Article

EFFECTS OF SUBENDOMETRIAL AUTOLOGOUS PLATELET RICH PLASMA INJECTION ON ENDOMETRIUM AND PREGNANCY RATES IN PATIENTS WITH UNRESPONSIVE THIN ENDOMETRIUM UNDERGOING FROZEN-THAWED EMBRYO TRANSFER

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... In a study by Saravanan et al., the mean endometrial thickness after injecting the PRP in the sub-endometrial layer increased by 0.9 mm compared to the control group, but 37 patients also had a decrease in endometrial thickness after the procedure [26]. In women with thin endometrium, the PRP injection in the sub-endometrial area, according to a study conducted by Cakiroglu Y. et al., had an implantation rate of 17% [31]. ...
... Besides endometrial quality and thickness, blastocyst quality is a key factor. For euploid embryos transferred according to age, body mass index, natural cycles, and hormonal preparation cycles, the endometrial thickness was not an independent factor in the live birth rate, and not achieving the 7 mm endometrial thickness and canceled cycles is not justifiable [29][30][31][32][33][34]. ...
Article
Full-text available
(1) Background: During IVF (in vitro fertilization) procedures, endometrial thickness has a significant role in the success of pregnancy outcomes for embryo transfers. Endometrial thickness, a crucial component of endometrial receptivity, is a contentious issue. The regenerative properties of PRP have been shown in recent research to have positive effects on the endometrium. PRP increases the pregnancy rate in IVF patients with thin endometrium and recurrent implantation failure. In order to demonstrate the efficacy of PRP therapies, this work compares the administration of injectable and infusible PRP during endometrial preparation. (2) Methods: This prospective single-arm control study was conducted at an IVF center in Oradea, Romania. This study included 50 patients; 27 were included in the group with Injectable PRP and 23 in the group with Infusible PRP. The outcome was compared between the two groups, with the primary outcome being the endometrial thickness after the PRP infusion or injection and the secondary outcome being the pregnancy rate in both groups. (3) Results: Patients who were treated with Injectable PRP had a higher pregnancy rate. An improvement in the quality of the endometrium, in terms of thickness, was also observed in the patients who were injected with PRP. (4) Conclusions: Compared to PRP infusions inside the uterus, sub-endometrial PRP injections in frozen embryo transfer methods have a greater pregnancy rate.
Article
Background: Autologous platelet-rich plasma (PRP) consists of plasma and a concentrate of platelets extracted from fresh whole blood of the person being treated. Research has suggested that intrauterine or intraovarian infusion/injection of PRP before embryo transfer may improve endometrial receptivity and response to ovarian stimulation in women undergoing assisted reproduction. We compared these interventions to standard treatment, placebo, or other interventions (mechanical or pharmacological). Objectives: To assess the effectiveness and safety of intrauterine and intraovarian infusion/injection of platelet-rich plasma in infertile women undergoing assisted reproductive technology cycles. Search methods: We searched the Cochrane Gynaecology and Fertility Group's Specialised Register, CENTRAL, MEDLINE, Embase, and the Epistemonikos database in January 2023. We also searched the reference lists of relevant articles and contacted the trial authors and experts in the field for any additional trials. Selection criteria: We included randomized controlled trials (RCTs) that evaluated the application of PRP in the uterine cavity, ovaries, or both versus no intervention, placebo, or any other intervention (either mechanical or pharmacological) in women undergoing in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) cycles. Data collection and analysis: We followed standard methodological procedures recommended by Cochrane, including use of the updated risk of bias tool (RoB 2). The primary outcomes were live birth (or ongoing pregnancy) and miscarriage. The secondary outcomes were clinical pregnancy, complications of the procedure, multiple pregnancy, ectopic pregnancy, fetal growth restriction, preterm delivery, and fetal abnormality. We estimated the average effect of the interventions by fitting a Der Simonian-Laird's random-effects meta-analysis model. We reported pooled odds ratios (ORs) with 