Preprint

Immunogenicity of BNT162b2 vaccine Against the Alpha and Delta Variants in Immunocompromised Patients

Authors:
To read the file of this research, you can request a copy directly from the authors.

Abstract

Background. The emergence of strains of SARS-CoV-2 exhibiting increase viral fitness and immune escape potential, such as the Delta variant (B.1.617.2), raises concerns in immunocompromised patients. To what extent Delta evades vaccine-induced immunity in immunocompromised individuals with systemic inflammatory diseases remains unclear. Methods. We conducted a prospective study in patients with systemic inflammatory diseases (cases) and controls receiving two doses of BNT162b2. Primary end points were anti-spike antibodies levels and cross-neutralization of Alpha and Delta variants after BNT162b2 vaccine. Secondary end points were T-cell responses, breakthrough infections and safety. Results. Sixty-four cases and 21 controls not previously infected with SARS-CoV-2 were analyzed. Kinetics of anti-spike IgG and IgA after BNT162b2 vaccine showed lower and delayed induction in cases, more pronounced with rituximab. Administration of two doses of BNT162b2 generated a neutralizing response against Alpha and Delta in 100% of controls, while sera from only one of rituximab-treated patients neutralized Alpha (5%) and none Delta. Other therapeutic regimens induced a partial neutralizing activity against Alpha, even lower against Delta. All controls and cases except those treated with methotrexate mounted a SARS-CoV-2 specific T-cell response. Methotrexate abrogated T-cell responses after one dose and dramatically impaired T-cell responses after 2 doses of BNT162b2. Conclusions. Rituximab and methotrexate differentially impact the immunogenicity of BNT162b2, by impairing B-cell and T-cell responses, respectively. Delta fully escapes the humoral response of individuals treated with rituximab. These findings support efforts to improve BNT162b2 immunogenicity in immunocompromised individuals (Funded by the Fonds IMMUNOV; ClinicalTrials.gov number, NCT04870411).

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

... Omicron variants 16 exhibit several specific or shared mutations within the S sequences, raising substantial new concerns due to their increased transmissibility 17 and ability to escape convalescent and vaccineinduced antibody responses. 18À22 Recent studies showing a decrease in the effectiveness of mRNA vaccines against the new VOCs 23 report of breakthrough infections, 24 and concerns of reduced efficacy of vaccination in older patients 25 or immune-compromised individuals 26 highlight the need to develop a new and complementary generation of vaccines as prophylaxis or boosters that include T-and B-cell selected antigens that are potentially less affected by the mutations of VOCs. ...
Article
Full-text available
Background There is an urgent need of a new generation of vaccine that are able to enhance protection against SARS-CoV-2 and related variants of concern (VOC) and emerging coronaviruses. Methods We identified conserved T- and B-cell epitopes from Spike (S) and Nucleocapsid (N) highly homologous to 38 sarbecoviruses, including SARS-CoV-2 VOCs, to design a protein subunit vaccine targeting antigens to Dendritic Cells (DC) via CD40 surface receptor (CD40.CoV2). Findings CD40.CoV2 immunization elicited high levels of cross-neutralizing antibodies against SARS-CoV-2, VOCs, and SARS-CoV-1 in K18-hACE2 transgenic mice, associated with viral control and survival after SARS-CoV-2 challenge. A direct comparison of CD40.CoV2 with the mRNA BNT162b2 vaccine showed that the two vaccines were equally immunogenic in mice. We demonstrated the potency of CD40.CoV2 to recall in vitro human multi-epitope, functional, and cytotoxic SARS-CoV-2 S- and N-specific T-cell responses that are unaffected by VOC mutations and cross-reactive with SARS-CoV-1 and, to a lesser extent, MERS epitopes. Interpretation We report the immunogenicity and antiviral efficacy of the CD40.CoV2 vaccine in a preclinical model providing a framework for a pan-sarbecovirus vaccine. Fundings This work was supported by INSERM and the Investissements d'Avenir program, Vaccine Research Institute (VRI), managed by the ANR and the CARE project funded from the Innovative Medicines Initiative 2 Joint Undertaking (JU).
