSiNPsnotonlyinhibittheresponsetoATPwhenthey
areappliedsimultaneously,butalsoaffecttheresponsetoasubsequentATPapplication
9minapart.TodetermineifthereductioninATPresponsecausedbySiNPspersistsafter
alongertime,wemodifiedthepreviousprotocolbydelayingthethirdATPapplication
by30min.WefoundthattheresponsestoathirdapplicationofATPafteralmost1hof
keepingthecellsinKrebssolutionwerelargelypreserved(Figure4a,c).
Int.J.Mol.Sci.2021,22,101736of18
Figure4.PersistentinhibitoryactionofSiNPsonresponsestoATP.(a)Examplesofintracellular
[Ca2+]tracesshowingtheeffectsofextracellularATPappliedat10μM.(b)Examplesofintracellular
[Ca2+]tracesshowingtheeffectsofSiNPswhenappliedat100μg/mL,beforeandduringasecond
applicationof10μMATP.(c)AmplitudeoftheresponsestothreeconsecutiveapplicationsofATP
forthecontrolseriesofexperiments(blackbars,n=164)andforaseriesofexperimentsinwhich
100μg/mLSiNPswasapplied9minbeforeandduringthesecondapplicationofATP(whitebars,
n=140).Thedataarerepresentedasmean±s.e.m.Theasterisks(**)denotestatisticallysignificant
differenceofthedataobtainedinSiNPswithrespecttothecorrespondingcontroldataintheab
senceofSiNPs(p<0.01;Kolmogorov–Smirnovtest).The#symboldenotesstatisticallysignificant
differencebetweenATP2nd+SiNPsandATP3rdafterSiNPs(p<0.01;Kolmogorov–Smirnovtest).
ThisallowedustoconfidentlyassesstheeffectofSiNPsonadelayedexposureto
ATP.Usingthisprotocol,weobservedthatSiNPsapplicationresultedinanincreasein
Int.J.Mol.Sci.2021,22,101737of18
theintracellular[Ca2+]throughouttheremainingmeasurements,i.e.,longafterSiNPs
washout(Figure4b).However,morecriticallytothecurrentstudy,wefoundthatthe
responsestoATPdidnotrecoverafter35minofwashoutoftheSiNPs(Figure4b,c).
2.5.EffectsofIntracellularCa2+OverloadontheResponsestoATP
SiNPsontheirowninduceanincreasein[Ca2+]that,hypothetically,mightleadto
inhibitionoftheresponsetoATP.Asawaytoassessthispossibility,wetestedwhether
theinhibitionoftheresponsetoATPcorrelatedwiththeincreaseinintracellular[Ca2+]
inducedbythepreviousapplicationof100μg/mLSiNPs.Forthis,weusedthedatacor
respondingtothepoint100μg/mLSiNPspresentedinFigure3d.Wefoundthattheratio
oftheamplitudesoftheresponsestothesecondandfirstapplicationsofATP,whichisa
directmeasureoftheeffectoftheSiNPs,didnotcorrelatewitheitherthemaximalincrease
ortheaverageincreaseinducedbytheapplicationofSiNPsprevioustothesecondATP
application(Figure5a,b).Thelackofcorrelationwasevenmoreobviousbetweentheef
fectsoftheSiNPsonthethirdATPapplicationandthepreviousintracellularCa2+levels,
i.e.,maximalormeanvalues(Figure5c,d).
Figure5.LackofcorrelationbetweenthereductionintheresponsetoATPandtheincreaseinin
tracellular[Ca2+]inducedbySiNPs.(a,b)Plotsoftheratiooftheamplitudesoftheresponsestothe
2ndand1stapplicationsof10μMATPversusthemaximalincrease(a)andmeanincrease(b)in
intracellular[Ca2+]inducedby100μg/mLSiNPs.(c,d)Equivalentplotstothoseshowninpanels(a)
and(b),butusingtheratiooftheamplitudesoftheresponsestothe3rdand1stapplicationsof10
μMATP.Thelinesrepresentthecorrespondinglinearfits,withR2valuesof0.04,0.04,0.002and
0.004,forpanels(ad),respectively.
Int.J.Mol.Sci.2021,22,101738of18
Wefurtherprobedforarelationbetweenanincreaseintheintracellular[Ca2+]and
theamplitudeoftheresponsetoATPbytestingwhetheranincreasein[Ca2+]inducedby
amechanismdistinctfromthatoftheSiNPshasasimilarinhibitoryeffectontheresponses
toATP.WedidthisbyperfusingthecellswiththestandardKrebssolutionandtesting
theeffectsofaddingtheCa2+ionophoreionomycin(1μM).Aseriesofparallelcontrol
experimentsshowedthatconsecutiveATPapplicationstriggeredsizeableintracellular
Ca2+responses(Figure6a,c;blackbars).
Figure6.ResponsetoATPin16HBEcellsoverloadedwithCa2+.(a)Exampleofcontrol[Ca2+]traces
recordedin16HBEcellsshowingtheresponsestorepetitiveextracellularapplicationof10μMATP.
(b)Examplesoftracesshowingtheeffectsof1μMionomycinwhenappliedbeforeandduringthe
secondapplicationof10μMATP.(c)Amplitudeoftheresponsestothreeconsecutiveapplications
ofATPforthecontrolseriesofexperiments(blackbars,n=36)andforaseriesofexperimentsin
which1μMionomycinwasapplied2minbeforeandduringthesecondapplicationofATP(white
bars,n=42).Thedataarerepresentedasmean±s.e.m.Theasterisksdenotestatisticallysignificant
differencebetweenATP3rdandATP3rdafterionomycin(p<0.01;Kolmogorov–Smirnovtest).(d)
Comparisonoftheamplitudeofthe[Ca2+]responsesinducedby100μg/mLSiNPsandby1μM
ionomycin(n=92and42,respectively).Thedataarerepresentedasmean±s.e.m.Theasterisks(**)
denotestatisticallysignificantdifferencebetweenthetwobars(p<0.01;Kolmogorov–Smirnovtest).
Asexpected,ionomycininducedafastandrobustincreasein[Ca2+],whichwasin
factmuchlargerthanthatinducedbySiNPs(Figure6b,d).Incontrasttotheincreaseob
servedwiththeSiNPs,applicationofATPduringtheperfusionofionomycindidelicitan
additionalincreasein[Ca2+](Figure6b).Theamplitudesoftheseresponseswerenotsig
nificantlydifferentfromtheamplitudesobservedinthecontrolexperiments(Figure6c).
Wedidobserve,however,thattheresponsestoATPdevelopedmoreslowlyinthe
Int.J.Mol.Sci.2021,22,101739of18
presenceofionomycinthanincontrolcondition(Figure6b).Thiseffectwasnotfurther
characterized.TheresponsetothethirdapplicationofATPappearedtobeaffectedbythe
priortreatmentwithionomycin(Figure6b,c),butneverthelessthiseffectwassmallerthan
thatcausedby100μg/mLSiNPs(seedataforATP10μMinFigure2d).
2.6.EffectsofSiNPsontheConcentrationDependenceoftheResponsetoATP
InordertogainfurtherinsightintothemechanismofactionofSiNPs,wedetermined
howtheyaltertheconcentrationdependencyoftheresponsetoATP.Forthis,weused
thesameATPapplicationprotocoldescribedabove(Figure1),butperfusing100μg/mL
SiNPs7minpriorandduringthesecondstimulationwithATP(inthestandardKrebs
solution).WeusedSiNPsatthisconcentrationbecausetheeffectsweremostrobustboth
fortheincreaseinintracellular[Ca2+]andfortheinhibitionoftheresponsestoATP,which
wasexpectedtoresultinlessdatavariance.WeconfirmedtheresponsestoATPtobe
significantlyinhibitedinthepresenceofSiNPs(Figure7a–d),andthattheresponsetothe
thirdapplicationofATPwasalsoinhibited,furtherdemonstratingthatSiNPshadanin
hibitoryeffectevenaftertheywereremovedfromtheextracellularsolution(Figure7a–
d).
Figure7.EffectsofSiNPsontheconcentrationdependencyoftheresponsetoATP.(ac)Examples
ofintracellular[Ca2+]tracesshowingtheeffectsof100μg/mLSiNPsontheresponsestoextracellular
ATPappliedat1μM(a),10μM(b)or100μM(c).(d)Concentrationdependenceoftheamplitude
oftheresponsestoATP,forthe1st(control),2nd(inthepresenceofSiNPs)and3rd(afterwashout
ofSiNPs)applications.Thedataarerepresentedasmean±s.e.m.(n=213,68,130,109,169and146
forATP0.3,1,3,10,30and100μM,respectively).