95% confidence intervals (CIs). We restricted the primary analyses to trials at low risk of bias for the outcomes and performed sensitivity analyses that included all studies. Main results: We included 12 parallel-group RCTs that recruited a total of 1069 women. We identified three different comparison groups. Using GRADE, we assessed the certainty of evidence as very low for almost all outcomes. Intrauterine injection/infusion of platelet-rich plasma versus no intervention or placebo Nine studies evaluated intrauterine PRP versus no intervention or placebo. Eight included women with at least two or three previous implantation failures. Only one was assessed at low risk of bias for each outcome. This study provided very low-certainty evidence about the effect of intrauterine PRP injection versus no intervention on live birth (OR 1.10, 95% CI 0.38 to 3.14; 94 women) and miscarriage (OR 0.96, 95% CI 0.13 to 7.09; 94 women). If the likelihood of live birth following no intervention is assumed to be 17%, then the likelihood following intrauterine PRP would be 7% to 40%; and if the risk of miscarriage following no intervention is 4%, then the risk following intrauterine PRP would be 1% to 24%. When we analyzed all studies (regardless of risk of bias), we found very low-certainty evidence about the effect of intrauterine PRP compared with placebo or no intervention on live birth or ongoing pregnancy (OR 2.38, 95% CI 1.16 to 4.86; I² = 54%; 6 studies, 564 women) and miscarriage (OR 1.54, 95% CI 0.59 to 4.01; I² = 0%; 5 studies, 504 women). The study at low risk of bias provided very low-certainty evidence about the effect of intrauterine PRP compared with no intervention on clinical pregnancy (OR 1.55, 95% CI 0.64 to 3.76; 94 women) and ectopic pregnancy (OR 2.94, 95% CI 0.12 to 73.95; 94 women). The synthesis of all studies provided very low-certainty evidence about the effect of intrauterine PRP compared with placebo or no intervention on clinical pregnancy (OR 2.22, 95% CI 1.50 to 3.27; I² = 24%; 9 studies, 824 women), multiple pregnancy (OR 2.68, 95% CI 0.81 to 8.88; I² = 0%; 2 studies, 240 women), and ectopic pregnancy (OR 2.94, 95% CI 0.12 to 73.95; 1 study, 94 women; very low-certainty evidence). Intrauterine infusion of PRP may increase the risk of preterm delivery compared with no intervention (OR 8.02, 95% CI 1.72 to 37.33; 1 study, 120 women; low-certainty evidence). No studies reported pain, infection, allergic reaction, fetal growth restriction, or fetal abnormality. Intrauterine infusion of platelet-rich plasma versus intrauterine infusion of granulocyte colony-stimulating factor Two RCTs evaluated intrauterine PRP versus intrauterine granulocyte colony-stimulating factor (G-CSF); both included women with thin endometrium, and neither was judged at low risk of bias for any outcome. We are uncertain about the effect of intrauterine PRP compared with intrauterine G-CSF on live birth (OR 0.88, 95% CI 0.43 to 1.81; 1 study, 132 women; very low-certainty evidence), miscarriage (OR 1.94, 95% CI 0.63 to 5.96; 1 study, 132 women; very low-certainty evidence), and clinical pregnancy (OR 1.24, 95% CI 0.66 to 2.35; 2 studies, 172 women; very low-certainty evidence). Neither study reported adverse outcomes other than miscarriage. Intraovarian injection of platelet-rich plasma versus no intervention One RCT evaluated PRP injection into both ovaries versus no intervention; it was judged at high risk of bias for the two outcomes it reported. We are uncertain about the effect of intraovarian PRP injection compared with no intervention on ongoing pregnancy (OR 1.09, 95% CI 0.33 to 3.63; 73 women; very low-certainty evidence) and clinical pregnancy (OR 0.90, 95% CI 0.31 to 2.60; 73 women; very low-certainty evidence). The study examined no safety outcomes. Authors' conclusions: We are uncertain about the effect of intrauterine or intraovarian administration of PRP on outcomes of assisted reproduction technology in infertile women. The pooled results should be interpreted with caution. Only one of the 12 included studies was judged at low risk of bias. Other limitations of the included trials were failure to report live birth, poor reporting of methods, lack of prospective protocol registration, low precision due to the small number of enrolled participants, indirectness due to the specific subpopulations and settings studied, and insufficient or absent safety data.
ResearchGate has not been able to resolve any references for this publication.