... We defined SARS-CoV-2 vaccine elicited humoral immune response as detection of antispike antibodies (anti-RBD or anti-S1 (spike protein) SARS-CoV-2) above the cut-off reported by the manufacturer of the given assay. Vaccine elicited cell-mediated immune response was defined as detection of SARS-CoV-2 specific T cells either measured by, T-EliSpot, [6][7][8][9] interferon-γ release assays 10 11 or activation-induced marker (AIM) detection 12 13 in flow cytometry-sorted cells. AIM used for the detection of vaccine elicited T cells response were CD4 +CXCR5+PD1+and CD38+HLA-DR+ 12 as well as S-specific OX40 +41-BB+CD4+ and CD69+41BB+CD8+. ...
Article
Full-text available
Background: Immune responses on SARS-CoV-2 vaccination in patients receiving anti-CD20 therapies are impaired but vary considerably. We conducted a systematic review and meta-analysis of the literature on SARS-CoV-2 vaccine induced humoral and cell-mediated immune response in patients previously treated with anti-CD20 antibodies. Methods: We searched PubMed, Embase, Medrxiv and SSRN using variations of search terms 'anti-CD20', 'vaccine' and 'COVID' and included original studies up to 21 August 2021. We excluded studies with missing data on humoral or cell-mediated immune response, unspecified methodology of response testing, unspecified timeframes between vaccination and blood sampling or low number of participants (≤3). We excluded individual patients with prior COVID-19 or incomplete vaccine courses. Primary endpoints were humoral and cell-mediated immune response rates. Subgroup analyses included time since anti-CD20 therapy, B cell depletion and indication for anti-CD20 therapy. We used random-effects models of proportions. Findings: Ninety studies were assessed. Inclusion criteria were met by 23 studies comprising 1342 patients. Overall rate of humoral response was 0.40 (95% CI 0.35 to 0.47). Overall rate of cell-mediated immune responses was 0.71 (95% CI 0.57 to 0.87). A time interval >6 months since last anti-CD20 therapy was associated with higher humoral response rates with 0.63 (95% CI 0.53 to 0.72) versus <6 months 0.2 (95% CI 0.03 to 0.43); p=0<01. Similarly, patients with circulating B cells more frequently showed humoral responses. Anti-CD20-treated kidney transplant recipients showed lower humoral response rates than patients with haematological malignancies or autoimmune disease. Interpretation: Patients on anti-CD20 therapies can develop humoral and cell-mediated immune responses after SARS-CoV-2 vaccination, but subgroups such as kidney transplant recipients or those with very recent therapy and depleted B cell are at high risk for non-seroconversion and should be individually assessed for personalised SARS-CoV-2 vaccination strategies. Potential limitations are small patient numbers and heterogeneity of studies included. Funding: This study was funded by Bern University Hospital.
... However, whether gender is the factor to affect the immunization remains controversial (90,91). In immunocompromised individuals receiving immunosuppressive drugs, Hadjadj et al. observed that antibody responses had partial neutralizing activity against Alpha, and even weaker against Delta stains, and their T cell responses were also altered (92). Therefore, immunosuppressive drugs for specific diseases might affect the vaccine-induced immunological effects. ...
Article
Full-text available
Coronavirus disease 2019 (COVID-19) pandemic is a serious threat to global public health and social and economic development. Various vaccine platforms have been developed rapidly and unprecedentedly, and at least 16 vaccines receive emergency use authorization (EUA). However, the causative pathogen severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has continued to evolve and mutate, emerging lots of viral variants. Several variants have successfully become the predominant strains and spread all over the world because of their ability to evade the pre-existing immunity obtained after previous infections with prototype strain or immunizations. Here, we summarized the prevalence and biological structure of these variants and the efficacy of currently used vaccines against the SARS-CoV-2 variants to provide guidance on how to design vaccines more rationally against the variants.