BycomparingthedatashowninFigure7dwiththoseinFigure1d,itcanbenoticed
that,apartfromtheobviousdifferencesinmaximalvalues,theshapesoftheconcentration
Int.J.Mol.Sci.2021,22,1017310of18
dependenciesdeterminedintheabsenceandinthepresenceof100μg/mLSiNPsap
pearedtobesimilar.Totestwhetherthiswasindeedthecase,wereplottedthedataby
normalizingeachcurvetotherespectivevalueobtainedatATP100μM(Figure8a,b).
Figure8.NoncompetitiveinhibitoryeffectofSiNPsontheresponsetoATP.(a,b)Normalizedcon
centrationdependenceoftheamplitudeoftheresponsestoATP,forthe2ndapplication(control
andinthepresenceofSiNPs)andforthe3rdapplication(controlandafterwashoutofSiNPs).The
normalizationwasperformedbydividingthedatasetsofFigures1dand5dbythecorresponding
valuesobtainedfor100μMATP.(c,d)Lineweaver–BurkplotsofthedatashowninFigures1dand
5d.Thelinesrepresentfitswithlinearfunctions.Thedataarerepresentedasmean±s.e.m.Then
numbersarethesameasintheoriginalfigures.
Thecomparisonofthenormalizedcurvesrevealedalargeoverlapofthedataob
tainedinthepresenceandduringwashoutoftheSiNPswiththerespectivenormalized
controlcurves.Finally,werepresentedthesedataasLineweaver–Burkplots(1/Δ[Ca2+]vs.
1/[ATP])andfittedthemwithlinearfunctions(Figure8c,d).Thefitsyieldedlinearfunc
tionswithslopesthatweredifferentbetweencontrol(2.45±0.11and2.08±0.24forsecond
andthirdATPapplications,respectively)andSiNPs(9.92±0.9and12.9±3.3forsecond
andthirdATPapplications,respectively).Incontrast,theresultinginterceptswiththe
1/[ATP]axis,whichrelatetotheinverseoftheapparentequilibriumconstant(–1/KM),
werenearlyidenticalforcontrolandSiNPsconditions(secondATPapplication:–0.44±
0.08μM1and‐0.47±0.17μM1,respectively,andthirdATPapplication:–0.52±0.08μM1
and–0.52±0.21μM1,respectively).ThecorrespondingKMvaluesforthesecondATP
applicationweretherefore2.27±0.4μMand2.2±0.8μMforcontrolandSiNPs,respec
tively,andforthethirdATPapplication,1.9±0.3μMand1.9±0.8μMforcontroland
SiNPs,respectively.ThisanalysisshowsthattheSiNPsonlydecreasedthemaximal
Int.J.Mol.Sci.2021,22,1017311of18
response(efficacy)andnotthesensitivitytoATP,suggestingthattheyhaveanoncom
petitiveinhibitoryaction.
3.Discussion
ExtracellularATPisakeysignalingmoleculeforthephysiologyoftheairwayepi
thelium,asitmediatesresponsessuchastheincreaseinciliarybeatfrequencyandmucus
productionandtriggersthecoughreflex.Moreover,ATPisakeymessengerofcellular
damage,anditsdetectionplaysakeyroleinactivatingprotectivemechanismsinneigh
boringhealthycells.Therefore,aninsufficientabilitytotriggerafullresponsetoATPis
expectedtoleadtoreducedprotectiveresponses.Previousstudieshaveestablishedthe
implicationofATPmediatedsignalinguponexposuretonanomaterials,includingsilica.
However,thesehavemainlyreportedtheinductionofATPreleaseuponlongtermexpo
sure,from30–40min[47–49]toseveralhours[46,68,69].Incontrast,theacuteeffectsof
thenanoparticlesonATPmediatedsignaling,thatis,ontheresponsetoATPitself,re
mainedtobeinvestigated.Tocoverthisinformationgap,inthisstudyweassessedthe
acuteeffectsof10nmSiNPsontheresponsesofculturedhumanairwayepithelialcellsto
ATP.
Weusedthe16HBEcellline,whichhasbeenreferredtoasanexcellentmodelfor
studyingATPinducedintracellularCa2+transientsinhumanairwayepithelialcells[70].
Accordingly,wefoundthesecellstorespondconsistentlytoextracellularapplicationof
ATPintherangebetween0.3and100μM.Theseresponseshadamplitudesthatincreased
withtheATPconcentrationanddisplayedthetypicalmorphology,withafastupstroke
phasefollowedbyabiphasicdecay[70].Wefurtherfoundthatcellsrespondedtoafirst
applicationofATPwithCa2+transientsofnormalamplitudeinfreeextracellularCa2+so
lutions.Thisshowsthatinourexperimentalconditions,16HBEcellsrespondtoATPvia
activationofP2Yreceptors,leadingtoIP3inducedCa2+releasefromintracellularstores
viatype3IP3receptors,aspreviouslyreported[70,71].Interestingly,thesecondandthird
applicationsofATPinCa2+freesolutionfailedtoevokeresponses,whichmayhavebeen
duetoastrongdepletionoftheintracellularstoresinducedbythefirstATPapplication.
Inturn,thisindicatesthecrucialimportanceofthereplenishingmechanismsforthe
maintenanceofresponsivenesstorepetitivestimulationwithATPinphysiologicalcondi
tions(inthepresenceofextracellularCa2+).Weindeedfoundthatinthelattercondition,
consecutiveapplicationsofATPseveralminutesapartinducedreproducibleresponses.
ThisallowedustoassesstheeffectsofSiNPsbycomparingtheamplitudesofthere
sponsestoATPintheabsenceandinthepresenceofSiNPsinthesamecells.
Usingthisexperimentalparadigm,wefoundthatSiNPsreducetheresponsetoATP
inaconcentrationdependentmanner.Thisinhibitoryeffectwasnotonlyobservedinthe
presenceoftheSiNPs,butalsofoundtopersistandtobeactuallystrongerupto35min
aftertheremovalofSiNPsfromtheextracellularsolution(Figures3,4and6).Futureex
perimentsmayservetodeterminewhethertheinhibitionoftheresponsestoATPisre
versibleoverlongerperiodsoftime.Nevertheless,theprolongedirreversibilityofthein
hibitoryactionofSiNPsdemonstratesthattheprimaryunderlyingmechanismisnotme
diatedbySiNPsactingfromtheextracellularsideofthemembrane.Importantly,thevia
bilitytestsshowedonlyaverysmallincreaseinthenumberofnonviablecellsfollowing
exposuretothehighestSiNPsconcentrationtested(100μg/mL).Thisresultagreeswith
thestabilityoftheintracellular[Ca2+]recordingsinallseriesofexperiments,indicating
thatnomajorchangesincellfunctionalityleadingtocompromisedplasmamembrane
integrityunderlietheobservedacuteinhibitoryeffectofSiNPsonATPresponse.
AnotherhypothesistoconsiderregardingthemechanismofactionoftheSiNPsis
that,becauseoftheirnegativesurfacecharge,thenanoparticlesmightchelateintracellular
cationsandtherebydecreasetheintracellularCa2+signalsdetectedwithFura2.However,
thismechanismcanbediscarded,asitisexpectedtooperateforallintracellularCa2+sig
nals,andwehavepreviouslydemonstratedthattheSiNPsactuallyenhancetheresponse
ofTRPV1totheagonistcapsaicin[30].
Int.J.Mol.Sci.2021,22,1017312of18
Alternatively,itcouldbeenvisagedthatSiNPsinhibittheCa2+responsebydirectly
targetingcomponentsoftheATPsignalingpathway.Forinstance,SiNPsmayalterthe
mechanicalpropertiesofcellularmembranes[38],andthiscouldaffectthefunctionof
ATPreceptors.Furthermore,previousTEMstudieshaveshownthatSiNPscanbeinter
nalizedviaendocytosisthroughplasmamembranevesiclescontainingseveralnanopar
ticlesandthatthisuptakeprocessisaccompaniedbyplasmamembraneconsumptionand
disruption[15].ThismayleadtoadecreaseinthenumberofATPreceptorsandtothe
formationofCa2+permeableporesintheplasmamembrane,whichinturnmayexplain
thereductionoftheresponsestoATPandtheSiNPsinducedincreaseinintracellular
Ca2+],respectively.
However,thehypothesisconsideringthatSiNPsdirectlytargetcomponentsofthe
ATPsignalingpathwayhasalimitation.ThecellularconcentrationofSiNPsandthereby
anyputativedirecteffectonasignalingcomponentwouldbeexpectedtodecay,notto
increase,uponwashout.Thus,itremainsdifficulttoexplainwhytheconcentrationde
pendenciesoftheSiNPsactionshowamorepotenteffectontheATPresponsesduring
washoutthanduringtheapplicationoftheparticles.