Article
Full-text available
Background COVID-19, the coronavirus disease that emerged in December 2019, caused drastic damage worldwide. At the beginning of the pandemic, available data suggested that the infection occurs more frequently in adults than in infants. In this review, we aim to provide an overview of SARS-CoV-2 infection in children before and after B.1.617.2 Delta and B.1.1.529 Omicron variants emergence in terms of prevalence, transmission dynamics, clinical manifestations, complications and risk factors. Methods Our method is based on the literature search on PubMed, Science Direct and Google Scholar. From January 2020 to July 2022, a total of 229 references, relevant for the purpose of this review, were considered. Results The incidence of SARS-CoV-2 infection in infants was underestimated. Up to the first half of May, most of the infected children presented asymptomatic or mild manifestations. The prevalence of COVID-19 varied from country to another: the highest was reported in the United States (22.5%). COVID-19 can progress and become more severe, especially with the presence of underlying health conditions. It can also progress into Kawasaki or Multisystem Inflammatory Syndrome (MIS) manifestations, as a consequence of exacerbating immune response. With the emergence of the B.1.617.2 Delta and B.1.1.529 Omicron variants, it seems that these variants affect a large proportion of the younger population with the appearance of clinical manifestations similar to those presented by adults with important hospitalization rates. Conclusion The pediatric population constitutes a vulnerable group that requires particular attention, especially with the emergence of more virulent variants. The increase of symptomatic SARS-CoV-2 infection and hospitalization rate among children highlights the need to extend vaccination to the pediatric population.
Article
Full-text available
Objective: While COVID-19 vaccination prevents severe infections, poor immunogenicity in immunocompromised people threatens vaccine effectiveness. We analysed the clinical characteristics of patients with rheumatic disease who developed breakthrough COVID-19 after vaccination against SARS-CoV-2. Methods: We included people partially or fully vaccinated against SARS-CoV-2 who developed COVID-19 between 5 January and 30 September 2021 and were reported to the Global Rheumatology Alliance registry. Breakthrough infections were defined as occurring ≥14 days after completion of the vaccination series, specifically 14 days after the second dose in a two-dose series or 14 days after a single-dose vaccine. We analysed patients' demographic and clinical characteristics and COVID-19 symptoms and outcomes. Results: SARS-CoV-2 infection was reported in 197 partially or fully vaccinated people with rheumatic disease (mean age 54 years, 77% female, 56% white). The majority (n=140/197, 71%) received messenger RNA vaccines. Among the fully vaccinated (n=87), infection occurred a mean of 112 (±60) days after the second vaccine dose. Among those fully vaccinated and hospitalised (n=22, age range 36-83 years), nine had used B cell-depleting therapy (BCDT), with six as monotherapy, at the time of vaccination. Three were on mycophenolate. The majority (n=14/22, 64%) were not taking systemic glucocorticoids. Eight patients had pre-existing lung disease and five patients died. Conclusion: More than half of fully vaccinated individuals with breakthrough infections requiring hospitalisation were on BCDT or mycophenolate. Further risk mitigation strategies are likely needed to protect this selected high-risk population.
Article
Full-text available
Background At interim analysis in a phase 3, observer-blinded, placebo-controlled clinical trial, the mRNA-1273 vaccine showed 94.1% efficacy in preventing coronavirus disease 2019 (Covid-19). After emergency use of the vaccine was authorized, the protocol was amended to include an open-label phase. Final analyses of efficacy and safety data from the blinded phase of the trial are reported. Methods We enrolled volunteers who were at high risk for Covid-19 or its complications; participants were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 μg) or placebo, 28 days apart, at 99 centers across the United States. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The data cutoff date was March 26, 2021. Results The trial enrolled 30,415 participants; 15,209 were assigned to receive the mRNA-1273 vaccine, and 15,206 to receive placebo. More than 96% of participants received both injections, 2.3% had evidence of SARS-CoV-2 infection at baseline, and the median follow-up was 5.3 months in the blinded phase. Vaccine efficacy in preventing Covid-19 illness was 93.2% (95% confidence interval [CI], 91.0 to 94.8), with 55 confirmed cases in the mRNA-1273 group (9.6 per 1000 person-years; 95% CI, 7.2 to 12.5) and 744 in the placebo group (136.6 per 1000 person-years; 95% CI, 127.0 to 146.8). The efficacy in preventing severe disease was 98.2% (95% CI, 92.8 to 99.6), with 2 cases in the mRNA-1273 group and 106 in the placebo group, and the efficacy in preventing asymptomatic infection starting 14 days after the second injection was 63.0% (95% CI, 56.6 to 68.5), with 214 cases in the mRNA-1273 group and 498 in the placebo group. Vaccine efficacy was consistent across ethnic and racial groups, age groups, and participants with coexisting conditions. No safety concerns were identified. Conclusions The mRNA-1273 vaccine continued to be efficacious in preventing Covid-19 illness and severe disease at more than 5 months, with an acceptable safety profile, and protection against asymptomatic infection was observed. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; COVE ClinicalTrials.gov number, NCT04470427.)
Article
Full-text available
The SARS-CoV-2 B.1.617 lineage was identified in October 2020 in India1–5. It has since then become dominant in some indian regions and UK and further spread to many countries6. The lineage includes three main subtypes (B1.617.1, B.1.617.2 and B.1.617.3), harbouring diverse Spike mutations in the N-terminal domain (NTD) and the receptor binding domain (RBD) which may increase their immune evasion potential. B.1.617.2, also termed variant Delta, is believed to spread faster than other variants. Here, we isolated an infectious Delta strain from a traveller returning from India. We examined its sensitivity to monoclonal antibodies (mAbs) and to antibodies present in sera from COVID-19 convalescent individuals or vaccine recipients, in comparison to other viral strains. Variant Delta was resistant to neutralization by some anti-NTD and anti-RBD mAbs including Bamlanivimab, which were impaired in binding to the Spike. Sera from convalescent patients collected up to 12 months post symptoms were 4 fold less potent against variant Delta, relative to variant Alpha (B.1.1.7). Sera from individuals having received one dose of Pfizer or AstraZeneca vaccines barely inhibited variant Delta. Administration of two doses generated a neutralizing response in 95% of individuals, with titers 3 to 5 fold lower against Delta than Alpha. Thus, variant Delta spread is associated with an escape to antibodies targeting non-RBD and RBD Spike epitopes.
Article
Full-text available
Background Various observations have suggested that the course of COVID-19 might be less favourable in patients with inflammatory rheumatic and musculoskeletal diseases receiving rituximab compared with those not receiving rituximab. We aimed to investigate whether treatment with rituximab is associated with severe COVID-19 outcomes in patients with inflammatory rheumatic and musculoskeletal diseases. Methods In this cohort study, we analysed data from the French RMD COVID-19 cohort, which included patients aged 18 years or older with inflammatory rheumatic and musculoskeletal diseases and highly suspected or confirmed COVID-19. The primary endpoint was the severity of COVID-19 in patients treated with rituximab (rituximab group) compared with patients who did not receive rituximab (no rituximab group). Severe disease was defined as that requiring admission to an intensive care unit or leading to death. Secondary objectives were to analyse deaths and duration of hospital stay. The inverse probability of treatment weighting propensity score method was used to adjust for potential confounding factors (age, sex, arterial hypertension, diabetes, smoking status, body-mass index, interstitial lung disease, cardiovascular diseases, cancer, corticosteroid use, chronic renal failure, and the underlying disease [rheumatoid arthritis vs others]). Odds ratios and hazard ratios and their 95% CIs were calculated as effect size, by dividing the two population mean differences by their SD. This study is registered with ClinicalTrials.gov, NCT04353609. Findings Between April 15, 2020, and Nov 20, 2020, data were collected for 1090 patients (mean age 55·2 years [SD 16·4]); 734 (67%) were female and 356 (33%) were male. Of the 1090 patients, 137 (13%) developed severe COVID-19 and 89 (8%) died. After adjusting for potential confounding factors, severe disease was observed more frequently (effect size 3·26, 95% CI 1·66–6·40, p=0·0006) and the duration of hospital stay was markedly longer (0·62, 0·46–0·85, p=0·0024) in the 63 patients in the rituximab group than in the 1027 patients in the no rituximab group. 13 (21%) of 63 patients in the rituximab group died compared with 76 (7%) of 1027 patients in the no rituximab group, but the adjusted risk of death was not significantly increased in the rituximab group (effect size 1·32, 95% CI 0·55–3·19, p=0·53). Interpretation Rituximab therapy is associated with more severe COVID-19. Rituximab will have to be prescribed with particular caution in patients with inflammatory rheumatic and musculoskeletal diseases. Funding None.