AmoreplausibleexplanationisthattheSiNPstriggeraninhibitorymechanismthat
outlivesandisfurtherenhancedaftertheceasingoftheaccumulationofthenanoparticles
inthecellularcompartments.Inthisdirection,theincreaseinintracellularCa2+emerged
asacandidatefactortobeinvolved,asweobservedthatSiNPsinducedsucheffectina
ratherirreversiblemanner,inagreementwithourpreviousreport[30].However,we
foundthattheinhibitoryeffectsoftheSiNPsontheATPresponseswerenotcorrelatedto
theincreasein[Ca2+]inducedbytheparticles.Furthermore,theexperimentsinwhichwe
usedionomycinrevealedthatcellsundergoingintracellularCa2+overloadwereableto
respond,albeitmoreslowly,toafirstapplicationofATP.Takentogether,ourdata
stronglyindicatethattheincreaseinCa2+inducedbytheSiNPsisnottheprimaryfactor
underlyingthedecreaseintheresponsestoATP.
Althoughourpresentexperimentsdidnotallowpinpointingaprecisetargetof
SiNPsaction,theydidletusconcludethatSiNPsactviaanoncompetitiveinhibitory
mechanism.Thus,theseparticlesmayaffectanyoftheelementsofATPsignalingcascade
thatdeterminethemaximalintracellularCa2+response,butdonotactonanyfactorsde
terminingthesensitivitytoATP.Forinstance,SiNPsmaydecreasethenumberofATP
receptorsavailableforactivationattheplasmamembraneand/ortheirmaximallevelof
activation,butdonotdecreasetheiraffinityforATP.Thelatterisinformative,asitindi
catesthatSiNPsdonotinterferewiththebindingandunbindingofATPtoandfromP2Y
receptors.Furthermore,becauseweassessedtheresponsestoATPfromtheamplitudeof
theCa2+increase,noneoftheeventsthatdeterminethesensitivitytoATPmaybeaffected.
Futureexperiments,complementedbymathematicalmodeling,mayhelpindiscerning
whatelementsofthepathwaymaybeaffectedornotbytheSiNPs.
AnothercuriousresultwasthattheinhibitoryeffectofSiNPsappearedtoreacha
plateauatconcentrationsabovearound10μg/mL,indicatingthattheyareunabletoin
hibittheresponsestoATPcompletelywhenappliedatconcentrationsupto100μg/mL.
Interestingly,wepreviouslyfoundaqualitativelysimilareffectfortheinhibitionof
TRPV4in16HBEcells,buttheplateauformaximalinhibitionwasreachedatconcentra
tionshigherthanaround300μg/mL[30].Thedifferenceintheconcentrationsforreaching
theplateauphaseofthetwoeffectssuggeststhataconcentrationdependentchangein
propertiesoftheSiNPsisnotthecauseofthisphenomenon.Alternatively,SiNPsmight
affectdifferentlydistinctpoolsofATPreceptorsorotherelementsofthissignalingpath
way,ortheparticlesmightnothavetheabilitytofullyabrogatetheirmaximalactivation.
TheeffectsofSiNPsmustbeundoubtedlylinkedtotheirphysicalandchemicalprop
erties.Thespecificcontributionsofeachofthesepropertiestothecellularactionsofthe
particlescouldbestudiedbycomparingtheeffectsofparticlesdifferingonlyinoneprop
erty—forinstance,particleshavingexactlythesamesize,texture,etc.,butdifferentzeta
potential.However,wedonothavesuchparticlesatourdisposal,andatthispointwe
Int.J.Mol.Sci.2021,22,1017313of18
cannotmakeanyinferenceonhowspecificparticlepropertiesdeterminetheiractionson
theresponsestoATP.
AkeyaspectofourfindingsisthattheSiNPsconcentrationsrequiredfortheinhibi
tionoftheresponsestoATP(1–3μg/mL)aremuchlowerthanthoseneededtoinduce
cytotoxicityortoobservecytokinereleaseinvitro(25–6000μg/mL)[72–74].Furthermore,
thetimescalefortheeffectswereportedherewasbetween3‐to150foldshorterthan
thoserequiredforotherreportedSiNPseffects.ThissuggeststhattheATPsignalingpath
wayisaprimaryandverysensitivetargetofSiNPs.Finally,itshouldbenotedthatthe
inhibitoryactionsofSiNPswereportedhereandpreviouslyonTRPV4werespecific,as
thesameparticlesenhancedtheactivationofthecapsaicinreceptorTRPV1[30].
OurresultsdemonstratethatSiNPsinduceanacutenoncompetitiveinhibitionof
theP2YmediatedintracellularCa2+responsesofculturedhumanairwayepithelialcells
toATP.Thiseffectoccurssignificantlyfasterandatconcentrationslowerthanthosepre
viouslyreportedfortheinductionofcellulartoxicityandproinflammatoryresponses.
Futureresearchshouldbeconductedtodeterminethemolecularmechanismsofthese
actions,totestwhetherSiNPsaregeneralinhibitorsofpurinergicsignalingpathwaysin
othercelltypes,andtodeterminewhetherSiNPsreducetheabilityofairwayepithelial
cellstomountprotectiveresponsesviatheATPsignalingpathway,i.e.,theincreasein
mucociliaryclearance.
4.MaterialsandMethods
4.1.Ludox®SiNPs
SiNPsusedinthisstudywerepurchasedfromSigmaAldrich(Bornem,Belgium)as
thecommercialsourceof30%wtsuspensioninwater.Theirbasicpropertieswerechar
acterizedinpreviousstudiesbyourgroup[30]andcanbefoundinTable1.
Table1.PropertiesofSiNPs.
PropertyValue
Size10.2nm(P10=8.1nmandP90=11.8nm)
ShapeSpherical
SolidstructureAmorphous
Zetapotential−20±3mV
DispersionMonodispersed
Endotoxincontent<0.05EU/mL
Fortheexperiments,thenanoparticlesuspensionwasdilutedtothedesiredconcen
trationsinKrebsorCa2+freeKrebssolutions(seebelowReagentsandSolutions).
4.2.CellCulture
Humanbronchialepithelialcells(16HBE)weregrowninDulbecco’smodifiedEa
gle’smedium:nutrientmixtureF12(DMEM/F12)containing5%(v/v)fetalcalfserum
(FCS),2mMLglutamine,2U/mLpenicillinand2mg/mLstreptomycinat37°Cinahu
miditycontrolledincubatorwith5%CO2andwereseededon18mmcoverslipscoated
with0.1mg/mLpolyLlysine.
4.3.RatiometricIntracellularCa2+Imaging
Ca2+imagingexperimentswereconductedwiththeratiometricfluorescentdyeFura
2AMester(Biotium,Hayward,CA,USA)asanindicatorforfreeintracellularcalcium.
Cellswereincubatedwith2μLFura2for30minat37°C.Solutionswereappliedusing
amultibarrelperfusionsystem.Theintracellular[Ca2+]wascalculatedfromtheratioof
fluorescencemeasureduponalternatingilluminationat340and380nm.Experiments
wereperformedusinganinvertedmicroscopewithMT10illuminationsystemandthe
Int.J.Mol.Sci.2021,22,1017314of18
xCellenceProsoftwareofthemicroscope(Olympus,Planegg,Germany).Allmeasure
mentswereperformedat35°C.Fluorescenceintensitieswerecorrectedforbackground
signal,andintracellularCa2+concentrationswerecalculatedasdescribedpreviously[75].
DatawereanalyzedanddisplayedusingOrigin(OriginLabCorporation,Northampton,
MA,USA).
4.4.DataandStatisticalAnalysis
Todeterminetheamplitudeoftheresponseinducedbythecompoundsofinterest,
wesubtractedthebaseline[Ca2+]priortotheapplicationfromthepeakvaluereached
duringchallenging(valuedenotedbyΔ[Ca2+]).Thebaselinewascalculatedbydetermin
ingthemean[Ca2+]duringthelast20sbeforetheapplicationofthecompound.Dataare
givenas±standarderrorofthemean.
4.5.ReagentsandSolutions
AllchemicalswerepurchasedfromSigmaAldrich(Bornem,Belgium).Thesolutions
containingATPwerepreparedbyaddingtheappropriateamountsofa50mMNa2ATP
stocksolutiontothecorrespondingextracellularsolution(standardKrebsorCa2+free
Krebs).Ionomycin,anionophorethattriggersCa2+influx,wasusedtoshowthattheeffect
observedduringtheapplicationofSiNPsisnotcalciummediatedandthusisaresultof
theinteractionofSiNPswithsubcellularstructures.Ionomycinat1μMconcentrationwas
obtainedbydilutionof2mMstockinKrebs.Solutionsusedinmeasurementsperformed
intheabsenceofextracellularCa2+werepreparedwithKrebstitratedtopH7.4with
NaOH(Table2).