Article
Full-text available
Objectives To determine factors associated with COVID-19-related death in people with rheumatic diseases. Methods Physician-reported registry of adults with rheumatic disease and confirmed or presumptive COVID-19 (from 24 March to 1 July 2020). The primary outcome was COVID-19-related death. Age, sex, smoking status, comorbidities, rheumatic disease diagnosis, disease activity and medications were included as covariates in multivariable logistic regression models. Analyses were further stratified according to rheumatic disease category. Results Of 3729 patients (mean age 57 years, 68% female), 390 (10.5%) died. Independent factors associated with COVID-19-related death were age (66–75 years: OR 3.00, 95% CI 2.13 to 4.22; >75 years: 6.18, 4.47 to 8.53; both vs ≤65 years), male sex (1.46, 1.11 to 1.91), hypertension combined with cardiovascular disease (1.89, 1.31 to 2.73), chronic lung disease (1.68, 1.26 to 2.25) and prednisolone-equivalent dosage >10 mg/day (1.69, 1.18 to 2.41; vs no glucocorticoid intake). Moderate/high disease activity (vs remission/low disease activity) was associated with higher odds of death (1.87, 1.27 to 2.77). Rituximab (4.04, 2.32 to 7.03), sulfasalazine (3.60, 1.66 to 7.78), immunosuppressants (azathioprine, cyclophosphamide, ciclosporin, mycophenolate or tacrolimus: 2.22, 1.43 to 3.46) and not receiving any disease-modifying anti-rheumatic drug (DMARD) (2.11, 1.48 to 3.01) were associated with higher odds of death, compared with methotrexate monotherapy. Other synthetic/biological DMARDs were not associated with COVID-19-related death. Conclusion Among people with rheumatic disease, COVID-19-related death was associated with known general factors (older age, male sex and specific comorbidities) and disease-specific factors (disease activity and specific medications). The association with moderate/high disease activity highlights the importance of adequate disease control with DMARDs, preferably without increasing glucocorticoid dosages. Caution may be required with rituximab, sulfasalazine and some immunosuppressants.
Article
Full-text available
Background: Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of the affected patients. Methods: We extracted data regarding 1099 patients with laboratory-confirmed Covid-19 from 552 hospitals in 30 provinces, autonomous regions, and municipalities in China through January 29, 2020. The primary composite end point was admission to an intensive care unit (ICU), the use of mechanical ventilation, or death. Results: The median age of the patients was 47 years; 41.9% of the patients were female. The primary composite end point occurred in 67 patients (6.1%), including 5.0% who were admitted to the ICU, 2.3% who underwent invasive mechanical ventilation, and 1.4% who died. Only 1.9% of the patients had a history of direct contact with wildlife. Among nonresidents of Wuhan, 72.3% had contact with residents of Wuhan, including 31.3% who had visited the city. The most common symptoms were fever (43.8% on admission and 88.7% during hospitalization) and cough (67.8%). Diarrhea was uncommon (3.8%). The median incubation period was 4 days (interquartile range, 2 to 7). On admission, ground-glass opacity was the most common radiologic finding on chest computed tomography (CT) (56.4%). No radiographic or CT abnormality was found in 157 of 877 patients (17.9%) with nonsevere disease and in 5 of 173 patients (2.9%) with severe disease. Lymphocytopenia was present in 83.2% of the patients on admission. Conclusions: During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness. Patients often presented without fever, and many did not have abnormal radiologic findings. (Funded by the National Health Commission of China and others.).