Table2.Compositionofthesolutionsusedintheexperiments.
Krebs
150mMNaCl
6mMKCl
1.5mMCaCl2×2H2O
1mMMgCl×6H2O
10mMglucose
10mM4(2hydroxyethyl)1piperazineethanesulfonicacid(HEPES)
Ca2+FreeKrebs
150mMNaCl
6mMKCl
1mMMgCl×6H2O
10mMglucose
10mMHEPES
10mMethyleneglycolbis(β‐aminoethylether)N,N,N’,N’tetraacetic
acid(EGTA)
SupplementaryMaterials:Thefollowingareavailableonlineatwww.mdpi.com/arti
cle/10.3390/ijms221810173/s1.
AuthorContributions:Conceptualization,A.M.,A.S.andK.T.;formalanalysis,A.M.,A.S.andK.T.;
investigation,A.M.andA.S.;writing—originaldraftpreparation,A.M.andK.T.;writing—review
andediting,A.M.,A.S.andK.T.;visualization,A.M.andK.T.;supervision,K.T.;projectadministra
tion,K.T.;fundingacquisition,A.M.andK.T.Allauthorshavereadandagreedtothepublished
versionofthemanuscript.
Funding:ThisresearchwassupportedbygrantsfromtheResearchFoundationFlandersFWO
(G076714)andbytheResearchCounciloftheKULeuven(GOA/14/011).A.M.isfundedbyEras
mus+2019–2021oftheEuropeanCommission(KA103061892).
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
Int.J.Mol.Sci.2021,22,1017315of18
DataAvailabilityStatement:DataiscontainedwithinthearticleorSupplementaryMaterials.
Acknowledgments:TheauthorsthankM.B.forthemaintenanceofthecellcultures.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Kreyling,W.G.;SemmlerBehnke,M.;Chaudhry,Q.Acomplementarydefinitionofnanomaterial.NanoToday2010,5,165–168,
doi:10.1016/j.nantod.2010.03.004.
2. Bleeker,E.A.J.;deJong,W.H.;Geertsma,R.E.;Groenewold,M.;Heugens,E.H.W.;KoersJacquemijns,M.;vandeMeent,D.;
Popma,J.R.;Rietveld,A.G.;Wijnhoven,S.W.P.;etal.ConsiderationsontheEUdefinitionofananomaterial:Sciencetosupport
policymaking.Regul.Toxicol.Pharmacol.2013,65,119–125,doi:10.1016/j.yrtph.2012.11.007.
3. Naito,M.;Yokoyama,T.;Hosokawa,K.;Nogi,K.NanoparticleTechnologyHandbook;Elsevier:Hoboken,NJ,USA,2018.
4. Liu,D.;Gu,N.NanomaterialsforFreshKeepingandSterilizationinFoodPreservation.RecentPat.FoodNutr.Agric.2009,1,
149–154,doi:10.2174/2212798410901020149.
5. Fan,Z.;Zhang,L.;Di,W.;Li,K.;Li,G.;Sun,D.MethylgraftedsilicananoparticlestabilizedwaterinoilPickeringemulsions
withlowtemperaturestability.J.ColloidInterfaceSci.2021,588,501–509,doi:10.1016/j.jcis.2020.12.095.
6. Qhobosheane,M.;Santra,S.;Zhang,P.;Tan,W.Biochemicallyfunctionalizedsilicananoparticles.Analyst2001,126,1274–1278,
doi:10.1039/b101489g.
7. Murugadoss,S.;Lison,D.;Godderis,L.;VanDenBrule,S.;Mast,J.;Brassinne,F.;Sebaihi,N.;Hoet,P.H.Toxicologyofsilica
nanoparticles:anupdate.Arch.Toxicol.2017,91,2967–3010,doi:10.1007/s002040171993y.
8. Wang,J.;Asbach,C.;Fissan,H.;Hülser,T.;Kuhlbusch,T.A.J.;Thompson,D.;Pui,D.Y.H.Howcannanobiotechnologyoversight
advancescienceandindustry:Examplesfromenvironmental,health,andsafetystudiesofnanoparticles(nanoEHS).J.
Nanopart.Res.2011,13,1373–1387,doi:10.1007/s110510110236z.
9. Vishwakarma,V.;Samal,S.S.;Manoharan,N.SafetyandRiskAssociatedwithNanoparticlesAReview.J.Miner.Mater.Charact.
Eng.2010,9,455–459,doi:10.4236/jmmce.2010.95031.
10. Dubes,V.;Parpaite,T.;Ducret,T.;Quignard,J.F.;Mornet,S.;Reinhardt,N.;Baudrimont,I.;Dubois,M.;FreundMichel,V.;
Marthan,R.;etal.Calciumsignallinginducedbyinvitroexposuretosiliciumdioxidenanoparticlesinratpulmonaryartery
smoothmusclecells.Toxicology2017,375,37–47,doi:10.1016/j.tox.2016.12.002.
11. Zhang,Y.N.;Poon,W.;Tavares,A.J.;McGilvray,I.D.;Chan,W.C.W.Nanoparticle–liverinteractions:Cellularuptakeand
hepatobiliaryelimination.J.ControlRelease2016,240,332–348,doi:10.1016/j.jconrel.2016.01.020.
12. Du,Z.;Zhao,D.;Jing,L.;Cui,G.;Jin,M.;Li,Y.;Liu,X.;Liu,Y.;Du,H.;Guo,C.;etal.Cardiovasculartoxicityofdifferentsizes
amorphoussilicananoparticlesinratsafterintratrachealinstillation.Cardiovasc.Toxicol.2013,13,194–207,doi:10.1007/s12012
0139198y.
13. Mortezaee,K.;Najafi,M.;Samadian,H.;Barabadi,H.;Azarnezhad,A.;Ahmadi,A.Redoxinteractionsandgenotoxicityof
metalbasednanoparticles:Acomprehensivereview.Chem.Biol.Interact.2019,312,108814,doi:10.1016/j.cbi.2019.108814.
14. Sun,L.;Li,Y.;Liu,X.;Jin,M.;Zhang,L.;Du,Z.;Guo,C.;Huang,P.;Sun,Z.Cytotoxicityandmitochondrialdamagecausedby
silicananoparticles.Toxicol.Vitr.2011,25,1619–1629,doi:10.1016/j.tiv.2011.06.012.
15. Messerschmidt,C.;Hofmann,D.;Kroeger,A.;Landfester,K.;Mailänder,V.;Lieberwirth,I.Onthepathwayofcellularuptake:
Newinsightintotheinteractionbetweenthecellmembraneandverysmallnanoparticles.BeilsteinJ.Nanotechnol.2016,7,1296
1311,doi:10.3762/bjnano.7.121.
16. Geiser,M.;RothenRutishauser,B.;Kapp,N.;Schürch,S.;Kreyling,W.;Schulz,H.;Semmler,M.;ImHof,V.;Heyder,J.;Gehr,
P.Ultrafineparticlescrosscellularmembranesbynonphagocyticmechanismsinlungsandinculturedcells.Environ.Health
Perspect.2005,113,1555–1560,doi:10.1289/ehp.8006.
17. Zhang,S.;Gao,H.;Bao,G.PhysicalPrinciplesofNanoparticleCellularEndocytosis.ACSNano2015,9,8655–8671,
doi:10.1021/acsnano.5b03184.
18. Hamra,G.B.;Guha,N.;Cohen,A.;Laden,F.;RaaschouNielsen,O.;Samet,J.M.;Vineis,P.;Forastiere,F.;Saldiva,P.;Yorifuji,
T.;etal.Outdoorparticulatematterexposureandlungcancer:Asystematicreviewandmetaanalysis.Environ.HealthPerspect.
2014,122,doi:10.1289/ehp.1408092.
19. Xia,T.;Kovochich,M.;Brant,J.;Hotze,M.;Sempf,J.;Oberley,T.;Sioutas,C.;Yeh,J.I.;Wiesner,M.R.;Nel,A.E.Comparisonof
theabilitiesofambientandmanufacturednanoparticlestoinducecellulartoxicityaccordingtoanoxidativestressparadigm.
NanoLett.2006,6,1794–1807,doi:10.1021/nl061025k.
20. Corbalan,J.J.;Medina,C.;Jacoby,A.;Malinski,T.;Radomski,M.W.Amorphoussilicananoparticlestriggernitric
oxide/peroxynitriteimbalanceinhumanendothelialcells:inflammatoryandcytotoxiceffects.Int.J.Nanomed.2011,6,2821–
2835,doi:10.2147/ijn.s25071.
21. Liu,Y.;Yoo,E.;Han,C.;Mahler,G.J.;Doiron,A.L.Endothelialbarrierdysfunctioninducedbynanoparticleexposurethrough
actinremodelingviacaveolae/raftregulatedcalciumsignalling.NanoImpact2018,11,82–91,doi:10.1016/j.impact.2018.02.007.
22. Chen,E.Y.;Garnica,M.;Wang,Y.C.;Mintz,A.J.;Chen,C.S.;Chin,W.C.AmixtureofanataseandrutileTiO2nanoparticles
induceshistaminesecretioninmastcells.Part.FibreToxicol.2012,9,2,doi:10.1186/1743897792.
Int.J.Mol.Sci.2021,22,1017316of18
23. Selvan,S.T.;YangTan,T.T.;KeeYi,D.;Jana,N.R.Functionalandmultifunctionalnanoparticlesforbioimagingandbiosensing.
Langmuir2010,26,11631–11641,doi:10.1021/la903512m.
24. Lee,K.I.;Su,C.C.;Fang,K.M.;Wu,C.C.;Wu,C.T.;Chen,Y.W.Ultrafinesilicondioxidenanoparticlescauselungepithelialcells
apoptosisviaoxidativestressactivatedPI3K/Aktmediatedmitochondria‐ andendoplasmicreticulumstressdependent
signalingpathways.Sci.Rep.2020,10,9928,doi:10.1038/s4159802066644z.
25. Marchiando,A.M.;Graham,W.V.;Turner,J.R.Epithelialbarriersinhomeostasisanddisease.Annu.Rev.Pathol.Mech.Dis.2010,
5,119–144,doi:10.1146/annurev.pathol.4.110807.092135.
26. Ganesan,S.;Comstock,A.T.;Sajjan,U.S.Barrierfunctionofairwaytractepithelium.TissueBarriers2013,1,e24997,
doi:10.4161/tisb.24997.
27. Legendre,M.;Zaragosi,L.E.;Mitchison,H.M.Motileciliaandairwaydisease.Semin.CellDev.Biol.2021,110,19–33,
doi:10.1016/j.semcdb.2020.11.007.
28. Hewitt,R.J.;Lloyd,C.M.Regulationofimmuneresponsesbytheairwayepithelialcelllandscape.Nat.Rev.Immunol.2021,21,
347–362,doi:10.1038/s41577020004779.
29. Fariss,M.W.;Gilmour,M.I.;Reilly,C.A.;Liedtke,W.;Ghio,A.J.Emergingmechanistictargetsinlunginjuryinducedby
combustiongeneratedparticles.Toxicol.Sci.2013,132,253–267,doi:10.1093/toxsci/kft001.
30. Sanchez,A.;Alvarez,J.L.;Demydenko,K.;Jung,C.;Alpizar,Y.A.;AlvarezCollazo,J.;Cokic,S.M.;Valverde,M.A.;Hoet,P.H.;
Talavera,K.SilicananoparticlesinhibitthecationchannelTRPV4inairwayepithelialcells.Part.FibreToxicol.2017,14,43,
doi:10.1186/s1298901702242.
31. Yu,H.;Li,Q.;Kolosov,V.P.;Perelman,J.M.;Zhou,X.Regulationofparticulatematterinducedmucinsecretionbytransient
receptorpotentialvanilloid1receptors.Inflammation2012,35,1851–1859,doi:10.1007/s107530129506x.
32. Memon,T.A.;Nguyen,N.D.;Burrell,K.L.;Scott,A.F.;AlmesticaRoberts,M.;Rapp,E.;DeeringRice,C.E.;Reilly,C.A.Wood
SmokeParticlesStimulateMUC5ACOverproductionbyHumanBronchialEpithelialCellsThroughTRPA1andEGFR
Signaling.Toxicol.Sci.2020,174,278–290,doi:10.1093/toxsci/kfaa006.
33. Kim,B.G.;Park,M.K.;Lee,P.H.;Lee,S.H.;Hong,J.;Aung,M.M.M.;Moe,K.T.;Han,N.Y.;Jang,A.S.Effectsofnanoparticleson
neuroinflammationinamousemodelofasthma.Respir.Physiol.Neurobiol.2020,271,103292,doi:10.1016/j.resp.2019.103292.
34. Shapiro,D.;DeeringRice,C.E.;Romero,E.G.;Hughen,R.W.;Light,A.R.;Veranth,J.M.;Reilly,C.A.Activationoftransient
receptorpotentialankyrin1(TRPA1)inlungcellsbywoodsmokeparticulatematerial.Chem.Res.Toxicol.2013,26,750–758,
doi:10.1021/tx400024h.
35. Piccinno,F.;Gottschalk,F.;Seeger,S.;Nowack,B.Industrialproductionquantitiesandusesoftenengineerednanomaterialsin
Europeandtheworld.J.Nanopart.Res.2012,14,1109,doi:10.1007/s1105101211099.
36. Breysse,P.N.ToxicologicalProfileforSilica;ATSDR:Atlanta,GA,USA,2019.
37. Gilardino,A.;Catalano,F.;Ruffinatti,F.A.;Alberto,G.;Nilius,B.;Antoniotti,S.;Martra,G.;Lovisolo,D.InteractionofSiO2
nanoparticleswithneuronalcells:Ionicmechanismsinvolvedintheperturbationofcalciumhomeostasis.Int.J.Biochem.Cell
Biol.2015,66,101–111,doi:10.1016/j.biocel.2015.07.012.
38. Wei,X.;Jiang,W.;Yu,J.;Ding,L.;Hu,J.;Jiang,G.EffectsofSiO2nanoparticlesonphospholipidmembraneintegrityandfluidity.
J.Hazard.Mater.2015,287,217–224,doi:10.1016/j.jhazmat.2015.01.063.
39. Ariano,P.;Zamburlin,P.;Gilardino,A.;Mortera,R.;Onida,B.;Tomatis,M.;Ghiazza,M.;Fubini,B.;Lovisolo,D.Interactionof
sphericalsilicananoparticleswithneuronalcells:Sizedependenttoxicityandperturbationofcalciumhomeostasis.Small2011,
7,766–774,doi:10.1002/smll.201002287.
40. Haase,A.;Dommershausen,N.;Schulz,M.;Landsiedel,R.;Reichardt,P.;Krause,B.C.;Tentschert,J.;Luch,A.Genotoxicity
testingofdifferentsurfacefunctionalizedSiO2,ZrO2andsilvernanomaterialsin3Dhumanbronchialmodels.Arch.Toxicol.
2017,91,3991–4007,doi:10.1007/s0020401720159.
41. Skuland,T.;Låg,M.;Gutleb,A.C.;Brinchmann,B.C.;Serchi,T.;Øvrevik,J.;Holme,J.A.;Refsnes,M.Proinflammatoryeffects
ofcrystalline‐ Andnanosizednoncrystallinesilicaparticlesina3Dalveolarmodel.Part.FibreToxicol.2020,17,13,
doi:10.1186/s12989020003453.
42. Sharma,N.;Jha,S.Amorphousnanosilicainducedtoxicity,inflammationandinnateimmuneresponses:Acriticalreview.
Toxicology2020,441,152519,doi:10.1016/j.tox.2020.152519.
43. Distasi,C.;Dionisi,M.;Ruffinatti,F.A.;Gilardino,A.;Bardini,R.;Antoniotti,S.;Catalano,F.;Bassino,E.;Munaron,L.;Martra,
G.;etal.TheinteractionofSiO2nanoparticleswiththeneuronalcellmembrane:Activationofionicchannelsandcalciuminflux.
Nanomedicine2019,8,575–594,doi:10.2217/nnm20180256.
44. Milici,A.;Talavera,K.Trpchannelsascellulartargetsofparticulatematter.Int.J.Mol.Sci.2021,22,2783,
doi:10.3390/ijms22052783.
45. Dekali,S.;Divetain,A.;Kortulewski,T.;Vanbaelinghem,J.;Gamez,C.;Rogerieux,F.;Lacroix,G.;Rat,P.Cellcooperationand
roleoftheP2X7receptorinpulmonaryinflammationinducedbynanoparticles.Nanotoxicology2013,7,1302–1314,
doi:10.3109/17435390.2012.735269.
46. Kojima,S.;Negishi,Y.;Tsukimoto,M.;Takenouchi,T.;Kitani,H.;Takeda,K.PurinergicsignalingviaP2X7receptormediates
IL1βproductioninKupffercellsexposedtosilicananoparticle.Toxicology2014,321,13–20,doi:10.1016/j.tox.2014.03.008.
47. Nagakura,C.;Negishi,Y.;Tsukimoto,M.;Itou,S.;Kondo,T.;Takeda,K.;Kojima,S.InvolvementofP2Y11receptorinsilica
nanoparticles30inducedIL6productionbyhumankeratinocytes.Toxicology2014,322,61–68,doi:10.1016/j.tox.2014.03.010.