Article
Full-text available
Background: A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods: All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings: By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0-58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0-13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation: The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding: Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
Article
Full-text available
To assess the effect of rituximab on the efficacy and safety of influenza virus vaccine in patients with rheumatoid arthritis (RA). The study group comprised patients with RA treated with conventional disease-modifying drugs with or without rituximab. Split-virion inactivated vaccine containing 15 microg haemagglutinin/dose of B/Shanghai/361/02 (SHAN), A/New Caledonian/20/99 (NC) (H1N1) and A/California/7/04 (CAL) (H3N2) was used. Disease activity was assessed by the number of tender and swollen joints, duration of morning stiffness and evaluation of pain on the day of vaccination and 4 weeks later. CD19-positive cell levels were assessed in rituximab-treated patients. Haemagglutination inhibition (HI) antibodies were tested and response was defined as a greater than fourfold rise 4 weeks after vaccination or seroconversion in patients with a non-protective baseline level of antibodies (<1/40). Geometric mean titres (GMT) were calculated in all subjects. The participants were divided into three groups: RA (n = 29, aged 64 (12) years), rituximab-treated RA (n = 14, aged 53 (15) years) and healthy controls (n = 21, aged 58 (15) years). All baseline protective levels of HI antibodies and GMT were similar. Four weeks after vaccination, there was a significant increase in GMT for NC and CAL antigens in all subjects, but not for the SHAN antigen in the rituximab group. In rituximab-treated patients, the percentage of responders was low for all three antigens tested, achieving statistical significance for the CAL antigen. Measures of disease activity remained unchanged. Influenza virus vaccine generated a humoral response in all study patients with RA and controls. Although the response was significantly lower among rituximab-treated patients, treatment with rituximab does not preclude administration of vaccination against influenza.
Article
Background: The B.1.617.2 (delta) variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19), has contributed to a surge in cases in India and has now been detected across the globe, including a notable increase in cases in the United Kingdom. The effectiveness of the BNT162b2 and ChAdOx1 nCoV-19 vaccines against this variant has been unclear. Methods: We used a test-negative case-control design to estimate the effectiveness of vaccination against symptomatic disease caused by the delta variant or the predominant strain (B.1.1.7, or alpha variant) over the period that the delta variant began circulating. Variants were identified with the use of sequencing and on the basis of the spike (S) gene status. Data on all symptomatic sequenced cases of Covid-19 in England were used to estimate the proportion of cases with either variant according to the patients' vaccination status. Results: Effectiveness after one dose of vaccine (BNT162b2 or ChAdOx1 nCoV-19) was notably lower among persons with the delta variant (30.7%; 95% confidence interval [CI], 25.2 to 35.7) than among those with the alpha variant (48.7%; 95% CI, 45.5 to 51.7); the results were similar for both vaccines. With the BNT162b2 vaccine, the effectiveness of two doses was 93.7% (95% CI, 91.6 to 95.3) among persons with the alpha variant and 88.0% (95% CI, 85.3 to 90.1) among those with the delta variant. With the ChAdOx1 nCoV-19 vaccine, the effectiveness of two doses was 74.5% (95% CI, 68.4 to 79.4) among persons with the alpha variant and 67.0% (95% CI, 61.3 to 71.8) among those with the delta variant. Conclusions: Only modest differences in vaccine effectiveness were noted with the delta variant as compared with the alpha variant after the receipt of two vaccine doses. Absolute differences in vaccine effectiveness were more marked after the receipt of the first dose. This finding would support efforts to maximize vaccine uptake with two doses among vulnerable populations. (Funded by Public Health England.).
Article
Background The registration trials of messenger RNA (mRNA) vaccines against SARS-CoV-2 did not address patients with inflammatory rheumatic diseases (IRD). Objective To assess the humoral response after two doses of mRNA vaccine against SARS-CoV-2, in patients with IRD treated with immunomodulating drugs and the impact on IRD activity. Methods Consecutive patients treated at the rheumatology institute, who received their first SARS-CoV-2 (Pfizer) vaccine, were recruited to the study, at their routine visit. They were reassessed 4–6 weeks after receiving the second dose of vaccine, and blood samples were obtained for serology. IRD activity assessment and the vaccine side effects were documented during both visits. IgG antibodies (Abs) against SARS-CoV-2 were detected using the SARS-CoV-2 IgG II Quant (Abbott) assay. Results Two hundred and sixty-four patients with stable disease, (mean(SD) age 57.6 (13.18) years, disease duration 11.06 (7.42) years), were recruited. The immunomodulatory therapy was not modified before or after the vaccination. After the second vaccination, 227 patients (86%) mounted IgG Ab against SARS-CoV-2 (mean (SD) 5830.8 (8937) AU/mL) and 37 patients (14%) did not, 22/37 were treated with B cell-depleting agents. The reported side effects of the vaccine were minor. The rheumatic disease remained stable in all patients. Conclusions The vast majority of patients with IRD developed a significant humoral response following the administration of the second dose of the Pfizer mRNA vaccine against SARS-CoV-2 virus. Only minor side effects were reported and no apparent impact on IRD activity was noted.