Int.J.Mol.Sci.2021,22,1017317of18
48. Hofmann,F.;Bläsche,R.;Kasper,M.;Barth,K.Acoculturesystemwithanorganotypiclungsliceandanimmortalalveolar
macrophagecelllinetoquantifysilicainducedinflammation.PLoSONE2015,10,e0117056,doi:10.1371/journal.pone.0117056.
49. Nakanishi,K.;Tsukimoto,M.;Tanuma,S.ichi;Takeda,K.;Kojima,S.SilicananoparticlesactivatepurinergicsignalingviaP2X7
receptorindendriticcells,leadingtoproductionofproinflammatorycytokines.Toxicol.Vitr.2016,35,202–211,
doi:10.1016/j.tiv.2016.06.003.
50. Braun,K.;Stürzel,C.M.;Biskupek,J.;Kaiser,U.;Kirchhoff,F.;Lindén,M.Comparisonofdifferentcytotoxicityassaysforin
vitroevaluationofmesoporoussilicananoparticles.Toxicol.Vitr.2018,52,214–221,doi:10.1016/j.tiv.2018.06.019.
51. Qi,Z.;Murase,K.;Obata,S.;Sokabe,M.ExtracellularATPdependentactivationofplasmamembraneCa2+pumpinHEK293
cells.Br.J.Pharmacol.2000,131,370–374,doi:10.1038/sj.bjp.0703563.
52. Dubyak,G.R.;elMoatassim,C.SignaltransductionviaP2purinergicreceptorsforextracellularATPandothernucleotides.
Am.J.Physiol.1993,265,C577–C606,doi:10.1152/ajpcell.1993.265.3.c577.
53. Burnstock,G.Historicalreview:ATPasaneurotransmitter.TrendsPharmacol.Sci.2006,27,166–176,
doi:10.1016/j.tips.2006.01.005.
54. Ralevic,V.;Burnstock,G.Receptorsforpurinesandpyrimidines.Pharmacol.Rev.1998,50,119–244,doi:10.1007/978364228863
0_5.
55. Sherwood,C.L.;ClarkLantz,R.;Boitano,S.Chronicarsenicexposureinnanomolarconcentrationscompromiseswound
responseandintercellularsignalinginairwayepithelialcells.Toxicol.Sci.2013,132,222–234,doi:10.1093/toxsci/kfs331.
56. vanderVliet,A.;Bove,P.F.Purinergicsignalinginwoundhealingandairwayremodeling.Subcell.Biochem.2015,55,139–157,
doi:10.1007/9789400712171_6.
57. Lazarowski,E.R.;Boucher,R.C.Purinergicreceptorsinairwayepithelia.Curr.Opin.Pharmacol.2009,9,262–267,
doi:10.1016/j.coph.2009.02.004.
58. Burnstock,G.P2Xreceptorsinsensoryneurones.Br.J.Anaesth.2000,84,476–488,doi:10.1093/oxfordjournals.bja.a013473.
59. Nakamura,F.;Strittmatter,S.M.P2Y1purinergicreceptorsinsensoryneurons:Contributiontotouchinducedimpulse
generation.Proc.Natl.Acad.Sci.USA1996,93,10465–10470,doi:10.1073/pnas.93.19.10465.
60. Burnstock,G.;Brouns,I.;Adriaensen,D.;Timmermans,J.P.Purinergicsignalingintheairways.Pharmacol.Rev.2012,64,834–
868,doi:10.1124/pr.111.005389.
61. Burnstock,G.PurinergicSignallingandNeurologicalDiseases:AnUpdate.CNSNeurol.Disord.DrugTargets2017,16,257–265,
doi:10.2174/1871527315666160922104848.
62. Burnstock,G.Purinesandsensorynerves.Handb.Exp.Pharmacol.2009,194,333–392,doi:10.1007/9783540790907_10.
63. Fischer,W.;Wirkner,K.;Weber,M.;Eberts,C.;Köles,L.;Reinhardt,R.;Franke,H.;Allgaier,C.;Gillen,C.;Illes,P.
CharacterizationofP2X3,P2Y1andP2Y4receptorsinculturedHEK293hP2X3cellsandtheirinhibitionbyethanoland
trichloroethanol.J.Neurochem.2003,85,779–790,doi:10.1046/j.14714159.2003.01716.x.
64. Vilotti,S.;Marchenkova,A.;Ntamati,N.;Nistri,A.BtypenatriureticpeptideinduceddelayedmodulationofTRPV1andP2X3
Receptorsofmousetrigeminalsensoryneurons.PLoSONE2013,8,e81138,doi:10.1371/journal.pone.0081138.
65. Droguett,K.;Rios,M.;Carreño,D.V.;Navarrete,C.;Fuentes,C.;Villalón,M.;Barrera,N.P.AnautocrineATPrelease
mechanismregulatesbasalciliaryactivityinairwayepithelium.J.Physiol.2017,595,4755–4767,doi:10.1113/JP273996.
66. Wirsching,E.;Fauler,M.;Fois,G.;Frick,M.P2purinergicsignalinginthedistallunginhealthanddisease.Int.J.Mol.Sci.2020,
21,4973,doi:10.3390/ijms21144973.
67. Carew,M.A.;Wu,M.L.;Law,G.J.;Tseng,Y.Z.;Mason,W.T.ExtracellularATPactivatescalciumentryandmobilizationvia
P2Upurinoceptorsinratlactotrophs.CellCalcium1994,16,227–235,doi:10.1016/01434160(94)900256.
68. Riteau,N.;Baron,L.;Villeret,B.;Guillou,N.;Savigny,F.;Ryffel,B.;Rassendren,F.;LeBert,M.;Gombault,A.;Couillin,I.ATP
releaseandpurinergicsignaling:Acommonpathwayforparticlemediatedinflammasomeactivation.CellDeathDis.2012,3,
e403,doi:10.1038/cddis.2012.144.
69. Baron,L.;Gombault,A.;Fanny,M.;Villeret,B.;Savigny,F.;Guillou,N.;Panek,C.;LeBert,M.;Lagente,V.;Rassendren,F.;et
al.TheNLRP3inflammasomeisactivatedbynanoparticlesthroughATP,ADPandadenosine.CellDeathDis.2015,6,e1629,
doi:10.1038/cddis.2014.576.
70. Sienaert,I.;Huyghe,S.;Parys,J.B.;Malfait,M.;Kunzelman,K.;DeSmedt,H.;Verleden,G.M.;Missiaen,L.ATPinducedCa2+
signalsinbronchialepithelialcells.Pflug.Arch.Eur.J.Physiol.1998,436,40–48,doi:10.1007/s004240050602.
71. Communi,D.;Paindavoine,P.;Place,G.A.;Parmentier,M.;Boeynaems,J.M.ExpressionofP2Yreceptorsincelllinesderived
fromthehumanlung.Br.J.Pharmacol.1999,127,562–568,doi:10.1038/sj.bjp.0702560.
72. Kasper,J.;Hermanns,M.I.;Bantz,C.;Maskos,M.;Stauber,R.;Pohl,C.;Unger,R.E.;Kirkpatrick,J.C.Inflammatoryandcytotoxic
responsesofanalveolarcapillarycoculturemodeltosilicananoparticles:Comparisonwithconventionalmonocultures.Part.
FibreToxicol.2011,8,6,doi:10.1186/1743897786.
73. Rabolli,V.;Badissi,A.A.;Devosse,R.;Uwambayinema,F.;Yakoub,Y.;PalmaiPallag,M.;Lebrun,A.;DeGussem,V.;Couillin,
I.;Ryffel,B.;etal.ThealarminIL1αisamastercytokineinacutelunginflammationinducedbysilicamicro‐andnanoparticles.
Part.FibreToxicol.2014,11,69,doi:10.1186/s129890140069x.

Int.J.Mol.Sci.2021,22,1017318of18
74. Skuland,T.;Øvrevik,J.;Låg,M.;Schwarze,P.;Refsnes,M.Silicananoparticlesinducecytokineresponsesinlungepithelialcells
throughactivationofap38/TACE/TGF‐α/EGFRpathwayandNF‐κΒ signalling.Toxicol.Appl.Pharmacol.2014,279,76–86,
doi:10.1016/j.taap.2014.05.006.
75. Grynkiewicz,G.;Poenie,M.;Tsien,R.Y.AnewgenerationofCa2+indicatorswithgreatlyimprovedfluorescenceproperties.J.
Biol.Chem.1985,260,3440–3450,doi:10.1016/s00219258(19)836414.
... Studies have pointed out that occupational mineral dusts and air pollutant particles can induce airway wall remodeling (44, 45). Using the human airway epithelial cells 16HBE or primary cultured mouse tracheobronchial epithelial cells, researchers found that SiO 2 nanoparticles could inhibit the responses to ATP and inhibit cation channel transient receptor potential vanilloid 4 (TRPV4) in airway epithelial cells, and result in epithelial barrier dysfunction (46,47). In vitro and in vivo experiments demonstrated that SiO 2 particles exposure not only caused rapid NLRP3-dependent mitochondrial depolarization and DNA damage in airway epithelial cells but also led to ultrastructural defects in airway cilia and mucus hypersecretion (48,49). ...
Article
Full-text available
Background Allergic respiratory diseases have increased dramatically due to air pollution over the past few decades. However, studies are limited on the effects of inorganic components and particulate matter with different particle sizes in smog on allergic diseases, and the possible molecular mechanism of inducing allergies has not been thoroughly studied. Methods Four common mineral elements with different particle sizes in smog particles were selected, including Al2O3, TiO2, Fe2O3, and SiO2. We studied the relationship and molecular mechanism of smog particle composition, particle size, and allergic reactions using mast cells, immunoglobulin E (IgE)-mediated passive cutaneous anaphylaxis (PCA) model, and an ovalbumin (OVA)-induced asthmatic mouse model in vitro and in vivo, combined with transmission electron microscopy, scanning transmission X-ray microscopy analysis, and transcriptome sequencing. Results Only 20 nm SiO2 particles significantly increased β-hexosaminidase release, based on dinitrophenol (DNP)-human serum albumin (HSA) stimulation, from IgE-sensitized mast cells, while other particles did not. Meanwhile, the PCA model showed that Evan’s blue extravasation in mice was increased after treatment with nano-SiO2 particles. Nano-SiO2 particles exposure in the asthmatic mouse model caused an enhancement of allergic airway inflammation as manifested by OVA-specific serum IgE, airway hyperresponsiveness, lung inflammation injury, mucous cell metaplasia, cytokine expression, mast cell activation, and histamine secretion, which were significantly increased. Nano-SiO2 particles exposure did not affect the expression of FcϵRI or the ability of mast cells to bind IgE but synergistically activated mast cells by enhancing the mitogen-activated protein kinase (MAPK) signaling pathway, especially the phosphorylation levels of the extracellular signal-regulated kinase (ERK)1/2. The ERK inhibitors showed a significant inhibitory effect in reducing β-hexosaminidase release. Conclusion Our results indicated that nano-SiO2 particles stimulation might synergistically activate IgE-sensitized mast cells by enhancing the MAPK signaling pathway and that nano-SiO2 particles exposure could exacerbate allergic inflammation. Our experimental results provide useful information for preventing and treating allergic diseases.
Article
Rapid growth in the mass production of nanomaterials together with their abundant use in consumer products, progressively increases the potential risks of living organisms exposure. Some unique properties of nanomaterials and nanoparticles facilitate their interactions with biomolecules (nano-bio interactions). The purinergic signalling system is one of the oldest evolutionary and widespread transmitter system that utilizes extracellular purine nucleotides and nucleosides as chemical messengers. However, interactions between nanomaterials and components of purinergic signalling pathway have not been fully recognized so far. In view of the emerging data, we summarize the current state-of-art and present the perspectives of nanomaterials influence on the functions of purinergic signaling pathway in different types of cells. The described nano-bio interactions include inter alia direct interplay with purinergic receptors or altering receptor genes expression, activation of inflammatory processes, and induction of cell death. However, the precise mechanisms are yet still to be disentangled. Due to the fact that majority of the effects ascribed to nanomaterials seems to induce disordered signalling, these interactions cannot stay neglected. A better understanding of signalling modulations induced by nanomaterials is not only essential for the accurate assessment of their toxicity, but also for synthesis and design of novel, safer nanomaterials.
Article
Full-text available
Particulate matter (PM) is constituted by particles with sizes in the nanometer to micrometer scales. PM can be generated from natural sources such as sandstorms and wildfires, and from human activities, including combustion of fuels, manufacturing and construction or specially engineered for applications in biotechnology, food industry, cosmetics, electronics, etc. Due to their small size PM can penetrate biological tissues, interact with cellular components and induce noxious effects such as disruptions of the cytoskeleton and membranes and the generation of reactive oxygen species. Here, we provide an overview on the actions of PM on transient receptor potential (TRP) proteins, a superfamily of cation-permeable channels with crucial roles in cell signaling. Their expression in epithelial cells and sensory innervation and their high sensitivity to chemical, thermal and mechanical stimuli makes TRP channels prime targets in the major entry routes of noxious PM, which may result in respiratory, metabolic and cardiovascular disorders. On the other hand, the interactions between TRP channel and engineered nanoparticles may be used for targeted drug delivery. We emphasize in that much further research is required to fully characterize the mechanisms underlying PM-TRP channel interactions and their relevance for PM toxicology and biomedical applications.
Article
Full-text available
The distal lung provides an intricate structure for gas exchange in mammalian lungs. Efficient gas exchange depends on the functional integrity of lung alveoli. The cells in the alveolar tissue serve various functions to maintain alveolar structure, integrity and homeostasis. Alveolar epithelial cells secrete pulmonary surfactant, regulate the alveolar surface liquid (ASL) volume and, together with resident and infiltrating immune cells, provide a powerful host-defense system against a multitude of particles, microbes and toxicants. It is well established that all of these cells express purinergic P2 receptors and that purinergic signaling plays important roles in maintaining alveolar homeostasis. Therefore, it is not surprising that purinergic signaling also contributes to development and progression of severe pathological conditions like pulmonary inflammation, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and pulmonary fibrosis. Within this review we focus on the role of P2 purinergic signaling in the distal lung in health and disease. We recapitulate the expression of P2 receptors within the cells in the alveoli, the possible sources of ATP (adenosine triphosphate) within alveoli and the contribution of purinergic signaling to regulation of surfactant secretion, ASL volume and composition, as well as immune homeostasis. Finally, we summarize current knowledge of the role for P2 signaling in infectious pneumonia, ALI/ARDS and idiopathic pulmonary fibrosis (IPF).
Article
Full-text available
Silicon dioxide nanoparticles (SiO2NPs) are widely applied in industry, chemical, and cosmetics. SiO2NPs is known to induce pulmonary toxicity. In this study, we investigated the molecular mechanisms of SiO2NPs on pulmonary toxicity using a lung alveolar epithelial cell (L2) model. SiO2NPs, which primary particle size was 12 nm, caused the accumulation of intracellular Si, the decrease in cell viability, and the decrease in mRNAs expression of surfactant, including surfactant protein (SP)-A, SP-B, SP-C, and SP-D. SiO2NPs induced the L2 cell apoptosis. The increases in annexin V fluorescence, caspase-3 activity, and protein expression of cleaved-poly (ADP-ribose) polymerase (PARP), cleaved-caspase-9, and cleaved-caspase-7 were observed. The SiO2NPs induced caspase-3 activity was reversed by pretreatment of caspase-3 inhibitor Z-DEVD-FMK. SiO2NPs exposure increased reactive oxygen species (ROS) production, decreased mitochondrial transmembrane potential, and decreased protein and mRNA expression of Bcl-2 in L2 cells. SiO2NPs increased protein expression of cytosolic cytochrome c and Bax, and mRNAs expression of Bid, Bak, and Bax. SiO2NPs could induce the endoplasmic reticulum (ER) stress-related signals, including the increase in CHOP, XBP-1, and phospho-eIF2α protein expressions, and the decrease in pro-caspase-12 protein expression. SiO2NPs increased phosphoinositide 3-kinase (PI3K) activity and AKT phosphorylation. Both ROS inhibitor N-acetyl-l-cysteine (NAC) and PI3K inhibitor LY294002 reversed SiO2NPs-induced signals described above. However, the LY294002 could not inhibit SiO2NPs-induced ROS generation. These findings demonstrated first time that SiO2NPs induced L2 cell apoptosis through ROS-regulated PI3K/AKT signaling and its downstream mitochondria- and ER stress-dependent signaling pathways.