Article
Objectives COVID-19 outcomes in people with rheumatic diseases remain poorly understood. The aim was to examine demographic and clinical factors associated with COVID-19 hospitalisation status in people with rheumatic disease. Methods Case series of individuals with rheumatic disease and COVID-19 from the COVID-19 Global Rheumatology Alliance registry: 24 March 2020 to 20 April 2020. Multivariable logistic regression was used to estimate ORs and 95% CIs of hospitalisation. Age, sex, smoking status, rheumatic disease diagnosis, comorbidities and rheumatic disease medications taken immediately prior to infection were analysed. Results A total of 600 cases from 40 countries were included. Nearly half of the cases were hospitalised (277, 46%) and 55 (9%) died. In multivariable-adjusted models, prednisone dose ≥10 mg/day was associated with higher odds of hospitalisation (OR 2.05, 95% CI 1.06 to 3.96). Use of conventional disease-modifying antirheumatic drug (DMARD) alone or in combination with biologics/Janus Kinase inhibitors was not associated with hospitalisation (OR 1.23, 95% CI 0.70 to 2.17 and OR 0.74, 95% CI 0.37 to 1.46, respectively). Non-steroidal anti-inflammatory drug (NSAID) use was not associated with hospitalisation status (OR 0.64, 95% CI 0.39 to 1.06). Tumour necrosis factor inhibitor (anti-TNF) use was associated with a reduced odds of hospitalisation (OR 0.40, 95% CI 0.19 to 0.81), while no association with antimalarial use (OR 0.94, 95% CI 0.57 to 1.57) was observed. Conclusions We found that glucocorticoid exposure of ≥10 mg/day is associated with a higher odds of hospitalisation and anti-TNF with a decreased odds of hospitalisation in patients with rheumatic disease. Neither exposure to DMARDs nor NSAIDs were associated with increased odds of hospitalisation.
Article
To assess the current literature on the impact of rheumatoid arthritis (RA) treatments on the humoral response to pneumococcal and influenza vaccines. We systematically searched the literature for studies evaluating the immune response to vaccines in RA patients receiving methotrexate (MTX) and/or biologics. The efficacy of vaccination, assessed by response rate based on increased antibody titers before and 3 to 6 weeks after vaccination, was extracted by one investigator and verified by another. 12 studies were included. RA patients mainly received MTX, anti-TNFα or rituximab (RTX). Influenza vaccination response was reduced for RTX (43 patients. Pooled odds-ratio (OR), 0.44 [95% CI, 0.17-1.12] for strain H1N1, 0.11 [0.04-0.31] for H3N2, 0.29 [0.10-0.81] for B) but not anti-TNFα (308 patients. OR, 0.93 [0.36-2.37] for H1N1, 0.79 [0.34-1.83] for H3N2, 0.79 [0.37-1.70] for B). For MTX, results differ depending on the method of analysis (222 patients. OR, 0.35 [0.18-0.66] for at least 2 strains, ORs close to 1.0 in the single strain analysis). Pneumococcal vaccination response was reduced for 139 patients receiving MTX compared to controls (OR, 0.33 [0.20-0.54] for serotype 6B, 0.58 [0.36-0.94] for 23F) but not anti-TNFα (258 patients. OR, 0.96 [0.57-1.59] for 6B, 1.20 [0.57-2.54] for 23F). For RTX, response was reduced (88 patients. OR, 0.25 [0.11-0.58] for 6B and 0.21 [0.04-1.05] for 23F). MTX decreases humoral response to pneumococcal vaccine and may impair response to influenza vaccine. The immune response to both vaccines is reduced with RTX but not anti-TNFα therapy in RA patients. © 2013 American College of Rheumatology.
Impact of temporary methotrexate discontinuation for 2
  • J K Park
  • Y J Lee
  • K Shin
Park JK, Lee YJ, Shin K, et al. Impact of temporary methotrexate discontinuation for 2