Article
Full-text available
Background: Silica nanoparticles (SiNPs) are among the most widely manufactured and used nanoparticles. Concerns about potential health effects of SiNPs have therefore risen. Using a 3D tri-culture model of the alveolar lung barrier we examined effects of exposure to SiNPs (Si10) and crystalline silica (quartz; Min-U-Sil) in the apical compartment consisting of human alveolar epithelial A549 cells and THP-1-derived macrophages, as well as in the basolateral compartment with Ea.hy926 endothelial cells. Inflammation-related responses were measured by ELISA and gene expression. Results: Exposure to both Si10 and Min-U-Sil induced gene expression and release of CXCL8, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α) and interleukin-1β (IL-1β) in a concentration-dependent manner. Cytokine/chemokine expression and protein levels were highest in the apical compartment. Si10 and Min-U-Sil also induced expression of adhesion molecules ICAM-1 and E-selectin in the apical compartment. In the basolateral endothelial compartment we observed marked, but postponed effects on expression of all these genes, but only at the highest particle concentrations. Geneexpressions of heme oxygenase-1 (HO-1) and the metalloproteases (MMP-1 and MMP-9) were less affected. The IL-1 receptor antagonist (IL-1RA), markedly reduced effects of Si10 and Min-U-Sil exposures on gene expression of cytokines and adhesion molecules, as well as cytokine-release in both compartments. Conclusions: Si10 and Min-U-Sil induced gene expression and release of pro-inflammatory cytokines/adhesion molecules at both the epithelial/macrophage and endothelial side of a 3D tri-culture. Responses in the basolateral endothelial cells were only induced at high concentrations, and seemed to be mediated by IL-1α/β released from the apical epithelial cells and macrophages.
Article
The community of cells lining our airways plays a collaborative role in the preservation of immune homeostasis in the lung and provides protection from the pathogens and pollutants in the air we breathe. In addition to its structural attributes that provide effective mucociliary clearance of the lower airspace, the airway epithelium is an immunologically active barrier surface that senses changes in the airway environment and interacts with resident and recruited immune cells. Single-cell RNA-sequencing is illuminating the cellular heterogeneity that exists in the airway wall and has identified novel cell populations with unique molecular signatures, trajectories of differentiation and diverse functions in health and disease. In this Review, we discuss how our view of the airway epithelial landscape has evolved with the advent of transcriptomic approaches to cellular phenotyping, with a focus on epithelial interactions with the local neuronal and immune systems.
Article
Hypothesis: The viscosity of water-in-oil Pickering emulsions may dramatically increase upon cooling. The solvation of the long-chain alkyl groups grafted on the particles stabilizer is the likely cause of the strong dependence of rheological property on temperature. Thus, we hypothesize that silica nanoparticles (NPs) grafted with short-chain alkyl groups can stabilize Pickering emulsions, yielding weakly temperature-dependent rheological property. Experiments: Using alkyl-grafted (methyl, octyl, and octadecyl) silica NPs as emulsifiers, the rheological properties and microstructure of the water-in-oil Pickering emulsions, as well as the solvation of the silica NPs, were studied using diffusing-wave spectroscopy microrheology measurements, confocal laser scanning microscopy, and low-field nuclear magnetic resonance measurements. Findings: The use of methyl- and octadecyl-grafted silica NPs, which have almost identical optimum contact angles, to stabilize emulsions dramatically reduced the effect of cooling on the viscosity. Moreover, the emulsions stabilized by these methyl-grafted silica NPs exhibited nearly constant rheological properties as the temperature decreased from 75 to 5 °C. The nearly constant rheological properties are attributed to the nearly constant solvation in this temperature range. These materials have potential applications in the cosmetics and petroleum industries.
Article
A finely regulated system of airway epithelial development governs the differentiation of motile ciliated cells of the human respiratory tract, conferring the body’s mucociliary clearance defence system. Human cilia dysfunction can arise through genetic mutations and this is a cause of debilitating disease morbidities that confer a greatly reduced quality of life. The inherited human motile ciliopathy disorder, primary ciliary dyskinesia (PCD), can arise from mutations in genes affecting various aspects of motile cilia structure and function through deficient production, transport and assembly of cilia motility components or through defective multiciliogenesis. Our understanding about the development of the respiratory epithelium, motile cilia biology and the implications for human pathology has expanded greatly over the past 20 years since isolation of the first PCD gene, rising to now nearly 50 genes. Systems level insights about cilia motility in health and disease have been made possible through intensive molecular and omics (genomics, transcriptomics, proteomics) research, applied in ciliate organisms and in animal and human disease modelling. Here, we review ciliated airway development and the genetic stratification that underlies PCD, for which the underlying genotype can increasingly be connected to biological mechanism and disease prognostics. Progress in this field can facilitate clinical translation of research advances, with potential for great medical impact, e.g. through improvements in ciliopathy disease diagnosis, management, family counselling and by enhancing the potential for future genetically tailored approaches to disease therapeutics.
Article
Nanoparticles are promising bioengineering platforms facilitating various consumer product formulations, including packaged food, electrical, biosensors and biomedical tools. The unique surface and physicochemical properties of amorphous nanosilica supports advanced nano-biomolecular applications for various manufacturing, biotechnology, and healthcare industries including cosmetics, packaging, implants, drug delivery systems and cancer diagnostics. The increased technological and economic benefits of amorphous nanosilica, raises concerns regarding their adverse biological effects on humans. The cellular mechanisms underlying amorphous nanosilica internalization, evasion of biological barriers, inadvertent nano-bio interactions and unexpected long term exposure effects must be taken into consideration from the diverse ecosystems and human safety aspects. Recent research studies reveal cytotoxic, inflammatory and immunomodulatory effects of amorphous nanosilica particles. Our review focuses on studies demonstrating hazardous impact of amorphous nanosilica/bio-systems interface on the cellular and biochemical processes. The review further seeks to evaluate amorphous nanosilica-induced cytotoxicity, innate immune responses, inflammation and immune related dysfunctions, and discuss open research questions related to the use of amorphous nanosilica in biomedicine.
Article
Mucus hypersecretion is a pathological feature of acute inflammatory and chronic obstructive pulmonary diseases. Exposure to air pollutants can be a cause of pathological mucus overproduction, but mechanisms by which different forms of air pollutants elicit this response are not fully understood. In this study, particulate matter (PM) generated from burning pine wood and other types of biomass was used to determine mechanisms by which these forms of PM stimulate mucin gene expression and secretion by primary human bronchial epithelial cells (HBECs). Biomass PM < 2.5μm generated from pine wood and several other fuels stimulated the expression and secretion of the gel-forming glycoprotein MUC5AC by HBECs. Muc5ac gene induction was also observed in mouse airways following sub-acute oropharyngeal delivery of pine wood smoke PM. In HBECs, MUC5AC was also induced by the transient receptor potential ankyrin-1 (TRPA1) agonists' coniferaldehyde, a component of pine smoke PM, and allyl isothiocyanate (AITC), and was attenuated by a TRPA1 antagonist. Additionally, inhibition of epidermal growth factor receptor (EGFR/ErbB1) and the EGFR signaling partners p38 MAPK and GSK3β also prevented MUC5AC overexpression. Collectively, our results suggest that activation of TRPA1 and EGFR, paired with alterations to p38 MAPK and GSK3β activity, plays a major role in MUC5AC overproduction by bronchial epithelial cells exposed to biomass smoke PM. These results reveal specific processes for how biomass smoke PM may impact the human respiratory system and highlight potential avenues for therapeutic manipulation of lung diseases that are affected by air pollutants.
Article
The interaction between chronic inflammation and neural dysfunction points to a link between the nervous and immune systems in the airways. In particular, environmental exposure to nanoparticles (NPs), defined as particulate matter having one dimension <100 nm, is associated with an enhanced risk of childhood and adult asthma. However, the impact of NPs on the neural response in asthma remains to be determined. This study determined the impact of NPs on neuroinflammation in a mouse model of allergic asthma. Ovalbumin (OVA) sensitized mice were treated with saline (Sham), OVA challenged and exposed to 200 μg/m³ NPs 1 h a day for 3 days on days 21–23 in a closed-system chamber attached to a ultrasonic nebulizer. The effect of NPs on the levels of neuropeptides, transient receptor potential vanilloid 1 (TRPV1), TRPV4, P2 × 4, and P2 × 7 was assessed by enzyme-linked immunosorbent assays, immunoblotting, and immunohistochemistry. NP exposure increased airway inflammation and responsiveness in OVA mice, and these increases were augmented in OVA plus NP-exposed mice. The lung tissue levels of TRPV1, TRPV4, P2 × 4, and P2 × 7 were increased in OVA mice, and these increases were augmented in OVA plus NP-exposed mice. The substance P, adenosine triphosphate (ATP), and calcitonin gene-related peptide (CGRP) levels in bronchoalveolar lavage fluid were increased in OVA mice, and these increases were augmented in OVA plus NP-exposed mice. Bradykinin, ATP, and CGRP were dose dependently increased in NP-exposed normal human bronchial epithelial (NHBE) cells. The calcium concentration was increased in NHBE cells exposed to NPs for 8 h. These results indicate that neuroinflammation can be involved in the pathogenesis of bronchial asthma and that NPs can exacerbate asthma via neuromediator release.